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Abstract

Microbial communities help plants access nutrients and tolerate stress. Some microbiomes are
specific to plant genotypes and, therefore, may contribute to intraspecific differences in plant
growth and be a promising target for plant breeding. Switchgrass (Panicum virgatum L.) 1s a
potential bioenergy crop with broad variation in yields and environmental responses; recent
studies suggest that associations with distinct microbiomes may contribute to variation in cultivar
yields. We used a common garden experiment to investigate variation in 12 mature switchgrass
cultivar soil microbiomes and, further, to examine how root traits and soil conditions influence
microbiome structure. We found that average root diameter varied up to 33% among cultivars
and that they associated with distinct soil microbiomes. Cultivar had a larger effect on the soil
bacterial than fungal community, but both were strongly influenced by soil properties. Root traits
had a weaker effect on microbiome structure, but root length contributed to variation in the
fungal community. Unlike the soil communities, the root bacterial communities did not group by
cultivar, based on a subset of samples. Microbial biomass carbon and nitrogen and the abundance
of several dominant bacterial phyla varied between ecotypes, but overall the differences in soil
microbiomes were greater among cultivars than between ecotypes. Our findings show that there
is not one soil microbiome that applies to all switchgrass cultivars, or even to each ecotype.
These subtle but significant differences in root traits, microbial biomass, and the abundance of
certain soil bacteria could explain differences in cultivar yields and environmental responses.

Keywords: Panicum virgatum, switchgrass, microbiome, root traits
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Introduction

Plants associate with microbial communities that help them access resources and tolerate stress
(Jiang et al. 2017, Pérez-Jaramillo et al. 2016). Some microbial communities are associated with
specific plant genotypes (Adam et al. 2018; Emmett et al. 2017; Jiang et al. 2017; Pérez-
Jaramillo et al. 2017) and so have the potential to be targets of plant breeding programs and
inform crop choices (Busby et al. 2017; Mueller and Sachs 2015). Switchgrass

(Panicum virgatum L.), a leading candidate for low-input bioenergy feedstock, exhibits broad
phenotypic and genotypic variation that contribute to its ability to tolerate a diverse range of
environments (Casler et al., 2017; Yang et al., 2009). However, genotypic differences only
explain roughly 30% of the variation in cultivar yield responses across different regions, years,
and fertilizer rates (Casler et al. 2019). Recent studies suggest that the unexplained variability in
cultivar yields and environmental responses may be driven in part by their associations with

distinct microbial communities (Rodrigues et al. 2017; Sawyer et al. 2019; Singer et al. 2019a).

Switchgrass cultivars are broadly classified as upland and lowland ecotypes. Lowland ecotypes
originate from southern, warm and mesic regions, and upland ecotypes originate from northern,
cold and drier regions. Although there are distinct traits across ecotypes, such as earlier
flowering and senescence in upland cultivars (Casler, 2012), there is also physiological and
phenotypic variation within ecotypes, including in aboveground and belowground traits, drought
tolerance, yields, and responses to fertilizer (Aimar et al. 2014; de Graaff et al. 2013; Stahlheber
et al. 2020). Multiple recent studies also suggest that switchgrass cultivars belonging to upland
and lowland ecotypes have distinct soil microbiomes (Revillini et al. 2019; Rodrigues et al.
2017; Sawyer et al. 2019; Singer et al. 2019a; but see Emery et al. 2018). However, most

previous studies only focused on one or two of the most common cultivars, making it hard to
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identify general patterns or to determine whether soil microbiomes vary consistently by
switchgrass ecotype. Further, with one notable exception (Emery et al. 2018), most studies were
conducted on young, immature plants even though switchgrass is a long-lived perennial that
reaches stand maturity and peak yields after three years. Given reported ontogenetic differences
in plants’ microbial communities (Chaparro et al. 2014; Zhalnina et al. 2018), it seems likely that
young and mature switchgrass plants will recruit distinct microbiomes that may have different

effects on growth or other aspects of plant health such as nutrient acquisition.

Root and soil microbiomes are influenced by plant traits and soil conditions (Fierer 2017; Saleem
et al. 2018). Plants, particularly long-lived perennials, can also alter soil properties which then
lead to differences in microbial communities (DuPont et al. 2014; Liang et al. 2012; Zhang et al.
2017). Switchgrass cultivars differ in their root exudate profiles (An et al. 2013), architecture,
and tissue chemistry (de Graaff et al. 2013; Stewart et al. 2017), and these differences may lead
to distinct microbiomes. For instance, cultivars with high specific root length (SRL) have a
greater relative proportion of thin, high quality (low C:N) roots that provide more labile carbon
(C) to microbes (Adkins et al. 2016; de Graaff et al. 2013; Stewart et al. 2017). This influences
microbial community C acquisition, soil fungal:bacterial ratios (de Graaff et al., 2013;
Roosendaal et al., 2016; Stewart et al., 2017), and the amount of C allocated belowground
(Adkins et al., 2016; Stewart et al., 2017). These studies show that differences in root traits and
consequent C-provisioning likely contributes to variation in switchgrass cultivar microbiomes,
but few studies have measured variation in switchgrass root traits and microbial communities

simultaneously (but see Roosendaal et al. 2016; Stewart et al. 2017).

While root traits and soil conditions drive microbial community structure, the strength of these

drivers may differ for root- and soil-associated microbial communities (Bulgarelli et al. 2013; Yu
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& Hochholdinger 2018). Plant signaling, exudation, and altered abiotic conditions filter and
recruit bulk soil microbes to different microhabitats, such as the rhizosphere (soils closely
adhering to roots) and endosphere (internal root tissues). Soil-associated microbes are influenced
by changes in root exudates and soil conditions, while root microbes are assembled through a
two-step process whereby the previously filtered rhizosphere microbes are recruited to the roots
through genotype-specific signaling (Bulgarelli et al. 2013). Therefore, although soil conditions
affect both root and soil communities, root communities are often a less diverse, but more host-
associated subset of the surrounding soil microbes (Bulgarelli et al. 2013). It is also predicted
that root-associated communities have greater heritable variation than soil communities
(Reinhold-Hurek et al. 2015), but more research is needed to assert this claim. Knowing how
microbiomes differ among cultivars’ soils and roots as well as what influences microbiome
structure will help us understand how microbes may contribute to cultivar- and ecotype-variation

in the field and, further, how microbes could be incorporated into switchgrass production.

We hypothesize that root traits and microbial communities will differ among switchgrass
cultivars. Further, we expect that a combination of root traits and soil conditions will drive soil
microbiome structure, while root microbiome structure will be less diverse, but more distinct
among cultivars. We predict that root architectural traits known to increase belowground plant-
derived C inputs (e.g., SRL or root diameter) will be an important driver of microbial community
structure and biomass. In this study, we address these hypotheses by measuring root traits and
microbiomes across 12 mature switchgrass cultivars, asking two primary questions. First, does
microbial biomass and community structure vary across switchgrass cultivars? Second, what soil

conditions and root traits influence microbial community structure and biomass?
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Methods

Site description

We conducted this study in southwest Michigan, USA, at the Great Lake Bioenergy Research
Center’s Switchgrass Variety Experiment (https://lter. kbs.msu.edu/research/long-term-
experiments/glbrc-switchgrass-variety-experiment/) located at the Kellogg Biological Station
Long-term Ecological Research Site (42°23'47" N, 85°22'26" W). Mean annual precipitation is
100 cm and soils are moderately fertile sandy clay loam (https://Iter kbs.msu.edu/research). In
2009, 12 switchgrass cultivars, including eight upland and four lowland cultivars, were
established in a complete randomized block design (four cultivars with poor establishment were
replanted in 2010) (Table 1 for details on seed source and breeding history). Cultivars were
planted at a rate of 9 kg live seed ha'! into 12 plots within four uniformly treated replicate blocks,
in the same soil type and within 80 m of one another (n = 48, plots = 4.6 x 12.2 m). The blocks
were not irrigated and urea fertilizer was applied annually in the spring (78 kg N ha'!). Pre-
emergence weeds were controlled with Quinclorac Drive (1.1 kg ha'') and Atrazine (0.6 kg ha'!)
and post-emergence weeds were treated with herbicides (Glyphosate, 2,4-D, or Dicamba) as

needed.

Sampling and soil analyses

In June and July 2016, we collected soil cores (2 cm diameter x 20 cm deep) from the rhizome
(within 10 cm from the rhizome center) of three randomly chosen switchgrass plants from either
end and the center of each block (3 replicate cores x 4 blocks = 12 cores per cultivar). All
instruments were sterilized with 70% ethanol in between sampling. Because plant phenological
stage can affect microbial communities (Chaparro et al. 2014; Zhalnina et al. 2018) we sampled

each cultivar at the same developmental stage — flowering (simliar to Emmett et al. 2017). The
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12 cultivars flowered over a four-week period and at each sampling date we sampled at least two
cultivars (Table 1). This controlled for the impact of phenology on microbiome structure, but
microbiome differences may have also been affected by variation in host residence time
(Dombrowski et al., 2017) or soil conditions. We accounted for some of this temporal variation
by including soil moisture content, the edaphic factor that varied most among dates, as a

covariate in our analyses (see Analyses section).

After sampling, the soils were stored at 4°C and were frozen at -20°C within 48 hours after
sampling. Before freezing the soil cores, we sieved (1 mm) a 30 g subset of the collected soils to
remove roots and rocks and subsample for various assays, including chloroform fumigation and
potassium sulfate extractions for microbial biomass, soil nitrate and ammonium (12 g soil),
volumetric soil moisture content (5 g soils dried at 60°C), and downstream DNA extractions (2 g
soil stored at -20°C). Microbial biomass carbon (MBC) and nitrogen (MBN) were analyzed on a
TOC analyzer (Shimadzu TOC-VCPH) and calculated by subtracting the total carbon (C) and
nitrogen (N) of unfumigated samples from fumigated samples (Vance et al. 1987). Unfumigated
potassium sulfate extracts were used to determine soil inorganic ammonium (NH4") and nitrate
(NO5") with colorimetric 96-well plate assays. Ammonium concentration was analyzed using
ammonia salicylate and ammonia cyanurate as described by Sinsabaugh et al. (2000). Nitrate
reductase enzyme (E.C #1.7.1.1) was used to reduce NO; to NO, and concentrations of NO,
were determined using sulfanilamide and N-(1-naphthyl)-ethylenediamine. Absorbance for NH4"
and NO;- assays were read on a Synergy HTX plate reader (BioTek, Winooski, Vermont, USA)
at 610 nm and 540 nm, respectfully. All roots collected during initial sieving and remaining soils

were stored at -20°C until further root trait analysis and root DNA extractions.
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Root sterilization and trait analysis

The previously frozen sieved roots and undisturbed soils were wet-sieved (2 mm) with nanopure
(0.2 uM) water and all visible roots were separated with sterilized tweezers for an average of 30
minutes per sample. These roots were stored at 4°C in nanopure water and scanned within 48
hours. To maintain sterility and minimize microbial cross-contamination, we sterilized all
equipment with 70% ethanol in between scans. The roots were scanned (1200 dpi resolution with
Epson perfection V600 scanner) in a glass scanning bed with 200 mL nanopure water, exported
as tiff files, manually edited to remove image artifacts, and compressed before analyzing root
traits with GiA Roots software (Galkovskyi et al. 2012, details in supplemental). Following
scanning, 0.25 g of the scanned roots (<2 mm in diameter to standardize for root age) were
subsampled and sterilized for root-associated (endophyte) microbial characterization (details
below). The remaining roots were weighed and dried at 60°C for one week to calculate the
dry:wet root biomass ratio. Predicted total dry root weight was back-calculated using the dry:wet
ratio to estimate the dry weight of the 0.25 g subset. This back-calculation of total dry root
weight may underestimate actual root weight values if root water content varies with root
diameter; an underestimation of root weight could contribute to miscalculations of other root
traits, such as mass-weighted specific root length (total root length/dry root biomass). Using GiA
Roots, we calculated the following root traits: total root length (cm), average root diameter (cm),
total root system volume (cm?), and specific root length (SRL). SRL was calculated in two ways:
1) mass-weighted SRL which we calculated using the back-calculated dry:wet root ratios (cm
total root length/ g total dry root biomass ) and 2) volume-weighted SRL (cm total root length/

cm? total root volume).
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To prepare the root tissues for DNA extractions, we first sterilized the 0.25 g of subsampled
roots. Immediately after scanning, we sterilized the subset roots following Sun et al. (2008):
roots were immersed in 70% ethanol for 3 minutes, sterilized with fresh household sodium
hypochlorite solution (2.5% available CI) for 5 minutes, rinsed with 70% ethanol for 30 seconds,
rinsed ten times with sterile autoclaved water, blotted dry with Kimwipes (Kimberly-Clark,
Roswell GA, USA) and frozen at -20°C (Sun et al., 2008). To test root-surface sterilization, the
final water rinse was plated on Luria-Bertani agar and incubated at 30°C for 7 days. A majority
of the LB plates had bacterial growth after one week of incubation. Although the bacterial
growth may suggest incomplete sterilization of the rhizoplane, because these samples were root
segments, the cultured bacteria may have been endophytic bacteria that dispersed from the
interior of the roots. Due to the thorough sterilization procedure, we believe the remaining
microbes are strongly root-associated but cannot conclude they are obligate endophytes. Before
DNA extraction, the frozen, surface-sterilized root samples were submerged in liquid N and
ground with a tissue lyser (Qiagen Tissue Lyser 11, Valencia, California, USA). If any root pieces
> 2 mm remained, sterilized scissors (10% bleach and 70% ethanol) were used to more finely cut

the roots.

DNA extraction, sequencing, and bioinformatics

DNA was extracted similarly from soil and sterilized roots, but only a subset of cultivars were
processed for root-associated microbes. Soil DNA was extracted from 0.25 g of sieved and
homogenized sample from all 12 cultivars (n = 144 samples: 12 cultivars x 4 blocks x 3 replicate
cores). Root DNA was extracted from approximately 0.25 g of sterilized, ground root tissue from
four commonly-planted cultivars (Upland: Cave-in-Rock, Southlow; Lowland: Alamo, Kanlow;

n = 48 samples: 4 cultivars x 4 blocks x 3 replicate cores, notated with ‘+’ in all figures). For
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both soils and roots, we used the MoBio PowerSoil DNA extraction kit and followed all kit-
suggested protocols, with an added 10-minute cell lysis step at 65°C before the bead-beating step
(MOBIO Laboratories, Carlsbad, California, USA). The purity and quantity of the extracted
DNA was examined using a Nanodrop 2000 (Thermo Scientific, USA) and via fluorometry with
the Quanti-iT PicoGreen dsDNA kit (Thermo Fisher, USA). We targeted the bacterial V4 region
of the 16S rRNA gene (primers 515f/806r) and the fungal ITS1 region (primers ITS1-F/ITS2) for
library preparation. Bacterial communities were analyzed for all soil (12 cultivars) and root (4

cultivars) DNA, while fungal communities were only analyzed from the soil DNA (12 cultivars).

Bacterial and fungal PCR and MiSeq Illumina (V2) paired-end sequencing was conducted by the
Research Technology Support Facility Genomics Core at Michigan State University (East
Lansing, Michigan, USA). Briefly, for both ITS and 16S sequences, reads were assembled, and
quality filtered (maxEE < 1.0 and base pairs < 250) using Usearch (version 10.0.240) (Edgar,
2010). Sequences were dereplicated, clustered, chimera checked, filtered de novo, and clustered
into unique operational taxonomic units (OTUs) based on 97% identity using the default settings
with Usearch UPARSE function. Representative sequences were aligned and classified using the
Silva (version 123) and Unite (7.2) reference databases for bacterial and fungal sequences,
respectively (Nilsson et al., 2018; Quast et al., 2012). Soil and root-associated bacterial
sequences were also aligned to Greengenes (version 13.8) database using Usearch closed-
reference (closed ref) for downstream PICRUSt analysis (DeSantis et al. 2006; Langille et al.
2013). Non-bacterial and non-fungal sequences, singleton OTUs, and samples with poor-
sequence coverage were removed from the reference-based OTU tables (Table S1). A bacterial
phylogenetic tree was generated using an iterative maximum-likelihood approach with PASTA R

package (Mirarab et al., 2015). Phylogenetic-based Weighted Unifrac distance was used for all
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bacterial community composition analyses. It is challenging to map the variable ITS region to a
trustworthy phylogenetic tree (Nilsson et al., 2008), so we used a non-phylogenetic community

metric, Bray-Curtis, for the fungal community analyses.

Due to large variation (> 10-fold) in library sizes within and among the root and soil samples, we
rarefied our datasets using the “rarefy even depth” function in the Phyloseq R package
(McMurdie and Holmes 2014) to control for sequencing depth differences and minimize false
discovery rates (Mcknight et al., 2019; Weiss et al., 2017). The soil bacterial and fungal datasets
for 12 cultivars were filtered and rarefied to 4,694 and 4,153 reads respectively. We compared
root and soil bacterial communities for four cultivars on a combined dataset that was rarefied to
2,026 reads. We confirmed that our results were robust to normalization techniques and not
biased by rarefaction (McMurdie & Holmes, 2014) by comparing community matrices
normalized with rarefaction and Deseq2’s ‘variance stabilizing transformation’ (Love et al.
2014) with a Protest analysis in the Vegan R package (Oksanen et al., 2018). All Protest
comparisons were significantly correlated (p < 0.001, Table S1) but the combined root and soil
dataset had the weakest correlation (r = 0.41) likely due to the 27-fold difference in the sample
library sizes. However, because rarefaction is the preferred method for normalizing for large
variation in library depth (Weiss et al. 2017), we used the bacterial (Silva-referenced) and fungal
(Unite-referenced) rarefied datasets for all community composition and diversity analyses. The
rarefied Greengenes-referenced bacterial dataset was used to predict metagenome functions with
PICRUSLt. Fasta files (NCBI Sequence Read Archive, accession number PRINAS77732) and
sequencing pipeline (https://github.com/TaylerUlbrich/SwitchgrassCultivarMicrobiomeStudy)

are publicly available.
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261 Data analysis: univariate statistics

262  Prior to all data analysis, we assured that all univariate data met assumptions of normality (see
263 supplemental for details). Univariate statistics were conducted using one-factor analyses of

264  variance (ANOVA) models and type 3 sum of squares (Satterthwaite's method) with the Im4 and
265 ImerTest packages in R (Bates et al. 2015; Kuznetsova et al. 2017). To differentiate the effect of
266  cultivar and ecotype, all variables were analyzed with either cultivar or ecotype as a fixed effect
267  with a random, nested block factor. Since we sampled the cultivars across four weeks to control
268  for phenology-driven variation in microbiomes (Chaparro et al. 2014; Zhalnina et al. 2018), date
269  was confounded with cultivar and ecotype. Due to this collinearity, the model was rank-deficient
270  when both date and cultivar or ecotype were included. Therefore, instead of date, we included
271 soil moisture content, which varied up to 47% across sampling dates (ANOVA, p <0.001;

272 correlation with Julian date p <0.001, r = 0.52), as a covariate when it improved model fit (i.e.
273 lower Akaike information criteria evaluation, AIC). Soil moisture content also correlated with
274 soil nitrate (r = 0.46, p < 0.002), which varied by date (p < 0.001). However, we decided to

275 include soil moisture content, not soil nitrate, as a covariate because soil moisture content also
276  varied across blocks (ANVOA, p <0.001), allowing us to account for both temporal and spatial
277  heterogeneity. Two extreme outliers that were three times the interquartile range were removed
278  from the soil moisture data, so cultivars EG1102 and Blackwell had only 11 replicates for any
279  model that included soil moisture as a covariate. Several univariate models were improved with
280  soil moisture as a covariate — fungal community richness and evenness, soil and root bacterial
281  richness, microbial biomass nitrogen and carbon, root length — but soil moisture was only a

282  significant predictor variable (p < 0.05) for microbial biomass carbon. Post-hoc comparisons

283  (p values adjusted with Benjamini—Hochberg false discovery rate, FDR, a.= 0.05) were
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conducted using the multcomp and emmeans R packages (Lenth 2019; Hothorn et al. 2008).
Fungal Shannon diversity and Pielou’s evenness did not meet normality assumptions, so we used
non-parametric Kruskal-Wallis and Wilcox tests (no block factor included). Pearson correlations
were used to determine relationships between edaphic conditions, root traits, and microbial

biomass carbon using the ‘cor.test’ in R (R Core Team, 2018).

Data analysis: microbiome community composition

Microbial community data were visualized and analyzed using the Vegan, Phyloseq, and ggplot2
R packages (McMurdie & Holmes, 2013; Oksanen et al., 2018; Wickham, 2016). We examined
overall variation in the cultivars’ microbiome composition using permutation-based ANOVA
(PERMANOVA) and betadispersion tests with type 1 sum of squares. PERMANOVAs,
betadispersion, and post-hoc pairwise comparisons (FDR-adjusted) were evaluated on the
rarefied datasets using the previously described one-factor, blocked model with soil moisture as a
covariate with the PRIMER-e software (version 6 & PERMANOVA +, Anderson et al. 2008).
After removing samples with poor sequence coverage and samples with two extreme outliers for
the soil moisture covariate, all cultivars had at least 9 replicates for microbiome analyses (Table
S2). As in the univariate models, date and cultivar were confounded, so including sampling date
in the model did not improve model fit (based on AIC evaluation). However, because the
permutational null model can still be calculated for a rank-deficient design, we used
supplemental PERMANOV As with date as a covariate to evaluate the cultivar-level effects when
controlling for date. Models with date used instead of soil moisture content were qualitatively
similar but the significance was lower (Tables S3, S4). Within sampling date PERMANOV As
were used to further evaluate cultivar-level differences not driven by confounding date effects

(e.g., cultivars sampled on the same date in one model, Table 1). All ordinations were made with
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the Phyloseq R package ‘ordinate’ function with set.seed = 2 for reproducibility (McMurdie &

Holmes, 2013).

To further characterize differences in microbial community structure across cultivars, we
evaluated the proportion of shared and indicator taxa among the cultivars. We defined shared
taxa as those OTUs present in at least 75% of the samples within each cultivar (e.g., 9/12 sample
units per cultivar) and across all cultivars. Indicator taxa were identified (after removing
singleton OTUs) using the ‘multiplatt’ function in the indicspecies R package (Caceres &
Legendre, 2009) and defined as OTUs present in at least 25% of the samples (3/12 sample units,
or indicspecies specificity parameter = 0.25). Rarefied datasets are biased against rare taxa, so it
is possible that we identified fewer indicator taxa because less dominant, rare taxa were lost
during rarefaction (McMurdie & Holmes, 2014). We also characterized phyla-level differences
among cultivars and ecotypes using the ‘manyglm’ function in the MVAbund R package and
ANOVA post-hoc pairwise comparisons (FDR-adjusted) with either cultivar or ecotype as a
fixed effect and soil moisture content as a covariate when it improved model fit (based on AIC)

(details in supplemental) (R Core Team 2018; Wang et al. 2012).

We were also interested in whether compositional differences based on 16S rRNA were likely to
lead to differences in cultivar N-fixation, a function recently identified in switchgrass soils and
roots and relevant to cultivar survival in low-nutrient environments (Roley et al. 2020, 2019,
2018). We assessed this by 1) calculating variation in the relative abundance of common N-
fixing orders Rhizobiales and Burkholderiales and 2) using PICRUSt to predict the relative
proportion of putative N-fixing taxa (Langille et al., 2013) (details in supplemental). Both
approaches have limitations but we intended for findings to generate further hypotheses, not to

provide definitive assessments of N-fixing potential. The same univariate statistics described
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above were used to analyze proxies of functional differences among cultivars and ecotypes for

the soil- and root-communities.

We further evaluated difference in cultivar microbiomes by determining how edaphic conditions
and root traits affect microbiome structure and individual OTU- and order-level abundances.
Differences in OTU- and order-level abundance with root traits were evaluated using the
‘manyglm’ and ‘anova’ functions in the MV Abund R-package (details in supplemental) (Wang
et al., 2012). At the community level, we determined which variables (average root diameter,
total root length, soil nitrate, soil ammonium, soil moisture content) significantly contributed (a
= 0.05) to microbiome structure when controlling for spatial heterogeneity (block) with a partial
distance-based redundancy analysis for each dataset: soil bacterial (Weighted Unifrac) and
fungal (Bray-Curtis) communities for 12 cultivars and combined root and soil bacterial dataset
for 4 cultivars (Weighted Unifrac). We used the ‘dbrda’ function in Vegan with a conditional
matrix for block to determine the relative contribution of block and predictor variables to
community structure, as well as the independent, “marginal” effects of each term (Oksanen et al.,
2018). Specific root length (volume- and mass-weighted) and total dry root weight were removed
from all analyses as they significantly correlated with average root diameter and total root length

(-0.50 <> 0.50, p < 0.05).

Results

Root traits

Total dry root biomass (estimated from dry:wet root calculations), total root length, and mass-
weighted SRL (total root length/root biomass) did not significantly differ by cultivar or ecotype
(p > 0.05, Table S5). Mass- and volume-weighted SRL were significantly correlated (r = 0.70, p

<0.001), and, unlike mass-weighted SRL, volume-weighted SRL (total root length/root volume)
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significantly differed among cultivars (p < 0.01) but not by ecotype (p > 0.05, Figure 1A, Table
S5).The cultivar differences in volume-weighted SRL were likely driven by average root
diameter which significantly differed by cultivar (p < 0.001, Figure 1B), and was used to
calculate root network volume. There was a 30% difference between the cultivars with the

thickest (e.g., Cave-in-Rock and EG2101) and thinnest (e.g., Kanlow and NE28) roots.

Microbial biomass

Microbial biomass carbon (MBC) and nitrogen (MBN) significantly differed among cultivars
(MBC: p <0.001, MBN: p <0.001) and ecotypes (MBC: p <0.01, MBN: p <0.001)

(Figure 1C, D), even after controlling for soil moisture content which influenced MBC (soil
moisture co-variate with MBC: p < 0.001, with MBN: p > 0.05) and varied by date (p < 0.05).

Lowland MBC and MBN were 25% and 65% greater than upland ecotypes, respectively.

Soil vs. root associated bacterial communities

For a subset of four commonly-planted cultivars (Cave-in-Rock, Southlow, Alamo, Kanlow), we

found that root and soil bacterial communities differed in diversity, composition, and the extent
to which they were affected by cultivar identity. Microhabitat (soil or root) explained 59% of the
overall variance in community composition (Table 2, Figure 2A), and the root community had
five and three times lower bacterial richness and Shannon diversity than the soil communities,
respectively (Table S6). The differences in beta diversity between roots and soils were mirrored
in their dominant phyla. The most abundant bacterial phyla in the roots (n =4 cultivars) were
Proteobacteria (70%), Actinobacteria (11%) and Bacteroidetes (5%), while the soil communities
(n = 4 cultivars) were dominated by Acidobacteria (30%), Proteobacteria (29%), and
Verrucomicrobia (11%)(Figure 2B). The same phyla were most abundant in the soil

communities when analyzed across all 12 cultivars (data not shown). Roots and soils also
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376  differed in the relative abundance of common N-fixing orders (Burkholderiales and Rhizobiales),
377  with roots having approximately three times greater relative abundance than soils (Kruskal-

378  Wallis: p <0.001, data not shown).

379  The degree of cultivar-effect also differed for the root and soil bacterial communities (n = 4

380 cultivars). Cultivar explained 15% of the variation in the soil community but did not significantly
381 influence the root communities (Table 2). The two upland cultivars’ soil communities

382  significantly differed from the two lowland cultivars’ soil bacterial communities (data not

383  shown), but this may have been driven by differences in soil conditions across sampling dates,
384  which differed for the subset of two ecotypes (Table S4). There was also no cultivar-effect on
385  root or soil bacterial alpha diversity (Table S6) and there were fewer differences in the relative
386  abundance of dominant soil phyla for these four cultivars (Figure 4), suggesting that there was
387 less variation among these four commonly-planted cultivars’ microbiomes compared to the

388  remaining eight cultivars.

389  Soil bacterial communities

390  When evaluated across all 12 cultivars, we found that the soil-associated bacterial communities
391  significantly differed in composition and diversity. Soil bacterial richness, Shannon diversity,
392  and Pielou’s phylogenetic evenness differed among cultivars and was 1-3% higher for upland
393  ecotypes for all diversity metrics (p < 0.05, Figure 1E, Table S7). However, these differences
394  were driven by Dacotah, which had the highest bacterial richness and Shannon diversity (Table
395  S8). Dacotah is a low-yielding upland cultivar that had greater weed invasion which may have
396  contributed to greater bacterial diversity. Even when controlling for sampling date (Table S3)
397  and soil moisture content (Table 3), soil bacterial community composition differed among

398 cultivars. When controlling for soil moisture content, block (32%) and cultivar (21%) explained
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the most variation in community composition, while ecotype only explained 3% of the variation
(Figure 3A, Table 3). The bacterial communities of three cultivars — Alamo (lowland), EG1102
(lowland), and NE28 (upland) — were more dissimilar from all other cultivars (pairwise
comparisons, p < 0.10, Table S9). When assessed within sampling date, cultivar explained a
significant proportion of variation in the bacterial community composition within one date (16%,

p <0.05, Table S10): cultivar NE28 had a significantly different soil bacterial community than

the other three upland cultivars (Southlow, Cave-in-Rock, Trailblazer) sampled on the same date.

The cultivars’ soil bacterial communities also differed at the phyla level and are comprised of
many shared and few unique taxa. Eight soil bacterial phyla (74.3% of all reads) significantly
differed among cultivars (Figure 4). Several of these phyla also differed by ecotype; specifically,
Bacteroidetes, Planctomycetes, and Verrucomicrobia are more abundant in lowland cultivars,
while Actinobacteria, Deltaproteobacteria, and Gemmatimonadetes are more abundant in upland
cultivars. At the OTU-level, we found that 160 OTUs (out of 14,590 total) were shared across all
cultivars (present in 75% of samples units within and among cultivars). These shared OTUs
make up 45% of the total sequences and are dominated by three classes —Acidobacteria (39%),
Alphaproteobacteria (17%) and Spartobacteria (12%). In contrast, indicator bacterial OTUs of
the 12 cultivars include 683 OTUs and make up 21% of the total sequences dominated by classes

Acidobacteria (33%), Alphaproteobacteria (10%) and Deltaproteobacteria (7%).

We used PICRUSt to test whether cultivars’ soil and root bacterial communities might have
different abilities to fix N,. We first used NSTI scores to assess whether PICRUSt accurately
approximated bacterial function for our sequences. Larger NSTI scores (> 0.15) are expected for
highly diverse and largely uncharacterized environments like soils and indicate less phylogenetic

relatedness between the predicted OTUs and reference genomes (Langille et al. 2013). The
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average NSTI scores for the soil samples was 0.23, which is within the typical range for soil
samples (Langille et al. 2013) but indicates results should be interpreted with caution due to
weak phylogenetic relatedness. Root NTSI (0.32) indicated low relatedness with reference
genomes, and therefore were not analyzed. We found that cultivar soil bacterial communities
varied in the proportion of OTUs with putative N-fixation genes (p < 0.001, Figure 1F). On
average, upland ecotypes had a greater proportion of predicted soil N-fixers than lowland
ecotypes (p < 0.05). Predicted soil N-fixer abundance negatively correlated with soil nitrate
availability (r =-0.33, p <0.001) but did not correlate with soil N-fixation rates (p > 0.05) that
were measured in a paired study (Roley et al., 2020, data not shown). We also compared the
relative abundance of common N-fixing orders (Burkholderiales and Rhizobiales) and found no

differences among cultivars (p > 0.05).

Soil fungal communities

When controlling for soil moisture content, the primary drivers of soil fungal community
composition were similar to the bacterial community: block explained the most variation (33%),
followed by cultivar (12%) and ecotype (1%) (Table 3, Figure 3B). However, unlike the bacterial
communities, the cultivar-level effects on fungal communities were not robust to variation across
(Table S3) or within sampling dates (Table S10). Fungal community diversity (richness,

Shannon, evenness) also did not differ by cultivar or ecotype (p > 0.05, Table S7).

Only one fungal phylum, Rozellomycota, significantly differed in abundance among the cultivars
(MVabund 9, p < 0.01), and no phyla differed by ecotype (MVabund, p > 0.05). OTUs identified
as Rozellomycota only made up 0.73% of the reads, and therefore likely did not contribute much
to variation in cultivar microbiomes. The dominant fungal phyla were Ascomycota (32%),

Basidiomycota (17%), Mortierellomycota (14%) and Glomeromycota (9%), but 25% of the
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fungal OTUs were unclassifiable at phyla level. Among fungal OTUs (4,064 total), 37 were
shared across all cultivars (present in 75% of samples units within and among cultivars). These
shared OTUs made up 35% of the total sequences and were dominated by classes
Mortierellomycetes (28%), Sordariomycetes (23%), and those Unclassified (29%). Indicator
fungal OTUS of the 12 cultivars make up 25% of the total fungal sequences and include 213
OTUs dominated by classes Sordariomycetes (19%), Dothideomycetes (17%), and 27% were

unclassified at class level.

Effect of edaphic properties and root traits on microbiome

To further understand variation in cultivar microbiomes, we investigated how root traits and
edaphic conditions (N and water content) impact community structure. Across all 12 cultivars,
the five predictor variables (average root diameter, root length, soil moisture content, soil nitrate,
soil ammonium) explained more variation for the soil bacterial (10%) than the soil fungal (5%)
communities (Table 4). Mirroring the PERMAONVA results, spatial heterogeneity (conditional
block variance) explained a significant portion of community dissimilarity for the soil bacteria
and fungi. While controlling for variance due to spatial heterogeneity, variance in the bacterial
community structure was most explained by soil nitrate (6%) and soil moisture content (2%)
while the fungal community was most explained by soil nitrate (1%) and root length (1%).
Within the four cultivars evaluated for soil and root bacterial community composition, nitrate
explained 6% of the variation in the soil community, but no edaphic conditions or root traits

contributed to variation in the root communities (Table 4).

We also investigated whether the relative abundance of bacteria or fungal taxa (at the order- and
OTU-level) or microbial biomass correlated with root traits (average root diameter, root length).

We did not identify any bacterial orders that correlated with root traits, but identified one fungal
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order, Mortierellales, that negatively correlated with root length (MVabund p < 0.05, correlation:
r=-0.41, p <0.001). Further, microbial biomass carbon negatively correlated with root length (r

=-0.23, p <0.01) but not with average root diameter (p > 0.05).

Discussion

We examined bacterial and fungal microbiomes, soil variables, and root traits across 12 mature
switchgrass cultivars grown in a common garden experiment. Overall, we found that cultivars
vary in their average root diameter, have different soil microbial biomass, and associate with
distinct soil, but not root, bacterial communities. Differences in the soil microbiomes were driven
by variation in root traits, phenology, and soil properties, and were more pronounced at the
cultivar level than across ecotypes. Still, cultivar was a weaker driver of soil communities than
among-plot soil heterogeneity, and we saw less overall variation in fungal communities. These
subtle but significant differences in root traits and soil bacterial communities that we observed
may contribute to variation in cultivar yields, environmental responses, or ability to provide

beneficial ecosystem services (e.g., soil C sequestration).

Cultivars have a greater effect on soil bacterial than root bacterial or soil fungal communities

Traditionally, ecotypes are used to classify differences among switchgrass cultivars, but we
found greater differences in switchgrass microbiomes across cultivars than between ecotypes.
We found that cultivar explained 10-20% of the variance in soil microbiome beta diversity, while
ecotype explained less than 5% of the variation; these stronger cultivar effects were also found in
a previous study on switchgrass cultivar soil bacterial and fungal communities (Singer et al.
2019a), but Emery et al. (2018) observed no cultivar effects on arbuscular mycorrhizal fungi

(AMF) in the same common garden experiment. Our findings show that at this site, the weak
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effect of cultivar on AMF is true for a broader assessment of fungi as well (assessed via the ITS
region). Despite overall weak effects of ecotype on OTU-level composition, ecotypes differed in
the relative abundance of several dominant bacterial phyla. This may suggest that higher-level
taxonomic differences are conserved across ecotypes, while finer, OTU-level differences occur
among cultivars. Although we did not examine specific functions in this study, OTU-level
differences among cultivars could contribute to variation in their nutrient cycling or yields. In
fact, in the same common garden experiment, Stahlheber et al. (2020) found that aboveground
traits and yields varied more among cultivars than between ecotypes, a pattern that could have

been influenced by microbiome differences.

On a subset of four cultivars, we predicted that there would be a greater cultivar-effect on root-
associated than soil bacterial communities, but in fact the soil bacterial communities differed
more among cultivars. The weak cultivar-effect on the root communities could have been
influenced by our cultivar selection, such that the other eight cultivars — which had greater
variation in soil communities — may have also had more distinct root microbiomes. Further, it is
also possible that we under-sampled the root bacterial diversity, as many chloroplast and
mitochondrial sequences reduced microbiome sampling. Despite these potential caveats, other
studies conducted on a similar number of cultivars also report greater cultivar-level differences
among soil than root microbiomes in switchgrass (Singer et al. 2019a, n = 4 cultivars) and rice
(Edwards et al. 2015, n = 6 cultivars); therefore, we posit that our observation of greater cultivar-
effects on soil than root communities is biologically relevant. The soil communities also had less
within cultivar variation than the root communities. This has been observed previously (Edwards
et al. 2015) and may suggest that there is greater intraspecific variation in traits that affect

microbial recruitment to the rhizosphere (e.g., root structure, exudation, or diffuse signaling)
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than in traits that regulate microbial entry into the root (e.g., physical and immune system
interactions). In fact, it may be that plant traits associated with root microbiome assembly are
conserved at even higher taxonomic levels, as Singer et al. (2019b) found that two Panicum
species have similar endophyte bacterial communities. The role of genotype on microbiome
structure remains unclear, but it could be clarified with surveys of microbiome variation across
multiple genotypes and species. Additionally, it seems that the proximity of the microbiome to
the plant may not be a good predictor of the influence of plant genotype on microbiome
structure, but finer-scale sampling (e.g. soil, rhizosphere, rhizoplane, and endosphere) would

help confirm this (e.g., Edwards et al. 2015).

Edaphic conditions and plant traits influence soil community structure

Soil water and nitrogen content influenced switchgrass cultivar soil, but not root microbiomes,
while root traits only affected the soil fungal community. Soil nitrate availability explained the
most variation in the cultivars’ soil microbiomes, but no edaphic or root traits influenced the root
community composition. Similar patterns were observed by Singer et al. (2019b) — Panicum
species’ rhizosphere soil communities were more affected by soil type than endosphere
communities. These edaphic conditions are considered to have larger effects on soil microbiomes
than plant identity (Fierer, 2017), but the observed differences in soil N in this study could be
driven by the cultivars’ differential effects on N cycling (Roley et al., 2020) which could in turn
influence the microbiome (Revillini et al. 2019). Contrary to our prediction, we did not observe
any effect of root traits on bacterial community structure, but found that fungal community
structure was affected by root length. Root length may be a particularly important trait for root
colonizing-fungi (e.g., AMF), since root system size determines the amount of niche space

available for colonization. Few studies simultaneously evaluate fungal community structure and
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root length, but in the same common garden experiment, AMF root colonization correlated with
root biomass (Emery et al. 2018). Our results supports this finding because root length
significantly correlated with root biomass (r =0.75, p < 0.001). In these conclusions we are
presuming that root traits drive bacterial and fungal communities, but the observed correlation

could also describe microbes driving root traits (Petipas et al., 2020; Verbon & Liberman, 2016).

We found that spatial variability (block factor) also explained a surprisingly large percent

(> 30%) of variation in the soil microbiomes. Although our blocks were the same soil type and
within 80 m of one another, they differed in soil moisture and nitrogen content (also in paired
study, Roley et al. 2020). Our analysis of microbiome composition and edaphic conditions
controlled for this block effect, yet it is difficult to disentangle the relative contribution of
cultivar traits, spatial heterogeneity, and sampling date on these edaphic conditions and, in turn,
microbiome structure. Further, it is possible that the variation across blocks contributed to
greater plasticity in the cultivars’ traits, thus making it more challenging to identify correlations
between traits and microbiome structure. Overall, although the primary drivers of switchgrass
microbiome structure are challenging to disentangle, our results suggest that heterogeneous soil
conditions, plant traits, and feedbacks between plant traits and soil conditions all likely

contribute to microbiome variability among switchgrass cultivars.

The strength of relationships between root traits and soil microbiomes can also be influenced by
soil fertility and sampling techniques. Our study was conducted on productive, annually
fertilized soils, and cultivar differences and plant-microbe associations may be stronger in less-
fertile, marginal soils, when plants and microbes are more dependent on one another (Bell et al.
2014; Sawyer et al. 2017). Sawyer et al. (2017) found that switchgrass cultivar microbiomes

were more distinct in less fertile soils. It is also possible that cultivars that were grown outside of



Page 25 of 63

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

Page 25 of 40 Ulbrich, T.C.
Phytobiomes

their native range (e.g. not from the north-central United States) had weaker effects on their
microbiomes because they could not associate with their native, potentially co-evolved microbial
communities. Studies of cultivars in common gardens across many sites could elucidate the
contribution of native range or seed source on plant-microbial interactions. Further, because we
did not sample the soils directly adhering to the roots or use primers to target root-colonizing
microbes (e.g., AMF) we may not have captured the microbes most influenced by root traits and
exudates. Finally, we found that cultivars vary in average root diameter and, therefore, soils
beneath each cultivar likely differ in the amount of root turnover and development. Microbial
composition and function has been shown to vary with root age, type (e.g., seminal or nodal
root), and location (e.g., root branch or tip) (de Graaff et al. 2013; Kawasaki et al. 2016;
Marschner and Baumann 2003), but sampling with soil cores made it challenging to identify the
effects of root age, type, or location on soil microbial communities. Therefore, future studies
should use methods that standardize root age (e.g., use of root-in-growth cores) or root type and
location (e.g., visualizing root differences and sampling within rhizoboxes) to better understand

how root traits influence microbiome structure (Yu and Hochholdinger 2018).

Plant developmental stage (e.g., phenology, maturity) also contributes to microbiome variability
(Edwards et al. 2018; Na et al. 2019; Zhalnina et al. 2018). We sampled cultivars at the same
stage (flowering) to control for this variation, but sampling on different dates may have increased
differences in edaphic conditions that influence the microbiome. Yet, when we controlled for
variation among sampling dates, cultivar still contributed to variation in the soil bacterial, but not
fungal communities. This suggests that the fungal communities were more influenced by
variation in abiotic conditions across dates, or that cultivars with different phenology and, thus,

sampling dates, had more dissimilar fungal communities. In contrast, bacterial community
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structure was more strongly influenced by cultivar identity, which explained a significant percent
(16%) of the variation in bacterial community structure within one of the four sampling dates.
We hypothesize that greater differences were not observed within the other three sampling dates
because cultivars with comparable phenology (e.g., flowering at the same time) likely have other
similar traits and, thus, more similar microbial communities than cultivars with different
phenology. However, to better understand the effect of similar phenology and traits on cultivar
microbiomes, future studies should evaluate the switchgrass cultivar microbiomes across
multiple phenological stages (e.g., Na et al. 2019; Qiao et al. 2017; Wagner et al. 2016) as both
the microbiome structure and the magnitude of cultivar effects may change with phenological

stage (Inceoglu et al. 2010; Na et al. 2019).

Functional implications and conclusions

Differences in cultivar root traits and microbial biomass could contribute to variability in the
cultivars’ soil C-cycling and C sequestration potential. We found differences in microbial
biomass and root diameter, but not root biomass, across cultivars. Another study conducted in
the same common garden experiment, however, did find differences in root biomass among
cultivars (Emery et al. 2018). These differences in average root diameter have the potential to
drive variation in the cultivars’ C-cycling and microbial community structure. Root systems with
high SRL, corresponding to long, thin roots, positively correlate with switchgrass-derived soil C
(Adkins et al., 2016; Stewart et al., 2017), decomposition (de Graaff et al. 2013, 2014),
bacterial:fungal ratios (de Graaff et al. 2013), and microbial biomass (PLFA-C) (Stewart et al.
2017). Greater rhizodeposition from thin roots can directly contribute to soil C pools, as well as
indirectly influence soil C by supporting the growth and turnover of microbial communities

which, in turn, contributes to greater soil C and aggregate stability (Grandy & Neff, 2008;
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Tiemann et al. 2015). Therefore, the cultivars we identified with thinner roots (Kanlow and
NE28) or with higher microbial biomass C (many lowland cultivars) may have greater potential

to increase soil C in marginal soils and improve C sequestration.

The observed differences in microbial communities and root traits could also influence cultivar
nutrient cycling and tolerance to different environmental conditions, in turn, affecting yield. We
found that the predicted N-fixer abundance in soil communities varied among cultivars and
ecotypes. A paired study (same location and sampling dates) found that the rate of soil N-fixation
also varies among cultivars (Roley et al. 2020), but our PICRUSt-inferred functional potentials
did not correlate to the measured rates (data not shown). Still, our results suggest that functional
differences are likely, and future studies should investigate N-fixation and other functions with
more targeted approaches, as microbiome function may influence the suitability of various

cultivars for surviving under different soil conditions.

In summary, we found that root traits, microbial biomass, and soil bacterial community
composition differs among switchgrass cultivars, and that this variation could contribute to
differences in their potential as bioenergy crops. Despite ecotype being the most common way to
group cultivars, soil microbiome structure and root traits differed more among cultivars than
ecotype. Future research on switchgrass-microbe interactions should examine multiple cultivars
rather than relying on results from one model cultivar to make ecotype-level assumptions.
Understanding how cultivar traits influence microbial communities can improve our ability to
select and breed cultivars with optimal microbiome-mediated traits, like high N-fixation or C
sequestration. We also observed larger cultivar effects on bacterial than fungal soil communities,
suggesting that there may be greater heritable variation and, thus breeding potential, for

switchgrass bacterial than fungal microbiomes. This study shows that differences in switchgrass
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cultivars that have been documented aboveground also exist belowground and have the potential
to influence the future success and ecosystem service provisioning of switchgrass as a bioenergy

crop.

Acknowledgements

Support for this research was provided by the Great Lakes Bioenergy Research Center, U.S.
Department of Energy, Office of Science, Office of Biological and Environmental Research
(Awards DE-SC0018409 and DE-FC02-07ER64494), by the NSF Long-term Ecological
Research Program (DEB 1832042 and 1637653) at the Kellogg Biological Station, by an NSF
FSML grant (1722621), and by Michigan State University (MSU) AgBioResearch. TCU was
supported by and MSU Plant Sciences Fellowship and an NSF Graduate Research Fellowship.
We thank Phil Robertson for helpful comments on earlier versions of this manuscript, Cody
Bekkering, Jordan Priebe, Zhenyao Ye, Christin Parr, and YJ Su for help with sample
processing, Lukas Bell-Dereske for statistical guidance, and Joe Simmons for long-term

maintenance of the LTER plots.

References

Adam, E., Bernhart, M., Miiller, H., Winkler, J., & Berg, G. (2018). The Cucurbita pepo seed
microbiome: genotype-specific composition and implications for breeding. Plant and Soil,

422(1-2), 35-49. https://doi.org/10.1007/s11104-016-3113-9

Adkins, J., Jastrow, J. D., Morris, G. P., Six, J., & de Graaff, M. A. (2016). Effects of
switchgrass cultivars and intraspecific differences in root structure on soil carbon inputs and

accumulation. Geoderma, 262, 147-154. https://doi.org/10.1016/j.geoderma.2015.08.019

Aimar, D., Calafat, M., Andrade, A. M., Carassay, L., Bouteau, F., Abdala, G., & Molas, M. L.

Page 28 of 63



Page 29 of 63

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

Page 29 of 40 Ulbrich, T.C.
Phytobiomes

(2014). Drought effects on the early development stages of Panicum virgatum L.: Cultivar
differences. Biomass and Bioenergy, 66, 49-59.

https://doi.org/10.1016/j . biombioe.2014.03.004

An, Y., Ma, Y., & Shui, J. (2013). Switchgrass root exudates have allelopathic potential on
lettuce germination and seedling growth. Acta Agriculturae Scandinavica Section B: Soil

and Plant Science, 63(6), 497-505. https://doi.org/10.1080/09064710.2013.810770

Anderson, M. L., Gorley, R. N., & Clarke, K. R. (2008). PERMANOVA+ for PRIMER (p.

Plymouth UK).

Bates, D., Maechler, M, Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models
using lme4. Journal of Statistical Software, 67(1), 1-48.

https://doi.org/10.18637/js5.v067.101

Bell, T. H., El-Din Hassan, S., Lauron-Moreau, A., Al-Otaibi, F., Hijri, M., Yergeau, E., & St-
Arnaud, M. (2014). Linkage between bacterial and fungal rhizosphere communities in
hydrocarbon-contaminated soils is related to plant phylogeny. The ISME Journal, 8(2),

331-343. https://doi.org/10.1038/ismej.2013.149

Bulgarelli, D., Schlaeppi, K., Spaepen, S., van Themaat, E. V. L., & Schulze-Lefert, P. (2013).
Structure and functions of the bacterial microbiota of plants. Annual Review of Plant

Biology, 64(1), 807-838. https://doi.org/10.1146/annurev-arplant-050312-120106

Busby, P. E., Soman, C., Wagner, M. R., Friesen, M. L., Kremer, J., Bennett, A, ... Leach, J. E.
(2017). Research priorities for harnessing plant microbiomes in sustainable agriculture.

PLoS Biology, (March), 1-14. https://doi.org/10.1371/journal . pbio.2001793



671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

Page 30 of 40 Ulbrich, T.C.
Phytobiomes

Caceres, D., & Legendre, P. (2009). Associations between species and groups of sites: indices

and statistical inference. Fcology, 90(12), 3566-3574.

Casler, M. D. (2012). Chapter 2: Switchgrass Breeding, Genetics, and Genomics. In Switchgrass,

Green Energy and Technology (pp. 29-53). https://doi.org/10.1007/978-1-4471-2903-5

Casler, M. D, Sosa, S., Boe, A. R., & Bonos, S. A. (2019). Soil quality and region influence
performance and ranking of switchgrass genotypes. Crop Science, 58(0), 1-12.

https://doi.org/10.2135/cropsci2018.06.0409

Casler, M. D, Sosa, S., Hoffman, L., Mayton, H., Erst, C., Adler, P. R., ... Bonos, S. A. (2017).
Biomass yield of switchgrass cultivars under high- versus low-input conditions. Crop

Science, 57(2), 821-832. https://doi.org/10.2135/cropsci2016.08.0698

Chaparro, J. M., Badri, D. V., & Vivanco, J. M. (2014). Rhizosphere microbiome assemblage is
affected by plant development. ISME Journal, 8(4), 790-803.

https://doi.org/10.1038/ismej.2013.196

de Graaff, M. A, Jastrow, J. D., Gillette, S, Johns, A., & Wullschleger, S. D. (2014).
Differential priming of soil carbon driven by soil depth and root impacts on carbon
availability. Soil Biology and Biochemistry, 69, 147-156.

https://doi.org/10.1016/1.s011b10.2013.10.047

de Graaff, M. A, Six, J., Jastrow, J. D., Schadt, C. W., & Wullschleger, S. D. (2013). Variation
in root architecture among switchgrass cultivars impacts root decomposition rates. Soi/
Biology and Biochemistry, 58(March), 198-206.

https://doi.org/10.1016/j.s01lbi0.2012.11.015

Page 30 of 63



Page 31 of 63

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

Page 31 of 40 Ulbrich, T.C.
Phytobiomes

DeSantis, T. Z., Hugenholtz, P., Larsen, N, Rojas, M, Brodie, E. L., Keller, K, ... Andersen, G.
L. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench

compatible with ARB. Appl. Environ. Microbiol., 72(7), 5069-5072.

Dombrowski, N., Schlaeppi, K., Agler, M. T., Hacquard, S., Kemen, E., Garrido-Oter, R., ...
Schulze-Lefert, P. (2017). Root microbiota dynamics of perennial Arabis alpina are
dependent on soil residence time but independent of flowering time. ISME Journal, 11(1),

43-55. https://doi.org/10.1038/ismej.2016.109

DuPont, S. T., Beniston, J., Glover, J. D., Hodson, A., Culman, S. W_, Lal, R., & Ferris, H.
(2014). Root traits and soil properties in harvested perennial grassland, annual wheat, and
never-tilled annual wheat. Plant and Soil, 381(1-2), 405-420.

https://doi.org/10.1007/s11104-014-2145-2

Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST.

Bioinformatics, 26(19), 2460-2461.

Edwards, J., Santos-Medellin, C. M, Liechty, Z. S., Nguyen, B., Lurie, E., Eason, S., ...
Sundaresan, V. (2018). Compositional shifts in root-associated bacterial and archaeal
microbiota track the plant life cycle in field-grown rice. PLoS Biology, 16(2), 1-28.

https://doi.org/10.1371/journal .pb10.2003862

Edwards, J., Johnson, C., Santos-medellin, C., Lurie, E., & Kumar, N. (2015). Structure,
variation , and assembly of the root-associated microbiomes of rice. Proceedings of the
National Academy of Sciences, 112(8), E911-E920.

https://doi.org/10.1073/pnas. 1414592112

Emery, S. M, Kinnetz, E. R., Bell-Dereske, L., Stahlheber, K. A, Gross, K. L., & Pennington,



714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Page 32 of 63

Page 32 of 40 Ulbrich, T.C.
Phytobiomes

D. (2018). Low variation in arbuscular mycorrhizal fungal associations and effects on
biomass among switchgrass cultivars. Biomass and Bioenergy, 119(April), 503-508.

https://doi.org/10.1016/j . biombioe.2018.10.012

Emmett, B. D, Youngblut, N. D., Buckley, D. H., & Drinkwater, L. E. (2017). Plant phylogeny
and life history shape rhizosphere bacterial microbiome of summer annuals in an
agricultural field. Frontiers in Microbiology, 8(December), 1-16.

https://doi.org/10.3389/fmicb.2017.02414

Fierer, N. (2017). Embracing the unknown: Disentangling the complexities of the soil
microbiome. Nature Reviews Microbiology, 15(10), 579-590.

https://doi.org/10.1038/nrmicro.2017.87

Galkovskyi, T., Mileyko, Y., Bucksch, A., Moore, B., Symonova, O., Price, C. A., & Topp, C.
N. (2012). GiA Roots: software for the high-throughput analysis of plant root system

architecture. BMC Plant Biology, 12(116).

Grandy, A. S., & Neft, J. C. (2008). Molecular C dynamics downstream: The biochemical
decomposition sequence and its impact on soil organic matter structure and function.
Science of the Total Environment, 404(2-3), 297-307.

https://doi.org/10.1016/j.scitotenv.2007.11.013

Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous inference in general parametric

models. Biometrical Journal, 50(3), 346-363.

Inceoglu, O., Salles, J. F., Van Overbeek, L., & van Elsas, J. D. (2010). Effects of Plant
Genotype and growth stage on the betaproteobacterial communities associated with

different potato cultivars in two fields. Applied and Environmental Microbiology, 76(11),



Page 33 of 63

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

Page 33 of 40 Ulbrich, T.C.
Phytobiomes

3675-3684. https://doi.org/10.1128/microbe.8.242.1

Jiang, Y, Li, S,, Li, R, Zhang, J., Liu, Y., Lv, L, ... Li, W. (2017). Plant cultivars imprint the
rhizosphere bacterial community composition and association networks. Soil Biology &

Biochemistry, 109, 145-155. https://doi.org/10.1016/}.s0i1b10.2017.02.010

Kawasaki, A., Donn, S., Ryan, P. R., Mathesius, U., Devilla, R., Jones, A, ... Shen, Q. (2016).
Microbiome and exudates of the root and rhizosphere of Brachypodium distachyon, a model

for wheat. PLoS ONE, 11(10), €0164533. https://doi.org/10.1371/journal . pone.0164533

Kuznetsova, A., & Brockhoff, P.B., Christensen, R. H. . (2017). ImerTest Package: Tests in
linear mixed effects models. Journal of Statistical Software, 82(13), 1-26.

https://doi.org/10.18637/jss.v082.113

Langille, M. G. 1., Zaneveld, J., Caporaso, J. G., McDonald, D., Knights, D., a Reyes, J., ...
Huttenhower, C. (2013). Predictive functional profiling of microbial communities using 16S
rRNA marker gene sequences. Nature Biotechnology, 31(9): 813-821.

https://doi.org/10.1038/nbt.2676

Lenth, R. V. (2019). emmeans: Estimated marginal means, aka least-squares means. R package

version 1.4. https://doi.org/https://CRAN R-project.org/package=emmeans

Liang, C,, Jesus, E. da C., Duncan, D. S., Jackson, R. D., Tiedje, J. M., & Balser, T. C. (2012).
Soil microbial communities under model biofuel cropping systems in southern Wisconsin,
USA: Impact of crop species and soil properties. Applied Soil Ecology, 54, 24-31.

https://doi.org/10.1016/j.apsoil.2011.11.015

Love, M. 1., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and



757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

Page 34 of 63

Page 34 of 40 Ulbrich, T.C.
Phytobiomes

dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 550.

Marschner, P., & Baumann, K. (2003). Changes in bacterial community structure induced by
mycorrhizal colonisation in split-root maize. Plant and Soil, 251(2), 279-2809.

https://doi.org/10.1023/A:1023034825871

Mcknight, D. T., Huerlimann, R., Bower, D. S., Schwarzkopf, L., Alford, R. A., & Zenger, K. R.
(2019). Methods for normalizing microbiome data: an ecological perspective. Methods in

Ecology and Evolution, 10(3), 389-400. https://doi.org/10.1111/2041-210X.13115

McMurdie, P. J., & Holmes, S. (2013). Phyloseq: An R package for reproducible interactive
analysis and graphics of microbiome census data. PloS One, 8(4).

https://doi.org/https://doi.org/10.1371/journal . pone.0061217

McMurdie, P. J., & Holmes, S. (2014). Waste not, want not: why rarefying microbimoe data is
inadmissible. PLoS Computational Biology, 10(4), 1-12.

https://doi.org/10.1371/journal . pcbi. 1003531

Mirarab, S., Nguyen, N., Guo, S., Wang, L .-S., Kim, J., & Warnow, T. (2015). PASTA: Ultra-
Large Multiple Sequence Alignment for Nucleotide and Amino-Acid Sequences. Journal of

Computational Biology, 22(5), 377-386. https://doi.org/10.1089/cmb.2014.0156

Mueller, U. G., & Sachs, J. L. (2015). Engineering microbiomes to improve plant and animal

health. 7Trends in Microbiology, 23(10), 606—617. https://doi.org/10.1016/5.tim.2015.07.009

Na, X., Cao, X.,Ma, C.,,Ma, S, Xu, P, Liu, S., ... Qiao, Z. (2019). Plant stage, not drought
stress, determines the effect of cultivars on bacterial community diversity in the rhizopshere

of Broomcorn Millet (Panicum miliaceum L.). Frontiers in Microbiology, 10(April), 1-11.



Page 35 of 63

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

Page 35 of 40 Ulbrich, T.C.
Phytobiomes

https://doi.org/10.3389/fmicb.2019.00828

Nilsson, R. H., Kristiansson, E., Ryberg, M., Hallenberg, N., & Larsson, K. H. (2008).
Intraspecific ITS variability in the Kingdom Fungi as expressed in the international
sequence databases and its implications for molecular species identification. Evolutionary

Bioinformatics, (4), 193-201.

Nilsson, R. H., Larsson, R. H,, Taylor, A. F. S., Bengtsson-Palme, J., Jeppesen, T. S., Schigel,
D., ... Tedersoo, L. (2018). The UNITE database for molecular identification of fungi:
handling dark taxa and parallel taxonomic classifications. Nucleic Acids Research, 47(D1),

D259-D264.

Ogle, D. H., Wheeler, P., & Dinno, A. (2019). FISA: Fisheries Stock Analysis. R.package.

https://doi.org/https://github.com/droglenc/FSA

Oksanen, J., Blanchet, F. G., Friendly, M, Kindt, R., Legendre, P., McGlinn, D., ... Solymos, P.

(2018). Vegan: Community Ecology Package. R package version 2.5-2.

Pérez-Jaramillo, J. E., Carrion, V. J., Bosse, M., Ferrdo, L. F. V., De Hollander, M., Garcia, A.
A.F., ... Raaijmakers, J. M. (2017). Linking rhizosphere microbiome composition of wild
and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits. ISME Journal,

11(10), 2244-2257. https://doi.org/10.1038/ismej.2017.85

Pérez-Jaramillo, J. E., Mendes, R., & Raaijmakers, J. M. (2016). Impact of plant domestication
on rhizosphere microbiome assembly and functions. Plant Molecular Biology, 90(6), 635—

644. https://doi.org/10.1007/s11103-015-0337-7

Petipas, R. H., Bowsher, A. W, Bekkering, C. S., Jack, C. N., McLachlan, E. E., White, R. A,



799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

Page 36 of 40 Ulbrich, T.C.
Phytobiomes

... Friesen, M. L. (2020). Interactive effects of microbes and nitrogen on Panicum Virgatum
root functional traits and patterns of phenotypic selection. Infernational Journal of Plant

Sciences, 181(1), 20-32. https://doi.org/10.1086/706198

Qiao, Q., Wang, F., Zhang, J., Chen, Y., Zhang, C., Liu, G, ... Zhang, J. (2017). The variation in
rhizosphere microbiome of cotton with soil type, genotype, and developmental stage.

Scientific Reports, 7(1), 1-10. https://doi.org/10.1038/s41598-017-04213-7

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., ... Glockner, F. O. (2012).
The SILVA ribosomal RNA gene database project: improved data processing and web-

based tools. Nucleic Acids Research, 41(D1), D590-D596.

R Core Team. (2018). R: A language and environment for statistical computing. R Foundation

for Statistical Computing. Vienna, Austria. https://www.R-project.org/.

Reinhold-Hurek, B., Biinger, W., Burbano, C. S., Sabale, M., & Hurek, T. (2015). Roots shaping
their microbiome: global hotspots for microbial activity. Annual Review of Phytopathology,

53(1), 403—424. https://doi.org/10.1146/annurev-phyto-082712-102342

Revillini, D., Wilson, G. W. T, Miller, R. M., Lancione, R., & Johnson, N. C. (2019). Plant
diversity and fertilizer management shape the belowground microbiome of native grass
bioenergy feedstocks. Frontiers in Plant Science, 10(August), 1-18.

https://doi.org/10.3389/fpls.2019.01018

Rodrigues, R. R., Moon, J., Zhao, B., & Willitams, M. A. (2017). Microbial communities and
diazotrophic activity differ in the root-zone of Alamo and Dacotah switchgrass feedstocks.

GCB Bioenergy, 9, 1057-1070. https://doi.org/10.1111/gcbb. 12396

Page 36 of 63



Page 37 of 63

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

Page 37 of 40 Ulbrich, T.C.
Phytobiomes

Roley, S. S., Duncan, D. S, Liang, D., Garoutte, A, Jackson, R. D, Tiedje, J. M., & Robertson,
G. P. (2018). Associative nitrogen fixation (ANF) across a nitrogen input gradient. PLoS

one 13(6), €0197320. 1-37. https://doi.org/10.1371/journal.pone.0197320

Roley, S. S., Xue, C., Hamilton, S. K., Tiedje, J. M., & Robertson, G. P. (2019). Isotopic
evidence for episodic nitrogen fixation in switchgrass (Panicum virgatum L.). Soil Biology

and Biochemistry, 129, 90-98. https://doi.org/10.1016/j.s0ilbi0.2018.11.006

Roley, S. S, Ulbrich, T. C., & Robertson, G. P. (2020). Nitrogen fixation and resorption
efficiency differences among twelve upland and lowland switchgrass cultivars.

Phytobiomes. https://doi.org/10.1094/PBIOMES-11-19-0064-F1

Roosendaal, D., Stewart, C. E., Denef, K., Follett, R. F., Pruessner, E., Comas, L. H., ...
Soundararajan, M. (2016). Switchgrass ecotypes alter microbial contribution to deep soil C.

Soil, 2(2), 185-197. https://doi.org/10.5194/s0i1-2015-92

Saleem, M., Law, A. D., Sahib, M. R., Pervaiz, Z. H., & Zhang, Q. (2018). Impact of root system
architecture on rhizosphere and root microbiome. Rhizosphere 6, 47-51.

https://doi.org/10.1016/j.thisph.2018.02.003

Sawyer, A., Lamb, John, & Rosen, C. (2017). Switchgrass yield, nutrient uptake, and
rhizosphere microbial community composition as affected by cultivar and soil fertility.
University of Minnesota Dissertation. Retrieved from http://www.mdpi.com/2223-

7747/6/4/46

Sawyer, A, Staley, C., Lamb, J., Sheaffer, C., Kaiser, T., Gutknecht, J., ... Rosen, C. (2019).
Cultivar and phosphorus effects on switchgrass yield and rhizosphere microbial diversity.

Applied Microbiology and Biotechnology, 103(4), 1973-1987.



842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

Page 38 of 63

Page 38 of 40 Ulbrich, T.C.
Phytobiomes

https://doi.org/10.1007/s00253-018-9535-y

Singer, E., Bonnette, J., Kenaley, S. C., Woyke, T., & Juenger, T. E. (2019a). Plant compartment
and genetic variation drive microbiome composition in switchgrass roots. Environmental

Microbiology Reports, 11(2), 185-195. https://doi.org/10.1111/1758-2229.12727

Singer, E., Bonnette, J., Woyke, T., & Juenger, T. E. (2019b). Conservation of endophyte
bacterial community structure across two panicum grass species. F'rontiers in Microbiology,

10(September). https://doi.org/10.3389/fmicb.2019.02181

Sinsabaugh, R. L., Reynolds, H., & Long, T. M. (2000). Rapid assay for amidohydrolase
(urease) activity in environmental samples. Soil Biology & Biochemistry, 32(14), 2095—

2097.

Stahlheber, K. A., Lindquist, J., Drogosh, P. D., Pennington, D, Gross, K. L., Station, W. K. K.
B., & Corners, H. (2020). Predicting productivity : A trait-based analysis of variability in
biomass yield among switchgrass feedstock cultivars. Agriculture, Ecosystems and

Environment, 300(October), 106980. https://doi.org/10.1016/j.agee.2020.106980

Stewart, C. E., Roosendaal, D., Denef, K., Pruessner, E., Comas, L. H., Sarath, G, ...
Soundararajan, M. (2017). Seasonal switchgrass ecotype contributions to soil organic
carbon, deep soil microbial community composition and rhizodeposit uptake during an
extreme drought. Soil Biology and Biochemistry, 112, 191-203.

https://doi.org/10.1016/j.s01lbi0.2017.04.021

Sun, L., Quu, F., Zhang, X, Dai, X., Dong, X., & Song, W. (2008). Endophytic bacterial
diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis.

Microbial Ecology, 55(3), 415-424. https://doi.org/10.1007/s00248-007-9287-1



Page 39 of 63

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

Page 39 of 40 Ulbrich, T.C.
Phytobiomes

Tiemann, L. K., Grandy, A. S, Atkinson, E. E., Marin-Spiotta, E., & Mcdaniel, M. D. (2015).
Crop rotational diversity enhances belowground communities and functions in an

agroecosystem. Fcology Letters, 18(8), 761-771. https://doi.org/10.1111/ele. 12453

Vance, E. D, Brookes, P. C., & Jenkinson, D. (1987). An extraction method for measuring soil
microbial biomass C. Soil Biology & Biochemistry, 19(6), 703-707.

https://doi.org/10.1016/0038-0717(87)90052-6

Verbon, E. H., & Liberman, L. M. (2016). Beneficial microbes affect endogenous mechanisms
controlling root development. 7rends in Plant Science, 21(3), 218-229.

https://doi.org/10.1016/j.tplants.2016.01.013

Wagner, M. R., Lundberg, D. S., del Rio, T. G, Tringe, S. G., Dangl, J. L., & Mitchell-Olds, T.
(2016). Host genotype and age shape the leaf and root microbiomes of a wild perennial

plant. Nature Communications, 7(12151), 1-15. https://doi.org/10.1038/ncomms12151

Wang, Y., Naumann, U., Write, S., & Warton, D. J. (2012). mvabund: an R package for model-

based analysis of multivariate data. Methods in Ecology and Evolution, 3, 472—-474.

Weiss, S, Xu, Z. Z., Peddada, S., Amir, A, Bittinger, K., Gonzalez, A., ... Knight, R. (2017).
Normalization and microbial differential abundance strategies depend upon data

characteristics. Microbiome, 5(1), 27. https://doi.org/10.1186/s40168-017-0237-y

Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. (p. Springer-Verlag, New

York). p. Springer-Verlag, New York.

Yang, J., Worley, E., Wang, M., Lahner, B., Salt, D. E., Saha, M., & Udvardi, M. (2009).

Natural variation for nutrient use and remobilization efficiencies in switchgrass. Bioenergy



885

886

887

888

889

890

891

892

893

894

895

Page 40 of 40 Ulbrich, T.C.
Phytobiomes

Research, 2(4), 257-266. https://doi.org/10.1007/s12155-009-9055-9

Yu, P., & Hochholdinger, F. (2018). The role of host genetic signatures on root-microbiome
interactions in the rhizosphere and endospheres. Frontiers in Plant Science, 9, 1896.

https://doi.org/10.3389/fpls.2018.01896

Zhalnina, K., Louie, K. B., Hao, Z., Mansoori, N., Nunes da Rocha, U., Shi, S., ... Brodie, E. L.
(2018). Dynamic root exudate chemistry and microbial substrate preferences drive patterns
in rhizosphere microbial community assembly. Nature Microbiology, 3(4), 470-480.

https://doi.org/10.1038/s41564-018-0129-3

Zhang, R, Vivanco, J. M., & Shen, Q. (2017). The unseen rhizosphere root—soil-microbe
interactions for crop production. Current Opinion in Microbiology, 37, 8—14.

https://doi.org/10.1016/J MIB.2017.03.008

Page 40 of 63



Page 41 of 63

Tables | Page 1 of 4

Ulbrich, T.C.
Phytobiomes

Table 1. Details on cultivar origin, sampling date, and establishment year in the common garden
experiment. Seed source location and breeding history details from Stahlheber et al. (2020); ‘NA’ denotes

not available.

Cultivar  Ecotype

Sampling Establishment

Breeding history (Native seed source)

date year
: : ]
Alamo Lowland July 27 2009 Seed increase from native remnant prairie! (Southern
Texas)
EG1101 Lowland July 13 2010 Improved Alamo-type bred for biomass yield? (NA)
EG1102 Lowland July 27 2010 Improved Kanlow-type bred for biomass yield? (NA)
Seed collection from native remnant prairie, selected for
Kanlow Lowland July 27 2009 leafiness, vigor, late-season greenness' (Northern
Oklahoma)
. . .
Blackwell Upland  June 28 2009 Seed increase from native remnant prairie! (Northern
Oklahoma)
L . . .
Cave-in Upland  July 20 2009 Seed increase from natlvg rgmnant prairie! (Southern
Rock [llinois)
Seed increase from native remnant prairie, selected for
Dacotah  Upland  June 28 2009 leafiness, color and winter hardiness! (Southern North
Dakota)
EG2101 Upland  July 13 2010 Improved Cave-in-Rock bred for biomass yield? (NA)
k . . .
Neb2r g Ska Upland  July 20 2009 Seed increase native remnant prairie' (Nebraska)
Seed increase from native prairie, selected for thick
hel 1 ly 13 2010 . ...
Shelter  Upland July stems, less leafiness, early maturing! (West Virginia)
Seed increase from local remnant native stands to
hl 1 ly 20 2009 .
Southlow  Upland  July represent local germplasm? (Southwest Michigan)
Seed increase from natural grassland, selected for high
Trailblazer Upland  July 20 2009 digestibility and forage!

(Kansas & Nebraska)

IAlderson, J., and W. C. Sharp. 1994. Grass varieties in the United States. USDA, Agriculture Handbook 170. Washington,D.C.
Ceres, Inc. Blade® seeds (www.bladeseeds.com)
3Release Brochure for Southlow Michigan Germplasm switchgrass (Panicum virgatum). USD A-Natural Resources

Conservation Service, Rose Lake Plant Materials Center, East Lansing, MI 48823. Published September 2001, April 2014
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Table 2. Percent variability (PERMANOVA R?) in bacterial community composition explained

by habitat (soil or root) and cultivar. Significance values: ns p > 0.05, *p <0.05, ** p <0.01,

*#% p<0.001. () signifies nested factors, ‘*’ signifies the interaction between factors, and
‘NA’ denotes not applicable for the model.

Factor Soil & roo‘t bacteria Soil bapteria Root bapteria
(4 cultivars) (4 cultivars) (4 cultivars)
Habitat Effect %R2 (p) %R2 (p) %R2 (p)

Cultivar 2.59 * 15.06%* ns
Block (Cultivar) 6.56* 29.772%** ns
Habitat 58.64%*** NA NA
Cultivar*habitat ns NA NA
Habitat*Block(Cultivar) 6.73% NA NA

Soil moisture ns 4.41* ns

Page 42 of 63
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Table 3. Percent variability (PERMANOVA R?) in
microbial community composition explained by
cultivar or ecotype. Significance values: ns p > 0.05,
*p <0.05, ¥* p<0.01, *** p <0.001. ()’ signifies
nested factors and “*’ signifies the interaction
between factors.

Soil fungi Soil bacteria
Factor (12 cultivars) (12 cultivars)
Cultivar Effect %R2 (p) %R2 (p)
Cultivar 11.95* 21.20%%*
Block (Cultivar) 32.71%%% 31.94% %%
Soil moisture 1.85%** 3.40% %
Ecotype Effect
Ecotype 1.34%* 3 43%*
Plot (Ecotype) 43 31%** 49 TO***

Soil moisture 1.85%** 3.49%**

Ulbrich, T.C.
Phytobiomes
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Table 4. Percent variability (R?) of microbiome structure explained by soil conditions and root traits using
db-RDA analysis. Percent explained partitioned by conditional (block), constrained (all predictor variables),
and unconstrained (residuals) factors; ns p > 0.05, * p <0.05, ** p <0.01, *** p <0.001. ‘NA’ denotes not-
applicable for models that were not significant (p > 0.05)

Soil bacteria Soil fungi Soil bacteria Root bacteria

(12 cultivars) (12 cultivars) (4 cultivars) (4 cultivars)
Nitrate (ug N/ g dry soil g) 6.36%** 1.17%% 5.72%% NA
Ammonium (pg N/ g dry soil) ns ns ns NA
Soil Moisture Content (g/g dry soil) 1.86%* ns ns NA
Average Root Diameter (cm) ns ns ns NA
Root Length (cm) ns 1.06* ns NA
. . & sk ok & sk ok &3k ns

Model significance

Conditional Variance 7.67 6.23 9.83 NA
Constrained Variance 10.12 5.03 1531 NA
82.22 88.75 74.86 NA

Unconstrained Variance
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Figure 1. Variation in cultivar and ecotype A) volume-weighted specific root length (SRL), B)
average root diameter, C) microbial biomass carbon (MBC), D) microbial biomass nitrogen
(MBN), E) soil bacterial Shannon diversity, and F) predicted proportion of putative N-fixers in
soil. The last two bars represent means for lowland (n = 4; gray boxes) and upland (n = 8; white
boxes) ecotypes. Central line is the median value for each cultivar, vertical bars represent the
first and third interquartiles of the data, and points are outliers outside the interquartile range. ‘+’
denotes subset of cultivars analyzed for root-associated bacterial communities. Different letters
denote significant differences among cultivars (FDR, p <0.05). ANOVA results with fixed
cultivar (C) or ecotype (E) term, nested block term and soil moisture content (SMC) included as
a covariate when it improved model fit (based on AIC evaluation). Significance values: ns p >

0.05, *p < 0.05, **p < 0.01, ***p < 0.001.

Figure 2. A) NMDS ordination of combined soil and root bacterial community (n = 4 cultivars,
Weighted Unifrac, stress: 0.08). Soil (triangles) and roots (circles) represent two lowland
cultivars (L, dark grey points) and two upland cultivars (U, light grey points). B) Mean relative
abundance (%) of bacterial phyla and proteobacteria classes in roots or soils among four

cultivars.

Figure 3. NMDS ordination of A) soil bacterial community (Weighted Unifrac, stress: 0.18) and
B) soil fungal community (Bray-Curtis, stress: 0.26) across 4 lowland (L, grey points) and 8
upland (U, white points) cultivars. Numbers indicate centroid of sample replicates and horizontal
and vertical bars represent + 1 SE from the centroid. ‘“+’ denotes subset of cultivars analyzed for
root-associated bacterial communities. See supplemental figure S1 for NMDS with all sample

replicates.
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Figure 4. Mean relative abundance of bacterial phyla (and proteobacteria classes) that
significantly vary among cultivars (MVabund by cultivar: MVabund Dev(11/126) = 11058, p =
0.001; each phyla p <0.05). Bars represent standard error. Phyla are ordered by relative
abundance (left = most abundant) and, in each phyla, the bars are ordered by cultivar (1-12),
followed by means for lowland (L; n = 4) and upland (U; n = 8) ecotypes. ‘+’ denotes subset of
cultivars analyzed for root-associated bacterial communities; ‘*” above ecotypes indicate
statistically significant differences among ecotypes (ANOVA: * p <0.05, **p<0.01,

*4%1<0.001),
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Figure 1. Variation in cultivar and ecotype A) volume-weighted specific root length (SRL), B) average root
diameter, C) microbial biomass carbon (MBC), D) microbial biomass nitrogen (MBN), E) soil bacterial
Shannon diversity, and F) predicted proportion of putative N-fixers in soil. The last two bars represent

means for lowland (n = 4; gray boxes) and upland (n = 8; white boxes) ecotypes. Central line is the median
value for each cultivar, vertical bars represent the first and third interquartiles of the data, and points are
outliers outside the interquartile range. '+' denotes subset of cultivars analyzed for root-associated bacterial
communities. Different letters denote significant differences among cultivars (FDR, p <0.05). ANOVA results
with fixed cultivar (C) or ecotype (E) term, nested block term and soil moisture content (SMC) included as a
covariate when it improved model fit (based on AIC evaluation). Significance values: ns p > 0.05, *p <
0.05, **p < 0.01, ***p < 0.001.
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Figure 2. A) NMDS ordination of combined soil and root bacterial community (n = 4 cultivars, Weighted
Unifrac, stress: 0.08). Soil (triangles) and roots (circles) represent two lowland cultivars (L, dark grey
points) and two upland cultivars (U, light grey points). B) Mean relative abundance (%) of bacterial phyla
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Figure 3. NMDS ordination of A) soil bacterial community (Weighted Unifrac, stress: 0.18) and B) soil fungal
community (Bray-Curtis, stress: 0.26) across 4 lowland (L, grey points) and 8 upland (U, white points)
cultivars. Numbers indicate centroid of sample replicates and horizontal and vertical bars represent + |1 SE
from the centroid. '+' denotes subset of cultivars analyzed for root-associated bacterial communities. See
supplemental figure SI for NMDS with all sample replicates.
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Figure 4. Mean relative abundance of bacterial phyla (and proteobacteria classes) that significantly vary
among cultivars (MVabund by cultivar: MVabund Dev(11/126) = 1105.8, p = 0.001; each phyla p <0.05).
Bars represent standard error. Phyla are ordered by relative abundance (left = most abundant) and, in each
phyla, the bars are ordered by cultivar (1-12), followed by means for lowland (L; n = 4) and upland (U; n =
8) ecotypes. '+' denotes subset of cultivars analyzed for root-associated bacterial communities; '*' above
ecotypes indicate statistically significant differences among ecotypes (ANOVA: * p <0.05, **p<0.01,
*¥%p<0.001).
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e-Xtra supplemental methods

Root morphology with GiA Roots

Root morphologies were quantified using a skeletonization algorithm applied to images of roots
produced using an Epson perfection V600 scanner. After scanning roots at 1200 DPI, the images
were edited manually with Adobe Photoshop Elements 16 to remove image artifacts and then
resized to 300 DPI. GiA Roots (Galkovskyi et al. 2012) software algorithm masked roots against
the image background using the adaptive image thresholding feature and a set of manually
evaluated parameters (mean shift, minimum component size, block size). After masking and
identifying roots in the image, GiA Roots trimmed imaged roots down to a diameter of a single
pixel and measured root length by dividing total skeleton pixels by a known conversion factor
established by a ruler image.

Univariate Data Analysis

Prior to all data analysis, we assured that all univariate data met assumptions of normality;
transformations for normality included: predicted dry root biomass (square-root), root length
density (square-root), GiA Roots specific root length (log), soil moisture content (log), and soil
ammonium and nitrate (log +1), and root-bacterial evenness (squared). Soil fungal Shannon
diversity and evenness indices were not able to be normalized, so we used non-parametric
Kruskal-Wallis and Wilcox-tests with cultivar or ecotype as fixed effects (no block effect).
However, although the data was non-normal, we confirmed that fungal Shannon diversity had
the same results with a the mixed-effects model with a block factor included. Two extreme
outliers that were three times the interquartile range were removed from soil moisture data and
these two datapoints were also removed from soil nitrate and ammonium data, as soil moisture
content data was used to normalize nitrogen values per unit of dry soil. Several datapoints for
microbial biomass carbon were negative, likely because carbon values were lower than the
instrument’s standard error. These negative values were omitted from the analysis.

MVAbund analysis of taxa grouping and correlations with root traits

The ‘manyglm’ function in the MV Abund R-package was used to identify bacterial and fungal
taxa that had significantly different relative abundance among cultivars, ecotypes, or plant
compartments (Wang et al. 2012). Cultivar, ecotype, or soil type (root or soil) were treated as
fixed effects in a “negative-binomial”-fit model. Block could not be included as a random factor
due to unequal replication across blocks (because of samples removed for poor-sequence
coverage). Taxa that significantly differed among groups (p < 0.05) were then analyzed with
ANOVA tests (FDR adjustment to correct for multiple testing, a. = 0.05) with either cultivar or
ecotype as a fixed effect. Soil moisture content was included as a covariate to account for
variation across sample dates. Relative abundance data was log-transformed when it did not meet
assumptions of normality. Further, we used the manyglm model to identify if the abundance of
any fungal or bacterial groups (classes or orders) or individual OTUs (OTUs present in at least
80% of the samples) correlated with root length or diameter. Continuous root length and average
root diameter data were fit with the negative-binomial manyglm model. Significant relationships
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between root traits and microbial orders or OTUs found with MV Abund were confirmed with a
linear regression analysis.

Nitrogen-fixation capacity estimates

The mean relative abundances of Burkholderiales and Rhizobiales were calculated using the
rarefied soil (12 cultivars) and combined root and soil (4 cultivars) bacterial datasets, then
analyzed with the non-parametric Kruskal-Wallis tests (R Core Team, 2018) with either cultivar,
ecotype, or sample type as main effects. We also approximated the N-fixation capacity of the soil
(12 cultivars) and root (4 cultivars) bacterial communities using PICRUSt (Langille et al. 2013).
PICRUSt infers function based on phylogenetic relatedness to a database of reference genomes,
so is only an approximation due to the tenuous and highly variable relationship between 16S
rRNA sequence and function. We first calculated nearest sequenced taxon index (NSTI) scores,
which provides a measure of phylogenetical distance between each OTU and the referenced
metagenome and describes the confidence in functional assignment (Langille et al. 2013). We
normalized all OTUs by their predicted 16S rRNA gene copy number, which provides a pseudo-
abundance estimate for each OTU and then used ‘metagenome predictions’ to obtain OTU-
specific gene counts for N-fixation using the following KEGG pathway orthologs: K02588,
K02586, K02591, K0O0531. We calculated each samples’ predicted proportion of N-fixation
genes by dividing the number of OTUs with at least one predicted N-fixation pathway for each
sample by the normalized abundance of OTUS (e.g., the total 16S-gene normalized OTU
counts).
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e-Xtra supplemental figures & tables
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Figure SI. MMDS ordination of A) soil bacterial community (Weighted Unifrac, stress = 0.18)
and B) soil fungal community (Bray-Curtis, stress = 0.26). Each point is a replicate soil core;
final replicate number for each cultivar after removing poor sequence coverage samples in Table
S2. Warm colors and triangles represent lowland ecotypes (n = 4), cool colors and circles
represent upland ecotypes (n = §). ‘+' denotes subset of cultivars analyzed for root-associated
bacterial communities.
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Table S1. Bioinformatics filtering details for bacterial (16S) and fungal (ITS) samples.

Bacterial Bacterial Bacterial soil Fungal
root and soil soil (PICRUSt analyses) Soil
Reference Database Silva (v.123) Silva (v.123)  Greengenes (v.13.8)  Unite (v.7.2)
Total Read # 3,323,839 2,294 871 2,031,361 2,202,804
Total OTU # (97%
similarity threshold) 20,972 20,278 11,931 4,736
% non-bacterial or fungal
reads 19.07% 0.79% 0.72% 0%
# samples after removing 182 (removed 10 138 (removed 5 138 (removed 6 135 (removed
poor-sequence coverage samples) samples) samples) 9 samples)
Post-filtering Read # 2,680,275 2,267,356 2,009,262 2,196,278
Post-filtering OTU# 18,535 17,878 8,878 4,639
Rarefaction Read # cut-off 2,026 4,694 4,117 4,153
Post-Rarefaction Read # 368,732 647,772 568,146 560,655
Post-Rarefaction OTU# 12,197 14,590 7,905 4,064

Protest results (comparing
rarefaction and Deseq2 p <0.001, p <0.001, p <0.001,
VST normalization) r=041 r=091 NA r=0.82
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Table S2. Fungal and bacterial sequencing final replicate number (out of 12 replicates; 4 blocks with 3 replicate soil cores)
after removing samples with poor sequence coverage and samples with extreme outliers for soil moisture content covariate
(n =1 from EG1101 and n = 1 from Blackwell). “NA’ denotes not applicable; only 4 cultivars analyzed for root bacterial

community.
E — — =] 3 I ";4) = S o g _—
s & & ® 3 & &8 & ® 2 % =&
< i i M = S a i Z 3 ‘S
Soil Bacterial
12 10 11 11 12 10 12 10

Community 12 12 12 12
(12 cultivars)

Combined Soil,

Rootbacterial =159 NA  NA 12,11 NA 10,10 NA NA NA NA 12,12 NA
community

(4 cultivars)

Fungal Bacterial
Community 11 12 12 12 11 9

(12 cultivars)

10 10 12 11 12 11
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Table S3. Percent variability (PERMANOVA R?) in microbial
community composition explained by cultivar or ecotype. Cultivar
or ecotype treated as main effects with sampling date as a
covariate and a nested block term. Significance values: ns p >
0.05, *p <0.05, ** p <0.01, *** p <0.001. ()’ signifies nested
factors and “*’ signifies the interaction between factors.

Soil fungi Soil bacteria
Factor (12 cultivars) (12 cultivars)
Cultivar Effect %R2(p) %R2 (p)
Cultivar ns 13.03%*
Block (Cultivar) 34.23%%* 33.77%%*
Sampling Date 1.56** Q 3%k
Ecotype Effect
Ecotype ns ns
Plot (Ecotype) 43 3 H* 45 Q%%

Sampling Date 1.56%%%* 9 13k

Ulbrich et al.
Phytobiomes
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Table S4. Percent variability (PERMANOVA R?) in bacterial community composition
explained by habitat (soil or root) and cultivar. Cultivar and habitat treated as main effects
with sampling date as a covariate and a nested block term. Cultivar-eftect for a subset of
soil and root communities also presented; NA indicates not applicable for the model.
Significance values: ns p > 0.05, *p <0.05, ** p <0.01, *** p <0.001. *()’ signifies nested
factors and “*’ signifies the interaction between factors.

Factor Soil & roo“t bacteria Soil bapteria Root bgcteria
(4 cultivars) (4 cultivars) (4 cultivars)
Habitat Effect %R (p) %R (p) %R? (p)
Cultivar ns ns ns
Block (Cultivar) 6.42 * 32,0 #xx ns
Habitat 58.72 #x* NA NA
Cultivar*habitat ns NA NA
Habitat*Block(Cultivar) 6.71 * NA NA

Sampling Date 1.67 ** 10.34 *** ns
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Table S5. Root trait differences among switchgrass cultivars and ecotypes. ANOVA results with fixed
cultivar or ecotype term, nested block term, and soil moisture content as a covariate when it improved
model fit (based on Akaike information criteria). F-statistic and significance values: ns p > 0.05,

*p <0.05, **p <0.01, ***p < 0.001, “NA’ denotes not-applicable for the model.

Average Root Volume- Mass-
Root Network Root weighted weighted
Dry Root Diameter Volume Network SRL SRL
Mass (g) (cm) (cm®) Length (cm)  (cm/cm?®) (cm/g)
Cultivar Effect
Cultivar 1.61 (ns) 4.43%%* 1.99 (ns) 1.21 (ns) 3.61%** 1.62 (ns)
Soil Moisture NA NA NA 0.73 (ns) NA NA
Ecotype Effect
Ecotype 2.47 (ns) 0.001(ns) 1.49 (ns) 3.32 (ns) 0.288 (ns) 2.43 (ns)

Soil Moisture NA NA NA 0.99 (ns) NA NA
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Table S6. Bacterial alpha diversity among root and soil habitats. ANOVA results with habitat
and cultivar (n = 4) as fixed terms, a nested block term, and soil moisture content as a
covariate when it improved model fit (lower Akaike information evaluation). Wilcox test with
compartment as a fixed effect was used for non-parametric Pielou’s evenness. F-statistic and
significance values: ns p > 0.05, *p <0.05, **p < 0.01, ***p < 0.001, ‘NA’ denotes not-
applicable for the model.

Richness Shannon Diversity  Pileou’s Evenness
Habitat 3509.8 *** 1178.1 *** W =1 ***
Cultivar 0.16 (ns) 1.73 (ns) NA
Habitat * Variety 1.06 (ns) 1.74 (ns) NA
Soil Moisture 2.15 (ns) NA NA

Habitat Means (Soil, Root) 889, 171 38.1,14.2 091, 0.73
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Table S7. Alpha diversity statistics for soil bacterial and fungal communities. ANOVA results with
either fixed cultivar or ecotype term, nested block term, and soil moisture content as a covariate when it
improved model fit (lower Akaike information evaluation). Fungal Shannon diversity was analyzed with
non-parametric Kruskal-Wallis and Wilcox Tests. F-statistic and significance values: ns p > 0.05,

*p <0.05, **p <0.01, ***p < 0.001, “NA’ denotes not-applicable for the model.

Bacterial Soil Community

Fungal soil community

Community (n =12 cultivars) (n =12 cultivars)
Diversity Metric Shannon Pielou’s Shannon Pielou’s
y Richness Diversity Evenness | Richness Diversity Evenness

Cultivar Effect

Cultivar 2.17% 4 4 4 7] xxx* 0.63(ns) X?=722(ns) X*>=8.98 (ns)

Soil Moisture 0.65 (ns) NA NA 1.40 (ns) NA NA

Ecotype Effect

E W =2109
cotype 2.18% 6.15% 5.41%% | 0.04(ns) W =2177 (ns) (ns)

Soil Moisture 0.65 (ns) NA NA 0.10 (ns) NA NA

Ecotype Means

(Upland,

Lowland) 1460,1416  6.49, 6.41 0.89,0.88 | 6.70,9.26 447442 0.76,0.75




Page 61 of 63

e-Xtras Page 11 of 13 Ulbrich et al.
Phytobiomes

Table S8. Alpha diversity statistics without Dacotah cultivar for soil bacterial community (n
=11). ANOVA results with either fixed cultivar or ecotype term, nested block term, and soil
moisture content as a covariate when it improved model fit (lower Akaike information
evaluation). Fungal Shannon diversity was analyzed with non-parametric Kruskal-Wallis
and Wilcox Tests. F-statistic and significance values: ns p > 0.05 *p <0.05, **p<0.01,
##%p<0.001, ‘NA’ denotes not-applicable for the model.

Diversity Metric Richness Shannon Diversity ~ Pielou’s Evenness
Cultivar Effect

Cultivar 2.08 (ns) 2.14 (ns) 2.06 (ns)

Soil moisture 0.27 (ns) NA NA
Ecotype Effect

Ecotype 2.47 (ns) 3.72 (ns) 2.96 (ns)

Soil moisture 418 * NA NA

Ecotype means
(Upland, Lowland) 1448,1416 6.47,6.41 0.89,0.88
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Table S9. Pairwise p-values (FDR adjusted) for soil bacterial community composition among lowland
(L) and upland (U) cultivars. Model included cultivar as a fixed effect with a nested block term and

soil moisture content as a covariate. Shading represents p value <0.1 Final column denotes how many
ofthe 11 comparisons for each cultivar were significant at/? < 0.10.
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Table S10. Percent variability (PERMANOVA R?) for cultivar effect on soil

bacterial and fungal communities within sampling dates. Significance values: ns p
>0.05, *p <0.05, ** p < 0.01, *** p < 0.001; R = Factor SS/Total SS.

Ulbrich et al.
Phytobiomes

Sampling Date June 28" July 13" July 20" July 27"
Soil bacterial community %R2 ®) %R’ @) %R’ @) %R’ @)
Cultivar ns ns 0.16%* ns
Block(Cultivar) 4Hxk 36%* 33wk 41%%*
. . 2 2 2 2
Soil fungal community R (p) R (p) R (p) R (p)
Cultivar ns ns ns ns
Block(Cultivar) 37xk 3% H 33% 3GHH
# cultivars sampled 2 3 4 3



