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Abstract. Public transit agencies are focused on making their fixed-line
bus systems more energy efficient by introducing electric (EV) and hybrid
(HV) vehicles to their fleets. However, because of the high upfront cost of
these vehicles, most agencies are tasked with managing a mixed-fleet of
internal combustion vehicles (ICEVs), EVs, and HVs. In managing mixed-
fleets, agencies require accurate predictions of energy use for optimizing
the assignment of vehicles to transit routes, scheduling charging, and
ensuring that emission standards are met. The current state-of-the-art is to
develop separate neural network models to predict energy consumption for
each vehicle class. Although different vehicle classes’ energy consumption
depends on a varied set of covariates, we hypothesize that there are broader
generalizable patterns that govern energy consumption and emissions. In
this paper, we seek to extract these patterns to aid learning to address
two problems faced by transit agencies. First, in the case of a transit
agency which operates many ICEVs, HVs, and EVs, we use multi-task
learning (MTL) to improve accuracy of forecasting energy consumption.
Second, in the case where there is a significant variation in vehicles in each
category, we use inductive transfer learning (ITL) to improve predictive
accuracy for vehicle class models with insufficient data. As this work is to
be deployed by our partner agency, we also provide an online pipeline for
joining the various sensor streams for fixed-line transit energy prediction.
We find that our approach outperforms vehicle-specific baselines in both
the MTL and ITL settings.

Keywords: Energy Prediction · Smart Transit · Transfer Learning ·
Multi-task Learning

1 Introduction

Context: Public transit agencies are focused on finding ways to make their
fixed-line bus systems more energy efficient by introducing electric vehicles (EVs)
and hybrid vehicles (HVs), which have reduced impacts on the environment in
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comparison to traditional vehicles with internal combustion engines (ICEVs).
However, EVs and HVs are expensive and in practice, transit agencies have
to manage a mixed-vehicle fleet, requiring complex scheduling and assignment
procedures to maximize the overall energy efficiency [13,20,23] while satisfying
the expectations of transit demand. This is turn requires the ability to estimate
energy and emissions of vehicles on assigned routes and trips. Energy prediction
models can be categorized based on their modeling scale. Microscopic models
aim to estimate vehicle energy consumption at a high frequency [2]; however,
this comes at the cost of reduced accuracy. For most system level optimization,
macroscopic models that aim to predict energy consumption at an aggregated
spatial or temporal span are sufficient [1, 2].

State of the Art: There has been significant research on macroscopic
models for EVs over recent years. For example, De Cauwer et al. used a cascade
of ANN and linear regression models for energy consumption prediction for
EVs using vehicle speed, voltage, current, SoC, road network characteristics,
altitude, and weather [6]. Their model, however, did not use traffic data and the
approach had a mean absolute error (MAE) of 12-14% of average trip consumption.
Vepsäläinen et al. used a linear model using temperature, driver behavior, and
roadway characteristics and found that EV energy consumption was 15% lower on
suburban routes compared to city routes. A recent study by Pamula et al. used a
DNN with stacked autoencoders and an multi-layer perceptron to predict energy
consumption between stops. Their model used travel time, elevation change, and
modeled weather as categorical variables [17]. However, most of the prior work
relied on learning separate models for each vehicle class [1, 3, 17].

Challenges: There are several unresolved challenges for public transit oper-
ations teams. First, modern public bus fleets include not only a mix of vehicle
classes (ICEV, HV, and EV), but also different vehicle models within each class.
For example, out partner agency, Chattanooga Area Regional Transportation
Authority (CARTA), manages a total of six ICEV models, two HV models,
and two EV models. Training separate models for each type of vehicle ignores
generalizable information that is not explicitly modeled in the feature space.
For example, Ayman et al. modeled EVs and ICEVs without sharing model
parameters between classes [1]. Second, the number of vehicles in each class varies
greatly, which leads to an uneven distribution of data available for training the
energy or emission prediction models. Third, and similar to the second problem
in principle, when a new vehicle class is added to an existing fleet, the agency
must deploy some vehicles, obtain data, and then learn a new predictive model
from scratch.

Our Contributions: We address these challenges as multi-task learning
(MTL) and inductive transfer learning (ITL) problems. Although different vehicle
classes’ energy consumption depends on a varied set of covariates through different
non-linear functions, we hypothesize that there are broader generalizable patterns
that govern the consumption of energy and vehicle emission. That is, if an agency
has access to many vehicles, and consequently data, from each vehicle class
(ICEVs, HVs, and EVs), we formulate emission (and energy) forecasting as an
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MTL problem. We show that this approach improves the predictive accuracy for
all vehicle classes compared to a baseline where separate networks are trained
to predict emissions (and energy) for each class. In a situation with imbalanced
data or when an agency introduces a new model or class, we show that it is
possible to learn a model for classes with sufficient data, and transfer the learned
abstraction to improve the predictive accuracy for the class with insufficient
data. The benefit of ITL is the ability to deploy the model earlier than the time
required to collect enough samples to train a separate model for the new class.
Finally, we highlight that real-world transit problems require collecting, cleaning,
and joining data from various sources, formats, and precision. We provide a
general online pipeline for joining the various sensor streams (vehicle telemetry
and trajectory data with external data sources such as weather, traffic, and
road infrastructure) for training and maintaining the fixed-line transit energy
prediction models. We evaluate our MTL and ITL models using real-world data
from our partner agency’s mixed-fleet of EVs, HVs, and ICEVs. We show that
in both the MTL and ITL settings, our approach outperforms state-of-the-art
methods. The greatest improvements over baselines were in the ITL setting when
the target vehicle class suffers from a lack of data. However, we also find that in
some cases ITL does not work well, such as when transferring learned abstractions
from EV to ICEV.

2 Model

2.1 Predicting Energy Consumed and Emissions

Transit agencies are concerned with reducing a) costs by limiting energy used,
and b) the impact of their vehicles on the environment by reducing emissions. For
ICEVs and HVs, energy expended by a vehicle is a function of the fuel consumed,
measured in liters. On the other hand, the energy expended by an EV is a function
of the dissipated charge of its battery, which is the change in its state-of-charge
(SOC). This presents a problem since transit agencies primarily use prediction
models to optimize the assignment of vehicles to trips. As a consequence, they
require a common metric to compare across vehicle classes in their mixed-fleet
for both energy consumed and emissions. For energy, we use kWh. For ICEVs
and HVs, we convert liters of diesel fuel consumed to kWh using a conversion
rate of 10.639 kWh/liter [7]. For EVs, we multiply the change in SOC and the
capacity of the battery. We measure emissions as kg of CO2. For ICEVs and
HVs, fuel consumed in liters can be converted to emissions (kg CO2) at a rate of
2.689 kg/liter [8]. For EVs, dissipation in charge can be converted to emissions
(kg CO2) at a rate of 0.707 kg/kWh [8]. As shown in Figure 1, the function
gi(Ŷi) represents the linear conversion between the predicted target (emission)
and energy consumed for an arbitrary vehicle class denoted by the index i.

2.2 Preliminaries and Model Formulation

Our goal is to learn energy consumption and emissions in a mixed fleet of vehicles
conditional on a set of relevant determinants (Figure 1). We refer to learning
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Fig. 1: (a) MTL Model: DNN with hard parameter sharing for predicting emissions
(kg CO2) of EVs (ŶEV ), HVs (ŶHV ) and ICEVs (ŶICEV ). (b) ITL Model: shared-
hidden layer parameters are frozen and transfered to the target model. Energy
consumed (kWh) is a linear function gi(·) for vehicle class i, separate of the
neural network per the conversion discussed in Section 2.1.

prediction models as tasks, consistent with the terminology in the area of transfer
learning [18]. We introduce the formalism for our problem next. We define a
domain D as the combination of a feature space X and a probability distribution
P (X), where X = {x1, x2, . . . } ∈ X . For example, X can include features like
vehicle speed and weather. Given a specific domain, a task is then defined as
T = {Y, f(·)} where Y is the space of output labels, and f is a predictive
function over y ∈ Y conditional on x. Probabilistically, f denotes the probability
of a realization of y given x (P (y | x)). For example, Y can denote the energy
consumed by a vehicle, and subsequently, the function f can be used to denote a
distribution on the energy consumed conditional on the determinants. Typically,
f is unknown; instead, we assume access to observations (data) in the form
of input-output pairs {(x1, y1), (x2, y2), . . . , (xm, ym)}. We deal with a scenario
with multiple tasks (and associated domains). Specifically, there are three vehicle
classes, and therefore three domains DEV ,DHV ,DICEV representing the domains
of EVs, HVs and ICEVs, respectively. Similarly, we have three output label spaces
YEV , YHV , and YICEV , and three predictive functions fEV , fHV , and fICEV ,
which need to be learned.

The functions fEV , fHV , and fICEV are parameterized by a set of parameters
θ, that we seek to learn by minimizing a predefined loss function given the observed
data. The input features for each of the vehicle class domains are derived from
the characteristics of the road segments, weather, traffic features, and vehicle
dynamics. Therefore, we can state that the feature spaces are equivalent, XEV =
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Table 1: Data description; data collected from Jan 1 2020 to July 1 2020.
Data Source Description Features Frequency Scope

ViriCiti - ICEVs vehicle telemetry fuel level, GPS 1 Hz 3 vehicles

ViriCiti - HVs vehicle telemetry fuel level, GPS 1 Hz 4 vehicles

ViriCiti - EVs vehicle telemetry current, voltage, GPS 1 Hz 3 vehicles

Clever Devices automated vehicle trip ID, 0.1 Hz all
location vehicle ID vehicles

HERE traffic (per TMC)
jam factor, current speed,
free flow speed

0.0166 Hz
major roads,
highways

DarkSky weather
visibility, wind speed,
precipitation intensity,
humidity, wind gust, temperature

0.0033 Hz whole city

Static GTFS transit schedule

routes, trip IDs, stop sequences,
stop locations (latitude, longitude),
schedule trip times,
trip shape (GeoJSON)

static whole city

GIC - Elevation LiDAR elevation location, elevation (meters) static whole city

Trip Segments multiple sources segment length, time to travel, static whole city
average speed, roadway type

XHV = XICEV . Additionally, the marginal probability distributions over the
features are independent of vehicle class and therefore, the marginal probability
distributions over the features are equivalent, P (XEV ) = P (XHV ) = P (XICEV ).
Finally, given that the feature spaces and marginal probability distributions are
the same for all vehicle classes, we have that DEV = DHV = DICEV .

As the energy consumed for ICEV and HV vehicles are measured in fuel
(liters) consumed, the space of output labels Y is the set of positive real numbers
R+. On the other hand, EV vehicles have regenerative braking, therefore the
energy consumed can take negative values and the task space for EV vehicles is
R. Additionally, since the performance of the three vehicle classes varies greatly,
we consider that the predictive functions for each vehicle class are different;
as the conditional probability distributions are not equal and P (YEV |XEV ) 6=
P (YHV |XHV ) 6= P (YICEV |XICEV ). Finally, we can generalize the problem to n
classes of transit vehicles in the fleets (e.g. the classes can be categorized based
on the model and year as well); such a generalization will focus on learning the
tasks {T1 6= T2, · · · , 6= Tn} ∈ T , given the domains {D1 = D2, · · · ,= Dn} ∈ D.

3 Approach

We now discuss our approach to learning the energy prediction functions (fEV ,
fHV , and fICEV ). In order to perform data-driven learning, we first need to
accumulate data from various sources. In real-world problems pertaining to public
transportation, creating a data pipeline is often an arduous task due to the variety
of data sources, formats, recording precision, and data collection frequency. As a
result, we begin by discussing the data sources (Table 1) and the data pipeline.
We gather data from 3 ICEVs, 4 HVs, and 3 EVs from our partner agency for
a period of six months from January 1, 2020 to July 1, 2020. Each vehicle has
a telematics kit produced by ViriCiti LLC [22], that provides speed and GPS
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positioning at a minimum of 1Hz resolution. In addition, for ICEVs and HVs
the sensors provide fuel consumed (liters) while for EVs we collect current and
voltage levels which are used to calculate energy consumed as well as emissions.
Each vehicle is equipped with a kit from Clever Devices [4]. The Clever Devices
feed provides a unique vehicle ID corresponding to the vehicle ID in the ViriCiti
feed, as well as the unique trip ID which maps to scheduled trips in the static
General Transit Feed Specification (GTFS) [21].

We collect weather data from multiple weather stations within the transit
region at 5-minute intervals using the DarkSky API [5], including temperature,
humidity, wind speed, and precipitation. Traffic data was collected at 1-minute
intervals using the HERE API [11], which provides speed recordings for segments
of major roads. The traffic data is reported per TMC (Traffic Message Channel),
which is a custom geographical mapping unit. We perform map matching similar
to prior work [1] to obtain traffic data for each road segment of interest to us.
Road network map data was collected from OpenStreetMaps [9]. Lastly, we collect
static GIS elevation data from the state Geographic Information Council which
provides high-resolution digital elevation models (DEMs) derived from LiDAR
elevation imaging, with a vertical accuracy of approximately 10cm.

Fixed line transit vehicles travel at pre-determined times (trips) covering a
sequence of stops along a route. The latitude and longitude of each stop and
the geographical shape of the path (the route segment) that the vehicles travel
by visiting each stop is specified using the static GTFS schedule published by
CARTA. Using this information, it is straightforward to divide the path taken
by a bus during a given trip into a sequence of segments 〈SEG 〉, where each
segment is marked by a start stop and an end stop. As the specific characteristics
of segments are important, a unique segment is created for every spatial path
that exists between a pair of stops. Note that effectively, each SEGi is described
using a discrete sequence of points (latitude and longitude), close enough to draw
the shape of the road on the map. We use these segments as the fundamental
spatial unit for which we predict emissions (or energy). This has two advantages:
first, the generation of route segments for prediction can be derived directly
from a transit agency’s schedule, rather than relying on external infrastructure
data such as OSM [1] or time intervals [3], and second, segments can be shared
between trips thereby providing additional data for learning.

3.1 Mapping Vehicle Trajectories to Route Segments

To generate the joined data samples, we first map the vehicle trajectories to
segments. By joining the ViriCiti and Clever Device feeds, we determine a set
of GPS points that a vehicle traverses. We refer to this ordered sequence of
points as a trajectory T consisting of spatial points {l1, l2, . . . }. Consider that
the trajectory T serves the trip R. The goal of the mapping process is to label
each location li ∈ T to a corresponding segment SEGj ∈ R, thereby representing
the specific segment that each vehicle traverses at a specific point in time.

In principle, it is possible to perform an exhaustive search on the segments
to identify the one that matches (or is the closest to) each point in a trajectory.
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(a) (b)

Fig. 2: (a) Overlapping segments. Segments 1 and 5 traverse the same section
in opposite directions. (b) Intersecting segments. Vehicle locations near the
intersection of segments 1 and 4 can lead to incorrect mapping. Stops not shown.

However, such an approach does not work in practice with real-word trajectory
feeds due to two reasons. First, routes often traverse segments between spatial
points close to each other during trips. For example, consider the overlapping
segments in Figure 2a in which the vehicle passes through SEG1 relatively early
in the trip and through SEG5 later. Due to noise in the measurement, a point
early in the trip can erroneously get mapped to SEG5, resulting in incorrect
representation of the features that are induced by the segment. Similar problems
arrise when segments cross each other as shown in Figure 2b. Our exploratory
analysis on the data obtained from our partner agency showed several examples
of such incorrect mappings. Second, the mapping of trajectory data to segments
is computationally challenging for transit agencies. As an example, consider
our partner agency CARTA, which operates a total of 60 vehicles. The number
for bigger cities is larger in orders of magnitude; for example, the New York
Metropolitan Transit Authority (NY-MTA) operates more than 5000 buses [16].
Considering location data collected at the frequency of 1 Hz for 3 years, the
matching must be done for over 3.5× 109 spatial locations, each of which could
potentially be mapped to one out of hundreds of segments (for a larger city like
New York, the number of matches is 3 × 1012).

To alleviate these concerns, we propose an algorithm for mapping vehicle
trajectories to route segments (Algorithm 1). The algorithm takes the trajectory
T of the vehicle traversing the sequence of segments 〈SEG 〉 of trip R. During
matching, we maintain a lookahead window, denoted by W , that represents the
number of segments to consider for the match. For example, if a location li ∈ T
is already matched to segment SEGc in a route, then for matching the next
location li+1 ∈ T , we consider the set {SEGc, . . . , SEGc+W }. By maintaining a
short lookahead, we alleviate duplicate matches from segments further away in
the route. Also, a shorter lookahead provides computational efficiency as opposed
to an exhaustive search. We maintain a tolerance distance B for matching where
a segment is matched to a location from a trajectory only if the distance between
them is less than or equal to B. The function dist(SEGj , li) is used to calculate
the minimum distance between segment SEGj and GPS point li.
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Algorithm 1: Mapping Trajectories to Route Segments

Input:
R← sequence of segments {SEG0, . . . , SEGN} for each trip
T ← set of vehicle GPS locations l along the trip
W ← number of segments to lookahead
B ← max distance between segment and vehicle GPS
Output:
TrajSegMap→ list of segments for each SEG in R
Initialization:
c← 1, index of current segment
TrajSegMap← []
for i ∈ {1, . . . , |T |} do

SegWindowDist← []
for j ∈ {c, . . . , c+W} do

if j ≤ |R| then
SegWindowDist.push(dist(SEGj , li))

if min(SegWindowDist) ≤ B then
c← c+ argmin(SegWindowDist) TrajSegMap[i]← SEGc

else
TrajSegMap[i]← None

3.2 Generating Samples

To generate the joined data samples, we split each of the trajectories T based on
the locations mapped to trip segments. We create one data sample per continuous
travel on a trip segment, providing average speed and the total fuel/energy
consumption and emission on that segment. For ICEVs and HVs, the fuel
consumed is provided in liters. While EVs provide state-of-charge (SOC) readings,
the precision is too low to use for representing energy consumed. Therefore, we
estimate the amount of energy from the battery current A and voltage V . The
energy used between consecutive data points is given by Ei = Ai·Vi·(TSi−TSi−1),
where Ei, Ai, and Vi are the consumed energy (Joule), current (Ampere), voltage
(Volt) at time step i, respectively, and TSi is the timestamp (in seconds) at
time step i. To get the energy on a segment, the energy consumed between each
sample is accumulated for all locations of the vehicle mapped to that segment.

Weather features for each sample are taken from the weather reading closest
to the time at which the vehicle starts traversing a segment. For traffic features,
we take the average jam factor (JF) and speed ratio (SR) of all TMCs mapped
to the segment traversed by the vehicle when the vehicle enters a segment. Speed
ratio is defined as the traffic speed divided by the free flow speed.

3.3 Learning

Recall that our goal is to address two specific problems. The first scenario is where
a transit agency has access to many vehicles, and consequently data, from each
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vehicle class. In this case, our goal is to improve the predictive accuracy of f for all
tasks. One method of addressing this problem is to learn a predictive model f over
each vehicle class. However, we hypothesize that there are generalizable patterns
between vehicle classes that can be leveraged to aid learning. Consequently, we
formulate a MTL model as shown in Figure 1a. We use hard parameter sharing to
learn a common representation of the input features which enables us to extract
generalizable patterns across the tasks. Additionally, each task (vehicle class)
has a vehicle-specific set of hidden layers which outputs the predicted energy
consumed/emissions for EVs (ŶEV ), HVs (ŶHV ), and ICEVs (ŶICEV ) along
route segments. At each training iteration, a batch of samples from EVs, HVs,
and ICEVs is fed through the network and mean-squared error (MSE) loss is
calculated between the predicted target and true target for each vehicle class.
The gradient of the loss is then propagated back through the network.

The second problem we seek to address is where an agency has significant
variation in the number of vehicles from each class. In such a case, while a
common model can be learned using the MTL framework, the tasks with a
significantly larger number of samples are likely to dominate learning. Also,
learning a model solely for the task with few samples can result in overfitting.
In this case, we seek to learn f for classes with sufficient data (source model)
first, and transfer the learned abstraction to improve the predictive accuracy for
the class with insufficient data (target model). Our ITL framework is shown in
Figure 1b. When training the target model, the transferred layers are frozen and
only the vehicle-specific layers are updated during training.

4 Experiments and Results

Vehicle telemetry, weather, and traffic data is collected for a six-month period
between January 1, 2020 and July 1, 2020 for 10 vehicles as shown in Table 2.
We include two post-processing steps in generating the final datasets for each
respective vehicle class. First, we remove partial trajectories by eliminating
samples where the total distance traveled was less than 50% of the segment
length and greater than 150% of the segment length. Second, to address outliers
and potential errors in the mapping process, we remove samples with the target
value (energy/emission) in the bottom 2% and top 2% quantiles. The final data
size is shown in last column of Table 2.

The distributions of emissions (kg CO2) and energy (kWh) consumption are
shown in Figure 3. As energy consumption for ICEVs and HVs is derived from
liters of diesel fuel consumed, emissions must be greater than 0 kg CO2 for these
vehicle classes. The EVs in the fleet have regenerative braking, which allows for
energy consumed, and thus emission, to be negative. We predict energy/emissions
per route segment. The distributions over energy and emission for each of the
vehicle classes has a long right tail and the average varies between vehicle classes.
Therefore, the task of energy/emission prediction is also different, by virtue of
having a different distribution over the space of output labels Y.
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Table 2: Data processing summary.
Class Model Year Vehicles Raw Samples Distance Filtering Final Samples

ICEV 2014 3 139,652 127,212 114,348
HV 2014 4 235,671 223,913 201,491
EV 2018 3 48,969 47,804 43,022

Table 3: Pearson’s correlation coefficient of input features with emissions.
Class Length Time to ∆Ele max ∆E Speed Visibi Wind Precip Hum Wind Jam Tempe Avg

Segment Travel vation levation Ratio lity Speed itation idity Gust Factor rature Speed

EV 0.860 0.752 0.523 0.222 0.038 0.008 -0.002 -0.003 -0.009 -0.012 -0.015 -0.037 -0.093

HV 0.916 0.838 0.505 0.135 0.038 0.006 0.004 -0.008 -0.008 -0.002 -0.026 0.013 -0.134

ICEV 0.886 0.865 0.539 0.103 0.028 0.004 0.011 -0.005 0.001 ≈ 0 -0.016 -0.005 -0.262

0 1 2

EV

HV

ICEV

(a) Emissions (kg CO2)

0 5

EV

HV

ICEV

(b) Energy consumption (kWh)

Fig. 3: Distribution of (a) emissions (kg CO2) and (b) energy (kWh) consumption
per trip segment for each vehicle class.

The Pearson correlation coefficient between input features and emissions is
provided in Table 3. Distance traveled and time to traverse the segment have a
strong positive correlation with emissions. ∆ Elevation, which is the change in
elevation from the start to the end of the segment, also has a strong correlation
with emissions for all vehicle types. Max ∆ elevation, which is defined as the
difference between the maximum and minimum elevation along the segment, has
a relatively weaker correlation. Additionally, the average vehicle speed has a
stronger negative correlation of -0.262 with emissions for ICEVs than with HVs
(-0.134) and EVs (-0.093).

4.1 Hyperparameter Tuning and Baseline Models

We randomly select 43,022 samples from each vehicle class. For each vehicle class,
we use 80% of the samples for training and 20% for testing. Of the training
samples, 10% are withheld from training and used as a validation set to identify
the best set of hyperparameters for the subsequent analyses. We perform the
hyperparameter search using the model derived from the MTL formulation.

We tested shared hidden layer widths of {200, 300, 400} and shared hidden
layer depths of {3, 4, 5}. We use 3 vehicle-specific layers and tested the configu-
rations of {128, 64, 32} and {64, 32, 16}. Mean-squared error (MSE) is used for
the loss function and the networks are optimized using the Adam algorithm [12].
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Fig. 4: (a) MSE and (b) MAE of MTL model compared to vehicle-specific neural
network models (baseline) on testing set. Prediction target: emissions (kg CO2).

We test learning rates of {0.01, 0.005, 0.001, 0.0005, 0.0001} and batch sizes of
{64, 128, 256, 512}. The best performing configuration is shown in Figure 1a,
which consists of 5 shared hidden layers of 300 fully connected neurons with
ReLU activation functions [15], and 3 vehicle-specific hidden layers of 64, 32, and
16 hidden neurons respectively. For the output layer we test using ReLU as well
as linear activation functions for ICEVs and HVs and linear activation function
for EVs, however we find that using a linear activation function as the output
layer for all 3 vehicle classes provides the best performance. An early stopping
strategy was performed, where we stopped training if MSE on the validation set
did not improve for 10 epochs. The best performing learning rate was 0.0005 and
the best batch size was 256.

In the baseline model no layers are shared between vehicle-classes resulting in
a separate neural network for each vehicle class. The same grid search from the
proposed models was used to find the hyperparameters of the baseline models.
In all experiments, we use Kaiming initialization [10] to initialize the weights of
the networks.

4.2 Multi-task Model Evaluation

First, we investigate the performance of the MTL model compared to vehicle-
specific baseline models. To evaluate the robustness of the models, we train 10
MTL models (30 vehicle-specific models, 10 for each vehicle class) and present the
average MSE and MAE in Figure 4. Models are trained for up to 150 epochs. We
find that for all vehicle classes, the MTL model outperforms the vehicle-specific
baseline models. The mean percent improvement in MSE is 8.6%, 17.0%, and
7.0% for ICEVs, HVs, and EVs, respectively. The mean percent improvement in
MAE is 6.4%, 9.0% and 4.0% for ICEVs, HVs, and EVs respectively.

Even with improved accuracy, it is important to investigate the bias and the
variance of the proposed approaches. Therefore, we repeat the entire evaluation
using 30 datasets creating through bootsrapping [19] from the original data. At
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Fig. 5: Distribution of MTL and baseline model bias per sample for each vehicle
class from bootstrap evaluation, 30 bootstrap iterations. Prediction target: (a)
emissions and (b) energy.

each iteration, we sample a training set, with replacement, from the ICEV, HV,
and EV datasets. The samples not selected for each training set are used as the
testing set for that iteration. For each iteration, we train a single MTL model and
vehicle-specific baseline models on the training set and evaluate on the testing set.
The distribution of empirical bias per sample for the MTL and baseline models
is presented in Figure 5. We observe that the MTL model results in a lower bias
for each vehicle class compared to the baseline models. The MTL model also
results in lower median variance per sample.

4.3 Inductive Transfer Learning Evaluation

Next, we evaluate the performance of the ITL model formulated in Figure 1b.
To train the ITL models, we use data from all of the three vehicle classes, each
of which contains 43,022 samples, as outlined in section 4.1. For each pair of
source and target task, we first train the source model, freeze the shared hidden
layers, and transfer to the target model. Then, we optimize the target model’s
vehicle-specific layers. For each model, the available sample size to train the target
model is varied from 2%, 5%, 10%, and 15% of the total number of available
samples to investigate the influence of sample size in training of the target models.
This is consistent with what transit agencies might face in practice; as a new
vehicle is introduced, agencies gradually collect more data from it. We test our
approach for all pairs of vehicle classes.

To compare the performance of the models, we train baseline models that
only use the training data from the target domain. For example, while evaluating
inductive transfer from EV to ICEV with 2% of the target data available, the
baseline model is trained exclusively on the same amount data from ICEV class.
In order to consider the randomness in training process, when evaluating the
target and baseline models, we trained each model 10 times on 10 random samples
from the target domain’s dataset and 10 different initial values for the parameters
using Kaiming initialization [10].
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Fig. 6: ITL models compared to corresponding baselines. ITL model is trained on
full dataset in the source vehicle class and is evaluated on the target vehicle class
(source −→ target). Average MSE compared to fraction of data samples used for
training in the target vehicle class. Prediction target: emissions (kg CO2).

We provide the results of the proposed ITL approach in Figure 6. We observe
that in general, the proposed approach results in improved forecasting accuracy
across the tested scenarios (except when EV is used as source and ICEV is used
as target). We also observe that as the amount of data from the target domain
increases, both the ITL and the baseline method show improved forecasting
accuracy; however, the baseline methods shows relatively higher improvement,
to the extent of outperforming the ITL framework in some cases (15% data from
target domain in Figure 6 b, c, e and f).

Additionally, we seek to understand the role of the shared-hidden layers
in our proposed approach. Conceptually, the role of such layers in the target
model is to extract generalizable patterns across the spectrum of tasks to aid
learning in the target task. We use t-distributed stochastic neighbor embeddings
(t-SNE) [14] to visualize the separation of multi-dimensional information in a
two-dimensional space. In Figure 7, we show t-SNE on the raw input features of
the three vehicle classes color coded by emissions (kg CO2). All three plots are
very similar, thereby corroborating our assumption that the input features are
similar across the tasks (DEV = DHV = DICEV ). We separately apply t-SNE
on the output of the shared-hidden layers across all pairs of source and target
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Fig. 7: t-SNE on raw input features for each data sample from the source domain.
t-SNE parameters: number of components=2, perplexity=10, initialization=PCA,
number of samples=860 (2% of dataset)

Fig. 8: t-SNE on the output of shared-hidden layers for each data sample from
the target domain. t-SNE parameters same as Figure 7.

tasks and show the results in Figure 8. We observe that the ICEV source model
and HV source model (plots (a) to (f) of Figure 8) effectively discriminate the
samples with high emissions and low emissions (increasing the distance between
light points and dark points). On the other hand, EV source model (plots (g) to
(i) in Figure 8) shows poor discrimination, reflecting the negative transfer.

4.4 Discussion

We now present the key takeaways from the experiments. First, we observe that in
general, both the MTL and the ITL framework outperform the baseline methods,
thereby resulting in improved emission (and consequently energy) predictions
for transit agencies that operate mixed-fleet vehicles. Second, we observe that
the MTL, ITL, and baseline models are less accurate in predicting EV emissions
compared to HV and ICEV, most likely due to the complexity of the energy
cycle in EV engines. Third, a key finding for practitioners is that the greatest
improvements over baselines are seen when the target vehicle class suffers from
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lack of data. However, it is important to switch to standard models once sufficient
data is collected for the class. The point at which such a switch should be made
depends on the specific task and data at hand. In our work with CARTA, we
implement a periodic check to facilitate such a switch. Fourth, we find that
when the goal is to predict the emissions for ICEV class using a source model
trained based on EV class dataset (this situation rarely arises in practice due
to precedence of the ICEV class), ITL models underperformed baseline models,
irrespective of the size of training data from the target domain. This indicates
negative transfer between the EV domain and the ICEV domain.

Lastly, while this work is a general approach that can be used by cities to
improve their energy prediction models there are a couple limitations agencies
should be aware of. First, our models were trained on data from Chattanooga, TN,
which is a mountainous city in the southern United States with a warm climate
and limited snowfall or freezing temperatures. Therefore any direct transfer of
our pre-trained models to other cities should take into account potential biases
in these determinants. Second, like most macroscopic energy prediction models
we do not take into account the impact of delays at stops or the number of
passengers on the vehicles. We intend on incorporating these parameters into
future work.

Code, data, and supplementary results of this study are available at https:

//github.com/smarttransit-ai/ECML-energy-prediction-public

5 Conclusion

By framing emission (and energy) forecasting as an MTL problem, we showed that
an agency with access to many vehicles can improve the predictive accuracy for
EVs, HVs, and ICEVs over current state-of-the-art, vehicle-specific models. We
also showed that in a situation with imbalanced data the predictive accuracy of
classes with insufficient data can be improved by transferring a learned abstraction
from vehicle classes with sufficient data through ITL. Lastly, we provided a general
online pipeline for joining the various sensor streams for emission and energy
prediction of mixed-vehicle transit fleets.
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