Minds and Machines (2021) 31:1-58
https://doi.org/10.1007/s11023-020-09540-9

GENERAL ARTICLE

n

Check for
updates

The Computational Origin of Representation

Steven T. Piantadosi'

Received: 12 June 2019 / Accepted: 29 August 2020 / Published online: 3 November 2020
© Springer Nature B.V. 2020

Abstract

Each of our theories of mental representation provides some insight into how the mind
works. However, these insights often seem incompatible, as the debates between sym-
bolic, dynamical, emergentist, sub-symbolic, and grounded approaches to cognition
attest. Mental representations—whatever they are—must share many features with
each of our theories of representation, and yet there are few hypotheses about how a
synthesis could be possible. Here, I develop a theory of the underpinnings of symbolic
cognition that shows how sub-symbolic dynamics may give rise to higher-level cog-
nitive representations of structures, systems of knowledge, and algorithmic processes.
This theory implements a version of conceptual role semantics by positing an internal
universal representation language in which learners may create mental models to cap-
ture dynamics they observe in the world. The theory formalizes one account of how
truly novel conceptual content may arise, allowing us to explain how even elementary
logical and computational operations may be learned from a more primitive basis.
I provide an implementation that learns to represent a variety of structures, includ-
ing logic, number, kinship trees, regular languages, context-free languages, domains
of theories like magnetism, dominance hierarchies, list structures, quantification, and
computational primitives like repetition, reversal, and recursion. This account is based
on simple discrete dynamical processes that could be implemented in a variety of
different physical or biological systems. In particular, I describe how the required
dynamics can be directly implemented in a connectionist framework. The resulting
theory provides an “assembly language” for cognition, where high-level theories of
symbolic computation can be implemented in simple dynamics that themselves could
be encoded in biologically plausible systems.

Keywords Language of thought - Conceptual role semantics - Conceptual change -
Combinatory - Logic

B Steven T. Piantadosi
spiantado @gmail.com

1 University of California Berkeley, Berkeley, CA, USA

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11023-020-09540-9&domain=pdf

2 S.T. Piantadosi

1 Introduction

At the heart of cognitive science is an embarrassing truth: we do not know what mental
representations are like. Many ideas have been developed, from the field’s origins in
symbolic Al (Newell and Simon 1976), to parallel and distributed representations of
connectionism (Rumelhart and McClelland 1986; Smolensky and Legendre 2006),
embodied theories that emphasize the grounded nature of the mental (Barsalou 2008,
2010), Bayesian accounts of structure learning and inference (Griffiths et al. 2010;
Tenenbaum et al. 2011), theories of cognitive architecture (Newell 1994; Anderson
et al. 1997, 2004), and accounts based on mental models, simulation (Craik 1967,
Johnson-Laird 1983; Battaglia et al. 2013), or analogy (Gentner and Stevens 1983;
Gentner and Forbus 2011; Gentner and Markman 1997; Hummel and Holyoak 1997).
These research programs have developed in concert with foundational debates in the
philosophy of mind about what kinds of things concepts may be (e.g. Margolis and
Laurence 1999), with similarly diverse and seemingly incompatible answers.

This paper develops an approach that attempts to unify a variety of ideas about
how mental representations may work. I argue that what is needed is an interme-
diate bridging theory that lives below the level of symbols and above the level of
neurons or neural network nodes, and that in fact such a system can be found in a
pre-existing formalism of mathematical logic. The system I present shows how it is
possible to implement high-level symbolic constructs permitting essentially arbitrary
(Turing-complete) computation while being simple, parallelizable, and addressing
foundational questions about meaning. Although the particular instantiation I describe
is an extreme simplification, its general principles, I'll argue, are likely to be close to
the truth.

The theory I describe is a little unusual in that it is built almost exclusively out
ideas that have been independently developed in fields adjacent to cognitive science.
The logical formalism comes from mathematical logic and computer science in the
early 1900s. The philosophical and conceptual framework has been well-articulated
in prior debates. The inferential theory builds on work in theoretical Al and Bayesian
cognitive science. The overall goal of finding symbolic cognition below the level of
“symbols” comes from connectionism and other sub-symbolic accounts. An emphasis
on the importance of getting symbols eventually comes from the remarkable properties
of human symbolic thought and language, including centuries of argumentation in
philosophy and mathematics about what kinds of formal systems may capture the core
properties of humanlike thinking. What is new is the unification of these ideas into a
framework that can be shown to learn complex symbolic processes and representations
that are grounded in simple underlying dynamics without dodging key questions about
meaning and representation. The resulting theory intentionally muddies the water
between traditional symbolic and non-symbolic approaches by studying a system that
is both simple to implement in neural systems, and in which it is simple to implement
high-level cognitive processes. Such as system, I argue, represents a promising and
concrete avenue for spanning the chasm between the neural and the cognitive.

The resulting theory formulates hypotheses about how fundamental conceptual
change can occur, both computationally and philosophically. A pressing mystery is
how children might start with whatever initial knowledge they are born with, and come

@ Springer



The Computational Origin of Representation 3

to develop the rich and sophisticated systems of representation we can find in adults
(Rule et al. 2020). The problem is perhaps deepest when we consider simple logical
capacities—for instance, the ability to represent boolean values, compute syllogisms,
follow logical/deductive rules, use number, or process conditionals and quantifiers. If
infants do not have some of these abilities, we are in need of a learning theory that
can explain where such computational processes might come from. Yet, it is hard to
imagine how a computational system that does not know these could function. From
what starting point could learners possibly construct Boolean logic, for instance? It
is hard to imagine what a computer would look like if it did not already have notions
like and, or, not, true, and false. Is it even possible to “compute” without having
concepts like logic or number? The answer provided in this paper is emphatically yes—
computation is possible without any explicit form of these operations. In fact, learning
systems can be made that construct and test these logical systems as hypotheses,
genuinely without presupposing them. My goal here is to show how.

The paper is organized as follows: In the next section, I describe a leading example of
symbolic cognitive science, Fodor’s Language of Thought (LOT) theory (Fodor 1975,
2008). The LOT motivates the need for structured, compositional representations, but
leaves at its core unanswered questions about how the symbols in these representa-
tions come to have meaning or may be implemented in neural systems. To address
this, I then discuss conceptual role semantics (CRS) as an account of how meaningful
symbols may arise. The problem with CRS is that it has no implementations, leaving
its actual mechanics vague and unspecified. To address this, I connect the idea of CRS
to formalizations in computer science that effectively use CRS-like methods to show
how logical systems can encode other processes. Specifically, I describe a mathemat-
ical formalism, combinatory logic, and a key operation in it, Church encoding, which
permits modeling of one system (e.g. world) within another (e.g. a mental logic). This
reduces the problem of learning meaningful symbols to that of constructing the right
structure in a mental language like combinatory logic. I then address the question of
learning these representations, drawing on work in theoretical artificial intelligence.
The inferential approach allows learners to acquire computationally complex repre-
sentations, yet largely avoid the primary difficulty that faces learners who operate on
spaces of computations: the halting problem. Providing a GPL-licensed implementa-
tion of the inference scheme, I then demonstrate how learners could acquire a large
variety of mental representations found across human and non-human cognition. In
each of these cases, the core symbolic aspect of representation is built out only out of
extraordinarily simple and mechanistic dynamics from which the meanings emerge
in an interconnected system of concepts. I argue that whatever mental representations
are, they must be like these kinds of objects, where symbolic meanings for algorithms,
structures, and relations arise out of the sub-symbolic dynamics that implement these
processes. I then describe how the system can be implemented straightforwardly in
existing connectionist frameworks, and discuss broader philosophical implications.

@ Springer



4 S.T. Piantadosi

1.1 Representation in the Language of Thought

There is a lot going for the theory that human cognition uses, among other things,
a structured symbolic system of representation analogous to language. The idea that
something like a mental logic describes key cognitive processes dates back at least to
Boole (1854), who described his logic as capturing “the laws of thought” and Gottfried
Leibniz, who tried to systematize knowledge and reasoning in his own universal formal
language, the characteristica universalis. As a psychological theory, the LOT reached
prominence through the works of Jerry Fodor, who argued for a compositional system
of mental representation that is analogous to human language called a Language
of Thought (LOT) (Fodor 1975, 2008). The LOT has had numerous incarnations
throughout the history of Al and cognitive science (Newell and Simon 1976; Penn
et al. 2008; Fodor 2008; Kemp 2012; Goodman et al. 2015; Piantadosi et al. 2016;
Rule et al. 2020; Chater and Oaksford 2013; Siskind 1996). Most recent versions
focus on combining language-like—or program-like—representations with Bayesian
probabilistic inference to explain concept induction in empirical tasks (Goodman et al.
2008a,b, 2015; Yildirim and Jacobs 2013; Erdogan et al. 2015; Piantadosi and Jacobs
2016; Rothe et al. 2017; Lake et al. 2015; Overlan et al. 2017; Romano et al. 2017,
2018; Amalric et al. 2017; Depeweg et al. 2018).1

If mentalese is like a program, its primitives are humans’ most basic mental
operations, a view of conceptual representation that has roots and branches in psy-
chology and computer science. Miller and Johnson-Laird (1976) developed a theory of
language understanding based on structured, program-like representations. Common-
sense knowledge in domains like objects, beliefs, physical reasoning, and time may
also draw on logical representations (Davis 1990) mirroring psychological theorizing
about the LOT. Modern incarnations of conceptual representations can be found in
programming languages like Church that aim to capture phenomena like the gradience
of concepts through a semantics centered on probability and conditioning (Goodman
et al. 2008a, 2015). In computer science, the program metaphor has been applied in
computational semantics under the name procedural semantics, in which representa-
tions of linguistic meaning are taken to be programs that compute something about the
meaning of the sentence (Woods 1968; Davies and Isard 1972; Johnson-Laird 1977;
Woods 1981). For instance, the meaning of “How many US presidents have had a first
name starting with the letter “T’?”” might be captured by a program that searches for an
answer to this question in a database. This approach has been elaborated in a variety of
modern machine learning models, many of which draw on logical tools closely akin
to the LOT (e.g Zettlemoyer and Collins 2005; Wong and Mooney 2007; Liang et al.
2010; Kwiatkowski et al. 2010, 2012).

A LOT would explain some of the richness of human thinking by positing a com-
binatorial capacity through which a small set of built in cognitive operations can
be combined to express new concepts. For instance, in the word learning model of
(Siskind 1996) the meaning of the word “lift” might be captured as

' The LOT’s focus on structural rules is consistent with many popular cognitive architectures that use
production systems (Anderson et al. 1997, 2004; Newell 1994), although the emphasis on in most LOT
models is on the learning and computational level of analysis, not the implementation or architecture.

@ Springer



The Computational Origin of Representation 5

lift(x,y) = CAUSE(x,GO(y,UP))

where caUSE, co and up are “primitive” conceptual representations—possibly innate—
that are composed to express a new word meaning. This compositionality allows
theories to posit relatively little innate content, with the heavy lifting of conceptual
development accomplished by combining existing operations productively in new
ways. To discover what composition is “best” to explain their observed data, learners
may engage in hypothesis testing or Bayesian inference (Siskind 1996; Goodman et al.
2008b; Piantadosi et al. 2012; Ullman et al. 2012; Mollica and Piantadosi 2015).

The content that a LOT assumes is distinctly symbolic, can be used compositionally
to generate new thoughts, and obeys systematic patterns made explicit in the symbol
structures. For example, it would be impossible to think that x was lifted without also
thinking that x was caused to go up. Though the psychological tenability of systematic-
ity (Johnson 2004) and compositionality (Clapp 2012) are debated, classically such
compositionality, productivity, and systematicity have been argued to be desirable fea-
tures of cognitive theories (Fodor and Pylyshyn 1988), and lacking in connectionism
(for ensuing discussion, see e.g., Smolensky 1988, 1989; Chater and Oaksford 1990;
Fodor and McLaughlin 1990; Chalmers 1990; Van Gelder 1990; Aydede 1997; Fodor
1997; Jackendoff 2002; Van Der Velde and De Kamps 2006; Edelman and Intrator
2003).

However, work on the LOT as a psychological theory has progressed despite a
serious problem lurking at its foundation: how is it that symbols themselves come
to have meaning? It is far from obvious what would make a symbol co mean go
and cause mean cause. This is especially troublesome when we recognize that even
ordinary concepts like these are notoriously difficult to formalize, perhaps even lacking
definitions (Fodor 1975). Certainly there is nothing inherent in the symbol (the ¢ and
the o) itself that give it this meaning; in some cases the symbols don’t even refer to
anything external which could ground their meaning either, as is the case for most
function words in language (e.g. “for”, “too”, “seven’). This problem appears even
more pernicious when we consider how what meanings might be to a physical brain. If
we look at neural spike trains, for instance, how would we find a meaning like cause??

1.2 Meaning Through Conceptual Role

The framework developed here builds off an approach to meaning in philosophy of
mind and language known as conceptual role semantics (CRS) (Field 1977; Loar 1982;
Block 1987, 1997; Harman 1987; Greenberg and Harman 2005). CRS which holds
that mental tokens get their meaning through their relationship with other symbols,
operations, and uses, an idea dating back at least to Newell and Simon (1976). There
is nothing inherently disjunctive about your mental representation of the operation or.
What distinguishes it from anD is that the two interact differently with other mental
tokens, in particular TrRUE and FaLse. The idea extends to more ordinary concepts: a

2 The problem is also faced by some connectionist models. For instance, Rogers and McClelland (2004),
a connectionist model of semantics, builds in relations (e.g. IS-A, HAS, CAN) and observable attributes
(e.g. PRETTY, FLY, SKIN) as activation patterns on individual nodes. There, the puzzle is: what precisely
makes it the case that activation in one node means (whatever that means) HAS as opposed to IS-A?

@ Springer



6 S.T. Piantadosi

concept of an “accordion” might be inherently about its role in a greater conceptual
system, perhaps inseparable from the inferences it licenses about the player, its means
of producing sound, its likely origin, etc. An example from Block (1987) is that of
learning the system of concepts involved in physics:

One way to see what the CRS approach comes to is to reflect on how one learned
the concepts of elementary physics, or anyway, how I did. When I took my first
physics course, I was confronted with quite a bit of new terminology all at once:
‘energy’, ‘momentum’, ‘acceleration’, ‘mass’, and the like. ... I never learned
any definitions of these new terms in terms I already knew. Rather, what I learned
was how to use the new terminology—I learned certain relations among the new
terms themselves (e.g., the relation between force and mass, neither of which
can be defined in old terms), some relations between the new terms and the old
terms, and, most importantly, how to generate the right numbers in answers to
questions posed in the new terminology.

Indeed, almost everyone would be hard-pressed to define a term like “force” in any
rigorous way, other than appealing to other terminology like “mass” and “accelera-
tion” (e.g., f = m - a). This emphasis on the role of concepts in systems of other
concepts leads CRS to be closely related to the Theory Theory in development (see
Brigandt 2004) as well work in psychology emphasizing the role of entire systems
of knowledge—theories—in conceptualization, categorization, and cognitive devel-
opment (Carey 1985, 2009; Murphy and Medin 1985; Wellman and Gelman 1992;
Wisniewski and Medin 1994; Gopnik and Meltzoff 1997; Kemp et al. 2006, 2010;
Tenenbaum et al. 2006, 2007; Ullman et al. 2012; Bonawitz et al. 2012; Gopnik and
Wellman 2012). Empirical studies of how human learners use systems of knowledge
suggest that concepts cannot be studied in isolation—our inferences depend not only
on simple perceptual factors, but the way in which our internal systems of knowledge
interrelate.

Block (1987) further argues that CRS satisfies several key desiderata for a theory of
mental representation, including its ability to handle truth, reference, meaning, com-
positionality, and the relativity of meaning. Some authors focus on the inferential role
of concepts, meaning the way in which they can be used to discover new knowledge.
For instance, the concept of conjunction aND may be defined by its ability to permit use
of the “elimination rule” P&Q — P (Sellars 1963). Here I will use the term CRS in
a general way, but my implementation will make the specific meaning unambiguous
later. In the version of CRS I describe, concepts will be associated with some, but
perhaps not all, of these inferential roles, and some other relations that are less obvi-
ously inferential. The view that concepts are defined in terms of their relationships to
other concepts has close connections to accounts of meaning given in early theories
of intelligence (Newell and Simon 1976), as well as implicit assumptions of computer
science. Operations in a computer only come to have meaning in virtue of how they
interact with the architecture, memory, and other instructions. For example, nearly
all modern computers represent negative numbers with a two’s complement where a
number can be negated by swapping the 1s and Os and adding 1. For instance, a five-
bit processor might represent 5 as 00101 and —5 as 11010 + 1 = 11011. Then, —5
plus one 00001 is 11011 4+ 00001 = 11100, which is the representation for —4. Use

@ Springer



The Computational Origin of Representation 7

of two-complement is only convention, and equally mathematically correct systems
have been considered throughout the history of computer science, including using the
first bit to represent sign, “ones complement” (swapping zeros and ones), and analog
systems. If we just looked inside of an alien’s computer and saw the bit pattern 11010,
we could not form a good theory of what it meant unless we also understood how it
was treated by operations like negation and addition. The meanings of symbols are
inextricable from their use.

A primary shortcoming of conceptual role theories as cognitive accounts is that
they lack a computational backbone, leaving vagueness about what a “role” might be.
The lack of computational implementation has given rise to a variety of philosophical
debates about what is possible for CRS, but as I argue, at least some of these issues
become less problematic once we consider a concrete implementation. The lack of
implementations also means that it is difficult to make progress on experimental psy-
chology probing the particular representations and processes of a CRS because there
are few ideas about what, formally, a role might be. A primary goal of this paper is to
give the conceptual role semantics a computational footing by using a version of the
LOT a framework where roles can be formalized, learned, and studied explicitly.

1.3 Isomorphism and Representation

Any CRS theory will have to start by saying which mental representations we cre-
ate and why. Here, it will be assumed that the mental representations we construct
are likely to correspond to evolutionarily relevant structures, relations, and dynamics
present in the real world.? This notion of correspondence between mental represen-
tations and the world can be captured with the mathematical idea of isomorphism.
Roughly, systems X and Y are isomorphic if operations in X do “the same thing” as
the corresponding operations in Y and vice versa. For instance, the ticking of a second
hand is isomorphic to the ticking of an hour hand: both take 60 steps and then loop
around to the beginning. How one state leads to the next is “the same” even though the
details are different since one ticks every second and the other every minute. Scientific
theories form isomorphisms in that they attempt to construct formal systems which
capture the key dynamics of the system under study. A simple case to have in mind
in science is Newton’s laws of gravity, where the behavior of a real physical object is
captured by constructing an isomorphism into vectors of real numbers, which them-
selves represent position, velocity, etc. The dynamics of updating these numbers with
Newton’s equations is “the same” as updating the real objects, which is the whole
reason why the equations are useful.*

The notion that the mind contains structures isomorphic to the world lies at the
heart of many theories of mental content (Craik 1952; McNamee and Wolpert 2019;
Gallistel 1998; Shepard and Chipman 1970; Hummel and Holyoak 1997). Shepard and
Chipman (1970) emphasized that while mental representations need not be structurally
similar to what they represent, the relationships between internal representations must

3 Although this notion is controversial—see Hoffman et al. (2015) and the ensuing commentary.

4 Curiously, an isomorphism into real number is not the only one possible for physics—it has been argued
that physical theories could be stated without numbers at all (Field 2016).

@ Springer



8 S.T. Piantadosi

be “parallel” to the relationships between the real world objects. Gallistel (1998)
writes,

A mental representation is a functioning isomorphism between a set of pro-
cesses in the brain and a behaviorally important aspect of the world. This way
of defining a representation is taken directly from the mathematical definition
of a representation. To establish a representation in mathematics is to establish
an isomorphism (formal correspondence) between two systems of mathematical
investigation (for example, between geometry and algebra) that permits one to
use one system to establish truths about the other (as in analytic geometry, where
algebraic methods are used to prove geometric theorems).

In this case, mental representations could be used to establish truths about the world
without having to alter the world. The notion of isomorphism is also deeply connected
to the ability of the brain to usefully interact with the world. Conant and Ashby (1970)
show that if a system X (e.g. the brain) wishes to control the dynamics of another
system Y (e.g. the world), and X does so well (in a precise, information-theoretic
sense), then X must have an isomorphism of Y (see Scholten 2010, 2011). This result
developed out of cybernetics and control theory and is not well-known in cognitive
science and neuroscience. Yet, the authors recognized its relevance, noting that the
result “has the interesting corollary that the living brain, so far as it is to be successful
and efficient as a regulator for survival, must proceed, in learning, by the formation of
a model (or models) of its environment.”

What is mysterious about the brain, though, is that we are able to encode a stag-
gering array of different isomorphisms—from language, to social reasoning, physics,
logical deduction, artistic expression, causal understanding, meta-cognition, etc. Such
breadth suggests that our conceptual system can support essentially any computation
or construct any isomorphism. Moreover, little of this knowledge could possibly be
innate because it is so clearly driven by the right set of experiences. Yet, the question
of how systems might encode, process, and learn isomorphisms in general has barely
been addressed in cognitive science. Indeed, work on the LOT has typically made
ad-hoc choices about what primitives should be considered in hypotheses in any given
context, thus failing to provide a demonstrably generalized theory of learning that
takes the breadth of human cognition seriously. The representational system below
develops a universal framework for isomorphism, a mental system in which we can
construct, in principle, a representation of anything else. Unsurprisingly, the existence
of such a formalism is closely connected to the existence of universal computation.

1.4 The General Theory

We are now ready to put together some pieces. The overall setup is illustrated
in Fig. 1. We assume that learners observe a structure in the world. In this case,
the learner sees the circular structure of the seasons, where the successor (succ) of
spring is summer, the successor of summer is fall, etc. Learners are assumed to have
access to this relational information between tokens shown on the left. Their job is
to internalize (mentally represent) each symbol and relation by mapping symbols

@ Springer



The Computational Origin of Representation 9

cC succ
> / / \/ SPRING: (K (R K))
j SUMMER ! K
iy AWr FaL- s (<)

SPRING
Ny suce :((s ((s s) $)) K)
K \/ < l/succ.
Suce L
PaA AN
SUMME R

Illustration by Yim Register

Fig.1 Learners observe relations in the world, like the successor relationship between seasons. Their goal
is to create an internal mental representation which obeys the same dynamics. This is achieved by mapping
each observed token to a simple expression written in a universal mental language whose constructs/concepts
specify interactions between elements. This system uses a logic for function compositions that is capable
of universal computation

to expressions in their LOT that obey the right relations, as shown on the right. The
mapping will effectively construct an internal isomorphism of the observations, written
in the language of mentalese.

A little more concretely, the relations in Fig. 1 might be captured with the following
facts,
(succ winter) — spring
(succ spring) — summer
—

(succ summer) fall
(succ fall) — winter

Here, I have written the relations as functions, where for instance the first line means
that succ is a function applied to winter, that returns the value spring. To represent
these, we must map each of these symbols to a mental LOT expression that obeys
the same relational structure. So, if succ, winter, and spring get mapped to mental
representations Ysuce, Ywinter> and Ygpring TE€SpPectively, then the first fact means that

(¥suce Vwinter) —> Yspring

also holds. Though this statement looks simple, it actually involves some subtlety.
It says that whatever internal representation succ gets mapped to, this representation
must also be able to be used internally as a function. The return value when this mental
function is evaluated on Yyiner has to be the same as how spring is represented
mentally. Each token participates in several roles and must simultaneously yield the
correct answer in each, providing a full mental isomorphism of the observed relations.

One might immediately ask why we need anything other than the facts—isn’t it
enough to know that (succ spring) — winter inthat purely symbolic form? A Prolog
program might directly encode the relations (e.g. ¥spring is a symbol “sprInG”) and
look up facts in what is essentially a symbolic database. Such a program could even be
able to answer questions like “The successor of which season is spring?”” by compiling

@ Springer



10 S.T. Piantadosi

these questions into the appropriate database query. Of course, if this worked well,
good old fashioned AI would have yielded striking successes. Unfortunately, several
limitations of such purely symbolic encoding are clear. First, it is not apparent how
looked-up symbols get their meaning, a version of the problem highlighted by Searle
(1980)’s Chinese Room. It is not enough to know these symbolic relationships; what
matters is the semantic content that they correspond to, and there is no semantic content
in a database lookup of the answer. Second, architectures for processing symbols seem
decidedly unbiological, and the problem of how these symbols may be grounded in a
biological or neural system has plagued theories of representation and meaning. Third,
in many of the cases I’ll consider, what matters is not the symbols themselves, but
the computations they correspond to—what they do to other symbols. For instance,
we might consider a case of a simple algorithm like repetition. Your internal concept
of repetition must encode the process for repetition; but what mental format could
do so? Fourth, our cognitive systems must go beyond memorization of facts—we are
able to generalize beyond what we have observed, extracting regularities and abstract
rules. What might representations be like such that they can allow us to deduce more
than what we’ve already seen? Each of these four goals—meaning, implementation,
computation, and induction—can be met with the logical system described below.
The core hypothesis developed in this paper is that the symbols like succ and
winter get mapped to LOT expressions that are dynamical and computational objects
supporting function composition. Yy is represented as an object that, when applied
via function composition to Ywinter, gives us back the expression for Vpring. These
meanings are specified in a language of pure computational dynamics, absent any
additional primitives or meanings. This is shown with the minimalist set of primitives
in Fig. 1, where each token is mapped to some structure built of s and x, special
symbols whose “meanings” are discussed below. In this setup, symbols like spring
come to have meaning as CRS supposes, by virtue of how the structures they are
mapped to act on other symbols. Learners are able to derive new facts by applying
their internal expressions to each other in novel ways. As I show, this can give rise to
rich systems of knowledge that span classes of computations and permit learners to
extend a few simple observations into the domain of richer cognitive theories.

2 Combinatory Logic as a Language for Universal Isomorphism

A mathematical system known as combinatory logic provides the formal tool we’ll
use to construct a universal isomorphism language as a hypothesized LOT. Combi-
natory logic was developed in the early- and mid-1900s in order to allow logicians
to work with expressions that did not require variables like “x” and “y”, yet had the
same expressive power (Hindley and Seldin 1986). Combinatory logic’s usefulness
is demonstrated by the fact that it was invented at least three independent times by
mathematicians, including Moses Schonfinkel, John von Neumann, and Haskell Curry
(Cardone and Hindley 2006). The main advantages of combinatory logic are its sim-
plicity (allowing us to posit very minimal built-in machinery) and its power (allowing
us to model symbols, structures, and relations). In cognitive research, combinatory
logic is primarily seen in formal theories of natural language semantics (Steedman

@ Springer



The Computational Origin of Representation 1

2001; Jacobson 1999), although its relevance has also been argued in other domains
like motor planning (Steedman 2002). The use of combinatory logic as a representa-
tional substrate, moreover, fits with the idea that tree-like structures are fundamental
to human-like thinking (e.g. Fitch 2014).

The next two sections are central to understanding the formalism used in the remain-
der of the paper and are therefore presented as a tutorial. This first section will illustrate
how combinatory logic can write down a simple function. This illustrates only some
of its basic properties, such as its simplicity (involving only two primitives), its ability
to handle variables, and its ability to express arbitrary compositions of operations. The
more powerful view of combinatory logic comes later, where I describe how we may
use combinatory logic to create something essentially new.

2.1 AVery Brief Introduction to Combinatory Logic

To illustrate the basics of combinatory logic, consider the simple function definition,

f(x)=x+1. (1

The challenge with expressions like (1) is that the use of a variable x adds bookkeeping
to a computational system because one has to keep track of what variables are allowed
where. Compare (1) to a function of two variables g(x, y) = .... When we define £,
we are permitted to use x. When we define g, we are permitted to use both x and y.
But when we define £, it would be nonsensical to use y, assuming y is not defined
elsewhere. Analogously in a programming language—or cognitive/logical theories
that look like programs—we can only use variables that are defined in the appropriate
context (scope). The syntax of what symbols are allowed changes in different places
in a representation—and this creates a nightmare for the bookkeeping required in
implementation. In combinatory logic’s rival formalism, lambda calculus (Church
1936), most of the formal machinery is spent ensuring that variable names are distinct
and only used in the appropriate places, and that substitution does not incorrectly
handle variable names.

What logicians discovered was that this situation could be avoided by using com-
binators to glue together the primitive components +, and 1 without ever explicitly
creating a variable x (e.g. Schonfinkel 1967). A combinator is a higher-order function
(a function whose arguments are functions) that, essentially routes arguments to the
correct places. For instance using := to denote a definition, let

£ := (8 + (K 1))

define £ in terms of other functions sk, in addition to the operator + and the number
1. Notably there is no x in the above expression for £, even though £ does take an
argument, as we will see. The functions ssk are just symbols, and when they are
evaluated, they have very simple definitions:

(K x yv) — X
(s xy z) — ((x z) (y z))

@ Springer



12 S.T. Piantadosi

Here, the arrow (—) indicates a process of evaluation, or moving one step forward
in the computation. The combinator x takes two arguments x and y and ignores v,
a constant (konstant) function. s is a function of three arguments, x, y, and z, that
essentially passes z to each of x and y before composing the two results. In other
notation, s might be written as s(x, y, z) := x(z, y(z)). Note that both s and & both
return expressions which are themselves structured compositions of whatever their
arguments happened to be.

In this notation, if a function does not have enough arguments it may take the next
one in line. For instance in ( (k x) y) the k only has one argument. But, because there
is nothing else in the way, it can grab the y as its second argument, meaning that
computation proceeds,

((K x) y) - (K x vy) — X

This operation must respect the grouping of terms, so that ((k x) (v z)) becomes
(K x (y z)). The capacity to take the next argument is known in logic as currying,
although Curry attributed it to Schonfinkel, and it was more likely first invented by
Frege (Cardone and Hindley 2006). Together, ssk and currying define a logical system
that is much more powerful than it first appears.

To see how the combinator definition of £ works, we can apply £ to an argument.
For instance, if we evaluate £ on the number 7, we get can substitute in the definition
of £ into the expression (£ 7):

(£ 7) = ((s + (K 1)) 7) ; Definition of £
—- (8 + (K 1) 7) ; Currying
- ((+ 7) ((K 1) 7)) ; Definition of
- (+ 7 ((K 1) 7)) ; Currying
- (+ 7 (K 1 7)) ; Currying
- (+ 7 1) ; Definition of

Essentially what has happened is that sk have shuttled 7 around to the places where x
would have appeared. They have done so merely by their compositional structure and
definitions, without ever requiring the variable x in f(x) = x + 1 to be explicitly writ-
ten. Schonfinkel—and other independent discoverers of combinatory logic—proved
the non-obvious fact that any function composition could be expressed this way, mean-
ing any structure with written variables has an equivalent combinatory logic expression
without them.

The process of applying the rules of combinatory logic (shown in the gray box
just above) is known as reduction. The question of whether a computation halts is
equivalent to whether or not reduction leads to a normal form in which none of the
combinators have enough arguments to continue reduction. In terms of computational
power, combinatory logic is equivalent to lambda calculus (see Hindley and Seldin
1986), both of which are capable of expressing any computation through function
composition (Turing 1937). This means that any typical program (e.g. in Python or
C++) can be written as a composition of these combinators, and the combinators
reduce to a normal form if and only if the program halts. Equivalently, any system that
implements these very simple rules for ssx is, potentially, as powerful as any computer.
This is a remarkable result in mathematical logic because it means that computation
can be expressed with the simplest syntax imaginable, compositions of ssk with no

@ Springer



The Computational Origin of Representation 13

extra variables or syntactic operations. Evaluation is equally simple and requires no
special machinery beyond the ability to perform ssk’s simple definitions, which are
themselves just transformations of binary trees. It is this uniformity and simplicity of
syntax that opens the door for implementation in physical or biological systems.

2.2 Church Encoding

The example above uses primitive operations like 4 and objects like the number 1. It
therefore fits well within the traditional LOT view where mental representations cor-
respond to compositions of intrinsically meaningful primitive functions. The primary
point of this paper, however, is to argue that the right metaphor for mental representa-
tions is actually not structures like (1) or its combinator version, but rather structures
without any cognitive primitives at all—that is, structures that contain only s&x.

The technique behind this is known as Church encoding. The idea is that if symbols
and operations are encoded as pure combinator structures, they may act on each other
via the laws of combinatory logic alone to produce equivalent algorithms to those
that act on numbers, boolean operators, trees, or any other formal structure. As Pierce
(2002) writes,

[S]uppose we have a program that does some complicated calculation with num-
bers to yield a boolean result. If we replace all the numbers and arithmetic
operations with [combinator]-terms representing them and evaluate the program,
we will get the same result. Thus, in terms of their effects on the overall result of
programs, there is no observable difference between the real numbers and their
Church-[encoded Jnumeral representations.

A simple, yet philosophically profound, demonstration is to construct a combinator
structure that implements boolean logic. One possible way to do this is to define

true := (K K)

false := K

and := ((S8 (s (s 8))) (K (K K)))
or ((s s8) (K (K K)))

not := ((8 ((s K) s)) (K K))

Defined this way, these combinator structures obey the laws of Boolean logic:
(not true) —> false, and (or true false) — true, etc. The meaning of men-
tal symbols like true and not is given entirely in terms of how these little algorithmic
chunks operate on each other. To illustrate, the latter computation would proceed as

(or true false) = (((S S8) (K (K K))) (K K) K)
(SN

— (((s s8) (K (K K)) (K K)) K)

— ((s8 8 (K (K K)) (K K)) K)

— ((s (K K) ((K (K K)) (K K))) K)

— ((s (K K) (K (K K) (K K))) K)

— ((s (K K) (K K)) K)

— (S (K K) (K K) K)

— ((K K) K ((K K) K))

— ((K K K) ((K K) K))

— (K ((K K) K))

— (K (K K K))

@ Springer



14 S.T. Piantadosi

— (K K) ; Definition of K

resulting in an expression, (kK K), which is the same as the definition of true! Readers
may also verify other relations, like that (and true true) — true and (or (not
< false) false) — true, €lC.

The Church encoding has essentially tricked ssk’s boring default dynamics into
doing something useful—implementing a theory of simple boolean logic. This is a
CRS because the symbols have no intrinsic meaning beyond that which is specified
by their dynamics and interaction. The meaning of each of these terms is, as in a
CRS, critically dependent on the form of the others. The capacity to do this reflects a
more general idea in dynamical systems—one which is likely central to understanding
how minds represent other systems—which is that sufficiently powerful dynamical
systems permit encoding or embedding of other computations (e.g. Sinha and Ditto
1998; Ditto et al. 2008; Lu and Bassett 2018). The ability to use sk to perform useful
computations is very general, allowing us to encode complex data types, operations,
and a huge variety of other logical systems. Appendix A sketches a simple proof of
conditions under which combinatory logic is capable of representing any consistent
set of facts or relations, with a few assumptions, making it essentially a universal
isomorphism language.

2.3 An Inferential Theory from the Probabilistic LOT

The capacity to represent anything is, of course, not enough. A cognitive theory must
also have the ability to construct the right particular representations when data—
perhaps partial data—is observed. The data that we will consider is sets of base facts
like those shown in Fig. 1, (succ winter) — spring, etc. These facts may be viewed
as structured or relational representations of perceptual observations—for instance,
the observation that some season (spring) comes after (succ) another (winter). Note,
though, that the meanings of these symbols are not specified by these facts; all we
know is that spring (whatever that is) comes after (whatever that is) the season
winter (Whatever that is). Apart from any perceptual links, that knowledge is struc-
turally no different from (father jim) — billy. Because these symbols do not yet
have meanings, knowledge of the base facts is much like knowledge of a placeholder
structure (Carey 2009), or concepts whose meanings yet to be filled in, even though
some of their conceptual role is known.

The goal of the learner is to assign each symbol a combinator structure so that the
base facts are satisfied.> For this one rule (succ winter) —> spring we could assign
succ := (K S),winter := K and spring := S since then

(succ winter) := ((K S8) K) — (K S8 K) —» S = spring

Only some mappings of symbols to strings will be valid. For instance, if spring := &
instead, we’d have that

5 The general idea of finding a formal internal representation satisfying observed relations has close con-
nections to model theory (Ebbinghaus and Flum 2005; Libkin 2013), as well as the solution of constraint
satisfaction problems specified by logical formulas (satisfiability modulo theories) (Davis and Putnam 1960;
Nieuwenhuis et al. 2006).

@ Springer



The Computational Origin of Representation 15

(succ winter) := ((K S8) K) - (K S K) — S # spring.

The real challenge a learner faces in each domain is to find a mapping of symbols
to combinators that satisfies all of the facts simultaneously. Such a solution provides
an internal model—a Church encoding—whose computational dynamics captures the
relations you have observed under repeated reduction via ssk. Often, the mapping
of symbols to combinators will often be required to be unique, meaning that we can
always tell which symbol a combinator output stands for. In addition, once symbols
are mapped to combinators satisfying the observed base facts, learners or reasoners
may derive new generalizations that go beyond these facts.

The choice of which combinator each symbol should be mapped to is here made
using ideas about smart ways of solving the problem of induction. In particular, our
approach is motivated in large part by Solomonoff’s theory of inductive inference,
where learners observe data and try to find a concise Turing machine that describes
the data (Solomonoff 1964a,b). Indeed, human learners prefer to induce hypotheses
that have a shorter description length in logic (Feldman 2000, 2003a; Goodman et al.
2008b), with simplicity preferences perhaps a governing principle of cognitive systems
(Feldman 2003b; Chater and Vitanyi 2003). Simplicity-based preferences have been
used to structure the priors in standard LOT models (Goodman et al. 2008b; Katz
et al. 2008; Ullman et al. 2012; Piantadosi 2011; Piantadosi et al. 2012; Kemp 2012;
Yildirim and Jacobs 2014; Erdogan et al. 2015), and has close connections to the idea
of minimum description lengths (Griinwald 2007). Since ssk are equivalent in power
to a Turing machine, then finding a concise s&k expression for a domain corresponds to
finding a short program (up to an additive constant, as in Kolmogorov complexity (Li
and Vitanyi 2008)) that computes its dynamics; finding a ssk expression that evaluates
quickly is tantamount to finding a fast-running program.

One problem with theories based on description length is that they can easily run
into computability problems: short programs or logical expressions often do not halt®
meaning that we may not be able to even evaluate every given logical hypothesis to see
if it yields the correct answer, according to the base facts. A solution is to instead base
our preferences in part on how quickly each combinator arrives at the correct answer.
For instance, we can assign prior to a hypothesis / that is proportional to (1/2)! )+
where 7 (h) is the number of steps it takes & to reduce the base facts to normal form
and /(h) is the number of combinators in 4 (i.e. its description length). Similar time-
based priors have been developed in theories of artificial intelligence (Levin 1973,
1984; Schmidhuber 1995, 2002, 2007; Hutter 2005) or as a measure of complexity
(Bennett 1995). These priors allow inductive inference to avoid difficulties with the
halting problem because, essentially, any finite amount of computation will allow
us to upper-bound a hypothesis’ probability, even if it does not halt. For instance,
a machine that has not halted or a combinator that has not finished evaluation in
1000 steps will have a prior probability of at most (1/2)!%°. Thus, as a computation
runs, its probability drops, meaning that long-running expressions can effectively be
pruned out of searches without knowing whether they might eventually halt (thus,
evaluation of all computations—halting or not—can be dovetailed). This fact can be
used in Markov-Chain Monte-Carlo techniques like the Metropolis Hastings algorithm

6 One simple “non-halting” combinatoris (S (S K K) (S K K) (S (S K K) (S K K))).

@ Springer



16 S.T. Piantadosi

to implement Bayesian inference over these spaces by rejecting proposed hypotheses
once their probability drops too low (Piantadosi and Jacobs 2016). Here, we search
over assignments of symbols in the base facts to combinators and disregard those that
are too low probability either in complexity or in evaluation time when run on the
given base facts.

Since so much other work has explored the probabilistic details of LOT theories,
and I intend to provide a simple demonstration, I’ll make two simplifying assumptions
in this paper. First, I assume that learners want only the fastest-running combinator
string which describes their data, ignoring the gradience of fully Bayesian accounts.
Second, it will be assumed that only theories that are consistent with the data are
considered. This will therefore assume that leaner’s data is noise-free, although the
general inferential mechanisms can readily be extended to noisy data (see LOT cita-
tions above).

2.4 Details of the Implementation

The problem of finding a concise mapping of the symbols to combinators that obey
these laws is solved here using a custom implementation named churiso (pronounced
like the sausage “chorizo”) and available under a GPL license in both Scheme and
Python.” The implementation was provided with base facts and searched for mappings
from symbols to combinators that satisfies those constraints under the combinator
dynamics defined above. Among all mappings of symbols to combinators that are
consistent with the base facts, those with the fastest running time are preferred.

The implementation uses a backtracking algorithm that exhaustively tries pairing
symbols and combinator structures (ordered in terms of increasing description-length
complexity), rejecting a partial solution if it is found to violate a constraint. Sev-
eral optimizations are provided in the implementation. First, the set of combinators
considered for each symbol can be limited to those already in normal form to avoid
re-searching equivalent combinators. Second, the algorithm uses a simple form of
constraint propagation in order to rapidly reject assignments of symbols to combi-
nator strings that would violate a later constraint. For instance, if a constraint says
that (£ x) must reduce to vy, and £ and x are determined, then the resulting value is
pushed as the assignment for y. An order for searching is chosen which maximizes
the number of constraints which can be propagated in this way. In order to explore
the space, Churiso also allows us to define and include other combinators either as
base primitives or as structures derived from ssk. The results in this paper use the
search algorithm including several other standard combinators (8, ¢, I) to increase the
search effectiveness, but each is converted to s&k in evaluating a potential hypothesis.
Notably, however, search likely still scales exponentially in the number of symbols
in base facts—trying to find how to assign ¢ combinators to n symbols (assuming
none can be determined through constraint propagation above) takes ¢” search steps.®
This form of backtracking shares much with, for example, implementations of the
Prolog programming language (Bratko 2001, see, e.g.). However, it is important to

7 https://github.com/piantado/pyChuriso.

8 However, the general time complexity of this interface is not apparent to me at least.

@ Springer


https://github.com/piantado/pyChuriso

The Computational Origin of Representation

17

Table1 Church encoding inferred from the base facts that permit representation of several logical structures
common in psychology

Domain Facts Representation
(Suee whptaE) = cowm after := ((8 ((S K) K)) (K (K (K K))))
(succ spring) — suS\merg o s
Seasons 12 g summer := (K K)
(succ summer) — fall
(succ fall) — winter e 8= (5 (@2 @3 L))
spring := (K (K K))
succ := ((S ((S 8) K)) S)
(succ one) — two one := (K (K K))
1, 2, Many (succ two) — many s oo 132
(succ many) — many many := (S K)
(rock scissors) — win L
(rock rock) — draw gizw'fz(ﬁ 5
(seiesors setomor) gm0 1 )
k := ((S ((8 K) K)) (K (K K)))
Roshambo aper rock) — win iy
e e paper := ((S ((S ((S K) X)) S)) (K (K K)
—))
k — 1
E;Z;erngzgors) o e scissors := ((S ((S ((S K) K)) K)) (K K)
(scissors rock) — lose =
(father sasha) — barack ::E::k.;zx((s ) &
(father malia) — barack e T (X K)
(mother sasha) — michelle . :
(mother malia) — michelle reielle 5= £
Family X : father := (K ((S K) S))
(sister malia) — sasha
(sister sasha) — malia othee 8= (3 5)
(husband michelle) — barack Eiziiidf:( :: l(()(s ) ) EEY
(wife barack) — michelle wife 1= ((S ((SK) K)) (K S))
downtown := ((S ((S K) K)) (K K))
downtown = (red braintree) braintree := (K ((S ((S K) K)) (K K)))
park = (red downtown) park‘ 8= (@ )
alewife := ((S K) 8)
alewife = (red park) riverside := (K (S K))
park = (green riverside) :
overnment R — government := ((S K) (K ((S K) K)))
e r— northstation := (K ((S K) K))
‘%government? foresthill := ((S S) (K (K K)))
Boston downtown = (orange foresthill) Bl
state = (orange downtown) e B (73] Y
northstation ? (oran tat eenelodn 8= (B ((E 59 @ (@ L) D))
B e sEaEe) wonderland := (K K)
oakgrove = (orange
—northstation)
government = (blue bowdoin) =eel = (B (B9 X)) @£ 6
s & ([ G blue := ((S ((S K) K)) (K K))
wonderland = (glue state) premee 8= (& (8 13 L)) @ (59 L9)))
green := ((S ((S K) K)) (K (K ((S K) K))
=))

note that we do not intend this backtracking search to be an implementation-level the-
ory of how people themselves might find these representations. The implementation
that people use to do something like Church encoding will depend on the specifics of
the representation they possess. Instead, this algorithm is only intended to provide a
computational-level theory (Marr and Poggio 1976; Marr 1982) that says if people
choose representations of the base facts that are fast-evaluating and concise, then they
will be able to represent and generalize similarly to people. Thus, our primary concern
is whether this algorithm finds any solutions, not whether in doing so it searchers the
space in a way similar to how biological organisms might.

@ Springer



18 S.T. Piantadosi

In a testament to the simplicity and parsimony of combinatory logic, the full imple-
mentation requires only a few hundred lines of code, including algorithms for reading
the base facts, searching for constraints, and evaluating combinator structures. Ediger
(2011) provides an independent combinatory logic implementation that includes sev-
eral abstraction algorithms and was used to validate implementation of combinatory
logic in Churiso.

3 Applications to Cognitive Domains

This section presents a number of examples of using the inferential setup to discover
combinator structures for a variety of domains. In each example, I will provide the
base facts and then the fastest running combinator structure (Church encoding of
the base facts) that was discovered by Churiso. The examples have been chosen to
illustrate a variety of different domains that have been emphasized in human and animal
psychology. The first section shows that theories can represent or encode relational
structures. The second examines conceptual structures that involve generalization,
meaning that we are primarily interested in how the combinator structure extends to
compute new relations not in set of base facts. In each of these cases, the generalization
fits simple intuitions about and permits derivation of new knowledge in the form
of “correct” predictions about unobserved new structures. The third section look at
combinatory logic to represent new computations in the form of components that could
be used in new mental algorithms, and the fourth looks at formal languages.

3.1 Representation

Table 1 shows five domains with very different structural properties and how they
may be represented with ssk. The middle column shows the base facts that were
provided to Churiso and the right hand column shows the most efficient combinator
structure. The seasons example show a circular system of labeling, where the succes-
sor (succ) of each season loops around in a Mod-4 type of system. The 1, 2, many
concept where there is similarly a successor, but the successor of any number above
two is just the token many, a counting system found in many languages of the world.
Roshambo (also called “Rock, paper, scissors™) is an interesting case where each
object represents a function that operates on each other object, and returns an outcome
in a discrete set (“rock” beats “scissors”, etc.). This game has been studied in pri-
mate neuroscience (Abe and Lee 2011). This illustrates a type of circular dominance
structure, but one which is dependent on which object is considered the operator (e.g.
first in the parentheses) and which is the operand. The family example shows a case
where simple relations like mother and husband can be defined and are functions that
yield the correct individual. Interestingly, realization of just these representations does
not automatically correspond to representation of a “tree”—instead the requirement
to represent only these relations yields a simpler composition of combinators with-
out an explicit tree structure. Later examples (tree, list) show how trees themselves
might be learned; an interesting challenge is to discover a latent tree structure from

@ Springer



The Computational Origin of Representation 19

examples like in family (for work on learning the general case with LOT theories,
see (Katz et al. 2008; Mollica and Piantadosi 2015)). Note that in all examples, the
combinator structures Churiso discovers shouldn’t be intuitively obvious to us—these
combinators structures are not the symbols we are used to thinking about (like father
and many), certainly not in conscious awareness. Instead, the base facts should sound
obvious; the ssx structures are the stuff out of which the symbols in the base facts are
made. The Boston example shows encoding of a graph structure, a simplified version
of Boston’s subway map. Here, there are 4 relations red, green, orange, and blue,
which map some stations to other stations. This structure, too, can be encoded into
S&K.

One challenge for theories like this may be in learning multiple representations at
the same time. It is indeed possible to do so, while enforcing uniqueness constraints
among the symbols. To illustrate, for example, if we simultaneously try to encode
seasons, roshambo, and family into a single set of facts, where symbols in each must
be unique, Churiso finds the solution,
after := ((S ((S S) 8S)) K)
fall := K
summer := (K (K K))

winter := (K K)
spring := (K ((S (K K)) (K (K K))))

succ := ((S ((s S8) K)) 8)

one := (K (K (S (K K))))

two := (S (K K))

many := (K ((S (S (K K))) (S (K K))))

barack := 8§
father := (K
sasha := ((S
malia := (K (
michelle =
mother := (
sister := (
husband =
wife := (S
This illustrates that while managing the complexity of multiple concepts may, in some
situations, be tractable even with our simple search methods.

3.2 Generalization

The examples in Table 1 mainly shows how learners might memorize facts and relations
using s&k. But equally or more important to cognitive systems is generalization: given
some data, can we learn a representation whose properties allow us to infer new
and unseen facts? What this means in the context of Churiso is that we are able to
form new combinations of functions—those whose outcome is not specified in the
base facts. Table 2 shows some examples. The first of these is a representation of a
singular/plural system like those found in natural language. Here, there is a relation
marker that takes some number of arguments i tem, i tem, etc. and returns singular ifit
receives one argument, plural if itreceives more than one. This requires generalization

@ Springer



20 S.T. Piantadosi

Table 2 S&K structures in domains involving interesting generalization, where the combinator structures
allow deduction beyond the base facts

Domain Facts Representation
(marker item) — singular singular := (S (S K))
(marker item item) — plural
. ker item item item) — marker 8= & B ©2))
Singular/Plural s item := ((S (S K)) (S (S K)))
Selmeal ) ) plural := ((S (S K)) ((S (S K)) (S (S K)
(marker item item item item) )))
— — plural
succ := S
Number (succ one) — two one := S
(Z) (succ two) — three two := (S S)
(succ three) — four three := (S (S 8S))
four := (S (S (8 8)))
True := (K K)
(dom a b) — True
(dom a c) — True
(dom b c) — True
(dom b d) — True dom := (S ((S S) 8S))
Dominance (dom ¢ d) — True a := (K (K K))
(a=b>c>d) (dom b a) -» True b := ((S (S K)) K)
(dom c a) —-» True © g= I
(dom ¢ b) -» True d:= (K (K (K K)))
(dom d b) - True
(dom d c) - True
(dom b a) - True
(dom c b) -» True
(dom d c) -» True
(attract pl p2) -» True
(attract p2 pl) - True
(attract pl nl) — True
(attract pl n2) — True
(attract p2 nl) — True
(attract p2 n2) — True attract := ((S S) (S K))
(attract nl n2) -» True pl := K
; e (attract n2 nl) -» True p2 := K
h’InglLtlel (attract nl pl) — True nl := (K K)
(attract nl p2) — True n2 := (K K)
(attract n2 pl) — True x1l := K
) — True

(attract n2 p2
; I
(attract nl x) — True
True := (K K)

<sde

because the base facts only show the output for up to four items. However, the learned
representation is enough to go further to any number of items, outside of the base
facts. For instance,

(marker item item item item item item item) — ((S (S K)) (
—S8S (S K))) = plural

Intuitively, the first time marker is applied to item, we get
(marker item) — ((S (K (S K K))) (S (S K))) = singular

When this is applied to another item, you get the expression for plural:

(marker item item) = ((marker item) item) — (singular item
—) — plural

And then plural has the property that it returns itself when given one more item:

(plural item) — plural

@ Springer



The Computational Origin of Representation 21

So, plural is a “fixed point” for further applications of item, allowing it to generalize
to any number of arguments. In other words, what Churiso discovers is a system that
is functionally equivalent to a simple finite-state machine:

Note that this finite state machine is not an explicitly-specified hypothesis that learners
have, but only emerges implicitly through the appropriate composition of ssk.

The next domain, number, shows a generalization that builds an infinite structure.
Intuitively, the learner is given a successor relationship between the first few words.
The critical question is whether this is enough to learn a ss&k structure for succ that
will continue to generalize beyond the meaning of four. The results show that it is: the
form of succ that is learned is essentially one that builds a “larger” representation for
each successive number. The way this works is extremely simple: the successor repre-
sentation is a combinator that needs more arguments, and so nothing ever reduces. This
means that each additional call of the successor function builds a larger structure, and
therefore this structure is distinct from those that came before, generalizing infinitely.
In this case, ssk create from the three base facts a structure isomorphic to the natural
numbers,

Dlojorororore

The assumed base facts correspond to the kind of evidence that might be available to
learners of counting (Carey 2009). This provides a theory related to Piantadosi et al.
(2012)’s LOT model of number acquisition, which was created to solve the inductive
riddle posed by Rips et al. (2006, 2008a,b) about what might constrain children’s
generalization in learning number. The difference is that Piantadosi et al. (2012)’s LOT
representations were based in primitive cognitive content, like an ability to represent
sets and perform operations on them. Here, the learning is not a counting algorithm, but
rather an internal conceptual structure that is generative of the concepts themselves,
providing a possible answer to the question of where the structure itself may come
from (see Rips et al. 2013). Itis interesting to contrast number, 1 2 many, and seasons.
In each of these, there is a “successor” function, but which function is learned depends
on the structure of the base facts. This means that notions like “successorship” cannot
be defined narrowly by the relationship between a few elements, but will critically
rely on the role this concept plays in a larger collection of operations.

The dominance concept in Table 2 shows another interesting case of generaliza-
tion. Dominance structures are common in animal cognition (see, e.g., Drews 1993).
For instance, Grosenick et al. (2007) show that fish can make transitive inferences con-
sistent with a dominance hierarchy: if they observe a > b and b > c, then they know
that a > ¢, where > is a relation specifying who dominates in a pairwise interaction.

@ Springer



22 S.T. Piantadosi

The base facts for the dominance encode slightly more information, corresponding to
almost all of the dominance relationships between some mental tokens a, b, ¢, and a.”
This example illustrates another feature of Churiso: we are able to specify constraints
in terms of evaluations not yielding some relations. So for instance,

(dom b a) -» True

means that (dom b a) evaluates to something other than True. This relaxation of the
constraints to only partially-specified often helps to learn more concise representations
in sek. Critically the relation between a and 4 is not specified in the base facts. Note
that this relation could be anything and any possible value could be encoded by ssk.
The simplicity bias of the inference, however, prefers combinator structures for these
symbols such that the unseen relation (dom a d) — True but (dom d a) does not.
Thus, the ssk encoding of the base facts gives learners an internal representation that
automatically generalizes to an unseen relation.

The magnetism example is motivated by Ullman et al. (2012)’s model studying
the learning of entire systems of knowledge (theories) in conceptual development.
In magnetism, we know about different kinds of materials (positive, negative, non-
magnetic) and that these follow some simple relationships, like that positives attract
negatives and that positives repel each other, etc. The magnetism example provides
base facts giving the pairwise interaction of two positive two positives (p1, p2) and
two negatives (n1, n2). But from the point of view of the inference, these four symbols
are not categorized into “positives” and “negatives”, they are just arbitrary symbols.
In this example, I have also dropped the uniqueness requirement to allow grouping
of these symbols into “types”, as shown by their learned combinator structures with
the pi getting mapped to the same structure and the ni getting mapped to a different
one. To test generalization, we can provide the model with one single additional fact,
that n1 and x attract each other. The model automatically infers that x has the same
s&K structure as p1 and p2, meaning that it learns from a single observation of it is a
“positive”, including all of the associated predictions such as that (attract nl x) —

True.

9 Intuitively, more data is needed than in the simple Fish transitive inference cases because the S&K model
does not inherently know it is dealing with a dominance hierarchy. Cases of dominance hierarchies in animal
cognition may have a better chance of being innate, or at least higher prior than other alternatives.

@ Springer



The Computational Origin of Representation 23

Table 3 S&K structures that implement computational operations

Domain Facts Representation

Reversal (reverse = y) — (y x) reverse := ((S (K (S ((S K) K)))) K)
True := (K K)

If-else False := K ifelse := ((S ((S K) K)) (5§ K))

(ifelse True z y) — =T
(ifelse False z y) — ¥

Identity (identity =) — =z identity := (S K K)
Repetition (repeat f z) — (f (f x)) repeat := ((S ((S (K (S S))) K)) K)
o8 — Y := ((S (K ((S ((S (K ((8 (88)) 8))) (
Recursion (Y f) --» f ¢ 1) S K))) 8))) K
. Y+ := ((S (K ((S8) ((88) ((88) ((58)
Y al recurs -
Mutual recursion x f g - (f (g (Y= f g))) < ((58) §))))))) (5 (KS)) K))
. . - Z := ((S (K ((s8) 8))) ((8 (88)) ((s
Z-combinator @z f g - (f (Z f) 9)) K K)) S)))
Apply (apply f z ) — (f ) apply = ((S K) K)
first := ((((S ((8 (K ((S (K S)) K))) S)
<) (K K)) ((S K) K)) K)
(Fi%sE (palE B 5)) S @ rest := ((S ((S 8) (SK))) (K (KK)))
Tree, List (rest (pair T’”) . pair := ((((S (K S)) K) ((S ((S (K ((S8 (
= 2 <K §)) K))) S)) (KK)) (((S ((S (K
< ((S (K 8)) K))) S)) (KK)) (((s8s

<) (S K)) K)))

3.3 Computational Process

The examples above respectively show computation and generalization, but they do
not yet illustrate one of the most remarkable properties of thinking—we appear able to
discover a wide variety of computational processes. The concepts in Table 3 are ones
that implement some simple and intuitive algorithmic components. Here, I have intro-
duced some new symbols to the base facts, f, x, and y. These are treated as universally
quantified variables, meaning that the constraint must hold for all values (combinator
expressions) they can take. The learning model’s discovery of how to encode these
facts corresponds to the creation of fundamental algorithmic representations using
only the facts’ simple description of what the algorithm must do.

An example is provided by if-else. A convenient feature of many computational
systems it that when they reach a conditional branch (“if” statement), they only have
to evaluate the corresponding branch of the program. The shown base facts make
if-else return x if it receives a true first argument and y otherwise, regardless of what
x and y happen to be. Even though conditional branching is a basic computation, it
can be learned from even more primitive components S&x.

The identity example illustrates the distinction between implicit and explicit knowl-

edge in the system. We can define identity := (S K K) SO,
(identity x) = ((S K K) x) — (S KK x) — ((K x) (K x)) —
<~ (K x (K x)) — x.

It may be surprising that we could construct a cognitive system without any notion of
identity. Surely to even perform a computation on a representation x, the identity of x

@ Springer



24 S.T. Piantadosi

must be respected! In sex, this is true in one sense: the default dynamics of s and k do
respect representational identity. But in another sense, such a system comes with no
“built in” cognitive representation of a function which is the identity function. Instead,
it can be learned.

A more complex example can be found in the example of repetition. Here, we
seek a function repeat that takes two arguments f and x and calls f twice on x.
Humans clearly have cognitive representations of a concept like repeating a com-
putation; “again” is an early-learned word, and the general concept of repetition is
often marked morphologically in the world’s languages with reduplication. As is sug-
gested by the preceding examples, the concept of repetition need not be assumed by
a computational system.

Related to repetition, or doing an operation “again” is the ability to represent
recursion, a computational ability that has been hypothesized to be the key defin-
ing characteristic of human cognition (Hauser et al. 2002) (see, e.g., Tabor (2011) for
a study of recursion in neural networks). One example of how to implement recursion
in combinatory logic is the Y-combinator,

Y = (s (K (8 I 1I)) (S (s (KS) K) (K (STITI)))),

a function famous enough in mathematical logic to have been the target of at least one
logician’s arm tattoo. Like other concepts, the Y-combinator can be built only from
ssk. It works by “making” a function recursive, passing the function to itself as an
argument. The details of this clever mechanism are beyond the scope of this paper (see
Pierce 2002). One challenge in learning v is that by definition it has no normal form
when applied to a function. To address this, we introduce a new kind of constraint
--+, which holds true if the partial evaluation trace of the left and right hand sides
yield expressions that are equal to a given fixed constant depth. To learn recursion, we
require that applying v to £ is the same as applying £ to this expression itself,

(Y f) --» (f (¥ f))

Neither side reduces to a normal form, but the special arrow means that when we run
both sides, we get out the same structure, which in this case happens to be the (infinite)
recursion of f composed with itself,

(£ (£ (£ (£ ...))))

Churiso learns a slightly longer form than the typical Y-combinator due to the details
of its search procedure (for the most concise recursive combinator possible, see Tromp
2007) (Note that in these searches, the runtime is ignored since the combinator does
not stop evaluation). The ability to represent Y permits us to capture algorithms, some
of which may never halt. For instance, if we apply v top the definition of successor from
the number example, we get back the concept of that counts forever, continuously
adding one to its its result: (v succ). The ability to learn recursion as a computation
from a simple constraint might be surprising to programmers and cognitive scientists
alike, for whom recursion may seem like an aspect of computation that has to be “built
in” explicitly. It need not be so, if what we mean by learning “recursion” is coming
up with a Church encoding implementation of it.

The mutual recursion case shows a recursive operator of two functions, known as
the y*-combinator, that yields an infinite alternating composition of f and g,

@ Springer



The Computational Origin of Representation 25

(£ (g (£ (g (£ (g ...))))))

This is the analog of the Y-combinator but for mutually recursive functions—where f
is defined in terms of g and g is defined in terms of f. This illustrates that even more
sophisticated kinds of algorithmic processes can be discovered and implemented in
S&K.

From surprisingly small base facts, Churiso is also able to discover primitives first,
rest, and pair, corresponding to the structure-building operations with memory. The
arguments for pair are “remembered” by the combinator structure until they are later
accessed by either first or rest. As a result, they can build common data structures.
For instance, a list may be constructed by combining pair:

pair
A pair
L = (pair A (pair B (pair C D))) / \
B pair

g/\b

Or, a binary tree may be encoded,

pair

/ N\

L = (pair (pair A B) (pair € D)) pair pair

ANA

A B C D

An element such as ¢ may then be accessed (first (rest T)), the first element
of the second grouping in the tree. These data structures are so foundational that they
form the foundational built-in data type in programming languages like Scheme and
Lisp (where they are called car, cdr, and cons for historical reasons), and thus support
a huge variety of other data structures and algorithms (Abelson and Sussman 1996;
Okasaki 1999). By showing how speakers might internalize these concepts, we can
therefore demonstrate in principle how many algorithms and data structures could be
represented as well.

3.4 Formal Languages

One especially interesting case to consider is how ssk handles concepts that cor-
respond to (potentially) infinite sets of strings, or formal languages. Theoretical
distinctions between classes of formal languages form the basis of computational
theories of human language (e.g. Chomsky 1956, 1957) as well as computation itself
(see Hopcroft et al. 1979). To implement each, Table 4 provides base facts giving
the transitions between computational states for processing languages. The regular

@ Springer



26

S.T. Piantadosi

Table 4 Church encoding of several formal language constructs

Language Facts Representation
(a start) — state_a
(b state_a) — accept start := ((S (K K)) (K K))
Regular state_a := (K (K K))
((ab)"’) (a accept) — state_a accept K
(b accept) — reject reject := (K K)
b := ((8 ((88) ((S8K) K))) K)
(a reject) — reject a := ((S (S (KK))) ((SK) K))
(b reject) — reject
(a start) — got_a
(b got_a) — accept
(a got_a) — got_aa
(b got_aa) — want_b
Context-free 42 CEMEDY s CEETE start := 8
(an,bn) 2 = K
(a got_aa) — got_aaa _
(b got_aaa) — want_bb > 5= (5 (5 &) (G (E9))
(b want_bb) — want_b
(a got_aaa) — got_aaaa
(b got_aaaa) — want_bbb
(b want_bbb) — want_bb
(start True) — accept
) ) (start False) — reject start = ((S ((S K) K)) (K §))
Existential (reject True) — accept peeepe 8= (18 (B R) ) G
(32..) o Bl = e reject ((S ((§K) K) (KS
J J True := (K ((S ((S K) K)) (KK
(accept True) — accept False := ((S (K (S ((S K) K)))
(accept False) — accept
valid := ((S8 ((S (K ((S (K S))
(K K))
check := ((((S ((S (K ((S (K S)) K))) S)
<) (KK)) ((S (KS)) K)) S)
m := ((((S ((S (K ((S (K S)) K))) S))
< K)) (((8 8) (S K)) K)) K)
Finite S = {7a,man,,am‘,an,ma'm} a := (K ((((S ((8 (K ((S (KS)) K))) 8S))
{a,man, am, an, mam} “°* all s in {--m,a,n}? “ (KK)) ((S5 ((§ (K ((S (K S))
’ PSS (check s) — valid if s€S < S)) (K K))) K))
(check s) - valid otherwise n := (((S ((8 (K ((S (K S)) K))) S))
—K)) (((S ((S (K ((S (K S)) K))) S)
) (KK)) (((S ((8 (K ((8 (KS)) K)

<)) S)) (K K)) K)))

((((8 ((S (K ((8 (K
((s ((8 (K ((s
(K K))) K))

language provides the transition table for a simple finite-state machine that recognizes
the language {ab, abab, ababa, . ..}. The existential one also describes a finite state
machine that can implement first-order quantification, an association potentially use-
ful in natural language semantics (van Benthem 1984; Mostowski 1998; Tiede 1999;
Costa Floréncio 2002; Gierasimczuk 2007).

The most interesting example is provided by context-free, which is a language
{ab, aabb, aaabbb, ...} that provably cannot be expressed with a regular language
(finite-state machine). Instead, the learned mapping essentially implements a compu-
tational device with an infinite number of states from the base facts. For instance, the
state after observing 1, 2, and 3 as are,

got_a
got_aa
got_aaa

got_aaaa

@ Springer

nnonn

K K)) 8)

K K)) (S (K K)
K K)) (S (K K)
K

(
(
(
(K K)) (s (K K)

s))))



The Computational Origin of Representation 27

Each additional a adds to this structure. Then, each incoming b removes from it

(b got_aaaa) = want_bbb = (K (K (K (K (S 8)))))
(b got_aaa) = want_bb = (K (K (K (S 8))))

(b got_aa) = want_Db = (K (K (S 8)))

(b want_b) = accept = (K (8 8))

This works precisely like a stack in a parser, even though such a stack is not explicitly
encoded into sk or the base facts. Thus, this mapping generalizes infinitely to strings
of arbitrary length, far beyond the input base facts’ length of four (Note that the
base facts and combinators ensure correct recognition, but do not guarantee correct
rejection).

Finally, the finite example shows an encoding of the set of strings of the letters
“m”, “a”, “n” and space (“_") that form valid English words, {a, man, am, an, mam}.
These can be encoded by assigning each character a combinator structure, but the
resulting structures are quite complex. Note, too, that these base facts do not guar-
antee correct generalization to longer character sequences. This example illustrates
that while Church encoding can represent such information, it is unwieldy for rote
memorization. Church encoding is more likely to be useful for algorithmic processes
and conceptual systems with compressible patterns. Memorized facts (or sets) may
instead rely on specialized systems of memory representation.

The ability to represent formal languages like these is important because they cor-
respond to provably different levels of computational power, showing that a single
system for learning and representation across these levels is a defining strength of
this approach. For LOT work along these lines, see Yang and Piantadosi (in prep);
for language learning on Turing-complete spaces in general, see (Chater and Vitanyi
2007; Hsu and Chater 2010; Hsu et al. 2011). In the examples, we have taught Churiso
the full algorithm by showing it a few steps from which it generalizes the appropriate
algorithm. This ability demonstrates the induction of a novel dynamical system from
a few simple observations, work in many ways reminiscent of encoding structure in
continuous dynamical systems (Tabor et al. 1997; Tabor 2009, 2011; Lu and Bassett
2018).

(TRl

3.5 Summary of Computational Results

The results of this section have shown that learners can in principle start with only
representations of ssk and construct much richer types of knowledge. Not only can they
represent structured knowledge, by doing so they permit derivation of fundamentally
new knowledge and types of information processing. The ability of a simple search
algorithm to actually discover these kinds of representations shows that the resulting
representational and inductive system can “really work™ on a wide variety of domains.
However, the main contribution of this work are the general lessons that we can extract
from considering systems like s&k.

@ Springer



28 S.T. Piantadosi

4 Mental Representations are like Combinatory Logic (LCL)

My intention is not to claim that combinatory logic is the solution to mental
representation—it would be pretty lucky if logicians of the early 19th century happened
to hit on the right theory of how a biological system works. Rather, I see combinatory
logic as a metaphor with some of the right properties. I will refer to the more general
form of the theory as like Combinatory-Logic, or LCL, and describe some of its core
components.

4.1 LCL Theories have no Cognitive Primitives

The primitives used in LCL theories (like ssk) specify only the dynamical properties
of a representation—how each structure interacts with any other. LCL therefore has no
built-in cognitive representations, or symbols like caust and True. This is the primary
difference between LCL and LOT theories, whose bread and butter is meaningful
components with intrinsic meaning. The lack of these operations is beneficial because
LCL therefore leaves no lingering questions about how mental tokens may come to
have meaning. The challenge for LCL is then to eventually specify how a token such as
CAUSE comes to have its meaning by formalizing the necessary and sufficient relations
to other concepts that fully characterize its semantics.

4.2 LCL Theories are Turing-Complete

Though it is not widely appreciated in cognitive science or philosophy of mind, humans
excel at learning, internalizing, creating, and communicating algorithmic processes
of incredible complexity (Rule et al. 2020). This is most apparent in domains of
expertise—a good car mechanic or numerical analyst has a remarkable level of tech-
nical and computational knowledge, including not only domain-specific facts, but
knowledge of specific algorithms, processes, causal pathways, and causal interven-
tions. The developmental mystery is how humans start with what a baby knows and
build the complex algorithms and representations that adults understand. The power
of LCL systems come from starting with a small basis of computational elements that
have the capacity to express arbitrary computations, and applying a powerful learning
theory that can operate on such spaces.

Though combinatory logic does not differ from Turing machines in terms of com-
putational power, it does differ in terms of qualitative character. There are several key
differences that make combinatory logic a better architecture for thinking of cogni-
tion, even beyond its simplicity and uniformity. First, it is a formalism for computation
which is entirely compositional, motivated here by the compositional nature of lan-
guage and other human abilities. Turing machines are simply an architecture that
Turing thought of in trying to formulate a theory of “effective procedures” and it does
not seem particularly natural to connect biological neurons to Turing machines, efforts
to do so in artificial neural network not withstanding (Graves et al. 2014; Trask et al.
2018).

@ Springer



The Computational Origin of Representation 29

4.3 LCL Theories are Compositional

The compositionality of natural language and natural thinking indicates that mental
representations must themselves support composition (Fodor 1975). Semantic for-
malisms in language (e.g Montague 1973; Heim and Kratzer 1998; Steedman 2001;
Blackburn and Bos 2005) rely centrally on compositionality, dating back to Frege
(1892). It is no accident that these theories formalize meaning through function com-
position, using a system (A-calculus) that is formally equivalent to combinatory logic.
The inherently compositional architecture of LCL contrasts with Turing machines
and von Neumann architectures, which have been dominant conceptual frameworks
primarily because they are easy for us to conceptualize and implement in hardware.
When we consider the apparent compositionality of thought, a computational formal-
ism based in composition becomes a more plausible starting point.

4.4 LCL Theories are Structured

As with compositionality, the structure apparent in human language and thought seems
to motivate a representational theory that incorporates structure. In sk, for instance,
(s (k s))isadifferentrepresentation than ( (s x) s), even though they are composed
of the same elements in the same order. Structure-sensitivity is also a central feature
of thought since thoughts can be composed of the same elements but differ in meaning
due to their compositional structure (e.g. “Bill loves Mary” compared to “Mary loves
Bill”). LCL’s emphasis on structural isomorphism aligns it closely with the literature
on structure mapping (Gentner 1983; Falkenhainer et al. 1986; Gentner and Markman
1997; French 2002), where the key operation is the construction of a correspondence
between two otherwise separate systems. For instance, we might consider an alignment
between the solar system and the Bohr model of the atom, where the sun corresponds to
the nucleus and the planets to electrons. The correspondence is relation preserving in
that a relation like orbits (planets, sun) holds true when its arguments are mapped
into the domain of atoms, orbits (electrons,nucleus). What structure mapping
literature does not emphasize, however, is that the systems being aligned are sometimes
dynamic and computational, rather than purely structural (isomorphism in dynamical
systems theory is a mapping of dynamics).

LCL also shares much motivation and machinery with the literature on structure
learning, which has aimed to explain how learners might discover latent structured
representations to guide further inference and learning. For instance, Kemp and
Tenenbaum (2008) show how learners could use statistical inference to discover the
appropriate mental representation in a universal graph grammar capable of generating
any structure. They show how learners could discover representations appropriate to
many sub-domains such as phylogenetic trees for animal features, or the left-right
spectrum seen in supreme court judgments. A limitation of that work is that it focuses
on learning graph structures, not computational objects that can capture internal pro-
cesses and algorithms.

@ Springer



30 S.T. Piantadosi

Table 5 Several levels of abstraction for a function £ and their corresponding combinator structures

Function Equivalent combinatory logic structure
(£) = (+ 1 4) £foi= (+ 1 4)

(f x) = (+ x 1) £ = (S + (K1)

(f xy) = (+ xvy) £ o=+

(f op x y) —> (op x y) f := (S KK)

The combinator structures have no explicit variables (e.g. x, y, op). Note that if the constants or primitives
+, 1, and 4 were defined with a Church encoding, they too would be combinators, permitting us to translate
everything into pure S&K

4.5 LCL Theories Handle Abstraction and Variables

Combinatory logic was created as a system to allow abstraction with a simple, uni-
form syntax that avoids difficulties with handling variables. Abstraction has long been
a focus in cognitive science. For example, Marcus (2003) considers training data like
“A rose is a rose”, “A frog is a frog”, “A blicket is a ___ ?” The intuition is that
“blicket” is a natural response, even though we do not know what a blicket is. This
means that we must have some system capable of remembering the symbol in the
first slot of “A ___isa ___” and filling it in the second slot; this problem more gen-
erally faces systems tasked with understanding and processing language (Jackendoff
2002). It may be natural to think of this problem as requiring variables. “An X is an
X might be a template pattern that learners induce from examples and then apply
to the novel X="blicket”. This makes intuitive sense when we talk on a high level,
but variable binding is not as transparently solved by neural systems. Sub-symbolic
approaches have explored a variety of architectural solutions to variable binding prob-
lems (Hadley 2009), including those based on temporal synchrony (Shastri et al. 1996),
tensor products (Smolensky 1990; Smolensky and Legendre 2006), neural blackboard
architectures (Van Der Velde and De Kamps 2006), and vector symbolic architectures
(Gayler 2004, 2006). Marcus (2003) argues explicitly for variables in the sense of
symbolic programming languages like Lisp; some work in the probabilistic LOT has
explored how symbolic architectures might handle variables (Overlan et al. 2016) and
how abstraction helps inductive inference (Goodman et al. 2011).

Unfortunately, the debate about the existence of variables has been completely
misled by the notation that happens to be used in computer science and algebra. In
fact, combinatory logic shows that systems may behave as though they have variables
when in fact none are explicitly represented—this is precisely why it was invented.
To illustrate this, Table 5 shows various levels of abstraction for a simple function f,
none of which involve variables when expressed with ssk. The top row is a function
of no arguments that always computes 1 + 4. The next rows shows a function of one
variable, x; the third adds its two arguments; the fourth row shows a highly abstract
function that applies an operation (perhaps +) to its two arguments x and y. In none of
these abstract functions do the arguments appear explicitly, meaning that abstraction
can be captured without variables. This shows that when an appropriate formalism
is used, cognitive theories need not explicitly represent variables, even though they
may be there implicitly by how other operators act on symbols. This type of system is

@ Springer



The Computational Origin of Representation 31

especially convenient for thinking about how we might implement logic in artificial
or biological neural networks because it means that the syntax of the representation
does not need to change to accommodate new variables in an expression.

4.6 LCL Theories Permit Construction of Systems of Knowledge

It is absolutely central to LCL systems that the meaning of a representation can only
be defined by the role it plays in an interconnected system of knowledge. There is no
sense in which any of the combinator structures mean anything in isolation. Even for a
single domain like number, the most efficient mapping to combinators will depend on
on which operations must be easy and efficient (for comparison of encoding schemes,
see Koopman et al. 2014). The idea that learners must create entire frameworks for
understanding, or theories, comes from cognitive and developmental literature empha-
sizing the way in which concepts and internal mental representations relate, to create
systems of knowledge (Carey 1985, 2009; Murphy and Medin 1985; Wellman and
Gelman 1992; Gopnik and Meltzoff 1997; Ullman et al. 2012). Of course, these rela-
tionships must include a variety of levels of abstraction—specific representations,
computational processes, abstract rules, new symbols and concepts, etc. LCL permits
this by providing a uniform language for all the components that might comprise
a theory. If this aspect of LCL is correct, that might help to explain why cognitive
science—and its theories of conceptual representation in particular—seem so hard to
figure out. Definitions, prototypes, associations, or simple logical expressions seem
like they would license fairly straightforward investigation by experimental psychol-
ogy. But if concepts are intrinsically linked to others by conceptual and inferential
role, then it may not be easy or possible to study much in controlled isolation.

4.7 LCL Theories Come from a Simple Basis

Turing machines are simple when compared to modern microprocessors but they are
not simple when compared to combinatory logic. A Turing machine has separate
mechanisms for its state, memory, and update rules. Combinatory logic has only a
few functions that always perform the same operation on a binary branching tree.
Indeed, the combinators ssk are not even minimal. There exist single combinators
from which ss&k can be derived. Single-point systems have been studied primarily as
curiosities in logic or computer science, or as objective ways to measure complexity
(Stay 2005), but they suggest that the full complexity of human-like cognition may
not be architecturally or genetically difficult to create.

The simplicity of ssk means that it is not implausible to imagine these operations
emerging over evolutionary time. The idea of a neural implementation of a Turing
machine might face a problem of irreducible complexity where the control structure
of a Turing machine might be useless without the memory and state, and vice versa.
However, combinators use only a single operation (function application) with a simple
structure (binary branching structure), either of which may be useful on its own in cog-
nitive systems evolved for prediction and representation or motor control (Steedman
2001).

@ Springer



32 S.T. Piantadosi

4.8 LCL Theories are Dynamical

A popular view is that cognitive systems are best viewed not as symbolic, but rather
dynamical (Van Gelder 1995, 1998; Beer 2000; Tabor 2009). It’s always a curious
claim because by definition, virtually everything is a dynamical system, even Tur-
ing machines. LCL theories are inherently dynamical since the meaning of abstract
symbols comes from the underlying dynamics of combinator evaluation, executed
mindlessly by the underlying machine architecture. In this way, LCL theories are very
much in line with the idea of unifying symbolic and dynamical approaches to cognition
(Dale and Spivey 2005; Edelman 2008a), and seeking a pluralistic approach to cogni-
tive science (Edelman 2008b). Edelman (2008a), for instance, argues that we should be
beware both the “older exclusively symbolic approach in the style of the ‘language of
thought’ (Fodor 1975) and of the more recent ‘dynamical systems’ one (Port and van
Gelder 1995) that aims to displace it, insofar as they strive for explanatory exclusivity
while ignoring the multiple levels at which explanation is needed.”

The emphasis on dynamics here emphasizes a key difference to traditional LOT
theories. In most incarnations of the LOT the key part of having a concept would
be building the structure (e.g. CAUSE (x, GO (x, U P))) and little attention is paid
to the system by which this represents a computation that actually runs—what is the
architecture of the evaluator, how does it run, and what makes those symbols mean what
they do? In LCL theories, the important part of the representation is not only building
the structure, but being able to run it or evaluate it with respect to other concepts. This,
in some sense, puts the computational process itself back into “computational theory of
mind”—we should not discuss symbols without discussing their computational roles,
and in doing so we move closer to implementation.

For LCL, the important part of the dynamics is that it can be manipulated into cap-
turing the relations present in any other system. Unlike most dynamical accounts in
cognition, the dynamics are discrete in time and space (Jaeger 1999; Dale and Spivey
2005); research on discrete space systems is a subfield of dynamical systems research
in itself (Lind and Marcus 1995) and is likely to hold many clues for how symbolic
or symbolic-like processes may emerge out of underlying physics and biology. The
general idea, for instance, of discretizing physical systems in order to provide adequate
explanations lies at the heart of symbolic dynamics, including mathematical charac-
terizations of general complex systems (Shalizi and Crutchfield 2001; Spivey 2008),
as well as recent attempts to encode cognitive structures into dynamical systems (Lu
and Bassett 2018). Theoretical work has also explored the tradeoff between symbolic
and continuous systems, providing a formal account of when systems may become
discretized (Feldman 2012).

4.9 LCL Meanings are Sub-symbolic and Emergent

While LCL dynamics do deal with discrete objects (like combinators), the meaning
of these objects is not inherent in the symbols themselves. This is by design because
LCL theories are intended to show how meaning, as cognitive scientists talk about it,
might arise from lower-level dynamics. Cognitive symbols like True arise from the

@ Springer



The Computational Origin of Representation 33

sub-symbolic structures that True gets mapped to and the way these structures interact
with other representations. This emphasis on sub-symbolic dynamics draws in part on
connectionism, but also on theories that pre-date modern connectionism. Hofstadter
(1985), for example, stresses the active nature of symbolic representations, which are
“active, autonomous agents” (also Hofstadter 1980, 2008). He contrasts himself with
Newell & Simon, for whom symbols are just “lifeless, dead, passive objects” objects
that get manipulated. For Hofstadter, symbols are the objects that participate in the
manipulating:

A simple analogy from ordinary programming might help to convey the level
distinction that I am trying to make here. When a computer is running a Lisp
program, does it do function calling? To say “yes” would be unconventional.
The conventional view is that functions call other functions, and the computer
is simply the hardware that supports function-calling activity. In somewhat the
same sense, although with much more parallelism, symbols activate, or trigger,
or awaken, other symbols in a brain.

The brain itself does not “manipulate symbols”; the brain is the medium in
which the symbols are floating and in which they trigger each other. There is
no central manipulator, no central program. There is simply a vast collection of
“teams”—patterns of neural firings that, like teams of ants, trigger other patterns
of neural firings. The symbols are not “down there” at the level of the individual
firings; they are “up here” where we do our verbalization. We feel those symbols
churning within ourselves in somewhat the same way as we feel our stomach
churning; we do not do symbol manipulation by some sort of act of will, let
alone some set of logical rules of deduction. We cannot decide what we will
next think of, nor how our thoughts will progress.

Not only are we not symbol manipulators; in fact, quite to the contrary, we are
manipulated by our symbols!

Hofstadter’s claim that sub-symbols are active representational elements that conspire
to give rise to symbols is shared by LCL theories. His claim that the substrate on
which sub-symbols live is an unstructured medium in which symbols are “floating”
and interact with each other without central control, is not necessarily shared by LCL.

“Meaning” in this sense is emergent because it is not specified by any explicit feature
of the design of the symbolic system. Instead, the meaning emerges out of the LCL
combinators’ dynamics as well as the constraints (the data) that say which specific
structures are most appropriate in a given domain. Emergentism from dynamics rather
than architecture may capture why emergent phenomena can be found in many types
of models (e.g McClelland et al. 2010; Lee 2010). Recall that part of the motivation
for LCL was that we wanted to formalize how symbols get meaning in order to better
handle critiques like Searle’s that “mere” symbol manipulation cannot explain the
semantics of representation. As Chalmers (1992) argues, Searle’s argument fails to
apply to sub-symbolic systems like connectionist models because the computational
(syntactic) elements are not intended to be meaningful themselves. The same logic
saves LCL: s&k are not meant to, on their own, possess meaning other than dynamics,

@ Springer



34 S.T. Piantadosi

Table 6 Learners who observe a correlation between dangerousness and size will generalize based on size
(top)

Domain Facts Representation
True = (small a) El::i:e:f:(ﬁ 59
PI‘OPEI‘ty gii:e i :Z::lirzzls =) dangerous := ((S K) S)
Induction e e small := ((S K) K)
a := (K K)
b := K
True = (small x) % i= (K K)

so the question of how meaning arises is answered only at a level higher than the level
at which symbols are manipulated.

4.10 LCL Theories are Parallelizable

Because combinators are compositional, they lend themselves to parallelization much
more naturally than a program on a Turing machine would, a desirable property of
cognitive theories. Functional programming languages, for instance, are based on
logics like combinatory logic and can easily be parallelized precisely because of their
uniform syntax and encapsulated components. Taking terminology from computer
science, parallel execution is possible because LCL representations are referentially
transparent, meaning that a combinator reduces in the same way, regardless of where
it appears in the tree. As a result, two reductions in the same tree can happen in either
order (a theorem known as the Church-Rosser theorem (Church and Rosser 1936)). A
good implementation might do multiple reductions at the same time.

4.11 LCL Theories Eagerly Find Patterns and Use them in Generalization

An important part of generalization is the ability to infer unobserved properties from
those that can be observed, a task studied as property induction in psychology (Rips
1975; Carey 1985; Gelman and Markman 1986; Osherson et al. 1990; Shipley 1993;
Tenenbaum et al. 2006). Table 6 shows a simple example where Churiso is provided
with two properties, dangerous and small applied to to some objects (a, b, and x).
In this example, property induction, there is a perfect correlation between being
dangerous and being small. In this case what we learn is a representation for these
symbols where (dangerous x) — True even though all we know is that x is small.
Being small, in fact, convinces the learner that x will have an identical conceptual
role to a. This happens because in many cases, the easiest way for x to behave the
correct way with respect to small is to make it the same as a. This illustrates a clear
willingness to generalize, even from a small amount of data, a feature of human
induction (Markman 1991; Li et al. 2006; Xu and Tenenbaum 2007; Salakhutdinov
et al. 2010; Lake et al. 2015).

@ Springer



The Computational Origin of Representation 35

4.12 LCL Theories Supports Deduction and Simulation

The combinator structures that are learned are useful because they provide a way
to derive new information. By combining operations in new ways (e.g. taking
(succ (succ (succ four)))), learners are able to create the corresponding mental
structures. This generative capacity is important in capturing the range of structures
humans internalize. The ability can be viewed through two complementary lenses. The
first is that LCL knowledge provides a deductive system which allows new knowledge
to be proved. We can determine, for instance, whether

(succ (succ (succ three))) = (succ (succ four))

and thereby use our induced representations to learn about the world, since these
representations are isomorphic to some structure in the world that matters. This view
of knowledge is reminiscent of early Al attempts grounded in logic (see Nilsson 2009)
and cognitive theories of natural reasoning through deduction (Rips 1989, 1994).

The second way to view the knowledge of an LCL system is as a means for mental
simulation: one step forward of a combinator evaluation or one composition of two
symbols corresponds to one step forward in a simulation of the relevant system. Sim-
ulation has received the most attention in physical understanding (e.g Hegarty 2004;
Battaglia et al. 2013) and folk psychology (e.g Gordon 1986; Goldman 2006), both of
which are controversial (Stone and Davies 1996; Davis and Marcus 2016). However,
the literature on simulation has focused on simulations of particular (e.g. physical) pro-
cesses and not on LCL’s goal of capturing arbitrary, relational or algorithmic aspects
of the world. In general, simulation may be the primary evolutionary purpose of con-
structing a representation, as it permits use in novel situations, a phenomenon with
clear behavioral benefits (Bubic et al. 2010).

4.13 LCL Theories Support Learning

The mapping from symbols in base facts to combinators is solved by applying a bias
for representational simplicity (Feldman 2003b; Chater and Vitanyi 2003) and speed
(Hutter 2005; Schmidhuber 2007). LCL theories inherit from the Bayesian LOT, and
more generally work on program induction, a coherent computational-level theory of
learning that provably works under a broad set of situations. Roughly, adopting the
Bayesian setting, under basic conditions, with enough data learners will come to favor
a hypothesis which is equivalent to the true generating one. In this setting where we
consider hypotheses to be programs or systems of knowledge written in a LCL system,
learners will be able to internalize dynamics they observe in the world.

As described above, a prior that favors hypotheses with short running times (e.g.
exp(—running time)) permits learners to consider in principle hypotheses of arbitrary
computational complexity. The trick is that the non-halting hypotheses have zero prior
probability (exp(—oo0) = 0) and this can be used to weed them out from a search or
inference scheme that only needs upper-bounds on probability (like the Metropolis-
Hastings algorithm). The ability to learn in such complex systems contrasts with
arguments from the poverty of the stimulus in language learning and other areas of
cognition. Note that this learning theory is stated as a computational theory, not an

@ Springer



36 S.T. Piantadosi

algorithmic one. There is still a question about how learners actually navigate the
space of theories and hypotheses.

Learnability is also a central question for conceptual theories (see Carey 2015).
When considering cognitive development as a computational process, it might be
tempting to think that the simpler algorithmic components must be “built in” for
learners, a perspective shared by many LOT learning setups. But it may be that devel-
opmental studies will not bear this out—it is unlikely, for instance, that very young
children have any ability to handle arbitrary boolean logical structures. Mody and
Carey (2016) find that children under 3 years appear not to reason via disjunctive
syllogism. If boolean logic is not innate, in what sense could it be learned? On one
hand, boolean logic seems so simple that it is hard to see what capacity it could be
derived from—this is why it is built in to virtually all programming languages. What
LCL shows how it is possible to learn something so simple without presupposing it:
what is built-in may be a general system for constructing isomorphisms, and learners
may realize the particular structure of boolean logic (or logical deduction) only when
it is needed to explain data they observe.

4.14 Features of the Implementation Which are not Part of the General LCL Theory

Because we have been required to make some (as of yet) under-determined choices in
order to implement an LCL theory, it is important to also describe which of these spe-
cific choices are not critical to the general theory I am advocating. The implementation
I describe chooses particular combinators ssk, but there are infinitely many logically
equivalent systems. In principle, different combinator bases may be distinguishable
by the inductive biases they imply.

Moreover, because the brain is noisy and probabilistic, it is likely that the underlying
representational system more naturally deals with probabilities than ssx as described
here. It is also important to emphasize that many other formal systems have dynam-
ics equivalent to LCL, some of which drop constraints such as compositionality or
tree-structures. Cellular automata, for instance, rely only on local communication and
computation, yet also are Turing-complete. Systems of cellular automata that imple-
ment useful conceptual roles would qualify as a system very much like combinatory
logic (although not in all the ways described above). A lesson from complex systems
research is that there are a huge variety of simple systems that are capable of universal
computation (Wolfram 2002), suggesting that it would not be hard, in principle, for
nature to implement CRS-like representations in any number of ways.

5 Towards a Connectionist Implementation

In order to encode ssk into a connectionist architecture, we primarily will require
a means of representing binary tree structures and transformations of them. Many
ways of representing tree structures or predicates in neural dynamics (e.g. Pollack
1990; Touretzky 1990; Smolensky 1990; Plate 1995; Van Der Velde and De Kamps
2006; Martin and Doumas 2018) or other spaces (Nickel and Kiela 2017) have been

@ Springer



The Computational Origin of Representation 37

considered, often with the appreciation that such representations will greatly increase
the power of these systems. Related work has also explored how vector spaces might
encode compositional knowledge or logic (Grefenstette 2013; Rocktéschel et al. 2014;
Bowmanetal. 20144, a, 2015; Neelakantan et al. 2015; Gardner et al. 2015; Smolensky
et al. 2016). Here, I will focus on Smolensky (1990)’s fensor product encoding (see
Smolensky and Legendre 2006; Smolensky 2012). Section 3.7.2 of (Smolensky 1990)
showed how the Lisp operations first, rest, and pair could be implemented in a
tensor product system. These are the only operations needed in order to implement
an evaluator for ssx (or something like it). Note that the idea of implementing first,
rest, and pair in a connectionist network is quite distinct from implementing them in
s&k above. The above construction in ssk is meant to explain cognitive manipulation
of tree structures as a component of high-level thought. The implementation in tensor
products could be considered to be part of the neural hardware which is “built in” to
human brains—the underlying dynamics from which symbols ssk themselves emerge.

To implement ssk, we can define a function called (reduce t) that computes the
next step of the dynamics (the “— " operation):

(first (rest t)) if (first t) is K
(pair (pair (first t) (first (rest (rest t))))

(reduce t) :

(reduce t) :=
(pair (first (rest t)) (first (rest (rest t))))) if (first t) is s

The left hand side of (reduce t) tell us that we are defining how the computational
process of combinator evaluation may be carried out. The right hand side consists
only of first, rest, and pair functions on binary trees, which, we assume, are here
implemented in a connectionist network, following the methods of e.g. Smolensky
(1990) or a similar approach. This function operates on data (combinators) that are
themselves encoded with pair.

For instance, the structure (x x y) would be encoded in a connectionist network
as (pair K (pair x y)). Then, following the definition of reduce,

(reduce (K x y)) = (reduce (pair K (pair x y)) — (first (
~—>rest (pair K (pair x vy)))) — X

The case of s is analogous.

To summarize, Figure 2 shows a schematic of the general setup: tensor product cod-
ing (or an alternative) can be used to encode a tree structure in a connectionist network.
The reduce function can then be stated as tensor operations, and these implement the
dynamics of s&k, or a system like it. Then, combinator structures can be built with
pair. The way these structures interact through reduce can give rise to create struc-
tured, algorithmic systems of knowledge through the appropriate Church encoding.
In fact, any of the encoding schemes that supports first, rest, and pair can imple-
ment LCL theories, thereby permitting a swath of symbolic Al and cognitive science
to be implemented in neural systems. This, of course, treats connectionism as only
an implementational theory of a CRS system. But this is, just a simplification for the
present paper—there are certain to be areas where the parallel and distributed nature of
connectionist theories are critically important (e.g. Rumelhart and McClelland 1986),
particularly at the interfaces of sensation and perception.

It is notable that the move towards unifying high-level symbolic thought with
theories of implementation has been almost entirely one-sided. There are many connec-
tionist approaches that try to explain—or explain away—symbolic thought. However,

@ Springer



38 S.T. Piantadosi

Fig.2 An overview of the Theories
encoding of LCL dynamics into
a connectionist architecture.
Schemes like Smolensky Concep'.:ual role
(1990)’s tensor product semantics
encoding allow tree operations
and structure (e.g. first, Symbols and concepts
rest, pair), which can be
used to implement the structures A
necessary for combinatory logic Combinator dyn amics
as well as the evaluator. The
structures built in combinatory

logic, as shown in this paper, Something like
create symbolic concepts which combin atory Iogi c
participate in theories and whose 4

meaning is derived through !

conceptual role in those theories. reduce

It is possible that the
intermediate levels below LCL !
are superfluous, and that . Tree structures

dynamics /ike combinatory logic . d ti
could be encoded directly in . and operations

biological neurons (dotted line) "‘
\ Tensor product
coding, ...

Connectionism

Neuroscience

almost no work on the symbolic side has sought to push down towards representa-
tions that could more directly be implemented. Many symbolic modelers—myself
included—have considered the problem of implementation to lie squarely in the neu-
ral modelers’ domain: connectionist networks should strive to show where symbols
could come from. However, if the view of this section is correct, the main sticking
point has actually been on the symbolic side of thinking more carefully about how
symbols might get their meaning.

6 Remaining Gaps to be Filled

The LCL theory I have presented has intentionally focused on a minimal representa-
tional theory for high-level logical concepts. I have done this because these areas of
cognitive psychology seem to be in most desperate need of a link to implementation.
However, it is important to discuss a few limitations of what I have presented in this

paper.

@ Springer



The Computational Origin of Representation 39

6.1 LCL and the Interfaces

Missing from the description of LCL theories is a formalization of how such abstract
operations might interface to perception and action. As Harnad (1990) argued, cog-
nition must not get stuck in a symbolic “merry-go-round” where all that happens is
symbol manipulation—at some point it must relate to the real world. Our examples
have shown that in some cases a symbolic merry-go-round can be quite powerful, but
it is true that even with an LOT-like representation, the way in which representations
relate to the outside world is of central concern. Miller and Johnson-Laird (1976)
write,

A dictionary is a poor metaphor for a person’s lexical knowledge. Dictionaries
define words in terms of words. Such definitions, like some semantic theories,
may provide plausible accounts of the intensional relations between words, but
their circularity is vicious. There is no escape from the round of words. Language
can apply to the nonlinguistic world, however, and this fact cannot be ignored by
a theory of meaning. It is perhaps the single most important feature of language;
a theory that overlooks it will provide simply a means of translating natural
language into theoretical language. Although such a theory may be extremely
useful as a device for formulating intensional relations, its ultimate value rests
on a tacit appeal to its users’ extensional intuitions.

The CRS itself has also been criticized for its circularity where meanings are defined in
terms of each other (see Greenberg and Harman 2005; Whiting 2006). LCL embraces
this circularity and shows that it is not inherently problematic to the construction of
a working computational system (see also chapter 4 of Abelson and Sussman 1996).
For a theory of concepts, the circularity is even desirable because it prevents us from
pushing the problem of meaning off into someone else’s field—linguistic philosophy,
neuroscience, robotics, etc.

To avoid the circularity, many of the theories of where such high-level constructs
come from are based on repeated abstraction of sensory-motor systems, perhaps main-
taining tight links between conception and perception (e.g. Barsalou 1999, 2008, 2010;
Sloutsky 2010). The challenge with this view is in understanding how concepts come
to be distinct from perception, or more abstract, generalizing beyond immediate expe-
rience (Mahon 2015), a goal with some recent computational progress (Yildirim and
Jacobs 2012). From the LCL point of view, the primary difficulty with theories closely
tied to perception is that they do not engage with the computational richness of full
human cognition—they do not explain how it is that we are able to carry out such
a wide variety of computational processes and algorithms. A good example to con-
sider might be Bongard problems (Bongard 1970). Solving these problems requires
combining visual processes (perception, feature extraction, similarity computation,
rotation, etc.) with high-level conceptions (e.g. search algorithms, knowledge about
possible transformations, etc.) (Edelman and Shahbazi 2012; Depeweg et al. 2018),
and so any theory of how humans solve these problems must bridge high- and low-level
processes. Such high-level algorithms and knowledge are what LCL aims to capture.

On the flip-side, the theory I have described does not engage with perception and
action, nor is it sensitive to the type of content its actions manipulate. However,

@ Springer



40 S.T. Piantadosi

“two-factor” theories of CRS that more closely connect to perception and action have

previously been proposed (Harman 1987; Block 1997). At the very least, the percep-

tual systems for shape must interface with high-level concepts—perhaps by speaking

languages that are inter-translatable.'” In the same way, a computer has a single repre-

sentation language for its central processor; the various subsystems —graphics cards

and hard drives—must speak languages that are translatable with the central proces-

sor so that they can coordinate complex computation. Consider some base facts for a

square concept,

(number-of-edges square) — four

(number-of-vertices square) — four

(angles square) — (pair rt-angle (pair rt-angle (pair
—rt-angle rt-angle)))

(rotate square 45) — diamond

(rotate diamond 45) — sqguare

Even if this is the right conceptual role for square, it must also be the case that
perception speaks this language. For instance, when rotate is called, we may rely
on perceptual systems in order to execute the rotation so that rotate is not itself an
operation in pure ssk. The key is that whatever dedicated hardware does do the rotation,
it must send back symbols like diamond and square that are interpretable on a high
level. To see this, consider the wide variety of computational processes that square can
participate in and the other theories that it is related to. Here is one: Suppose I have a
square-shaped ink stamp M. I stamp it once, rotate the stamp by 45 degrees, 4, stamp
it again. If I do that forever, what shape will I have stamped out? What happens if I
rotate it 90 degrees instead? The abstraction we readily handle is even more apparent
in questions like, “If I rotate it 1 degree versus 2 degrees, which will give me a star with
more points?” Likely, we can answer that question without forming a full mental image,
relying instead on high-level properties of numbers, shapes, and their inter-relations.
The situation can get even more complex: what happens if I rotate it v/2 degrees
each time? Solving this last problem in particular seems to require both an imagistic
representation (to picture the stamping) as well as high-level logical reasoning about
non-perceptual theories—in this case, the behavior of irrational numbers.

One feature of perception that is notably unlike LCL is that small perceptual changes
tend to correspond to small representational changes, a kind of principle of continu-
ity.'! For instance, the representation of a rotated symbol “&” is likely to be very
similar to “B”. However, the representations of LCL—and logical theory learning
more generally—appear not to obey this principle. Changing one of the constraints
or one data point might have huge consequences for the underlying representation. In
the same way, a single data point might lead a human to revise an intuitive theory or a
scientific theory. As far as I am aware, there are not yet good general solutions to this

10 Fodor and Pylyshyn (2014) notes there is no imagistic representation of a concept like “squareness”, or
the property that all squares, a problem that Berkeley (1709) struggled with in understanding the origin and
form of abstract knowledge. Anderson (1978) shows how perceptual propositional codes might account for
geometric concepts like the structure of the letter “R” and how imagistic and propositional codes can made
similar behavioral predictions (see also, e.g. Pylyshyn 1973).

11" A mathematical function, for instance mapping the world to a representation, is continuous if boundedly
small changes in the input give rise to boundedly small changes in the output.

@ Springer



The Computational Origin of Representation 41

problem of finding logic-like representations that have good continuity properties. It
may be reasonable to suspect that none exist—that no Turing-complete representa-
tional system will have semantics that are continuous in its syntax.

6.2 Extensions in Logic

I have presented a very simplified view of combinatory logic. Here I will discuss a few
important points where prior mathematical work has charted out a useful roadmap for
future cognitive theories.

First, as I have described it, any structure built from ssk is evaluable. In the
roshambo example, for instance, we could consider a structure like (win win). To
us, this is semantically meaningless. The problem of incoherent compositions could
be solved in principle by use of a rype system that defines and forbids nonsensical
constructs (see Hindley and Seldin 1986; Pierce 2002). Each symbol would be asso-
ciated with a “type” that function composition would have to respect. For instance,
since rock, paper, and scissors would be one type that is allowed to operate on itself;
when it does so, it produces an outcome (win, lose, Or draw) of a different type that
should not be treated as a function or argument (thus preventing constructions like
(win win)). The corresponding learning theory would have to create new types in
each situation, but learning could be greatly accelerated by use of types to constrain
the space of possible representations.

The second limitation of combinatory logic is one of expressivity. Combinatory
logic is Turing-complete only in the sense that it can represent any computable func-
tion on natural numbers (Turing 1937). But there are well-defined operations that it
cannot express, in particular about the nature of combinator structures themselves (see
Theorem 3.1 of Jay and Given-Wilson 2011). There is no combinator that can express
equivalence of two normal forms (Jay and Vergara 2014). That is, we cannot construct
a combinator E such that (E x y) reduces to True if and only if x and y are the same
combinator structure. There are, however, formal systems that extend combinatory
logic that can solve this problem (Curry and Feys 1958; Wagner 1969; Kearns 1969;
Goodman 1972; Jay and Kesner 2006; Jay and Given-Wilson 2011), and these pro-
vide promising alternatives for future cognitive work. These types of logical systems
will likely be important to consider, given the centrality of notions like same/different
in cognitive processes, with hallmarks in animal cognition (Martinho and Kacelnik
2016).

Finally, the semantics of combinatory logic is deterministic: evaluation always
results in the same answer. However, probabilistic programming languages like Church
(Goodman et al. 2008a) provide inherently stochastic meanings that support condi-
tioning and probabilistic inference, with nice consequences for theories of conceptual
representation (Goodman et al. 2015), including an ability to capture gradience, uncer-
tainty, and statistical inference. Combinatory logic could similarly be augmented with
probabilistic semantics, and this may be necessary to capture the statistical aspects of
human cognition (Tenenbaum et al. 2011).

@ Springer



42 S.T. Piantadosi

6.3 The Architecture Itself

The connectionist implementation described above only shows how evaluation can be
captured in a connectionist network. However, it does not provide an implementation
of the entire architecture. A full implementation must include other mechanisms.

First an implementation needs a means for observing base facts from the world
and representing them. Churiso assumes base facts are given as symbolic descriptions
of the world. There are many possibilities that might inform these facts, including
basic observation, pedagogical considerations, knowledge of similarity and features,
or transfer and analogy across domains. The mind will likely have to work with these
varied types of information in order to learn the correct theories. Extending the LCL
theory beyond explicit relational facts is an important direction for moving the theory
from the abstract into more psychological implementations. Similarly, a fuller theory
will require understanding the level of granularity for base facts. Unless you are a
particle physicist, you don’t have detailed models of particle physics in your head. If
we consider an LCL encoding of even an ordinary object, there are many possibilities:
we might have an LCL structure for the whole object (e.g. the rock in roshambo);
we might map its component parts to combinators which obey the right relations; we
might map its edges and surfaces to combinator structures; or we might go below the
level of surfaces. The question of granularity for LCL is simply an empirical question,
and a goal for cognitive psychology should be to discover what level of description is
correct.

Second, an important next step would be to understand the connectionist or neural
implementation of search and inference. Such a full model might build on recent work
learning relations or graphs with neural networks (e.g Kipf et al. 2018, 2020; Grover
et al. 2019; Zhang et al. 2020), control dynamics (e.g Watter et al. 2015; Levine et al.
2016), and components of computer architecture (Zylberberg et al. 2011; Graves et al.
2014; Trask et al. 2018; Rule et al. 2020). In addition, the full architecture will likely
be connected to probabilities in order to characterize gradiations in learners’ beliefs.

7 General Discussion

One reason for considering LCL theories is that they provide a new riff on a variety
of important issues, each of which I will discuss in turn.

7.1 Isomorphism and Representation

Craik (1952) suggested that the best representations are those that mirror the causal
processes in the world. However, it is a nontrivial question whether a given physical
system—Ilike the brain—is best described as isomorphic to a computational process.
Putnam (1988) argues for instance that even a simple physical system like a rock can
be viewed as implementing essentially any bounded computation because it has a huge
number of states, meaning that we can draw an isomorphism between its states and
the states of a fairly complex computational device (see also Searle 1990; Horsman

@ Springer



The Computational Origin of Representation 43

et al. 2014). LCL theories are kin to Chalmers’ response to this argument highlight-
ing the combinatorial nature of states which can be found in a real computational
device, but not an inert physical system (Chalmers 1996, 1994). When we consider
the brain, LCL theories predict that we should be able to find a small number of micro-
level computational states that interact with each other in order to organize structures
and dynamics which are isomorphic to the systems being represented. In this way,
scientific theories of how mental representations work cannot be separated from an
understanding of what problems a system solves or which aspects of reality are most
important for it to internalize. When viewed as part of an integrated whole scientific
enterprise, the scientific search for mental representations is therefore not just a search
for isomorphisms between physical systems and abstract computing devices. It is a
search for relations which are explanatory about empirical phenomena (e.g. behavior,
neural dynamics) and which fit within the framework of knowledge developed else-
where in biology, including our understanding of evolution. A good scientific theory
of mental representation would only attribute isomorphic computational states to a
rock if something explanatory could be gained.

7.2 Critiques of CRS

CRS is not without its critics (see Greenberg and Harman 2005; Whiting 2006). One
argument from Fodor and Lepore (1992) holds that conceptual/inferential roles are
not compositional, but meanings in language are. Therefore, meanings cannot be
determined by their role. To illustrate, the meaning of “brown cow” is determined
by “brown” and “cow”. However, if we also know in our conceptual/inferential role
that brown cows are dangerous (but white cows are not) then this is not captured
compositionally. To translate this idea into LCL, imagine that composition is simply
pairing together brown and cow to form (pair brown cow). How might our system
know that the resulting structure is dangerous, if danger is not a part of the meanings
(combinator structures) for brown or cow? A simple answer is that (pair brown cow)
the information is encoded in the meaning of either is-dangerous or pair (not brown
and cow, as Fodor assumes). More concretely, the following base facts roughly capture
this example:

(is-dangerous cow ) — False

(is-dangerous brown) — False

(is-dangerous (pair brown cow)) — True ; brown cows are
—>dangerous

(is-brown brown) — True

(is-brown cow) — False ; Cows are not generally brown

(is-brown (pair brown y))) — True ; anything brown is
“—>brown

Given these facts and the standard definitions of True, False, and pair, Churiso finds

is-brown := ((S (S K K)) (S K))
cow := ((8 (S K K)) (K K))
brown := (K (K K))
is-dangerous := ((S ((S S) K)) 8)

@ Springer



44 S.T. Piantadosi

Because these facts can be encoded into a compositional system like combinatory
logic, this shows at a minimum that issues of compositionality and role are not so
simple: when “role” is defined in a system like this, compositionality can become
subtle. Contrary to the misleadingly informal philosophical debate, consideration of
a real system shows that it is in principle straightforward for a system to satisfy the
required compositional roles.

Of course, it is unlikely that memory speaks logic in this way. The reason is that it
would be very difficult to add new information since doing so would require changing
the internals of a concept’s representational structure. If suddenly we learned that we
were mistaken and brown cows were not dangerous, we’d have to alter the meaning
of one of the symbols rather than church-encode a new fact. Doing so—and maintain-
ing a consistent, coherent set of facts—may even be difficult when there are multiple
interacting concepts or conceptual systems. Much better would be to have memory
function as a look-up table, where combinator structures provide the index. In other
words, is-dangerous might not be a combinator structure, but a special interface to
a memory system (for an argument on the importance of memory architectures, see
Gallistel and King 2009). In this way, is-dangerous might be a fundamentally dif-
ferent kind of thing than a statement which is true because of the inherent properties
of brown and cow (like a predicate is-brown). The argument therefore requires that
we accept that there different kinds of statements—some of which are true in virtue
of their meaning (“Brown cows are brown”) and some of which are true in virtue of
how the world happens to be (“Brown cows are dangerous”). Famously, Quine (1951)
rejected the distinction between these kinds of properties, arguing that the former are
necessarily circularly defined. In their critique of CRS, Fodor and Lepore (1992) also
reject this distinction (see (Block 1997) for a discussion of these issues in CRS and
Fodor and Pylyshyn (2014) for more critiques). But to a psychologist, it’s hard to
see how a cognitive system that has both memory of the world and compositional
meanings could be any other way; in fact, the mismatch between memory and com-
positional concepts is what drives us to learn and change conceptual representations
themselves. Computers, too, certainly have some properties that can be derived from
objects themselves and objects that can index facts in a database.

Fodor and Lepore (1992) also argue that CRS commits one to holism, where mean-
ing depends critically on all other aspects of knowledge, since these other aspects factor
into conceptual role. Holism is considered harmful in part because it would be unclear
how two people could hold the same beliefs or knowledge since it is unlikely that all
components of their inferential system are the same. The difficulty with learning very
complex systems of knowledge is also made clear in Churiso: larger systems that have
many symbols and relations tend to present a tougher constraint-satisfaction problem,
although we have provided an example above of easily learning multiple domains at
once. One solution to the general problem is to favor modularity: in a real working
computational system, the set of defining relations for a symbol might be small and
circumspect. The logical operators, for instance, may only be defined with respect to
each other, and not to combinator structures that represent an entirely different domain.
Even a single object—for instance a representation of a square—could have different
sets of combinators to interface with different operations (e.g. rotation vs. flipping).
Such modularity of roles and functions is a desirable feature of computational systems

@ Springer



The Computational Origin of Representation 45

in general, and the search to manage such complexity can be considered one of the
defining goals of computer science (Abelson and Sussman 1996).

A third challenge to CRS is in its handling of meaning and reference. There is a
titanic literature on the role of reference in language and cognition, including work
arguing for its centrality in conceptual representation (e.g. Fodor and Pylyshyn 2014).
To illustrate the importance of reference, Putnam (1975) considers a “twin earth”
where there exists as substance that behaves in every way like water (HO) but is
in fact composed of something else (XY Z). By assumption, XY Z plays the same
role in conceptual systems as H>O and yet is must be a different meaning since it
refers to an entirely different substance. Any characterization of conceptual systems
entirely by conceptual roles and relations will miss an important part of meaning.
The problem leads others like Block (1997) to discuss a fwo-factor theory of CRS in
which concepts are identified by both their conceptual role and their reference (see
also Harman 1987). Critiques of the two-factor CRS are provided in Fodor and Lepore
(1992) and discussed in Block (1997).12

7.3 The Origin of Novelty and Conceptual Change

One of the strangest arguments in philosophy of mind comes from Fodor (1975), who
holds that there is an important sense in which most of our concepts must be innate.
The argument goes, roughly, that the only way we learn new concepts is through com-
position of existing concepts. Thus, if we start with co and up, we can learn “lift” as
CAUSE (x, GO(y, UP)).Fodornotes, however, that almost none of our concepts appear
to have compositional formulations like these (see Margolis and Laurence 1999). He
concludes, therefore, that learning cannot create most of our concepts. The only possi-
bility then is that almost all of our concepts are innate, including famously concepts as
obscure as carburetor. While some of taken this as a reductio ad absurdum of the LOT
or of compositional learning, it’s hard to ignore the suspicion that Fodor’s argument
is simply mistaken in some way. Indeed combinatory logic and other computational
formalisms based on function composition show that it is: any computational pro-
cess can be expressed as a composition in a formal language or LOT (see Piantadosi
and Jacobs 2016). The present paper shows that the LOT need not have any innate
meanings—ijust innate dynamics. This means that if a computational theory of mind
is correct—computations are the appropriate description for concepts like carbure-
tor—then these must be expressible compositionally and therefore can be learned in
Fodor’s sense. A compositional CRS like LCL solves, at least in principle, the problem
of explaining how an organism could learn so many different computations without
requiring innate content on a cognitive level.

12 My inclination is that Putnam’s argument tells us primarily about the meaning of the word “meaning”
rather than anything substantive about the nature of mental representations (for a detailed cognitive view
along these lines in a different setting, see Piantadosi 2015). It is true that intuitively the meaning of a term
should include something about its referent; it is not clear that our intuitions about this word tell us anything
about how brains and minds actually work. In other words, Putnam may just be doing lexical semantics, a
branch of psychology, here—if his point is really about the physical/biological system of the brain, it would
be good to know what evidence can be presented that convincingly shows so.

@ Springer



46 S.T. Piantadosi

A corollary is that LCL theories can coherently formalize a notion of conceptual
change, and that the processes of novel conceptual creation are inherently linked to the
creation of systems of concepts, following Laurence and Margolis (2002) and Block
(1987). One key question motivating this work is how learning could work if children
lack knowledge of key computational domains like logic, number, or quantification.
The idea that mental representations are like programs has an implicit assumption
that the primitives of these programs are the genetic endowment that humans are born
with.

LCL shows one way in which this metaphor can be revised to include the possibil-
ity that such fundamental logical abilities are not innate, but built through experience.
Learners could come with an ability to execute only underlying dynamical operations
like s&k, thus possessing a system for potentially building theories and representa-
tions. In terms of cognitive content, this system would be a blank slate. Knowledge
of s&k is not cognitive because they correspond to dynamical operations below the
level of symbols, algorithms, and structures. As such, this work provides a represen-
tational foundation upon which one might construct a rational constructivist theory of
development (Kushnir and Xu 2012; Xu 2019).

8 Conclusion: Towards a Synthesis

Cognitive science enjoys an embarrassment of riches. There are many seemingly
incompatible approaches to understanding cognitive processes and no consensus view
on which is right or even how they relate to each other. The major debates seem to be
in large part disagreements of which metaphor is right for thinking about the brain.
These debates have made two things clear: none of our metaphors are yet sufficient,
and none of them is completely misguided. Cognitive systems are dynamical systems;
they give rise to structured manipulation of symbols; they also are implemented in
physical/biological systems whose dynamics are determined far below the level of
mental algorithms. Our learning supports inference of broad classes of computations,
yet clearly we have something built in that differs from other animals. The LCL can
be thought of as a new metaphor—a sub-meaningful symbolic-dynamical system that
gives rise straightforwardly to the types of structures, representations, and algorithms
that permeate cognitive science, and that is implementable directly in neural architec-
tures. In spanning these levels, it avoids dodging questions about meaning.

If anything like the resulting theory is correct, there are important consequences for
theories of conceptual change as the LOT. Conceptual change from a strikingly mini-
mal basis to arbitrarily systems of knowledge is possible if learners come with built-in
dynamical objects and learning mechanisms. Theories of learning need not assume any
cognitive content in principle, not even the basics of familiar computational systems,
like logic and number. The key is in formalizing a theory of the meaning of mental
content; if CRS is chosen, it permits construction of these systems of knowledge from
much less. The framework I have described follows the LOT in positing a structured,
internal language for mentalese. But it differs from most instantiations of the LOT in
that the primitives of the language aren’t cognitive at all. sk formalize the underlying
neural (sub-cognitive) dynamics and it is only in virtue how structures built of these

@ Springer



The Computational Origin of Representation 47

dynamics interact that meaningful systems of thought can arise. Thus, the idea of a
formal language for thinking was right; the idea that the language has primitives with
intrinsic meaning—beyond their dynamics—was not.

A trope in cognitive science is that we need more constraints in order to narrow
the space of possible theories. Each subfield chooses its own—architectural, rational,
neural, computational etc. One idea that broading our view to consider LCL systems
raises is that wanting more constraints might be premature. Additional constraints
are useful when the pool of theories is too large and must be culled. But it might be
the case that we have too few theories in circulation, in that none of our approaches
satisfactorily and simultaneously handle all that we know about cognitive processes—
meaning, reference, computation, structure, etc. In this case, our search might benefit
from expanding its set of metaphors—fewer constraints—to consider new kinds of
formal systems as possible cognitive theories. And in the case of LCL, useful kinds
of theories have been developed in mathematical logic that might provide a good
foundation for cognition. But of course, LCL is just one attempt, with clear strengths
and clear weaknesses.

Perhaps the single greatest strength is that it unifies a variety of ideas in cognition.
None of the formal machinery used here is original to this paper—all of it comes from
allied fields. The motivating ideas then conspire to create a theory that is extraordinarily
simple: a few elementary operations on trees are composed productively, giving rise
to a huge variety of possible cognitive structures and operations—and computational
richness that distinguishes human-like thinking. This paper made assumptions to show
how a system could actually work, but the general theory is not about any particular
logical system, representational formalism, or cognitive architecture. Instead, I have
tried to present a system which captures some general properties of thought. This
system suggests that mental representations, whatever they happen to be, will be like
church encoding in combinatory logic in a few key ways.

Acknowledgements I am extremely grateful to Goker Erdogan, Tomer Ullman, Hayley Clatterbuck, Shi-
mon Edelman, and Ernest Davis for providing detailed comments and suggesting improvements on an earlier
draft of this work. Josh Rule contributed greatly to this work by providing detailed comments on an early
draft, important discussion, and important improvements to Churiso’s implementation. Noah Goodman,
Josh Tenenbaum, Chris Bates, Matt Overlan, Celeste Kidd, and members of the computation and language
lab and kidd lab provided useful discussions relevant to these ideas. Research reported in this publication
was supported by the Eunice Kennedy Shriver National Institute of Child Health & Human Development
of the National Institutes of Health under award number RO1HD085996-01 and award 2000759 from the
National Science Foundation, Division of Research on Learning. The content is solely the responsibility of
the authors and does not necessarily represent the official views of the National Institutes of Health. The
author is also grateful to support from the network grant provided by the James S. McDonnell Foundation
to S. Carey, “The Nature and Origins of the Human Capacity for Abstract Combinatorial Thought.”

A Appendix A: Sketch of Universality
It may not be obvious that any statement about the relation between objects can be

encoded into an LCL system. Here, I sketch a simple proof that this is possible when
we are allowed to define what function composition means. My focus is on the high-

@ Springer



48 S.T. Piantadosi

level logic of the proof while attempting to minimize the amount of notation required.
Let’s suppose that we are given an arbitrary base fact like,

(a (b x)) = (c (d e £))

We may re-write this into binary constraints, with a single variable on the left and a
single function application on the right, by introducing “dummy” variables p1, 2, etc:

(d e) — D1 ; right hand term is D1-D3

(D1 f) — D2

(c D2) — D3 ; D3 enforces the equality between the sides
(b x) — D4 ; left hand term is D3-D4

(a D4) — D3

This is akin to Chomsky normal form for a context-free grammar.

The challenge then is to find a mapping from symbols to combinators that satisfies
these expressions. A difficulty to note is that some variables, like b1, may appear
on the left and the right, meaning that their combinator structure must be the output
of a function (appearing on the left) as well as a function that itself does something
useful (on the right). To address this, the proof sketch here will assume that we are
allowed to define the way functions are applied. For instance, instead of requiring
(d e) — D1, we will replace the function application (d e) with our own custom one,
(evaluate d e). Whenevaluate = 1, we are left with ordinary function application.
I do not determine here if requiring evaluate=I permits universal isomorphism. But
we can show that if we are free to choose evaluate, we can satisfy any constraints.

With this change, we can re-write our base facts as,

(evaluate d e) —» D1 ; right hand term is D1-D3

(evaluate D1 f)— D2

(evaluate c D2) — D3 ; D3 enforces the equality between
—>the sides

(evaluate b x) — D4 ; left hand term is D3-D4

(evaluate a D4)— D3

With this addition, we can take each of the symbols (a b ¢ d e £ x and D1 D2 D3
< p4) and give them each an integer with Church encoding. Standard schemes for
this can be found in Pierce (2002). Integers in Church encoding also support addition,
subtraction, and multiplication. We may therefore view these facts as a set of integer-
values, where evaluate is a function from two (integer) arguments to a single (integer)
outcome:

(evaluate 4 5) — 8 ; (evaluate d e)
(evaluate 8 6) — 9 ; (evaluate D1 f)
(evaluate 3 9) — 10 ; (evaluate ¢ D2)
(evaluate 2 7) — 11 ; | yluate b x)
(evaluate 1 11) — 10; (evaluate a D4

Note that at this point we may check if the facts are logically consistent—they may
not state, for instance, that (f x y) — z, (f x y) = w, and z # w.

Assuming consistency, we may then explicitly encode the facts by setting evaluate
to be a polynomial which encodes these facts. To see how this is possible, suppose we
have constraints

(evaluate o1 B1) — 7N

@ Springer



The Computational Origin of Representation 49

(evaluate ay Br) — »m
(evaluate a3 B3) — 13

It is well-known that in one dimension, any set of x, y points can be approximated
by a polynomial. The same holds for two dimensions, with a variety of available
techniques. This means that we can set evaluate to be the combinator that implements
the polynomial mapping each «;, §; to y; with the desired accuracy.

An alternative to 2D polynomials is to use Godel numbering to convert the two-
dimensional problem to a one-dimensional one. If evaluate first converts its arguments
to a single integer, for instance 2% 3%, then the problem of finding the right polynomial
reduces to a one-dimensional interpolation problem. Explicit solutions then exist, such
as this version of Lagrange’s solution to the general problem,

n ~ B
29 3,3, — 2%m 3/3/;1
(evaruace o 8= 3" v; [ Soag—sarin @
J:l l<m<k

m#j

To check this, note that when i = j, the fractions inside the product cancel and the
coefficient for y; becomes 1. However, wheni # j, then there will be some numerator
term which is zero, canceling out all of the other y;,. Together, these give the output
of evaluate as y; when given «; and y; as input.

Note that this construction does not guarantee sensible generalizations when run-
ning evaluate on new symbols. The specific patterns of generalization will depend
on how symbols are mapped to integers, but more problematically, polynomial inter-
polation famously exhibits chaotic or wild behavior on points other than those that are
fixed, a fact known as Runge’s phenomenon (Runge 1901). As a result, the polynomial
mapping should be taken only as an existence proof that some mapping of combinators
will be able to satisfy the base facts, or the combinatory logic can in principle encode
any isomorphism when we define function application with evaluate.

References

Abe, H., & Lee, D. (2011). Distributed coding of actual and hypothetical outcomes in the orbital and
dorsolateral prefrontal cortex. Neuron, 70(4), 731-741.

Abelson, H., & Sussman, G. (1996). Structure and interpretation of computer programs. Cambridge, MA:
MIT Press.

Amalric, M., Wang, L., Pica, P.,, Figueira, S., Sigman, M., & Dehaene, S. (2017). The language of geometry:
Fast comprehension of geometrical primitives and rules in human adults and preschoolers. PLoS
Computational Biology, 13(1), e1005273.

Anderson, J. R. (1978). Arguments concerning representations for mental imagery. Psychological Review,
85(4), 249.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004). An integrated theory
of the mind. Psychological Review, 111(4), 1036.

Anderson, J. R., Matessa, M., & Lebiere, C. (1997). Act-1: A theory of higher level cognition and its relation
to visual attention. Human-Computer Interaction, 12(4), 439—462.

Aydede, M. (1997). Language of thought: The connectionist contribution. Minds and Machines, 7(1), 57—
101.

@ Springer



50 S.T. Piantadosi

Barsalou, L. W. (1999). Perceptions of perceptual symbols. Behavioral and Brain Sciences, 22(04), 637—
660.

Barsalou, L. W. (2008). Grounded cognition. Annual Review Psychology, 59, 617-645.

Barsalou, L. W. (2010). Grounded cognition: Past, present, and future. Topics in Cognitive Science, 2(4),
716-724.

Battaglia, P. W., Hamrick, J. B., & Tenenbaum, J. B. (2013). Simulation as an engine of physical scene
understanding. Proceedings of the National Academy of Sciences, 110(45), 18327-18332.

Beer, R. D. (2000). Dynamical approaches to cognitive science. Trends in Cognitive Sciences, 4(3), 91-99.

Bennett, C. H. (1995). Logical depth and physical complexity. The Universal Turing Machine A Half-
Century Survey, pp 207-235.

Berkeley, G. (1709). An essay towards a new theory of vision.

Blackburn, P., & Bos, J. (2005). Representation and inference for natural language: A first course in com-
putational semantics. Center for the Study of Language and Information.

Block, N. (1987). Advertisement for a semantics for psychology. Midwest Studies in Philosophy, 10(1),
615-678.

Block, N. (1997). Semantics, conceptual role. The Routledge Encylopedia of Philosophy.

Bonawitz, E. B., van Schijndel, T. J., Friel, D., & Schulz, L. (2012). Children balance theories and evidence
in exploration, explanation, and learning. Cognitive Psychology, 64(4), 215-234.

Bongard, M. M. (1970). Pattern Recognition. New York: Hayden Book Co.

Boole, G. (1854). An investigation of the laws of thought: On which are founded the mathematical theories
of logic and probabilities. London, UK: Walton and Maberly.

Bowman, S. R., Manning, C. D., & Potts, C. (2015). Tree-structured composition in neural networks without
tree-structured architectures. arXiv preprint arXiv:1506.04834.

Bowman, S. R., Potts, C., & Manning, C. D. (2014a). Learning distributed word representations for natural
logic reasoning. arXiv preprint arXiv:1410.4176.

Bowman, S. R., Potts, C., & Manning, C. D. (2014b). Recursive neural networks can learn logical semantics.
arXiv preprint arXiv:1406.1827.

Bratko, I. (2001). Prolog programming for artificial intelligence. New York: Pearson.

Brigandt, I. (2004). Conceptual role semantics, the theory theory, and conceptual change.

Bubic, A., Von Cramon, D. Y., & Schubotz, R. I. (2010). Prediction, cognition and the brain. Frontiers in
Human Neuroscience, 4, 25.

Cardone, F., & Hindley, J. R. (2006). History of lambda-calculus and combinatory logic. Handbook of the
History of Logic, 5, 723-817.

Carey, S. (1985). Conceptual change in childhood.

Carey, S. (2009). The Origin of Concepts. Oxford: Oxford University Press.

Carey, S. (2015). Why theories of concepts should not ignore the problem of acquisition. Disputation:
International Journal of Philosophy., 7, 41.

Chalmers, D. (1990). Why fodor and pylyshyn were wrong: The simplest refutation. In: Proceedings of the
twelfth annual conference of the cognitive science society, Cambridge, mass (pp. 340-347).

Chalmers, D. J. (1992). Subsymbolic computation and the chinese room. The symbolic and connectionist
paradigms: Closing the gap, (pp. 25-48).

Chalmers, D. J. (1994). On implementing a computation. Minds and Machines, 4(4), 391-402.

Chalmers, D. J. (1996). Does a rock implement every finite-state automaton? Synthese, 108(3), 309-333.

Chater, N., & Oaksford, M. (1990). Autonomy, implementation and cognitive architecture: A reply to fodor
and pylyshyn. Cognition, 34(1), 93-107.

Chater, N., & Oaksford, M. (2013). Programs as causal models: Speculations on mental programs and
mental representation. Cognitive Science, 37(6), 1171-1191.

Chater, N., & Vitanyi, P. (2003). Simplicity: A unifying principle in cognitive science? Trends in Cognitive
Sciences, 7(1), 19-22.

Chater, N., & Vitdnyi, P. (2007). Ideal learning of natural language: Positive results about learning from
positive evidence. Journal of Mathematical Psychology, 51(3), 135-163.

Chomsky, N. (1956). Three models for the description of language. IRE Transactions on Information Theory,
2(3), 113-124.

Chomsky, N. (1957). Syntactic Structures. The Hague: Mouton.

Church, A. (1936). An unsolvable problem of elementary number theory. American Journal of Mathematics,
58(2), 345-363.

@ Springer


http://arxiv.org/abs/1506.04834
http://arxiv.org/abs/1410.4176
http://arxiv.org/abs/1406.1827

The Computational Origin of Representation 51

Church, A., & Rosser, J. B. (1936). Some properties of conversion. Transactions of the American Mathe-
matical Society, 39(3), 472-482.

Clapp, L. (2012). Is even thought compositional? Philosophical Studies, 157(2), 299-322.

Conant, R., & Ashby, R. (1970). Every good regulator of a system must be a model of that systemt.
International Journal of Systems Science, 1(2), 89-97.

Costa Floréncio, C. (2002). Learning generalized quantifiers. In: M. Nissim (Ed.), Proceedings of the
ESSLLIO2 Student Session (pp. 31-40). University of Trento.

Craik, K. J. W. (1952). The nature of explanation (Vol. 445). CUP Archive.

Craik, K. J. W. (1967). The nature of explanation. CUP Archive.

Curry, H. B., & Feys, R. (1958). Combinatory logic, volume i of studies in logic and the foundations of
mathematics. Amsterdam: North-Holland.

Dale, R., & Spivey, M. J. (2005). From apples and oranges to symbolic dynamics: A framework for conciliat-
ing notions of cognitive representation. Journal of Experimental & Theoretical Artificial Intelligence,
17(4),317-342.

Davies, D., & Isard, S. D. (1972). Utterances as programs. Machine Intelligence, 7, 325-339.

Davis, E. (1990). Representations of commonsense knowledge. San Mateo, CA: Morgan Kaufmann Pub-
lishers Inc.

Davis, E., & Marcus, G. (2016). The scope and limits of simulation in automated reasoning. Artificial
Intelligence, 233, 60-72.

Davis, M., & Putnam, H. (1960). A computing procedure for quantification theory. Journal of the ACM
(JACM), 7(3), 201-215.

Depeweg, S., Rothkopf, C. A., & Jikel, F. (2018). Solving bongard problems with a visual language and
pragmatic reasoning. arXiv preprint arXiv:1804.04452.

Ditto, W. L., Murali, K., & Sinha, S. (2008). Chaos computing: Ideas and implementations. Philosophical
Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences,
366(1865), 653-664.

Drews, C. (1993). The concept and definition of dominance in animal behaviour. Behaviour, 125(3), 283—
313.

Ebbinghaus, H.-D., & Flum, J. (2005). Finite model theory. New York: Springer.

Edelman, S. (2008a). On the nature of minds, or: Truth and consequences. Journal of Experimental and
Theoretical Al, 20, 181-196.

Edelman, S. (2008b). A swan, a pike, and a crawfish walk into a bar. Journal of Experimental & Theoretical
Artificial Intelligence, 20(3), 257-264.

Edelman, S., & Intrator, N. (2003). Towards structural systematicity in distributed, statically bound visual
representations. Cognitive Science, 27(1), 73—-109.

Edelman, S., & Shahbazi, R. (2012). Renewing the respect for similarity. Frontiers in Computational
Neuroscience, 6, 45.

Ediger, B. (2011). cl—a combinatory logic interpreter. http://www.stratigery.com/cl/.

Erdogan, G., Yildirim, I., & Jacobs, R. A. (2015). From sensory signals to modality-independent concep-
tual representations: A probabilistic language of thought approach. PLoS Computer Biology, 11(11),
¢1004610.

Falkenhainer, B., Forbus, K. D., & Gentner, D. (1986). The structure-mapping engine. Department of
Computer Science, University of Illinois at Urbana-Champaign.

Feldman, J. (2000). Minimization of Boolean complexity in human concept learning. Nature, 407(6804),
630-633.

Feldman, J. (2003a). Simplicity and complexity in human concept learning. The General Psychologist,
38(1), 9-15.

Feldman, J. (2003b). The simplicity principle in human concept learning. Current Directions in Psycholog-
ical Science, 12(6), 227.

Feldman, J. (2012). Symbolic representation of probabilistic worlds. Cognition, 123(1), 61-83.

Field, H. (2016). Science without numbers. Oxford: Oxford University Press.

Field, H. H. (1977). Logic, meaning, and conceptual role. The Journal of Philosophy, 74(7), 379-409.

Fitch, W. T. (2014). Toward a computational framework for cognitive biology: Unifying approaches from
cognitive neuroscience and comparative cognition. Physics of Life Reviews, 11(3), 329-364.

Fodor, J. (1975). The language of thought. Cambridge, MA: Harvard University Press.

Fodor, J. (1997). Connectionism and the problem of systematicity (continued): Why smolensky’s solution
still doesn’t work. Cognition, 62(1), 109-119.

@ Springer


http://arxiv.org/abs/1804.04452
http://www.stratigery.com/cl/

52 S.T. Piantadosi

Fodor, J. (2008). LOT 2: The language of thought revisited. Oxford: Oxford University Press.

Fodor, J., & Lepore, E. (1992). Holism: A shopper’s guide.

Fodor, J., & McLaughlin, B. P. (1990). Connectionism and the problem of systematicity: Why Smolensky’s
solution doesn’t work. Cognition, 35(2), 183-204.

Fodor, J., & Pylyshyn, Z. (1988). Connectionism and cognitive architecture: a critical analysis, Connections
and symbols. Cognition, 28, 3-71.

Fodor, J., & Pylyshyn, Z. W. (2014). Minds without meanings: An essay on the content of concepts. New
York: MIT Press.

Frege, G. (1892). Uber sinn und bedeutung. Wittgenstein Studien, I, 1.

French, R. M. (2002). The computational modeling of analogy-making. Trends in Cognitive Sciences, 6(5),
200-205.

Gallistel, C., & King, A. (2009). Memory and the computational brain. New York: Wiley Blackwell.

Gallistel, C. R. (1998). Symbolic processes in the brain: The case of insect navigation. An Invitation to
Cognitive Science, 4, 1-51.

Gardner, M., Talukdar, P., & Mitchell, T. (2015). Combining vector space embeddings with symbolic logical
inference over open-domain text. In 2015 aaai spring symposium series (Vol. 6, p. 1).

Gayler, R. W. (2004). Vector symbolic architectures answer jackendoff’s challenges for cognitive neuro-
science. arXiv preprint arXiv:cs/0412059.

Gayler, R. W. (2006). Vector symbolic architectures are a viable alternative for Jackendoff’s challenges.
Behavioral and Brain Sciences, 29(01), 78-79.

Gelman, S. A., & Markman, E. M. (1986). Categories and induction in young children. Cognition, 23(3),
183-2009.

Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Science, 7(2),
155-170.

Gentner, D., & Forbus, K. D. (2011). Computational models of analogy. Wiley interdisciplinary reviews:
cognitive science, 2(3), 266-276.

Gentner, D., & Markman, A. B. (1997). Structure mapping in analogy and similarity. American Psychologist,
52(1), 45.

Gentner, D., & Stevens, A. L. (1983). Mental models.

Gertler, B. (2012). Understanding the internalism—externalism debate: What is the boundary of the thinker?
Philosophical Perspectives, 26(1), 51-75.

Gierasimczuk, N. (2007). The problem of learning the semantics of quantifiers. In Logic, Language, and
Computation, pp. 117-126.

Goldman, A. L. (2006). Simulating minds: The philosophy, psychology, and neuroscience of mindreading.
Oxford: Oxford University Press.

Goodman, N., Mansinghka, V., Roy, D., Bonawitz, K., & Tenenbaum, J. (2008a). Church: A language for
generative models. In Proceedings of the 24th conference on uncertainty in artificial intelligence, uai
2008 (pp. 220-229).

Goodman, N., Tenenbaum, J., Feldman, J., & Griffiths, T. (2008b). A Rational Analysis of Rule-Based
Concept Learning. Cognitive Science, 32(1), 108—154.

Goodman, N. D. (1972). A simplification of combinatory logic. The Journal of Symbolic Logic, 37(02),
225-246.

Goodman, N. D., Tenenbaum, J. B., & Gerstenberg, T. (2015). Concepts in a probabilistic language of
thought. In: Margolis & Lawrence (Eds.), The conceptual mind: New directions in the study of con-
cepts. MIT Press: New York.

Goodman, N. D., Ullman, T. D., & Tenenbaum, J. B. (2011). Learning a theory of causality. Psychological
Review, 118(1), 110.

Gopnik, A., & Meltzoff, A. N. (1997). Words, thoughts, and theories. New York: Mit Press.

Gopnik, A., & Wellman, H. M. (2012). Reconstructing constructivism: Causal models, bayesian learning
mechanisms, and the theory theory. Psychological Bulletin, 138(6), 1085.

Gordon, R. M. (1986). Folk psychology as simulation. Mind & Language, 1(2), 158-171.

Graves, A., Wayne, G., & Danihelka, I. (2014). Neural turing machines. arXiv preprint arXiv:1410.5401.

Greenberg, M., & Harman, G. (2005). Conceptual role semantics.

Grefenstette, E. (2013). Towards a formal distributional semantics: Simulating logical calculi with tensors.
arXiv preprint arXiv:1304.5823.

Griffiths, T., Chater, N., Kemp, C., Perfors, A., & Tenenbaum, J. (2010). Probabilistic models of cognition:
exploring representations and inductive biases. Trends Cogn. Sci, 14(10.1016).

@ Springer


http://arxiv.org/abs/cs/0412059
http://arxiv.org/abs/1410.5401
http://arxiv.org/abs/1304.5823

The Computational Origin of Representation 53

Grosenick, L., Clement, T. S., & Fernald, R. D. (2007). Fish can infer social rank by observation alone.
Nature, 445(7126), 429-432.

Grover, A., Zweig, A., & Ermon, S. (2019). Graphite: Iterative generative modeling of graphs. In Interna-
tional conference on machine learning (pp. 2434-2444).

Griinwald, P. D. (2007). The minimum description length principle. New York: MIT press.

Hadley, R. F. (2009). The problem of rapid variable creation. Neural Computation, 21(2), 510-532.

Harman, G. (1987). (Non-solipsistic) Conceptual Role Semantics. In E. Lepore (Ed.), New directions in
semantics. London: Academic Press.

Harnad, S. (1990). The symbol grounding problem. Physica D: Nonlinear Phenomena, 42(1-3), 335-346.

Hauser, M. D., Chomsky, N., & Fitch, W. T. (2002). The faculty of language: What is it, who has it, and
how did it evolve? Science, 298(5598), 1569-1579.

Hegarty, M. (2004). Mechanical reasoning by mental simulation. Trends in Cognitive Sciences, 8(6), 280—
285.

Heim, 1., & Kratzer, A. (1998). Semantics in generative grammar. Malden, MA: Wiley-Blackwell.

Hindley, J., & Seldin, J. (1986). Introduction to combinators and A-calculus. Cambridge, UK: Press Syn-
dicate of the University of Cambridge.

Hoffman, D. D., Singh, M., & Prakash, C. (2015). The interface theory of perception. Psychonomic Bulletin
& Review, 22(6), 1480-1506.

Hofstadter, D. R. (1980). Godel Escher Bach. New Society.

Hofstadter, D. R. (1985). Waking up from the boolean dream. Metamagical Themas, (pp. 631-665).

Hofstadter, D. R. (2008). I am a strange loop. Basic books.

Hopcroft, J., Motwani, R., & Ullman, J. (1979). Introduction to automata theory, languages, and computa-
tion (Vol. 3). Reading, MA: Addison-Wesley.

Horsman, C., Stepney, S., Wagner, R. C., & Kendon, V. (2014). When does a physical system compute? In
Proc. 1. soc. a (Vol. 470, p. 20140182).

Hsu, A., & Chater, N. (2010). The logical problem of language acquisition: A probabilistic perspective.
Cognitive Science, 34(6), 972-1016.

Hsu, A., Chater, N., & Vitanyi, P. (2011). The probabilistic analysis of language acquisition: Theoretical,
computational, and experimental analysis. Cognition, 120(3), 380-390.

Hummel, J. E., & Holyoak, K. J. (1997). Distributed representations of structure: A theory of analogical
access and mapping. Psychological Review, 104(3), 427.

Hutter, M. (2005). Universal artificial intelligence: Sequential decisions based on algorithmic probability.
New York: Springer.

Jackendoff, R. (2002). Foundation of language-brain, meaning, grammar, evolution. Oxford: Oxford Uni-
versity Press.

Jacobson, P. (1999). Towards a variable-free semantics. Linguistics and Philosophy, 22(2), 117-185.

Jaeger, H. (1999). From continuous dynamics to symbols. In Dynamics, synergetics, autonomous agents:
Nonlinear systems approaches to cognitive psychology and cognitive science (pp. 29-48). World
Scientific.

Jay, B., & Given-Wilson, T. (2011). A combinatory account of internal structure. The Journal of Symbolic
Logic, 76(03), 807-826.

Jay, B., & Kesner, D. (2006). Pure pattern calculus. In Programming languages and systems (pp. 100-114).
Springer.

Jay, B., & Vergara, J. (2014). Confusion in the church-turing thesis. arXiv preprint arXiv:1410.7103.

Johnson, K. E. (2004). On the systematicity of language and thought. Journal of Philosophy, CI, 111-139.

Johnson-Laird, P. N. (1977). Procedural semantics. Cognition, 5(3), 189-214.

Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science of language, inference, and
consciousness (No 6). New York: Harvard University Press.

Katz, Y., Goodman, N., Kersting, K., Kemp, C., & Tenenbaum, J. (2008). Modeling semantic cognition as
logical dimensionality reduction. In Proceedings of Thirtieth Annual Meeting of the Cognitive Science
Society.

Kearns, J. T. (1969). Combinatory logic with discriminators. The Journal of Symbolic Logic, 34(4),561-575.

Kemp, C. (2012). Exploring the conceptual universe. Psychological Review, 119, 685-722.

Kemp, C., & Tenenbaum, J. (2008). The discovery of structural form. Proceedings of the National Academy
of Sciences, 105(31), 10687.

Kemp, C., Tenenbaum, J. B., Griffiths, T. L., Yamada, T., & Ueda, N. (2006). Learning systems of concepts
with an infinite relational model. In Aaai (Vol. 3, p. 5).

@ Springer


http://arxiv.org/abs/1410.7103

54 S.T. Piantadosi

Kemp, C., Tenenbaum, J. B., Niyogi, S., & Griffiths, T. L. (2010). A probabilistic model of theory formation.
Cognition, 114(2), 165-196.

Kipf, T., Fetaya, E., Wang, K.-C., Welling, M., & Zemel, R. (2018). Neural relational inference for interacting
systems. In International conference on machine learning (icml).

Kipf, T., et al. (2020). Deep learning with graph-structured representations.

Koopman, P., Plasmeijer, R., & Jansen, J. M. (2014). Church encoding of data types considered harmful
for implementations.

Kushnir, T., & Xu, F. (2012). Rational constructivism in cognitive development (Vol. 43). New York:
Academic Press.

Kwiatkowski, T., Goldwater, S., Zettlemoyer, L., & Steedman, M. (2012). A probabilistic model of syntactic
and semantic acquisition from child-directed utterances and their meanings. In: Proceedings of the 13th
conference of the european chapter of the association for computational linguistics (pp. 234-244).

Kwiatkowski, T., Zettlemoyer, L., Goldwater, S., & Steedman, M. (2010). Inducing probabilistic ccg gram-
mars from logical form with higher-order unification. In: Proceedings of the 2010 conference on
empirical methods in natural language processing (pp. 1223-1233).

Lake, B. M., Salakhutdinov, R., & Tenenbaum, J. B. (2015). Human-level concept learning through proba-
bilistic program induction. Science, 350(6266), 1332-1338.

Laurence, S., & Margolis, E. (2002). Radical concept nativism. Cognition, 86(1), 25-55.

Lee, M. D. (2010). Emergent and structured cognition in bayesian models: comment on griffiths et al and
mcclelland et al. Update, 14, 8.

Levin, L. A. (1973). Universal sequential search problems. Problemy Peredachi Informatsii, 9(3), 115-116.

Levin, L. A. (1984). Randomness conservation inequalities; information and independence in mathematical
theories. Information and Control, 61(1), 15-37.

Levine, S., Finn, C., Darrell, T., & Abbeel, P. (2016). End-to-end training of deep visuomotor policies. The
Journal of Machine Learning Research, 17(1), 1334—-1373.

Li, F-F, Fergus, R., & Perona, P. (2006). One-shot learning of object categories. IEEE Transactions on
Pattern Analysis and Machine intelligence, 28(4), 594—611.

Li, M., & Vitanyi, P. (2008). An introduction to Kolmogorov complexity and its applications. New York:
Springer.

Liang, P, Jordan, M., & Klein, D. (2010). Learning Programs: A Hierarchical Bayesian Approach. In
Proceedings of the 27th International Conference on Machine Learning.

Libkin, L. (2013). Elements of finite model theory. New York: Springer.

Lind, D., & Marcus, B. (1995). An introduction to symbolic dynamics and coding. Cambridge: Cambridge
University Press.

Loar, B. (1982). Conceptual role and truth-conditions: comments on harman’s paper:”conceptual role seman-
tics”. Notre Dame Journal of Formal Logic, 23(3), 272-283.

Lu,Z., & Bassett, D. S. (2018). A parsimonious dynamical model for structural learning in the human brain.
arXiv preprint arXiv:1807.05214.

Mahon, B. Z. (2015). What is embodied about cognition? Language, Cognition and Neuroscience, 30(4),
420-429.

Marcus, G. F. (2003). The algebraic mind: Integrating connectionism and cognitive science. New York:
MIT press.

Margolis, E., & Laurence, S. (1999). Concepts: Core readings. New York: The MIT Press.

Markman, E. M. (1991). Categorization and naming in children: Problems of induction. New York: Mit
Press.

Marr, D. (1982). Vision: A computational investigation into the Human Representation and Processing of
Visual Information. London: W.H. Freeman & Company.

Marr, D., & Poggio, T. (1976). From understanding computation to understanding neural circuitry. MIT Al
Memo 357.

Martin, A. E., & Doumas, L. A. (2018). Predicate learning in neural systems: Discovering latent generative
structures. arXiv preprint arXiv:1810.01127.

Martinho, A., & Kacelnik, A. (2016). Ducklings imprint on the relational concept of “same or different”.
Science, 353(6296), 286-288.

McClelland, J. L., Botvinick, M. M., Noelle, D. C., Plaut, D. C., Rogers, T. T., Seidenberg, M. S., et al. (2010).
Letting structure emerge: Connectionist and dynamical systems approaches to cognition. Trends in
Cognitive Sciences, 14(8), 348-356.

@ Springer


http://arxiv.org/abs/1807.05214
http://arxiv.org/abs/1810.01127

The Computational Origin of Representation 55

McNamee, D., & Wolpert, D. M. (2019). Internal models in biological control. Annual Review of Control,
Robotics, and Autonomous Systems, 2(1), 339-364. https://doi.org/10.1146/annurev-control-060117-
105206.

Miller, G. A., & Johnson-Laird, P. N. (1976). Language and perception. New York: Belknap Press.

Mody, S., & Carey, S. (2016). The emergence of reasoning by the disjunctive syllogism in early childhood.
Cognition, 154, 40-48.

Mollica, F., & Piantadosi, S. T. (2015). Towards semantically rich and recursive word learning models. In
Proceedings of the Cognitive Science Society. http://colala.berkeley.edu/papers/mollica2015towards.
pdf

Montague, R. (1973). The Proper Treatment of Quantification in Ordinary English. Formal. Semantics, (pp
17-34).

Mostowski, M. (1998). Computational semantics for monadic quantifiers. Journal of Applied Nonclassical
Logics, 8, 107-122.

Murphy, G. L., & Medin, D. L. (1985). The role of theories in conceptual coherence. Psychological Review,
92(3), 289.

Neelakantan, A., Roth, B., & McCallum, A. (2015). Compositional vector space models for knowledge
base inference. In 2015 aaai spring symposium series.

Newell, A. (1994). Unified theories of cognition. Cambridge, MA: Harvard University Press.

Newell, A., & Simon, H. A. (1976). Computer science as empirical inquiry: Symbols and search. Commu-
nications of the ACM, 19(3), 113-126.

Nickel, M., & Kiela, D. (2017). Poincaré embeddings for learning hierarchical representations. In Advances
in Neural Information Processing Systems (pp. 6338—6347).

Nieuwenhuis, R., Oliveras, A., & Tinelli, C. (2006). Solving sat and sat modulo theories: From an abstract
davis-putnam-logemann-loveland procedure to dpll (t). Journal of the ACM (JACM), 53(6), 937-977.

Nilsson, N. J. (2009). The quest for artificial intelligence. Cambridge: Cambridge University Press.

Okasaki, C. (1999). Purely functional data structures. Cambridge: Cambridge University Press.

Osherson, D. N., Smith, E. E., Wilkie, O., Lopez, A., & Shafir, E. (1990). Category-based induction.
Psychological Review, 97(2), 185.

Overlan, M. C., Jacobs, R. A., & Piantadosi, S. T. (2016). A hierarchical probabilistic language-of-thought
model of human visual concept learning. In Proceedings of the Cognitive Science Society. http://colala.
berkeley.edu/papers/overlan2016hierarchical.pdf

Overlan, M. C., Jacobs, R. A., & Piantadosi, S. T. (2017). Learning abstract visual concepts via probabilistic
program induction in a language of thought. Cognition, 168, 320-334. http://colala.berkeley.edu/
papers/overlan2017learning.pdf

Penn, D. C., Holyoak, K. J., & Povinelli, D. J. (2008). Darwin’s mistake: Explaining the discontinuity
between human and nonhuman minds. Behavioral and Brain Sciences, 31(02), 109—-130.

Piantadosi, S. T. (2011). Learning and the language of thought. Unpublished doctoral dissertation, MIT.
Retrieved from http://colala.berkeley.edu/papers/piantadosi201 11earning.pdf

Piantadosi, S. T. (2015). Problems in the philosophy of mathematics: A view from cognitive science. In
E. Davis & P.J. Davis (Eds.), Mathematics, substance and surmise: Views on the meaning and ontology
of mathematics. Springer. http://colala.berkeley.edu/papers/piantadosi2015problems.pdf.

Piantadosi, S. T., & Jacobs, R. (2016). Four problems solved by the probabilistic Language of
Thought. Current Directions in Psychological Science, 25, 54-59. http://colala.berkeley.edu/papers/
piantadosi2016four.pdf.

Piantadosi, S. T., Tenenbaum, J., & Goodman, N. (2012). Bootstrapping in a language of thought: a formal
model of numerical concept learning. Cognition, 123, 199-217. http://colala.berkeley.edu/papers/
piantadosi2012bootstrapping.pdf.

Piantadosi, S. T., Tenenbaum, J., & Goodman, N. (2016). The logical primitives of thought: Empirical
foundations for compositional cognitive models. Psychological Review, 123, 392-424. http://colala.
berkeley.edu/papers/piantadosi2016logical.pdf.

Pierce, B. C. (2002). Types and programming languages. New York: MIT press.

Plate, T. A. (1995). Holographic reduced representations. IEEE transactions on Neural Networks, 6(3),
623-641.

Pollack, J. B. (1989). Implications of recursive distributed representations. In Advances in neural information
processing systems (pp. 527-536).

Pollack, J. B. (1990). Recursive distributed representations. Artificial Intelligence, 46(1), 77-105.

@ Springer


https://doi.org/10.1146/annurev-control-060117-105206
https://doi.org/10.1146/annurev-control-060117-105206
http://colala.berkeley.edu/papers/mollica2015towards.pdf
http://colala.berkeley.edu/papers/mollica2015towards.pdf
http://colala.berkeley.edu/papers/overlan2016hierarchical.pdf
http://colala.berkeley.edu/papers/overlan2016hierarchical.pdf
http://colala.berkeley.edu/papers/overlan2017learning.pdf
http://colala.berkeley.edu/papers/overlan2017learning.pdf
http://colala.berkeley.edu/papers/piantadosi2011learning.pdf
http://colala.berkeley.edu/papers/piantadosi2015problems.pdf
http://colala.berkeley.edu/papers/piantadosi2016four.pdf
http://colala.berkeley.edu/papers/piantadosi2016four.pdf
http://colala.berkeley.edu/papers/piantadosi2012bootstrapping.pdf
http://colala.berkeley.edu/papers/piantadosi2012bootstrapping.pdf
http://colala.berkeley.edu/papers/piantadosi2016logical.pdf
http://colala.berkeley.edu/papers/piantadosi2016logical.pdf

56 S.T. Piantadosi

Putnam, H. (1975). The meaing of meaning. In Philosophical Papers, Volume II: Mind, Language, and
Reality. Cambridge: Cambridge University Press.

Putnam, H. (1988). Representation and reality (Vol. 454). Cambridge: Cambridge Univ Press.

Pylyshyn, Z. W. (1973). What the mind’s eye tells the mind’s brain: A critique of mental imagery. Psycho-
logical Bulletin, 80(1), 1.

Quine, W. V. (1951). Main trends in recent philosophy: Two dogmas of empiricism. The philosophical
review (pp. 20-43).

Rips, L., Asmuth, J., & Bloomfield, A. (2006). Giving the boot to the bootstrap: How not to learn the natural
numbers. Cognition, 101, 51-60.

Rips, L., Asmuth, J., & Bloomfield, A. (2008a). Do children learn the integers by induction? Cognition,
106, 940-951.

Rips, L., Asmuth, J., & Bloomfield, A. (2013). Can statistical learning bootstrap the integers? Cognition,
128(3), 320-330.

Rips, L., Bloomfield, A., & Asmuth, J. (2008b). From numerical concepts to concepts of number. Behavioral
and Brain Sciences, 31, 623-642.

Rips, L. J. (1975). Inductive judgments about natural categories. Journal of Verbal Learning and Verbal
Behavior, 14(6), 665-681.

Rips, L. J. (1989). The psychology of knights and knaves. Cognition, 31(2), 85-116.

Rips, L. J. (1994). The psychology of proof: Deductive reasoning in human thinking. New York: Mit Press.

Rocktischel, T., Bosnjak, M., Singh, S., & Riedel, S. (2014). Low-dimensional embeddings of logic. In Ac/
workshop on semantic parsing.

Rogers, T., & McClelland, J. (2004). Semantic cognition: A parallel distributed processing approach.
Cambridge, MA: MIT Press.

Romano, S., Salles, A., Amalric, M., Dehaene, S., Sigman, M., & Figueira, S. (2018). Bayesian validation
of grammar productions for the language of thought. PLoS One, 2, 311.

Romano, S., Salles, A., Amalric, M., Dehaene, S., Sigman, M., & Figueria, S. (2017). Bayesian selection
of grammar productions for the language of thought. bioRxiv, 141358.

Rothe, A., Lake, B. M., & Gureckis, T. (2017). Question asking as program generation. In Advances in
neural information processing systems (pp. 1046—1055).

Rule, J. S., Tenenbaum, J. B., & Piantadosi, S. T. (2020). The child as hacker. Trends in Cognitive Sciences.

Rumelhart, D., & McClelland, J. (1986). Parallel distributed processing. Cambridge, MA: MIT Press.

Runge, C. (1901). Uber empirische funktionen und die interpolation zwischen #quidistanten ordinaten.
Zeitschrift fiir Mathematik und Physik, 46(224-243), 20.

Salakhutdinov, R., Tenenbaum, J., & Torralba, A. (2010). One-shot learning with a hierarchical nonpara-
metric bayesian model.

Schmidhuber, J. (1995). Discovering solutions with low kolmogorov complexity and high generalization
capability. In Machine learning proceedings 1995 (pp. 488—496). Elsevier.

Schmidhuber, J. (2002). The speed prior: a new simplicity measure yielding near-optimal computable
predictions. In International conference on computational learning theory (pp. 216-228).

Schmidhuber, J. (2007). Godel machines: Fully self-referential optimal universal self-improvers. In Artificial
general intelligence (pp. 199-226). Springer.

Scholten, D. (2010). A primer for Conant and Ashby’s good-regulator theorem [Unpublished].

Scholten, D. L. (2011). Every good key must be a model of the lock it opens.

Schonfinkel, M. (1967). On the building blocks of mathematical logic. From Frege to Godel (pp 355-366).

Searle, J. R. (1980). Minds, brains, and programs. Behavioral and Brain Sciences, 3(03), 417-424.

Searle, J. R. (1990). Is the brain a digital computer? In Proceedings and addresses of the american philo-
sophical association (Vol. 64, pp. 21-37).

Sellars, W. (1963). Science, perception, and reality.

Shalizi, C. R., & Crutchfield, J. P. (2001). Computational mechanics: Pattern and prediction, structure and
simplicity. Journal of Statistical Physics, 104(3-4), 817-879.

Shastri, L., Ajjanagadde, V., Bonatti, L., & Lange, T. (1996). From simple associations to systematic
reasoning: A connectionist representation of rules, variables, and dynamic bindings using temporal
synchrony. Behavioral and Brain Sciences, 19(2), 326-337.

Shepard, R. N., & Chipman, S. (1970). Second-order isomorphism of internal representations: Shapes of
states. Cognitive Psychology, 1(1), 1-17.

Shipley, E. F. (1993). Categories, hierarchies, and induction. The Psychology of Learning and Motivation,
30, 265-301.

@ Springer



The Computational Origin of Representation 57

Sinha, S., & Ditto, W. L. (1998). Dynamics based computation. Physical Review Letters, 81(10), 2156.

Siskind, J. (1996). A Computational Study of Cross-Situational Techniques for Learning Word-to-Meaning
Mappings. Cognition, 61, 31-91.

Sloutsky, V. M. (2010). From perceptual categories to concepts: What develops? Cognitive Science, 34(7),
1244-1286.

Smolensky, P. (1988). The constituent structure of connectionist mental states: A reply to fodor and pylyshyn.
The Southern Journal of Philosophy, 26(S1), 137-161.

Smolensky, P. (1989). Connectionism and constituent structure. Connectionism in perspective (pp. 3—-24).

Smolensky, P. (1990). Tensor product variable binding and the representation of symbolic structures in
connectionist systems. Artificial Intelligence, 46(1), 159-216.

Smolensky, P. (2012). Subsymbolic computation theory for the human intuitive processor. In Conference
on computability in europe (pp. 675-685).

Smolensky, P., Lee, M., He, X., Yih, W.-t., Gao, J., & Deng, L. (2016). Basic reasoning with tensor product
representations. arXiv preprint arXiv:1601.02745.

Smolensky, P., & Legendre, G. (2006). The Harmonic Mind. Cambridge, MA: MIT Press.

Solomonoff, R. J. (1964a). A formal theory of inductive inference. Part I. Information and Control, 7(1),
1-22.

Solomonoff, R. J. (1964b). A formal theory of inductive inference: Part II. Information and Control, 7(2),
224-254.

Spivey, M. (2008). The continuity of mind. Oxford: Oxford University Press.

Stay, M. (2005). Very simple chaitin machines for concrete ait. Fundamenta Informaticae, 68(3), 231-247.

Steedman, M. (2001). The syntactic process. Cambridge MA: MIT Press.

Steedman, M. (2002). Plans, affordances, and combinatory grammar. Linguistics and Philosophy, 25(5-6),
723-753.

Stone, T., & Davies, M. (1996). The mental simulation debate: A progress report. Theories of theories of
mind (pp. 119-137).

Tabor, W. (2009). A dynamical systems perspective on the relationship between symbolic and non-symbolic
computation. Cognitive Neurodynamics, 3(4), 415-427.

Tabor, W. (2011). Recursion and recursion-like structure in ensembles of neural elements. In Unifying
themes in complex systems. proceedings of the viii international conference on complex systems (pp.
1494-1508).

Tabor, W., Juliano, C., & Tanenhaus, M. K. (1997). Parsing in a dynamical system: An attractor-based
account of the interaction of lexical and structural constraints in sentence processing. Language and
Cognitive Processes, 12(2-3), 211-271.

Tenenbaum, J., Kemp, C., Griffiths, T., & Goodman, N. (2011). How to grow a mind: Statistics, structure,
and abstraction. Science, 331(6022), 1279—-1285.

Tenenbaum, J. B., Griffiths, T. L., & Kemp, C. (2006). Theory-based bayesian models of inductive learning
and reasoning. Trends in Cognitive Sciences, 10(7), 309-318.

Tenenbaum, J. B., Kemp, C., & Shafto, P. (2007). Theory-based bayesian models of inductive reasoning.
Inductive reasoning: Experimental, developmental, and computational approaches (pp. 167-204).

Tiede, H. (1999). Identifiability in the limit of context-free generalized quantifiers. Journal of Language
and Computation, 1(1), 93-102.

Touretzky, D. S. (1990). Boltzcons: Dynamic symbol structures in a connectionist network. Artificial Intel-
ligence, 46(1), 5-46.

Trask, A., Hill, F,, Reed, S. E., Rae, J., Dyer, C., & Blunsom, P. (2018). Neural arithmetic logic units. In
Advances in neural information processing systems (pp. 8035-8044).

Tromp, J. (2007). Binary lambda calculus and combinatory logic. Randomness and Complexity, from Leibniz
to Chaitin, 237-260.

Turing, A. M. (1937). Computability and A-definability. The Journal of Symbolic Logic, 2(04), 153-163.

Ullman, T., Goodman, N., & Tenenbaum, J. (2012). Theory learning as stochastic search in the language
of thought. Cognitive Development.

van Benthem, J. (1984). Semantic automata. In J. Groenendijk, D. d. Jongh, & M. Stokhof (Eds.), Studies in
discourse representation theory and the theory of generalized quantifiers. Dordrecht, The Netherlands:
Foris Publications Holland.

Van Der Velde, F., & De Kamps, M. (2006). Neural blackboard architectures of combinatorial structures in
cognition. Behavioral and Brain Sciences, 29(01), 37-70.

@ Springer


http://arxiv.org/abs/1601.02745

58 S.T. Piantadosi

Van Gelder, T. (1990). Compositionality: A connectionist variation on a classical theme. Cognitive Science,
14(3), 355-384.

Van Gelder, T. (1995). What might cognition be, if not computation? The Journal of Philosophy, 92(7),
345-381.

Van Gelder, T. (1998). The dynamical hypothesis in cognitive science. Behavioral and brain sciences,
21(05), 615-628.

Wagner, E. G. (1969). Uniformly reflexive structures: on the nature of godelizations and relative com-
putability. Transactions of the American Mathematical Society, 144, 1-41.

Watter, M., Springenberg, J., Boedecker, J., & Riedmiller, M. (2015). Embed to control: A locally linear
latent dynamics model for control from raw images. In Advances in neural information processing
systems (pp. 2746-2754).

Wellman, H. M., & Gelman, S. A. (1992). Cognitive development: Foundational theories of core domains.
Annual Review of Psychology, 43(1), 337-375.

Whiting, D. (2006). Conceptual role semantics.

Wisniewski, E.J., & Medin, D. L. (1994). On the interaction of theory and data in concept learning. Cognitive
Science, 18(2), 221-281.

Wolfram, S. (2002). A new kind of science (Vol. 1). Wolfram Media Champaign, IL.

Wong, Y. W., & Mooney, R. J. (2007). Learning synchronous grammars for semantic parsing with lambda
calculus. In Annual meeting-association for computational linguistics (Vol. 45, p. 960).

Woods, W. A. (1968). Procedural semantics for a question-answering machine. In Proceedings of the
December 9-11, 1968, fall joint computer conference, part I (pp. 457-471).

Woods, W. A. (1981). Procedural semantics as a theory of meaning. (Tech. Rep.). DTIC Document.

Xu, F. (2019). Towards a rational constructivist theory of cognitive development. Psychological Review,
126(6), 841.

Xu, F., & Tenenbaum, J. (2007). Word learning as Bayesian inference. Psychological Review, 114(2),
245-272.

Yildirim, I., & Jacobs, R. A. (2012). A rational analysis of the acquisition of multisensory representations.
Cognitive Science, 36(2), 305-332.

Yildirim, I., & Jacobs, R. A. (2013). Transfer of object category knowledge across visual and haptic modal-
ities: Experimental and computational studies. Cognition, 126(2), 135-148.

Yildirim, I., & Jacobs, R. A. (2014). Learning multisensory representations for auditory-visual transfer of
sequence category knowledge: a probabilistic language of thought approach. Psychonomic bulletin &
review (pp. 1-14).

Zettlemoyer, L. S., & Collins, M. (2005). Learning to Map Sentences to Logical Form: Structured Classi-
fication with Probabilistic Categorial Grammars. In UAI (pp. 658—666).

Zhang, Z., Cui, P.,, & Zhu, W. (2020). Deep learning on graphs: A survey. I[EEE Transactions on Knowledge
and Data Engineering.

Zylberberg, A., Dehaene, S., Roelfsema, P. R., & Sigman, M. (2011). The human turing machine: A neural
framework for mental programs. Trends in Cognitive Sciences, 15(7), 293-300.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer



	The Computational Origin of Representation
	Abstract
	1 Introduction
	1.1 Representation in the Language of Thought
	1.2 Meaning Through Conceptual Role
	1.3 Isomorphism and Representation
	1.4 The General Theory

	2 Combinatory Logic as a Language for Universal Isomorphism
	2.1 A Very Brief Introduction to Combinatory Logic
	2.2 Church Encoding
	2.3 An Inferential Theory from the Probabilistic LOT
	2.4 Details of the Implementation

	3 Applications to Cognitive Domains
	3.1 Representation
	3.2 Generalization
	3.3 Computational Process
	3.4 Formal Languages
	3.5 Summary of Computational Results

	4 Mental Representations are like Combinatory Logic (LCL)
	4.1 LCL Theories have no Cognitive Primitives
	4.2 LCL Theories are Turing-Complete
	4.3 LCL Theories are Compositional
	4.4 LCL Theories are Structured
	4.5 LCL Theories Handle Abstraction and Variables
	4.6 LCL Theories Permit Construction of Systems of Knowledge
	4.7 LCL Theories Come from a Simple Basis
	4.8 LCL Theories are Dynamical
	4.9 LCL Meanings are Sub-symbolic and Emergent
	4.10 LCL Theories are Parallelizable
	4.11 LCL Theories Eagerly Find Patterns and Use them in Generalization
	4.12 LCL Theories Supports Deduction and Simulation
	4.13 LCL Theories Support Learning
	4.14 Features of the Implementation Which are underlinenot Part of the General LCL Theory

	5 Towards a Connectionist Implementation
	6 Remaining Gaps to be Filled
	6.1 LCL and the Interfaces
	6.2 Extensions in Logic
	6.3 The Architecture Itself

	7 General Discussion
	7.1 Isomorphism and Representation
	7.2 Critiques of CRS
	7.3 The Origin of Novelty and Conceptual Change

	8 Conclusion: Towards a Synthesis
	Acknowledgements
	A Appendix A: Sketch of Universality
	References





