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21 Abstract

22 Microbial communities help plants access nutrients and tolerate stress. Some microbiomes are
23 specific to plant genotypes and, therefore, may contribute to intraspecific differences in plant
24 growth and be a promising target for plant breeding. Switchgrass (Panicum virgatum L.) is a
25 potential bioenergy crop with broad variation in yields and environmental responses; recent
26 studies suggest that associations with distinct microbiomes may contribute to variation in cultivar
27 yields. We used a common garden experiment to investigate variation in 12 mature switchgrass
28 cultivar soil microbiomes and, further, to examine how root traits and soil conditions influence
29 microbiome structure. We found that average root diameter varied up to 33% among cultivars
30 and that they associated with distinct soil microbiomes. Cultivar had a larger effect on the soil
31 bacterial than fungal community, but both were strongly influenced by soil properties. Root traits
32 had a weaker effect on microbiome structure, but root length contributed to variation in the
33 fungal community. Unlike the soil communities, the root bacterial communities did not group by
34 cultivar, based on a subset of samples. Microbial biomass carbon and nitrogen and the abundance
35 of several dominant bacterial phyla varied between ecotypes, but overall the differences in soil
36 microbiomes were greater among cultivars than between ecotypes. Our findings show that there
37 is not one soil microbiome that applies to all switchgrass cultivars, or even to each ecotype.
38 These subtle but significant differences in root traits, microbial biomass, and the abundance of
39 certain soil bacteria could explain differences in cultivar yields and environmental responses.

40 Keywords: Panicum virgatum, switchgrass, microbiome, root traits
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57 Introduction

58 Plants associate with microbial communities that help them access resources and tolerate stress

59 (Jiang et al. 2017; Perez-Jaramillo et al. 2016). Some microbial communities are associated with

60 specific plant genotypes (Adam et al. 2018; Emmett et al. 2017; Jiang et al. 2017; Perez-

61 Jaramillo et al. 2017) and so have the potential to be targets of plant breeding programs and

62 inform crop choices (Busby et al. 2017; Mueller and Sachs 2015). Switchgrass

63 (Panicum virgatum L.), a leading candidate for low-input bioenergy feedstock, exhibits broad

64 phenotypic and genotypic variation that contribute to its ability to tolerate a diverse range of

65 environments (Casler et al., 2017; Yang et al., 2009). However, genotypic differences only

66 explain roughly 30% of the variation in cultivar yield responses across different regions, years,

67 and fertilizer rates (Casler et al. 2019). Recent studies suggest that the unexplained variability in

68 cultivar yields and environmental responses may be driven in part by their associations with

69 distinct microbial communities (Rodrigues et al. 2017; Sawyer et al. 2019; Singer et al. 2019a).

70 Switchgrass cultivars are broadly classified as upland and lowland ecotypes. Lowland ecotypes

71 originate from southern, warm and mesic regions, and upland ecotypes originate from northern,

72 cold and drier regions. Although there are distinct traits across ecotypes, such as earlier

73 flowering and senescence in upland cultivars (Casler, 2012), there is also physiological and

74 phenotypic variation within ecotypes, including in aboveground and belowground traits, drought

75 tolerance, yields, and responses to fertilizer (Aimar et al. 2014; de Graaff et al. 2013; Stahlheber

76 et al. 2020). Multiple recent studies also suggest that switchgrass cultivars belonging to upland

77 and lowland ecotypes have distinct soil microbiomes (Revillini et al. 2019; Rodrigues et al.

78 2017; Sawyer et al. 2019; Singer et al. 2019a; but see Emery et al. 2018). However, most

79 previous studies only focused on one or two of the most common cultivars, making it hard to
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identify general patterns or to determine whether soil microbiomes vary consistently by 

switchgrass ecotype. Further, with one notable exception (Emery et al. 2018), most studies were 

conducted on young, immature plants even though switchgrass is a long-lived perennial that 

reaches stand maturity and peak yields after three years. Given reported ontogenetic differences 

in plants’ microbial communities (Chaparro et al. 2014; Zhalnina et al. 2018), it seems likely that 

young and mature switchgrass plants will recruit distinct microbiomes that may have different 

effects on growth or other aspects of plant health such as nutrient acquisition.

Root and soil microbiomes are influenced by plant traits and soil conditions (Fierer 2017; Saleem 

et al. 2018). Plants, particularly long-lived perennials, can also alter soil properties which then 

lead to differences in microbial communities (DuPont et al. 2014; Liang et al. 2012; Zhang et al. 

2017). Switchgrass cultivars differ in their root exudate profiles (An et al. 2013), architecture, 

and tissue chemistry (de Graaff et al. 2013; Stewart et al. 2017), and these differences may lead 

to distinct microbiomes. For instance, cultivars with high specific root length (SRL) have a 

greater relative proportion of thin, high quality (low C:N) roots that provide more labile carbon 

(C) to microbes (Adkins et al. 2016; de Graaff et al. 2013; Stewart et al. 2017). This influences 

microbial community C acquisition, soil fungal:bacterial ratios (de Graaff et al., 2013; 

Roosendaal et al., 2016; Stewart et al., 2017), and the amount of C allocated belowground 

(Adkins et al., 2016; Stewart et al., 2017). These studies show that differences in root traits and 

consequent C-provisioning likely contributes to variation in switchgrass cultivar microbiomes, 

but few studies have measured variation in switchgrass root traits and microbial communities 

simultaneously (but see Roosendaal et al. 2016; Stewart et al. 2017).

While root traits and soil conditions drive microbial community structure, the strength of these 

drivers may differ for root- and soil-associated microbial communities (Bulgarelli et al. 2013; Yu
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103 & Hochholdinger 2018). Plant signaling, exudation, and altered abiotic conditions filter and

104 recruit bulk soil microbes to different microhabitats, such as the rhizosphere (soils closely

105 adhering to roots) and endosphere (internal root tissues). Soil-associated microbes are influenced

106 by changes in root exudates and soil conditions, while root microbes are assembled through a

107 two-step process whereby the previously filtered rhizosphere microbes are recruited to the roots

108 through genotype-specific signaling (Bulgarelli et al. 2013). Therefore, although soil conditions

109 affect both root and soil communities, root communities are often a less diverse, but more host-

110 associated subset of the surrounding soil microbes (Bulgarelli et al. 2013). It is also predicted

111 that root-associated communities have greater heritable variation than soil communities

112 (Reinhold-Hurek et al. 2015), but more research is needed to assert this claim. Knowing how

113 microbiomes differ among cultivars’ soils and roots as well as what influences microbiome

114 structure will help us understand how microbes may contribute to cultivar- and ecotype-variation

115 in the field and, further, how microbes could be incorporated into switchgrass production.

116 We hypothesize that root traits and microbial communities will differ among switchgrass

117 cultivars. Further, we expect that a combination of root traits and soil conditions will drive soil

118 microbiome structure, while root microbiome structure will be less diverse, but more distinct

119 among cultivars. We predict that root architectural traits known to increase belowground plant-

120 derived C inputs (e.g., SRL or root diameter) will be an important driver of microbial community

121 structure and biomass. In this study, we address these hypotheses by measuring root traits and

122 microbiomes across 12 mature switchgrass cultivars, asking two primary questions. First, does

123 microbial biomass and community structure vary across switchgrass cultivars? Second, what soil

124 conditions and root traits influence microbial community structure and biomass?

125
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Methods 

Site description

We conducted this study in southwest Michigan, USA, at the Great Lake Bioenergy Research 

Center’s Switchgrass Variety Experiment (https://lter.kbs.msu.edu/research/long-term- 

experiments/glbrc-switchgrass-variety-experiment/) located at the Kellogg Biological Station 

Long-term Ecological Research Site (42°23'47" N, 85°22'26" W). Mean annual precipitation is 

100 cm and soils are moderately fertile sandy clay loam (https://lter.kbs.msu.edu/research). In 

2009, 12 switchgrass cultivars, including eight upland and four lowland cultivars, were 

established in a complete randomized block design (four cultivars with poor establishment were 

replanted in 2010) (Table 1 for details on seed source and breeding history). Cultivars were 

planted at a rate of 9 kg live seed ha-1 into 12 plots within four uniformly treated replicate blocks, 

in the same soil type and within 80 m of one another (n = 48, plots = 4.6 x 12.2 m). The blocks 

were not irrigated and urea fertilizer was applied annually in the spring (78 kg N ha-1). Pre­

emergence weeds were controlled with Quinclorac Drive (1.1 kg ha-1) and Atrazine (0.6 kg ha-1) 

and post-emergence weeds were treated with herbicides (Glyphosate, 2,4-D, or Dicamba) as 

needed.

Sampling and soil analyses

In June and July 2016, we collected soil cores (2 cm diameter x 20 cm deep) from the rhizome 

(within 10 cm from the rhizome center) of three randomly chosen switchgrass plants from either 

end and the center of each block (3 replicate cores x 4 blocks = 12 cores per cultivar). All 

instruments were sterilized with 70% ethanol in between sampling. Because plant phenological 

stage can affect microbial communities (Chaparro et al. 2014; Zhalnina et al. 2018) we sampled 

each cultivar at the same developmental stage - flowering (simliar to Emmett et al. 2017). The
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149 12 cultivars flowered over a four-week period and at each sampling date we sampled at least two

150 cultivars (Table 1). This controlled for the impact of phenology on microbiome structure, but

151 microbiome differences may have also been affected by variation in host residence time

152 (Dombrowski et al., 2017) or soil conditions. We accounted for some of this temporal variation

153 by including soil moisture content, the edaphic factor that varied most among dates, as a

154 covariate in our analyses (see Analyses section).

155 After sampling, the soils were stored at 4°C and were frozen at -20°C within 48 hours after

156 sampling. Before freezing the soil cores, we sieved (1 mm) a 30 g subset of the collected soils to

157 remove roots and rocks and subsample for various assays, including chloroform fumigation and

158 potassium sulfate extractions for microbial biomass, soil nitrate and ammonium (12 g soil),

159 volumetric soil moisture content (5 g soils dried at 60°C), and downstream DNA extractions (2 g

160 soil stored at -20°C). Microbial biomass carbon (MBC) and nitrogen (MBN) were analyzed on a

161 TOC analyzer (Shimadzu TOC-VCPH) and calculated by subtracting the total carbon (C) and

162 nitrogen (N) of unfumigated samples from fumigated samples (Vance et al. 1987). Unfumigated

163 potassium sulfate extracts were used to determine soil inorganic ammonium (NH4+) and nitrate

164 (NO3-) with colorimetric 96-well plate assays. Ammonium concentration was analyzed using

165 ammonia salicylate and ammonia cyanurate as described by Sinsabaugh et al. (2000). Nitrate

166 reductase enzyme (E.C #1.7.1.1) was used to reduce NO3" to NO2" and concentrations of NO2"

167 were determined using sulfanilamide and #-(1 -naphthyl)-ethylenediamine. Absorbance for NH4+

168 and NO3" assays were read on a Synergy HTX plate reader (BioTek, Winooski, Vermont, USA)

169 at 610 nm and 540 nm, respectfully. All roots collected during initial sieving and remaining soils

170 were stored at -20°C until further root trait analysis and root DNA extractions.
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Root sterilization and trait analysis

The previously frozen sieved roots and undisturbed soils were wet-sieved (2 mm) with nanopure 

(0.2 pM) water and all visible roots were separated with sterilized tweezers for an average of 30 

minutes per sample. These roots were stored at 4°C in nanopure water and scanned within 48 

hours. To maintain sterility and minimize microbial cross-contamination, we sterilized all 

equipment with 70% ethanol in between scans. The roots were scanned (1200 dpi resolution with 

Epson perfection V600 scanner) in a glass scanning bed with 200 mL nanopure water, exported 

as tiff files, manually edited to remove image artifacts, and compressed before analyzing root 

traits with GiA Roots software (Galkovskyi et al. 2012, details in supplemental). Following 

scanning, 0.25 g of the scanned roots (< 2 mm in diameter to standardize for root age) were 

subsampled and sterilized for root-associated (endophyte) microbial characterization (details 

below). The remaining roots were weighed and dried at 60°C for one week to calculate the 

dry:wet root biomass ratio. Predicted total dry root weight was back-calculated using the dry:wet 

ratio to estimate the dry weight of the 0.25 g subset. This back-calculation of total dry root 

weight may underestimate actual root weight values if root water content varies with root 

diameter; an underestimation of root weight could contribute to miscalculations of other root 

traits, such as mass-weighted specific root length (total root length/dry root biomass). Using GiA 

Roots, we calculated the following root traits: total root length (cm), average root diameter (cm), 

total root system volume (cm3), and specific root length (SRL). SRL was calculated in two ways: 

1) mass-weighted SRL which we calculated using the back-calculated dry:wet root ratios (cm 

total root length/ g total dry root biomass ) and 2) volume-weighted SRL (cm total root length/ 

cm3 total root volume).
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193 To prepare the root tissues for DNA extractions, we first sterilized the 0.25 g of subsampled

194 roots. Immediately after scanning, we sterilized the subset roots following Sun et al. (2008):

195 roots were immersed in 70% ethanol for 3 minutes, sterilized with fresh household sodium

196 hypochlorite solution (2.5% available Cl") for 5 minutes, rinsed with 70% ethanol for 30 seconds,

197 rinsed ten times with sterile autoclaved water, blotted dry with Kimwipes (Kimberly-Clark,

198 Roswell GA, USA) and frozen at -20°C (Sun et al., 2008). To test root-surface sterilization, the

199 final water rinse was plated on Luria-Bertani agar and incubated at 30°C for 7 days. A majority

200 of the LB plates had bacterial growth after one week of incubation. Although the bacterial

201 growth may suggest incomplete sterilization of the rhizoplane, because these samples were root

202 segments, the cultured bacteria may have been endophytic bacteria that dispersed from the

203 interior of the roots. Due to the thorough sterilization procedure, we believe the remaining

204 microbes are strongly root-associated but cannot conclude they are obligate endophytes. Before

205 DNA extraction, the frozen, surface-sterilized root samples were submerged in liquid N and

206 ground with a tissue lyser (Qiagen Tissue Lyser II, Valencia, California, USA). If any root pieces

207 > 2 mm remained, sterilized scissors (10% bleach and 70% ethanol) were used to more finely cut

208 the roots.

209 DNA extraction, sequencing, and bioinformatics

210 DNA was extracted similarly from soil and sterilized roots, but only a subset of cultivars were

211 processed for root-associated microbes. Soil DNA was extracted from 0.25 g of sieved and

212 homogenized sample from all 12 cultivars (n = 144 samples: 12 cultivars x 4 blocks x 3 replicate

213 cores). Root DNA was extracted from approximately 0.25 g of sterilized, ground root tissue from

214 four commonly-planted cultivars (Upland: Cave-in-Rock, Southlow; Lowland: Alamo, Kanlow;

215 n = 48 samples: 4 cultivars x 4 blocks x 3 replicate cores, notated with ‘+’ in all figures). For
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both soils and roots, we used the MoBio PowerSoil DNA extraction kit and followed all kit- 

suggested protocols, with an added 10-minute cell lysis step at 65°C before the bead-beating step 

(MOBIO Laboratories, Carlsbad, California, USA). The purity and quantity of the extracted 

DNA was examined using a Nanodrop 2000 (Thermo Scientific, USA) and via fluorometry with 

the Quanti-iT PicoGreen dsDNA kit (Thermo Fisher, USA). We targeted the bacterial V4 region 

of the 16S rRNA gene (primers 515f/806r) and the fungal ITS1 region (primers ITS1-F/ITS2) for 

library preparation. Bacterial communities were analyzed for all soil (12 cultivars) and root (4 

cultivars) DNA, while fungal communities were only analyzed from the soil DNA (12 cultivars).

Bacterial and fungal PCR and MiSeq Illumina (V2) paired-end sequencing was conducted by the 

Research Technology Support Facility Genomics Core at Michigan State University (East 

Lansing, Michigan, USA). Briefly, for both ITS and 16S sequences, reads were assembled, and 

quality filtered (maxEE < 1.0 and base pairs < 250) using Usearch (version 10.0.240) (Edgar, 

2010). Sequences were dereplicated, clustered, chimera checked, filtered de novo, and clustered 

into unique operational taxonomic units (OTUs) based on 97% identity using the default settings 

with Usearch UPARSE function. Representative sequences were aligned and classified using the 

Silva (version 123) and Unite (7.2) reference databases for bacterial and fungal sequences, 

respectively (Nilsson et al., 2018; Quast et al., 2012). Soil and root-associated bacterial 

sequences were also aligned to Greengenes (version 13.8) database using Usearch closed- 

reference (closed_ref) for downstream PICRUSt analysis (DeSantis et al. 2006; Langille et al. 

2013). Non-bacterial and non-fungal sequences, singleton OTUs, and samples with poor- 

sequence coverage were removed from the reference-based OTU tables (Table S1). A bacterial 

phylogenetic tree was generated using an iterative maximum-likelihood approach with PASTA R 

package (Mirarab et al., 2015). Phylogenetic-based Weighted Unifrac distance was used for all
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239 bacterial community composition analyses. It is challenging to map the variable ITS region to a

240 trustworthy phylogenetic tree (Nilsson et al., 2008), so we used a non-phylogenetic community

241 metric, Bray-Curtis, for the fungal community analyses.

242 Due to large variation (> 10-fold) in library sizes within and among the root and soil samples, we

243 rarefied our datasets using the “rarefy_even_depth” function in the Phyloseq R package

244 (McMurdie and Holmes 2014) to control for sequencing depth differences and minimize false

245 discovery rates (Mcknight et al., 2019; Weiss et al., 2017). The soil bacterial and fungal datasets

246 for 12 cultivars were filtered and rarefied to 4,694 and 4,153 reads respectively. We compared

247 root and soil bacterial communities for four cultivars on a combined dataset that was rarefied to

248 2,026 reads. We confirmed that our results were robust to normalization techniques and not

249 biased by rarefaction (McMurdie & Holmes, 2014) by comparing community matrices

250 normalized with rarefaction and Deseq2’s ‘variance stabilizing transformation’ (Love et al.

251 2014) with a Protest analysis in the Vegan R package (Oksanen et al., 2018). All Protest

252 comparisons were significantly correlated (p < 0.001, Table S1) but the combined root and soil

253 dataset had the weakest correlation (r = 0.41) likely due to the 27-fold difference in the sample

254 library sizes. However, because rarefaction is the preferred method for normalizing for large

255 variation in library depth (Weiss et al. 2017), we used the bacterial (Silva-referenced) and fungal

256 (Unite-referenced) rarefied datasets for all community composition and diversity analyses. The

257 rarefied Greengenes-referenced bacterial dataset was used to predict metagenome functions with

258 PICRUSt. Fasta files (NCBI Sequence Read Archive, accession number PRJNA577732) and

259 sequencing pipeline (https://github.com/TaylerUlbrich/SwitchgrassCultivarMicrobiomeStudy)

260 are publicly available.
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Data analysis: univariate statistics

Prior to all data analysis, we assured that all univariate data met assumptions of normality (see 

supplemental for details). Univariate statistics were conducted using one-factor analyses of 

variance (ANOVA) models and type 3 sum of squares (Satterthwaite's method) with the lm4 and 

lmerTest packages in R (Bates et al. 2015; Kuznetsova et al. 2017). To differentiate the effect of 

cultivar and ecotype, all variables were analyzed with either cultivar or ecotype as a fixed effect 

with a random, nested block factor. Since we sampled the cultivars across four weeks to control 

for phenology-driven variation in microbiomes (Chaparro et al. 2014; Zhalnina et al. 2018), date 

was confounded with cultivar and ecotype. Due to this collinearity, the model was rank-deficient 

when both date and cultivar or ecotype were included. Therefore, instead of date, we included 

soil moisture content, which varied up to 47% across sampling dates (ANOVA, p < 0.001; 

correlation with Julian datep < 0.001, r = 0.52), as a covariate when it improved model fit (i.e. 

lower Akaike information criteria evaluation, AIC). Soil moisture content also correlated with 

soil nitrate (r = 0.46, p < 0.002), which varied by date (p < 0.001). However, we decided to 

include soil moisture content, not soil nitrate, as a covariate because soil moisture content also 

varied across blocks (ANVOA, p < 0.001), allowing us to account for both temporal and spatial 

heterogeneity. Two extreme outliers that were three times the interquartile range were removed 

from the soil moisture data, so cultivars EG1102 and Blackwell had only 11 replicates for any 

model that included soil moisture as a covariate. Several univariate models were improved with 

soil moisture as a covariate - fungal community richness and evenness, soil and root bacterial 

richness, microbial biomass nitrogen and carbon, root length - but soil moisture was only a 

significant predictor variable (p < 0.05) for microbial biomass carbon. Post-hoc comparisons 

(p values adjusted with Benjamini-Hochberg false discovery rate, FDR, a = 0.05) were
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284 conducted using the multcomp and emmeans R packages (Lenth 2019; Hothorn et al. 2008).

285 Fungal Shannon diversity and Pielou’s evenness did not meet normality assumptions, so we used

286 non-parametric Kruskal-Wallis and Wilcox tests (no block factor included). Pearson correlations

287 were used to determine relationships between edaphic conditions, root traits, and microbial

288 biomass carbon using the ‘cor.test’ in R (R Core Team, 2018).

289 Data analysis: microbiome community composition

290 Microbial community data were visualized and analyzed using the Vegan, Phyloseq, and ggplot2

291 R packages (McMurdie & Holmes, 2013; Oksanen et al., 2018; Wickham, 2016). We examined

292 overall variation in the cultivars’ microbiome composition using permutation-based ANOVA

293 (PERMANOVA) and betadispersion tests with type 1 sum of squares. PERMANOVAs,

294 betadispersion, and post-hoc pairwise comparisons (FDR-adjusted) were evaluated on the

295 rarefied datasets using the previously described one-factor, blocked model with soil moisture as a

296 covariate with the PRIMER-e software (version 6 & PERMANOVA +, Anderson et al. 2008).

297 After removing samples with poor sequence coverage and samples with two extreme outliers for

298 the soil moisture covariate, all cultivars had at least 9 replicates for microbiome analyses (Table

299 S2). As in the univariate models, date and cultivar were confounded, so including sampling date

300 in the model did not improve model fit (based on AIC evaluation). However, because the

301 permutational null model can still be calculated for a rank-deficient design, we used

302 supplemental PERMANOVAs with date as a covariate to evaluate the cultivar-level effects when

303 controlling for date. Models with date used instead of soil moisture content were qualitatively

304 similar but the significance was lower (Tables S3, S4). Within sampling date PERMANOVAs

305 were used to further evaluate cultivar-level differences not driven by confounding date effects

306 (e.g., cultivars sampled on the same date in one model, Table 1). All ordinations were made with
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Holmes, 2013).

To further characterize differences in microbial community structure across cultivars, we 

evaluated the proportion of shared and indicator taxa among the cultivars. We defined shared 

taxa as those OTUs present in at least 75% of the samples within each cultivar (e.g., 9/12 sample 

units per cultivar) and across all cultivars. Indicator taxa were identified (after removing 

singleton OTUs) using the ‘multiplatt’ function in the indicspecies R package (Caceres & 

Legendre, 2009) and defined as OTUs present in at least 25% of the samples (3/12 sample units, 

or indicspecies specificity parameter = 0.25). Rarefied datasets are biased against rare taxa, so it 

is possible that we identified fewer indicator taxa because less dominant, rare taxa were lost 

during rarefaction (McMurdie & Holmes, 2014). We also characterized phyla-level differences 

among cultivars and ecotypes using the ‘manyglm’ function in the MVAbund R package and 

ANOVA post-hoc pairwise comparisons (FDR-adjusted) with either cultivar or ecotype as a 

fixed effect and soil moisture content as a covariate when it improved model fit (based on AIC) 

(details in supplemental) (R Core Team 2018; Wang et al. 2012).

We were also interested in whether compositional differences based on 16S rRNA were likely to 

lead to differences in cultivar N-fixation, a function recently identified in switchgrass soils and 

roots and relevant to cultivar survival in low-nutrient environments (Roley et al. 2020, 2019, 

2018). We assessed this by 1) calculating variation in the relative abundance of common N- 

fixing orders Rhizobiales and Burkholderiales and 2) using PICRUSt to predict the relative 

proportion of putative N-fixing taxa (Langille et al., 2013) (details in supplemental). Both 

approaches have limitations but we intended for findings to generate further hypotheses, not to 

provide definitive assessments of N-fixing potential. The same univariate statistics described
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330 above were used to analyze proxies of functional differences among cultivars and ecotypes for

331 the soil- and root-communities.

332 We further evaluated difference in cultivar microbiomes by determining how edaphic conditions

333 and root traits affect microbiome structure and individual OTU- and order-level abundances.

334 Differences in OTU- and order-level abundance with root traits were evaluated using the

335 ‘manyglm’ and ‘anova’ functions in the MVAbund R-package (details in supplemental) (Wang

336 et al., 2012). At the community level, we determined which variables (average root diameter,

337 total root length, soil nitrate, soil ammonium, soil moisture content) significantly contributed (a

338 = 0.05) to microbiome structure when controlling for spatial heterogeneity (block) with a partial

339 distance-based redundancy analysis for each dataset: soil bacterial (Weighted Unifrac) and

340 fungal (Bray-Curtis) communities for 12 cultivars and combined root and soil bacterial dataset

341 for 4 cultivars (Weighted Unifrac). We used the ‘dbrda’ function in Vegan with a conditional

342 matrix for block to determine the relative contribution of block and predictor variables to

343 community structure, as well as the independent, “marginal” effects of each term (Oksanen et al.,

344 2018). Specific root length (volume- and mass-weighted) and total dry root weight were removed

345 from all analyses as they significantly correlated with average root diameter and total root length

346 (-0.50 < r > 0.50, p < 0.05).

347 Results

348 Root traits

349 Total dry root biomass (estimated from dry:wet root calculations), total root length, and mass-

350 weighted SRL (total root length/root biomass) did not significantly differ by cultivar or ecotype

351 (p > 0.05, Table S5). Mass- and volume-weighted SRL were significantly correlated (r = 0.70, p

352 < 0.001), and, unlike mass-weighted SRL, volume-weighted SRL (total root length/root volume)
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S5).The cultivar differences in volume-weighted SRL were likely driven by average root 

diameter which significantly differed by cultivar (p < 0.001, Figure 1B), and was used to 

calculate root network volume. There was a 30% difference between the cultivars with the 

thickest (e.g., Cave-in-Rock and EG2101) and thinnest (e.g., Kanlow and NE28) roots.

Microbial biomass

Microbial biomass carbon (MBC) and nitrogen (MBN) significantly differed among cultivars 

(MBC: p < 0.001, MBN: p < 0.001) and ecotypes (MBC: p < 0.01, MBN: p < 0.001)

(Figure 1C, D), even after controlling for soil moisture content which influenced MBC (soil 

moisture co-variate with MBC: p < 0.001, with MBN: p > 0.05) and varied by date (p < 0.05). 

Lowland MBC and MBN were 25% and 65% greater than upland ecotypes, respectively.

Soil vs. root associated bacterial communities

For a subset of four commonly-planted cultivars (Cave-in-Rock, Southlow, Alamo, Kanlow), we 

found that root and soil bacterial communities differed in diversity, composition, and the extent 

to which they were affected by cultivar identity. Microhabitat (soil or root) explained 59% of the 

overall variance in community composition (Table 2, Figure 2A), and the root community had 

five and three times lower bacterial richness and Shannon diversity than the soil communities, 

respectively (Table S6). The differences in beta diversity between roots and soils were mirrored 

in their dominant phyla. The most abundant bacterial phyla in the roots (n = 4 cultivars) were 

Proteobacteria (70%), Actinobacteria (11%) and Bacteroidetes (5%), while the soil communities 

(n = 4 cultivars) were dominated by Acidobacteria (30%), Proteobacteria (29%), and 

Verrucomicrobia (11%)(Figure 2B). The same phyla were most abundant in the soil 

communities when analyzed across all 12 cultivars (data not shown). Roots and soils also
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376 differed in the relative abundance of common N-fixing orders (Burkholderiales and Rhizobiales),

377 with roots having approximately three times greater relative abundance than soils (Kruskal-

378 Wallis: p < 0.001, data not shown).

379 The degree of cultivar-effect also differed for the root and soil bacterial communities (n = 4

380 cultivars). Cultivar explained 15% of the variation in the soil community but did not significantly

381 influence the root communities (Table 2). The two upland cultivars’ soil communities

382 significantly differed from the two lowland cultivars’ soil bacterial communities (data not

383 shown), but this may have been driven by differences in soil conditions across sampling dates,

384 which differed for the subset of two ecotypes (Table S4). There was also no cultivar-effect on

385 root or soil bacterial alpha diversity (Table S6) and there were fewer differences in the relative

386 abundance of dominant soil phyla for these four cultivars (Figure 4), suggesting that there was

387 less variation among these four commonly-planted cultivars’ microbiomes compared to the

388 remaining eight cultivars.

389 Soil bacterial communities

390 When evaluated across all 12 cultivars, we found that the soil-associated bacterial communities

391 significantly differed in composition and diversity. Soil bacterial richness, Shannon diversity,

392 and Pielou’s phylogenetic evenness differed among cultivars and was 1-3% higher for upland

393 ecotypes for all diversity metrics (p < 0.05, Figure 1E, Table S7). However, these differences

394 were driven by Dacotah, which had the highest bacterial richness and Shannon diversity (Table

395 S8). Dacotah is a low-yielding upland cultivar that had greater weed invasion which may have

396 contributed to greater bacterial diversity. Even when controlling for sampling date (Table S3)

397 and soil moisture content (Table 3), soil bacterial community composition differed among

398 cultivars. When controlling for soil moisture content, block (32%) and cultivar (21%) explained
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(Figure 3A, Table 3). The bacterial communities of three cultivars - Alamo (lowland), EG1102 

(lowland), and NE28 (upland) - were more dissimilar from all other cultivars (pairwise 

comparisons, p < 0.10, Table S9). When assessed within sampling date, cultivar explained a 

significant proportion of variation in the bacterial community composition within one date (16%, 

p < 0.05, Table S10): cultivar NE28 had a significantly different soil bacterial community than 

the other three upland cultivars (Southlow, Cave-in-Rock, Trailblazer) sampled on the same date.

The cultivars’ soil bacterial communities also differed at the phyla level and are comprised of 

many shared and few unique taxa. Eight soil bacterial phyla (74.3% of all reads) significantly 

differed among cultivars (Figure 4). Several of these phyla also differed by ecotype; specifically, 

Bacteroidetes, Planctomycetes, and Verrucomicrobia are more abundant in lowland cultivars, 

while Actinobacteria, Deltaproteobacteria, and Gemmatimonadetes are more abundant in upland 

cultivars. At the OTU-level, we found that 160 OTUs (out of 14,590 total) were shared across all 

cultivars (present in 75% of samples units within and among cultivars). These shared OTUs 

make up 45% of the total sequences and are dominated by three classes -Acidobacteria (39%), 

Alphaproteobacteria (17%) and Spartobacteria (12%). In contrast, indicator bacterial OTUs of 

the 12 cultivars include 683 OTUs and make up 21% of the total sequences dominated by classes 

Acidobacteria (33%), Alphaproteobacteria (10%) and Deltaproteobacteria (7%).

We used PICRUSt to test whether cultivars’ soil and root bacterial communities might have 

different abilities to fix N2. We first used NSTI scores to assess whether PICRUSt accurately 

approximated bacterial function for our sequences. Larger NSTI scores (> 0.15) are expected for 

highly diverse and largely uncharacterized environments like soils and indicate less phylogenetic 

relatedness between the predicted OTUs and reference genomes (Langille et al. 2013). The
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422 average NSTI scores for the soil samples was 0.23, which is within the typical range for soil

423 samples (Langille et al. 2013) but indicates results should be interpreted with caution due to

424 weak phylogenetic relatedness. Root NTSI (0.32) indicated low relatedness with reference

425 genomes, and therefore were not analyzed. We found that cultivar soil bacterial communities

426 varied in the proportion of OTUs with putative N-fixation genes (p < 0.001, Figure 1F). On

427 average, upland ecotypes had a greater proportion of predicted soil N-fixers than lowland

428 ecotypes (p < 0.05). Predicted soil N-fixer abundance negatively correlated with soil nitrate

429 availability (r = -0.33,p < 0.001) but did not correlate with soil N-fixation rates (p > 0.05) that

430 were measured in a paired study (Roley et al., 2020, data not shown). We also compared the

431 relative abundance of common N-fixing orders (Burkholderiales and Rhizobiales) and found no

432 differences among cultivars (p > 0.05).

433 Soil fungal communities

434 When controlling for soil moisture content, the primary drivers of soil fungal community

435 composition were similar to the bacterial community: block explained the most variation (33%),

436 followed by cultivar (12%) and ecotype (1%) (Table 3, Figure 3B). However, unlike the bacterial

437 communities, the cultivar-level effects on fungal communities were not robust to variation across

438 (Table S3) or within sampling dates (Table S10). Fungal community diversity (richness,

439 Shannon, evenness) also did not differ by cultivar or ecotype (p > 0.05, Table S7).

440 Only one fungal phylum, Rozellomycota, significantly differed in abundance among the cultivars

441 (MVabund 9, p < 0.01), and no phyla differed by ecotype (MVabund, p > 0.05). OTUs identified

442 as Rozellomycota only made up 0.73% of the reads, and therefore likely did not contribute much

443 to variation in cultivar microbiomes. The dominant fungal phyla were Ascomycota (32%),

444 Basidiomycota (17%), Mortierellomycota (14%) and Glomeromycota (9%), but 25% of the
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fungal OTUs were unclassifiable at phyla level. Among fungal OTUs (4,064 total), 37 were 

shared across all cultivars (present in 75% of samples units within and among cultivars). These 

shared OTUs made up 35% of the total sequences and were dominated by classes 

Mortierellomycetes (28%), Sordariomycetes (23%), and those Unclassified (29%). Indicator 

fungal OTUS of the 12 cultivars make up 25% of the total fungal sequences and include 213 

OTUs dominated by classes Sordariomycetes (19%), Dothideomycetes (17%), and 27% were 

unclassified at class level.

Effect of edaphic properties and root traits on microbiome

To further understand variation in cultivar microbiomes, we investigated how root traits and 

edaphic conditions (N and water content) impact community structure. Across all 12 cultivars, 

the five predictor variables (average root diameter, root length, soil moisture content, soil nitrate, 

soil ammonium) explained more variation for the soil bacterial (10%) than the soil fungal (5%) 

communities (Table 4). Mirroring the PERMAONVA results, spatial heterogeneity (conditional 

block variance) explained a significant portion of community dissimilarity for the soil bacteria 

and fungi. While controlling for variance due to spatial heterogeneity, variance in the bacterial 

community structure was most explained by soil nitrate (6%) and soil moisture content (2%) 

while the fungal community was most explained by soil nitrate (1%) and root length (1%). 

Within the four cultivars evaluated for soil and root bacterial community composition, nitrate 

explained 6% of the variation in the soil community, but no edaphic conditions or root traits 

contributed to variation in the root communities (Table 4).

We also investigated whether the relative abundance of bacteria or fungal taxa (at the order- and 

OTU-level) or microbial biomass correlated with root traits (average root diameter, root length). 

We did not identify any bacterial orders that correlated with root traits, but identified one fungal
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468 order, Mortierellales, that negatively correlated with root length (MVabundp < 0.05, correlation:

469 r = -0.41, p < 0.001). Further, microbial biomass carbon negatively correlated with root length (r

470 = -0.23, p < 0.01) but not with average root diameter (p > 0.05).

471 Discussion

472 We examined bacterial and fungal microbiomes, soil variables, and root traits across 12 mature

473 switchgrass cultivars grown in a common garden experiment. Overall, we found that cultivars

474 vary in their average root diameter, have different soil microbial biomass, and associate with

475 distinct soil, but not root, bacterial communities. Differences in the soil microbiomes were driven

476 by variation in root traits, phenology, and soil properties, and were more pronounced at the

477 cultivar level than across ecotypes. Still, cultivar was a weaker driver of soil communities than

478 among-plot soil heterogeneity, and we saw less overall variation in fungal communities. These

479 subtle but significant differences in root traits and soil bacterial communities that we observed

480 may contribute to variation in cultivar yields, environmental responses, or ability to provide

481 beneficial ecosystem services (e.g., soil C sequestration).

482 Cultivars have a greater effect on soil bacterial than root bacterial or soil fungal communities

483 Traditionally, ecotypes are used to classify differences among switchgrass cultivars, but we

484 found greater differences in switchgrass microbiomes across cultivars than between ecotypes.

485 We found that cultivar explained 10-20% of the variance in soil microbiome beta diversity, while

486 ecotype explained less than 5% of the variation; these stronger cultivar effects were also found in

487 a previous study on switchgrass cultivar soil bacterial and fungal communities (Singer et al.

488 2019a), but Emery et al. (2018) observed no cultivar effects on arbuscular mycorrhizal fungi

489 (AMF) in the same common garden experiment. Our findings show that at this site, the weak
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region). Despite overall weak effects of ecotype on OTU-level composition, ecotypes differed in 

the relative abundance of several dominant bacterial phyla. This may suggest that higher-level 

taxonomic differences are conserved across ecotypes, while finer, OTU-level differences occur 

among cultivars. Although we did not examine specific functions in this study, OTU-level 

differences among cultivars could contribute to variation in their nutrient cycling or yields. In 

fact, in the same common garden experiment, Stahlheber et al. (2020) found that aboveground 

traits and yields varied more among cultivars than between ecotypes, a pattern that could have 

been influenced by microbiome differences.

On a subset of four cultivars, we predicted that there would be a greater cultivar-effect on root- 

associated than soil bacterial communities, but in fact the soil bacterial communities differed 

more among cultivars. The weak cultivar-effect on the root communities could have been 

influenced by our cultivar selection, such that the other eight cultivars - which had greater 

variation in soil communities - may have also had more distinct root microbiomes. Further, it is 

also possible that we under-sampled the root bacterial diversity, as many chloroplast and 

mitochondrial sequences reduced microbiome sampling. Despite these potential caveats, other 

studies conducted on a similar number of cultivars also report greater cultivar-level differences 

among soil than root microbiomes in switchgrass (Singer et al. 2019a, n = 4 cultivars) and rice 

(Edwards et al. 2015, n = 6 cultivars); therefore, we posit that our observation of greater cultivar- 

effects on soil than root communities is biologically relevant. The soil communities also had less 

within cultivar variation than the root communities. This has been observed previously (Edwards 

et al. 2015) and may suggest that there is greater intraspecific variation in traits that affect 

microbial recruitment to the rhizosphere (e.g., root structure, exudation, or diffuse signaling)
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513 than in traits that regulate microbial entry into the root (e.g., physical and immune system

514 interactions). In fact, it may be that plant traits associated with root microbiome assembly are

515 conserved at even higher taxonomic levels, as Singer et al. (2019b) found that two Panicum

516 species have similar endophyte bacterial communities. The role of genotype on microbiome

517 structure remains unclear, but it could be clarified with surveys of microbiome variation across

518 multiple genotypes and species. Additionally, it seems that the proximity of the microbiome to

519 the plant may not be a good predictor of the influence of plant genotype on microbiome

520 structure, but finer-scale sampling (e.g. soil, rhizosphere, rhizoplane, and endosphere) would

521 help confirm this (e.g., Edwards et al. 2015).

522 Edaphic conditions and plant traits influence soil community structure

523 Soil water and nitrogen content influenced switchgrass cultivar soil, but not root microbiomes,

524 while root traits only affected the soil fungal community. Soil nitrate availability explained the

525 most variation in the cultivars’ soil microbiomes, but no edaphic or root traits influenced the root

526 community composition. Similar patterns were observed by Singer et al. (2019b) - Panicum

527 species’ rhizosphere soil communities were more affected by soil type than endosphere

528 communities. These edaphic conditions are considered to have larger effects on soil microbiomes

529 than plant identity (Fierer, 2017), but the observed differences in soil N in this study could be

530 driven by the cultivars’ differential effects on N cycling (Roley et al., 2020) which could in turn

531 influence the microbiome (Revillini et al. 2019). Contrary to our prediction, we did not observe

532 any effect of root traits on bacterial community structure, but found that fungal community

533 structure was affected by root length. Root length may be a particularly important trait for root

534 colonizing-fungi (e.g., AMF), since root system size determines the amount of niche space

535 available for colonization. Few studies simultaneously evaluate fungal community structure and
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root biomass (Emery et al. 2018). Our results supports this finding because root length 

significantly correlated with root biomass (r = 0.75, p < 0.001). In these conclusions we are 

presuming that root traits drive bacterial and fungal communities, but the observed correlation 

could also describe microbes driving root traits (Petipas et al., 2020; Verbon & Liberman, 2016).

We found that spatial variability (block factor) also explained a surprisingly large percent 

(> 30%) of variation in the soil microbiomes. Although our blocks were the same soil type and 

within 80 m of one another, they differed in soil moisture and nitrogen content (also in paired 

study, Roley et al. 2020). Our analysis of microbiome composition and edaphic conditions 

controlled for this block effect, yet it is difficult to disentangle the relative contribution of 

cultivar traits, spatial heterogeneity, and sampling date on these edaphic conditions and, in turn, 

microbiome structure. Further, it is possible that the variation across blocks contributed to 

greater plasticity in the cultivars’ traits, thus making it more challenging to identify correlations 

between traits and microbiome structure. Overall, although the primary drivers of switchgrass 

microbiome structure are challenging to disentangle, our results suggest that heterogeneous soil 

conditions, plant traits, and feedbacks between plant traits and soil conditions all likely 

contribute to microbiome variability among switchgrass cultivars.

The strength of relationships between root traits and soil microbiomes can also be influenced by 

soil fertility and sampling techniques. Our study was conducted on productive, annually 

fertilized soils, and cultivar differences and plant-microbe associations may be stronger in less- 

fertile, marginal soils, when plants and microbes are more dependent on one another (Bell et al. 

2014; Sawyer et al. 2017). Sawyer et al. (2017) found that switchgrass cultivar microbiomes 

were more distinct in less fertile soils. It is also possible that cultivars that were grown outside of
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559 their native range (e.g. not from the north-central United States) had weaker effects on their

560 microbiomes because they could not associate with their native, potentially co-evolved microbial

561 communities. Studies of cultivars in common gardens across many sites could elucidate the

562 contribution of native range or seed source on plant-microbial interactions. Further, because we

563 did not sample the soils directly adhering to the roots or use primers to target root-colonizing

564 microbes (e.g., AMF) we may not have captured the microbes most influenced by root traits and

565 exudates. Finally, we found that cultivars vary in average root diameter and, therefore, soils

566 beneath each cultivar likely differ in the amount of root turnover and development. Microbial

567 composition and function has been shown to vary with root age, type (e.g., seminal or nodal

568 root), and location (e.g., root branch or tip) (de Graaff et al. 2013; Kawasaki et al. 2016;

569 Marschner and Baumann 2003), but sampling with soil cores made it challenging to identify the

570 effects of root age, type, or location on soil microbial communities. Therefore, future studies

571 should use methods that standardize root age (e.g., use of root-in-growth cores) or root type and

572 location (e.g., visualizing root differences and sampling within rhizoboxes) to better understand

573 how root traits influence microbiome structure (Yu and Hochholdinger 2018).

574 Plant developmental stage (e.g., phenology, maturity) also contributes to microbiome variability

575 (Edwards et al. 2018; Na et al. 2019; Zhalnina et al. 2018). We sampled cultivars at the same

576 stage (flowering) to control for this variation, but sampling on different dates may have increased

577 differences in edaphic conditions that influence the microbiome. Yet, when we controlled for

578 variation among sampling dates, cultivar still contributed to variation in the soil bacterial, but not

579 fungal communities. This suggests that the fungal communities were more influenced by

580 variation in abiotic conditions across dates, or that cultivars with different phenology and, thus,

581 sampling dates, had more dissimilar fungal communities. In contrast, bacterial community
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(16%) of the variation in bacterial community structure within one of the four sampling dates. 

We hypothesize that greater differences were not observed within the other three sampling dates 

because cultivars with comparable phenology (e.g., flowering at the same time) likely have other 

similar traits and, thus, more similar microbial communities than cultivars with different 

phenology. However, to better understand the effect of similar phenology and traits on cultivar 

microbiomes, future studies should evaluate the switchgrass cultivar microbiomes across 

multiple phenological stages (e.g., Na et al. 2019; Qiao et al. 2017; Wagner et al. 2016) as both 

the microbiome structure and the magnitude of cultivar effects may change with phenological 

stage (Inceoglu et al. 2010; Na et al. 2019).

Functional implications and conclusions

Differences in cultivar root traits and microbial biomass could contribute to variability in the 

cultivars’ soil C-cycling and C sequestration potential. We found differences in microbial 

biomass and root diameter, but not root biomass, across cultivars. Another study conducted in 

the same common garden experiment, however, did find differences in root biomass among 

cultivars (Emery et al. 2018). These differences in average root diameter have the potential to 

drive variation in the cultivars’ C-cycling and microbial community structure. Root systems with 

high SRL, corresponding to long, thin roots, positively correlate with switchgrass-derived soil C 

(Adkins et al., 2016; Stewart et al., 2017), decomposition (de Graaff et al. 2013, 2014), 

bacterial:fungal ratios (de Graaff et al. 2013), and microbial biomass (PLFA-C) (Stewart et al. 

2017). Greater rhizodeposition from thin roots can directly contribute to soil C pools, as well as 

indirectly influence soil C by supporting the growth and turnover of microbial communities 

which, in turn, contributes to greater soil C and aggregate stability (Grandy & Neff, 2008;
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605 Tiemann et al. 2015). Therefore, the cultivars we identified with thinner roots (Kanlow and

606 NE28) or with higher microbial biomass C (many lowland cultivars) may have greater potential

607 to increase soil C in marginal soils and improve C sequestration.

608 The observed differences in microbial communities and root traits could also influence cultivar

609 nutrient cycling and tolerance to different environmental conditions, in turn, affecting yield. We

610 found that the predicted N-fixer abundance in soil communities varied among cultivars and

611 ecotypes. A paired study (same location and sampling dates) found that the rate of soil N-fixation

612 also varies among cultivars (Roley et al. 2020), but our PICRUSt-inferred functional potentials

613 did not correlate to the measured rates (data not shown). Still, our results suggest that functional

614 differences are likely, and future studies should investigate N-fixation and other functions with

615 more targeted approaches, as microbiome function may influence the suitability of various

616 cultivars for surviving under different soil conditions.

617 In summary, we found that root traits, microbial biomass, and soil bacterial community

618 composition differs among switchgrass cultivars, and that this variation could contribute to

619 differences in their potential as bioenergy crops. Despite ecotype being the most common way to

620 group cultivars, soil microbiome structure and root traits differed more among cultivars than

621 ecotype. Future research on switchgrass-microbe interactions should examine multiple cultivars

622 rather than relying on results from one model cultivar to make ecotype-level assumptions.

623 Understanding how cultivar traits influence microbial communities can improve our ability to

624 select and breed cultivars with optimal microbiome-mediated traits, like high N-fixation or C

625 sequestration. We also observed larger cultivar effects on bacterial than fungal soil communities,

626 suggesting that there may be greater heritable variation and, thus breeding potential, for

627 switchgrass bacterial than fungal microbiomes. This study shows that differences in switchgrass
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cultivars that have been documented aboveground also exist belowground and have the potential
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to influence the future success and ecosystem service provisioning of switchgrass as a bioenergy 

crop.
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Table 1. Details on cultivar origin, sampling date, and establishment year in the common garden 
experiment. Seed source location and breeding history details from Stahlheber et al. (2020); ‘NA’ denotes 
not available.
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Cultivar Ecotype Sampling
date

Establishment
year Breeding history (Native seed source)

Alamo Lowland July 27 2009
Seed increase from native remnant prairie1 (Southern

Texas)

EG1101 Lowland July 13 2010 Improved Alamo-type bred for biomass yield2 (NA)

EG1102 Lowland July 27 2010 Improved Kanlow-type bred for biomass yield2 (NA)

Seed collection from native remnant prairie, selected for
Kanlow Lowland July 27 2009 leafiness, vigor, late-season greenness1 (Northern

Oklahoma)

Blackwell Upland June 28 2009
Seed increase from native remnant prairie1 (Northern 

Oklahoma)

Cave-in­
Rock Upland July 20 2009 Seed increase from native remnant prairie1 (Southern 

Illinois)

Seed increase from native remnant prairie, selected for
Dacotah Upland June 28 2009 leafiness, color and winter hardiness1 (Southern North

Dakota)

EG2101 Upland July 13 2010 Improved Cave-in-Rock bred for biomass yield2 (NA)

Nebraska
28 Upland July 20 2009 Seed increase native remnant prairie1 (Nebraska)

Shelter Upland July 13 2010
Seed increase from native prairie, selected for thick 

stems, less leafiness, early maturing1 (West Virginia)

Southlow Upland July 20 2009 Seed increase from local remnant native stands to 
represent local germplasm3 (Southwest Michigan)

Seed increase from natural grassland, selected for high
Trailblazer Upland July 20 2009 digestibility and forage1

(Kansas & Nebraska)

1Alderson, J., and W. C. Sharp. 1994. Grass varieties in the United States. USDA, Agriculture Handbook 170. Washington,D.C. 
2Ceres, Inc. Blade® seeds (www.bladeseeds.com)
^Release Brochure for Southlow Michigan Germplasm switchgrass (Panicum virgatum). USDA-Natural Resources 
Conservation Service, Rose Lake Plant Materials Center, East Lansing, MI 48823. Published September 2001, April 2014
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Table 2. Percent variability (PERMANOVA R2) in bacterial community composition explained 
by habitat (soil or root) and cultivar. Significance values: nsp > 0.05, *p < 0.05, ** p < 0.01, 
*** p < 0.001. ‘()’ signifies nested factors, ‘*’ signifies the interaction between factors, and 
‘NA’ denotes not applicable for the model.

Tables | Page 2 of 4 Ulbrich, T.C.
Phytobiomes

Factor Soil & root bacteria 
(4 cultivars)

Soil bacteria 
(4 cultivars)

Root bacteria 
(4 cultivars)

Habitat Effect %R2 (p) %R2 (p) %R2 (p)

Cultivar 2.59 * 15.06** ns

Block (Cultivar) 6.56* 29 72*** ns

Habitat 58.64*** NA NA

Cultivar*habitat ns NA NA

Habitat*Block(Cultivar) 6.73* NA NA

Soil moisture ns 4.41* ns
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Table 3. Percent variability (PERMANOVA R2) in 
microbial community composition explained by 
cultivar or ecotype. Significance values: nsp > 0.05, 
*p < 0.05, ** p < 0.01, *** p < 0.001. ‘0’ signifies 
nested factors and ‘*’ signifies the interaction 
between factors.

Factor
Soil fungi 

(12 cultivars)
Soil bacteria 
(12 cultivars)

Cultivar Effect %R2 (p) %R2 (p)

Cultivar 11.95* 21.20***

Block (Cultivar) 32.71*** 31.94***

Soil moisture 1.85*** 3.49***

Ecotype Effect

Ecotype 1.34* 3.43**

Plot (Ecotype) 43.31*** 49.70***

Soil moisture 1.85*** 3.49***
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Table 4. Percent variability (R2) of microbiome structure explained by soil conditions and root traits using 
db-RDA analysis. Percent explained partitioned by conditional (block), constrained (all predictor variables), 
and unconstrained (residuals) factors; nsp > 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001. ‘NA’ denotes not- 
applicable for models that were not significant (p > 0.05)

Soil bacteria Soil fungi Soil bacteria Root bacteria
(12 cultivars) (12 cultivars) (4 cultivars) (4 cultivars)

Nitrate (pg N/ g dry soil g) 6.36*** 1.17** 5.72** NA

Ammonium (pg N/ g dry soil) ns ns ns NA

Soil Moisture Content (g/g dry soil) 1.86** ns ns NA

Average Root Diameter (cm) ns ns ns NA

Root Length (cm) ns 1.06* ns NA

Model significance *** *** ** ns

Conditional Variance 7.67 6.23 9.83 NA

Constrained Variance 10.12 5.03 15.31 NA

Unconstrained Variance 82.22 88.75 74.86 NA
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1 Figure 1. Variation in cultivar and ecotype A) volume-weighted specific root length (SRL), B)

2 average root diameter, C) microbial biomass carbon (MBC), D) microbial biomass nitrogen

3 (MBN), E) soil bacterial Shannon diversity, and F) predicted proportion of putative N-fixers in

4 soil. The last two bars represent means for lowland (n = 4; gray boxes) and upland (n = 8; white

5 boxes) ecotypes. Central line is the median value for each cultivar, vertical bars represent the

6 first and third interquartiles of the data, and points are outliers outside the interquartile range. ‘+’

7 denotes subset of cultivars analyzed for root-associated bacterial communities. Different letters

8 denote significant differences among cultivars (FDR, p <0.05). ANOVA results with fixed

9 cultivar (C) or ecotype (E) term, nested block term and soil moisture content (SMC) included as

10 a covariate when it improved model fit (based on AIC evaluation). Significance values: nsp >

11 0.05, *p < 0.05, < 0.01, ***p < 0.001.

12 Figure 2. A) NMDS ordination of combined soil and root bacterial community (n = 4 cultivars,

13 Weighted Unifrac, stress: 0.08). Soil (triangles) and roots (circles) represent two lowland

14 cultivars (L, dark grey points) and two upland cultivars (U, light grey points). B) Mean relative

15 abundance (%) of bacterial phyla and proteobacteria classes in roots or soils among four

16 cultivars.

17 Figure 3. NMDS ordination of A) soil bacterial community (Weighted Unifrac, stress: 0.18) and

18 B) soil fungal community (Bray-Curtis, stress: 0.26) across 4 lowland (L, grey points) and 8

19 upland (U, white points) cultivars. Numbers indicate centroid of sample replicates and horizontal

20 and vertical bars represent ± 1 SE from the centroid. ‘+’ denotes subset of cultivars analyzed for

21 root-associated bacterial communities. See supplemental figure S1 for NMDS with all sample

22 replicates.
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Figure 4. Mean relative abundance of bacterial phyla (and proteobacteria classes) that 

significantly vary among cultivars (MVabund by cultivar: MVabund Dev(11/126) = 1105.8,p = 

0.001; each phylap <0.05). Bars represent standard error. Phyla are ordered by relative 

abundance (left = most abundant) and, in each phyla, the bars are ordered by cultivar (1-12), 

followed by means for lowland (L; n = 4) and upland (U; n = 8) ecotypes. ‘+’ denotes subset of 

cultivars analyzed for root-associated bacterial communities; ‘*’ above ecotypes indicate 

statistically significant differences among ecotypes (ANOVA: * p <0.05, **p<0.01,

***p<0.001).
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3: EG1102 (L)
4: Kanlow(L) +
5: Blackwell (U)
6: Cave-in-Rock (U) + 
7: Dacotah (U)
8: EG2101 (U)
9: NE28 (U)

10: Shelter (U)
11: Southlow (U) +
12: Trailblazer (U)
L: Lowland Ecotypes 
U: Upland Ecotypes

Figure 1. Variation in cultivar and ecotype A) volume-weighted specific root length (SRL), B) average root 
diameter, C) microbial biomass carbon (MBC), D) microbial biomass nitrogen (MBN), E) soil bacterial 

Shannon diversity, and F) predicted proportion of putative N-fixers in soil. The last two bars represent 
means for lowland (n = 4; gray boxes) and upland (n = 8; white boxes) ecotypes. Central line is the median 

value for each cultivar, vertical bars represent the first and third interquartiles of the data, and points are 
outliers outside the interquartile range. '+' denotes subset of cultivars analyzed for root-associated bacterial 
communities. Different letters denote significant differences among cultivars (FDR, p <0.05). AN OVA results 
with fixed cultivar (C) or ecotype (E) term, nested block term and soil moisture content (SMC) included as a 

covariate when it improved model fit (based on AIC evaluation). Significance values: ns p > 0.05, *p <
0.05, **p < 0.01, ***p < 0.001.
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Figure 2. A) NMDS ordination of combined soil and root bacterial community (n = 4 cultivars, Weighted 
Unifrac, stress: 0.08). Soil (triangles) and roots (circles) represent two lowland cultivars (L, dark grey 

points) and two upland cultivars (U, light grey points). B) Mean relative abundance (%) of bacterial phyla 
and proteobacteria classes in roots or soils among four cultivars.
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6: Cav e-in-Rock (U) + 
7: Dacotah (U)
8: EG2101 (U)
9: NE28 (U)
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Figure 3. NMDS ordination of A) soil bacterial community (Weighted Unifrac, stress: 0.18) and B) soil fungal 
community (Bray-Curtis, stress: 0.26) across 4 lowland (L, grey points) and 8 upland (U, white points) 

cultivars. Numbers indicate centroid of sample replicates and horizontal and vertical bars represent ± 1 SE 
from the centroid. ' + ' denotes subset of cultivars analyzed for root-associated bacterial communities. See 

supplemental figure SI for NMDS with all sample replicates.
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Verrucomicrobia Planctomycetes Actinobacteria Beta proteo bacteria Denaprotepbacteria Bacteroidetes Gemmatimonadetes Cultivar (Ecotype)

S
 Alamo (L) + 
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Figure 4. Mean relative abundance of bacterial phyla (and proteobacteria classes) that significantly vary 
among cultivars (MVabund by cultivar: MVabund Dev(ll/126) = 1105.8, p = 0.001; each phyla p <0.05). 

Bars represent standard error. Phyla are ordered by relative abundance (left = most abundant) and, in each 
phyla, the bars are ordered by cultivar (1-12), followed by means for lowland (L; n = 4) and upland (U; n = 

8) ecotypes. '+' denotes subset of cultivars analyzed for root-associated bacterial communities; '*' above 
ecotypes indicate statistically significant differences among ecotypes (ANOVA: * p <0.05, **p<0.01,

***p<0.001).
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e-Xtra supplemental methods 

Root morphology with GiA Roots

Root morphologies were quantified using a skeletonization algorithm applied to images of roots 
produced using an Epson perfection V600 scanner. After scanning roots at 1200 DPI, the images 
were edited manually with Adobe Photoshop Elements 16 to remove image artifacts and then 
resized to 300 DPI. GiA Roots (Galkovskyi et al. 2012) software algorithm masked roots against 
the image background using the adaptive image thresholding feature and a set of manually 
evaluated parameters (mean shift, minimum component size, block size). After masking and 
identifying roots in the image, GiA Roots trimmed imaged roots down to a diameter of a single 
pixel and measured root length by dividing total skeleton pixels by a known conversion factor 
established by a ruler image.

Univariate Data Analysis

Prior to all data analysis, we assured that all univariate data met assumptions of normality; 
transformations for normality included: predicted dry root biomass (square-root), root length 
density (square-root), GiA Roots specific root length (log), soil moisture content (log), and soil 
ammonium and nitrate (log +1), and root-bacterial evenness (squared). Soil fungal Shannon 
diversity and evenness indices were not able to be normalized, so we used non-parametric 
Kruskal-Wallis and Wilcox-tests with cultivar or ecotype as fixed effects (no block effect). 
However, although the data was non-normal, we confirmed that fungal Shannon diversity had 
the same results with a the mixed-effects model with a block factor included. Two extreme 
outliers that were three times the interquartile range were removed from soil moisture data and 
these two datapoints were also removed from soil nitrate and ammonium data, as soil moisture 
content data was used to normalize nitrogen values per unit of dry soil. Several datapoints for 
microbial biomass carbon were negative, likely because carbon values were lower than the 
instrument’s standard error. These negative values were omitted from the analysis.

MVAbund analysis of taxa grouping and correlations with root traits

The ‘manyglm’ function in the MVAbund R-package was used to identify bacterial and fungal 
taxa that had significantly different relative abundance among cultivars, ecotypes, or plant 
compartments (Wang et al. 2012). Cultivar, ecotype, or soil type (root or soil) were treated as 
fixed effects in a “negative-bmomiaf’-fit model. Block could not be included as a random factor 
due to unequal replication across blocks (because of samples removed for poor-sequence 
coverage). Taxa that significantly differed among groups (p < 0.05) were then analyzed with 
ANOVA tests (FDR adjustment to correct for multiple testing, a = 0.05) with either cultivar or 
ecotype as a fixed effect. Soil moisture content was included as a covariate to account for 
variation across sample dates. Relative abundance data was log-transformed when it did not meet 
assumptions of normality. Further, we used the manyglm model to identify if the abundance of 
any fungal or bacterial groups (classes or orders) or individual OTUs (OTUs present in at least 
80% of the samples) correlated with root length or diameter. Continuous root length and average 
root diameter data were fit with the negative-binomial manyglm model. Significant relationships
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between root traits and microbial orders or OTUs found with MVAbund were confirmed with a 
linear regression analysis.

Nitrogen-fixation capacity estimates

The mean relative abundances of Burkholderiales and Rhizobiales were calculated using the 
rarefied soil (12 cultivars) and combined root and soil (4 cultivars) bacterial datasets, then 
analyzed with the non-parametric Kruskal-Wallis tests (R Core Team, 2018) with either cultivar, 
ecotype, or sample type as main effects. We also approximated the N-fixation capacity of the soil 
(12 cultivars) and root (4 cultivars) bacterial communities using PICRUSt (Langille et al. 2013). 
PICRUSt infers function based on phylogenetic relatedness to a database of reference genomes, 
so is only an approximation due to the tenuous and highly variable relationship between 16S 
rRNA sequence and function. We first calculated nearest sequenced taxon index (NSTI) scores, 
which provides a measure of phylogenetical distance between each OTU and the referenced 
metagenome and describes the confidence in functional assignment (Langille et al. 2013). We 
normalized all OTUs by their predicted 16S rRNA gene copy number, which provides a pseudo­
abundance estimate for each OTU and then used ‘metagenome_predictions’ to obtain OTU- 
specific gene counts for N-fixation using the following KEGG pathway orthologs: K02588, 
K02586, K02591, K00531. We calculated each samples’ predicted proportion of N-fixation 
genes by dividing the number of OTUs with at least one predicted N-fixation pathway for each 
sample by the normalized abundance of OTUS (e.g., the total 16S-gene normalized OTU 
counts).
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Figure SI. MMDS ordination of A) soil bacterial community (Weighted Unifrac, stress = 0.18) 
and B) soil fungal community (Bray-Curtis, stress = 0.26). Each point is a replicate soil core; 
final replicate number for each cultivar after removing poor sequence coverage samples in Table 
S2. Warm colors and triangles represent lowland ecotypes (n = 4), cool colors and circles 
represent upland ecotypes (n = 8). ‘+’ denotes subset of cultivars analyzed for root-associated 
bacterial communities.
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Table S1. Bioinformatics filtering details for bacterial (16S) and fungal (ITS) samples.

Bacterial 
root and soil

Bacterial
soil

Bacterial soil 
(PICRUSt analyses)

Fungal
Soil

Reference Database Silva (v.123) Silva (v.123) Greengenes (v.13.8) Unite (v.7.2)

Total Read # 3,323,839 2,294,871 2,031,361 2,202,804

Total OTU # (97%
similarity threshold) 20,972 20,278 11,931 4,736

% non-bacterial or fungal
reads 19.07% 0.79% 0.72% 0%

# samples after removing 182 (removed 10 138 (removed 5 138 (removed 6 135 (removed
poor-sequence coverage samples) samples) samples) 9 samples)

Post-filtering Read # 2,680,275 2,267,356 2,009,262 2,196,278

Post-filtering OTU# 18,535 17,878 8,878 4,639

Rarefaction Read # cut-off 2,026 4,694 4,117 4,153

Post-Rarefaction Read # 368,732 647,772 568,146 560,655

Post-Rarefaction OTU# 12,197 14,590 7,905 4,064

Protest results (comparing
rarefaction and Deseq2 

VST normalization)
f < 0.001,

r = 0.41
f < 0.001,

r = 0.91 NA
f < 0.001, 

r = 0.82
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Table S2. Fungal and bacterial sequencing final replicate number (out of 12 replicates; 4 blocks with 3 replicate soil cores) 
after removing samples with poor sequence coverage and samples with extreme outliers for soil moisture content covariate 
(n = 1 from EG1101 and n = 1 from Blackwell). ‘NA’ denotes not applicable; only 4 cultivars analyzed for root bacterial 
community.
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Table S3. Percent variability (PERMANOVA R2) in microbial 
community composition explained by cultivar or ecotype. Cultivar 
or ecotype treated as main effects with sampling date as a 
covariate and a nested block term. Significance values: nsp >
0.05, *p < 0.05, ** p < 0.01, *** p < 0.001. ‘()’ signifies nested 
factors and ‘*’ signifies the interaction between factors.

Factor

Soil fungi

(12 cultivars)

Soil bacteria

(12 cultivars)

Cultivar Effect %R2 (p) %R2 (p)

Cultivar ns 13.03**

Block (Cultivar) 34.23*** 33 77***

Sampling Date 1.56** 9 13***

Ecotype Effect

Ecotype ns ns

Plot (Ecotype) 43.31*** 45.79***

Sampling Date 1.56*** 913***
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Table S4. Percent variability (PERMANOVA R2) in bacterial community composition 
explained by habitat (soil or root) and cultivar. Cultivar and habitat treated as main effects 
with sampling date as a covariate and a nested block term. Cultivar-effect for a subset of 
soil and root communities also presented; NA indicates not applicable for the model.
Significance values: nsp > 0.05, *p < 0.05, ** p < 0.01, ***p < 0.001. ‘()’ signifies nested 
factors and ‘*’ signifies the interaction between factors.
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_ Soil & root bacteriaFactor (4 cultivars)
Soil bacteria 
(4 cultivars)

Root bacteria 
(4 cultivars)

Habitat Effect %R2 (p) %R2 (p) %R2 (p)

Cultivar ns ns ns

Block (Cultivar) 6.42 * 32.9 *** ns

Habitat 58.72 *** NA NA

Cultivar*habitat ns NA NA

Habitat*Block(Cultivar) 6.71 * NA NA

Sampling Date 1.67 ** 10.34 *** ns
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Table S5. Root trait differences among switchgrass cultivars and ecotypes. ANOVA results with fixed 
cultivar or ecotype term, nested block term, and soil moisture content as a covariate when it improved 
model fit (based on Akaike information criteria). F-statistic and significance values: ns p > 0.05,
*p < 0.05, **p < 0.01, ***p < 0.001, ‘NA’ denotes not-applicable for the model.

Dry Root 
Mass (g)

Average
Root

Diameter
(cm)

Root
Network
Volume

(cm3)

Root
Network 

Length (cm)

Volume-
weighted

SRL
(cm/cm3)

Mass-
weighted

SRL
(cm/g)

Cultivar Effect

Cultivar 1.61 (ns) 4.43*** 1.99 (ns) 1.21 (ns) 3.61** 1.62 (ns)

Soil Moisture NA NA NA 0.73 (ns) NA NA

Ecotype Effect

Ecotype 2.47 (ns) 0.001(ns) 1.49 (ns) 3.32 (ns) 0.288 (ns) 2.43 (ns)

Soil Moisture NA NA NA 0.99 (ns) NA NA
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Table S6. Bacterial alpha diversity among root and soil habitats. ANOVA results with habitat 
and cultivar (n = 4) as fixed terms, a nested block term, and soil moisture content as a 
covariate when it improved model fit (lower Akaike information evaluation). Wilcox test with 
compartment as a fixed effect was used for non-parametric Pielou’s evenness. F-statistic and 
significance values: nsp > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001, ‘NA’ denotes not- 
applicable for the model.

e-Xtras Page 9 of 13 Ulbrich et al.
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Richness Shannon Diversity Pileou’s Evenness

Habitat 3509.8 *** 1178.1 *** W = 1 ***

Cultivar 0.16 (ns) 1.73 (ns) NA

Habitat * Variety 1.06 (ns) 1.74 (ns) NA

Soil Moisture 2.15 (ns) NA NA

Habitat Means (Soil, Root) 889, 171 38.1, 14.2 0.91, 0.73
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Table S7. Alpha diversity statistics for soil bacterial and fungal communities. ANOVA results with 
either fixed cultivar or ecotype term, nested block term, and soil moisture content as a covariate when it 
improved model fit (lower Akaike information evaluation). Fungal Shannon diversity was analyzed with 
non-parametric Kruskal-Wallis and Wilcox Tests. F-statistic and significance values: nsp > 0.05,
*p < 0.05, **p < 0.01, ***p < 0.001, ‘NA’ denotes not-applicable for the model.

Community

Bacterial Soil Community

(n = 12 cultivars)

Fungal soil community

(n = 12 cultivars)

Diversity Metric Shannon Pielou’s Shannon Pielou’s
Richness Diversity Evenness Richness Diversity Evenness

Cultivar Effect

Cultivar 217* 4 4*** 4 71*** 0.63 (ns) X2 = 7.22 (ns) X:2 = 8.98 (ns)

Soil Moisture 0.65 (ns) NA NA 1.40 (ns) NA NA

Ecotype Effect

Ecotype 2.18* 6.15* 5.41** 0.04 (ns) W = 2177 (ns)
W = 2109 

(ns)

Soil Moisture 0.65 (ns) NA NA 0.10 (ns) NA NA

Ecotype Means
(Upland,
Lowland) 1460,1416 6.49, 6.41 0.89,0.88 6.70, 9.26 4.47,4.42 0.76,0.75
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Table S8. Alpha diversity statistics without Dacotah cultivar for soil bacterial community (n 
= 11). ANOVA results with either fixed cultivar or ecotype term, nested block term, and soil 
moisture content as a covariate when it improved model fit (lower Akaike information 
evaluation). Fungal Shannon diversity was analyzed with non-parametric Kruskal-Wallis 
and Wilcox Tests. F-statistic and significance values: nsp > 0.05 *p < 0.05, **p< 0.01, 
***p< 0.001, ‘NA’ denotes not-applicable for the model.

Diversity Metric Richness Shannon Diversity Pielou’s Evenness

Cultivar Effect

Cultivar 2.08 (ns) 2.14 (ns) 2.06 (ns)

Soil moisture 0.27 (ns) NA NA

Ecotype Effect

Ecotype 2.47 (ns) 3.72 (ns) 2.96 (ns)

Soil moisture 4.18 * NA NA

Ecotype means
(Upland, Lowland) 1448,1416 6.47,6.41 0.89,0.88
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Table S9. Pairwise p-values (FDR adjusted) for soil bacterial community composition among lowland 
(L) and upland (U) cultivars. Model included cultivar as a fixed effect with a nested block term and 
soil moisture content as a covariate. Shading represents p value <0.1 Final column denotes how many 
of the 11 comparisons for each cultivar were significant at /? < 0.10.
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Alamo (L) 7

EG1101
(L) 0.09 4

EG1102
(L) 0.61 0.09 6

Kanlow (L) 0.92 0.09 0.32 4

Blackwell
(U) 0.09 0.13 0.09 0.17 3

Cave-in- 
Rock (U) 0.09 0.25 0.09 0.09 0.22 4

Dacotah
(U) 0.09 0.15 0.09 0.09 0.82 0.19 4

EG2101
(U) 0.09 0.18 0.09 0.13 0.19 0.63 0.19 3

NE28
(U) 0.92 0.09 0.57 0.79 0.09 0.09 0.09 0.09 6

Shelter (U) 0.09 0.93 0.15 0.09 0.15 0.44 0.18 0.61 0.09 3

Southlow
(U) 0.16 0.57 0.09 0.17 0.21 0.9 0.21 0.92 0.13 0.64 1

Trailblazer
(U) 0.09 0.52 0.15 0.13 0.19 0.57 0.19 0.57 0.12 0.64 0.75 1
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Table S10. Percent variability (PERMANOVA R2) for cultivar effect on soil
bacterial and fungal communities within sampling dates. Significance values: nsp

2
> 0.05, *p < 0.05, **p < 0.01, *** p < 0.001; R = Factor SS/Total SS.

Sampling Date June 28* July 13 th July 20 July 27th

Soil bacterial community
2

%R (p)
2%R2 (p) 2

%R (p)
2%R2 (p)

Cultivar ns ns 0.16** ns

Block(Cultivar) 48*** 36** 33*** 41***

Soil fungal community
2R2 (p) 2R2 (p) 2R2 (p) 2R2 (p)

Cultivar ns ns ns ns

Block(Cultivar) 37*** 36*** 33** 36***
# cultivars sampled 2 3 4 3


