
Pervasive and Mobile Computing 70 (2021) 101283

a

b

f
c
t

Contents lists available at ScienceDirect

Pervasive andMobile Computing

journal homepage: www.elsevier.com/locate/pmc

Spatio-temporal AI inference engine for estimating hard disk
reliability
Sanchita Basak a,∗, Saptarshi Sengupta a, Shi-Jie Wen b, Abhishek Dubey a

Vanderbilt University, Department of EECS, Nashville, TN, USA
Cisco, San Jose, CA, USA

a r t i c l e i n f o

Article history:
Received 13 February 2020
Received in revised form 15 July 2020
Accepted 22 October 2020
Available online 9 November 2020

Keywords:
Remaining useful life
Long short term memory
Prognostics
Predictive health maintenance
Hierarchical clustering

a b s t r a c t

This paper focuses on building a spatio-temporal AI inference engine for estimating
hard disk reliability. Most electronic systems such as hard disks routinely collect such
reliability parameters in the field to monitor the health of the system. Changes in
parameters as a function of time are monitored and any observed changes are compared
with the known failure signatures. If the trajectory of the measured data matches that
of a failure signature, operators are alerted to take corrective action. However, the
interest of the operators lies in being able to identify the failures before they occur.
The state of the art methodology including our prior work is to train machine learning
models on temporal sequence data capturing the variations across multiple features and
using it to predict the remaining useful life of the devices. However, as we show in
this paper temporal prediction capability alone is not sufficient and can lead to low
precision and the uncertainty around the prediction is very large. This is primarily due
to the non-uniform progression of feature patterns over time. Our hypothesis is that
the accuracy can be improved if we combine the temporal prediction methods with a
spatial analysis that compares the value of key SMART features of the devices across
similar model in a fixed time window (unlike the temporal method which uses the
data from a single device and a much larger historical window). In this paper, we first
describe both temporal and spatial approaches, describe the methods to select various
hyperparameters, and then show a workflow to combine these two methodologies and
provide comparative results. Our results illustrate that the average precision of temporal
methods using long-short temporal memory networks to predict impending failures in
the next ten days was 84 percent. To improve precision, we use the set of disks identified
as potential failures and start applying spatial anomaly detection methods on those disks.
This helps us remove the false positives from the temporal prediction results and provide
a tighter bound on the set of disks with impending failure.

© 2020 Published by Elsevier B.V.

1. Introduction

Low-cost, high volume physical data storage devices have powered a deployment revolution in the consumer space
or decades now. The deep reliance on information and data-driven technology which is now part of everyday life
omes at the price of consistently meeting innovation and reliability challenges facing the data-storage systems: from
hose in deployment inside personal computers to large-scale industrial servers. Thus it is critically important to deepen
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ur understanding of how and why physical data-storage systems fail and what if any are its telltale signs. All of the
anufacturing, installation, and maintenance policies may be well served by extending our insights on how to effectively
onitor health statistics of such devices. However, hardware faults, in the absence of knowledge about the Remaining
seful Life (RUL), are commonly unavoidable and may cause violated service agreements on top of revenue losses [1].
f a disk is estimated to fail soon, it can be subjected to specialized, expert monitoring and the virtual machines can be
llocated to other healthier disks and a backup process of the failure-prone disks can be started. This ensures higher
vailability and reliability of cloud-based services and reduces revenue costs associated with it.
Data from sensors onboard are typically exploited to perform prognostic work regarding RUL estimation or health

heckups by scanning for anomalies or system-level faults. This can be performed using both model-driven or data-driven
pproaches. There have been several studies directed at predicting RUL of hard disks using model-driven approaches [2]. In
uch cases often a model using mathematical distributions is formulated, describing the behavior of device degradation.
he model parameters are then estimated using measured data. Most electronic systems such as hard disks routinely
ollect such reliability parameters in the field to monitor the health of the system. In data-driven approaches, we do not
ave a physical model. Through observation of lots of data instances, we can apply machine learning and deep learning
pproaches to learn the pattern of the degradation model. However, model-driven approaches cannot always capture the
evice dynamics well using standard distributions especially when it is important to consider the trend of variation of
odel parameters across the devices [3]. This is primarily because as the number of variables and performance metrics

equired to predict future performance is very large it cannot be modeled through analytic means easily.
The primary mechanism of building data-driven RUL predictors is machine learning — with the underlying assumption

eing that any failures at the system level will be preceded by co-dependent changes in some of the parameters. These
arameters are therefore monitored as a function of time and any observed changes are compared with the known
ailure signatures. If the trajectory of the measured data matches that of a failure signature, operators are alerted to
ake corrective action. However, there are problems with these approaches. In particular, these kinds of analyses usually
ssume that all deployed systems start with similar initial sensor value distribution – a highly unlikely scenario. Different
isk models have their own initial set of parameters that are different from that of all other similar models. As a result,
ailure signatures for each model varies, even though the overall trend in failure signature remains the same. An AI
ngine (a data-driven RUL predictor and disk failure estimator) trained to notice such changes without understanding
he baseline level will have many false positives and false negatives as part of the predictive routine. Such false failure
redictions increase the cost by either attending to unexpected failures or by unnecessary repairs/replacements. To make
he AI engine robust against wrong/missed inferences, vast data sets for training are needed, increasing the training cost
nd complexity of the inference engine. However, over time, storage and management of such large data sets becomes
rohibitively expensive and complex.
Our Contributions: In this paper, which is an extension of our previous paper [4] we make three primary contributions.

irst, we show how we can train a recurrent neural network-based RUL prediction model by using a Deep Long Short Term
emory (LSTM) [5] on temporal sequence data capturing the variations across multiple features and using it to predict the

emaining useful life of the devices. Specifically, we showcase a novel adaptive device-oriented normalization scheme to
elp with the variation and range of the S.M.A.R.T (Self-Monitoring, Analysis, and Reporting Technology) indices reported
or all disks, reported once every twenty-four hours through the end of their reporting period (we use the Backblaze hard
rive test data [6]. This is critical because the devices from a specific manufacturer do not necessarily fail with similar
ailure-specific feature values, or in other words, under similar conditions. Also, the concern lies in the fact that at some
eature values flagged healthy for a device, another device from the same manufacturer may fail [7]. This makes the
ossibility of identifying a specific set of feature values pertaining to global failure a hard problem. Consequently, the
easibility of traditional Machine Learning (ML) approaches in learning from these highly non-linear causal embedding of
eatures is put under question. The proposed work extracts the training data from such highly unorganized feature sets
ontaining major class imbalances and establishes device-specific and customized normalization techniques in training
nd testing phases to mitigate this issue.
Second, we show that the temporal sequence data-based predictions uncertainty can be reduced by using data (from

imilar components) across all deployed systems in small and successive time windows. We call this Spatial analysis as
t performs on a cluster of similar observations. If a disk is identified to fail within a few days according to the temporal
nalysis, then we run the spatial analysis some days before and after the predicted day of failure. For each such day, we
nly consider those disks that have a possible imminent failure suggested by temporal analysis and verify if they are
isted in the set of outlier disks as given by the spatial analysis. The insight of combining these methods brought by this
ork is guided from the perspective that if according to the temporal analysis we had a false-positive decision about any
isk, we now also can check if it does not show any outlier behavior according to the spatial analysis, thereby reducing
he number of false positives. Also, if the temporal analysis identifies a disk to be falsely negative, i.e., it predicts that the
evice is not going to fail soon whereas actually the device has an impending failure, the spatial analysis can still identify
t as an outlier so that the disk can be monitored for possible failure. Thus, by considering both spatial and temporal
nalysis outcomes for any particular disk before isolating it as a probable candidate for failure we limit the number of
uspected failures or false positives.
Third, to validate the results we show a novel methodology, that extracts a simulation subset of the data which have

not been used in training or validation purposes. Because during training, the device failure logs are already known which
2
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an be used in preprocessing the data, but in real-world scenarios, the Remaining Useful Life (RUL) of devices under
imulation set is not known, and there comes the challenge to preprocess the simulation data in a way so as to have
imilar inherent feature mappings as that of the training set, thus ensuring the extension of the prediction capacity to the
imulation data.
Our results show the reduction of Mean Absolute Error (MAE) of RUL prediction from 5 days to 2.4 days when the

patio-temporal analysis is applied instead of temporal analysis. The outline of the rest of this paper is as follows: Section 2
iscusses the prognostic problem and related research, Section 3 discusses our approach, Section 4 walks through the

experimental results, Section 5 concludes the paper.

2. Understanding the prognostics problem and related research

The generalized problem that we are solving is to improve the device health prediction mechanism using both spatial
and temporal analysis. In case of spatial analysis, the problem is to identify a set of disks that show anomalous behavior
with respect to the entire set of disks. In case of temporal analysis, we are trying to formulate an effective normalization
strategy. We have complete logs of data for devices under training including the start of data collection up to their failures.
To validate our approach, we simulate a real-time scenario where the data is coming in real time, providing access to the
data from the start of data collection up to the current day when the device is being tested. Note that the normalization
strategy during the simulation is complicated because we the feature values at which different devices fail vary drastically.
Thus, a related problem for us is to normalize the online simulation data in a way such that they have alike or close
inherent feature patterns as that of the training data. Only then the trained model is able to predict the remaining useful
life for the devices under the simulation set.

Note that the underlying motivation for pursuing system health monitoring is that if adequate structured information
is obtained from historical or real-time data, efficient prediction models may be proposed by learning the evolution of
implicit state variables. Such efforts seek to close the knowledge gap in advance about the timestamp in the life-cycle of
a product after which it experiences complete operational failure or does not perform at its optimum level anymore. This
is often referred to as the Prognostics problem.

2.1. Related research

Prognostic techniques are categorized broadly into: (i) Model-driven and (ii) Data-driven approaches. Traditionally
model-driven approaches rely on modeling the failure distribution with statistical formulations. Gaussian Processes,
Poisson distribution, Weibull distribution and Survival analysis methods have been widely used as they do a good job
of learning patterns in low dimensional data and are limited by their reliance on state evolution equations put forth
by assuming domain-specific knowledge. However, this has been known to be hard for modeling the reliability of hard
disks. For example, B. Schroeder et al. [2], showed in their studies that Poisson distribution does not provide a good
fit for the number of disk replacements, rather Gamma and Weibull distributions can capture the distribution of time
between failure. However, Wang et al. [3], contended this fact and showed that time between failure is hard to model
with a well-known distribution. None of the distributions including exponential, Weibull, gamma and lognormal fits the
time-between-failure data. On the other hand there has been some success in model based methods as shown by Hu and
Liu [8]. They used a state space model (SSM) which is a sequential Monte-Carlo approach that uses Bayesian estimation
to assess the remaining useful life of devices.

As the problem complexity increases, model-driven approaches cannot keep up with learning the inherent causal
embedding in the data as well. Priors and updates used in these kinds of models are hand tuned and simple, and are unable
to capture the intricacies and functional relationships in high dimensional training data. Self-organizing representation
learning disciplines such as deep neural networks reduce the roadblock to structure learning from voluminous sensor
data and do not necessitate hand-crafting state equations of system evolution. Given that accurate labels are annotated
for the training data, data-driven methods may be applied to complex prediction tasks with an accuracy unmatched by
simpler, model-driven approaches.

Therefore, recent works on prognostics and device health management have primarily used data-driven approaches.
Eker et al. [14] carried out RUL prediction comparing sensor data similarities tested on three datasets on various systems
undergoing degradation. Deep convolutional neural network (CNN) based RUL prediction studies were done by Sateesh
Babu et al. [15]. Recurrent neural network (RNN) studies were done by O Heimes [16]. Gugulothu et al. [10] proposed a
novel approach known as ‘Embed-RUL’ that does not rely on assumptions about degradation trends but uses time series
embeddings based upon recurrent neural network. Recent works like [17] also emphasize the use of recurrent neural
networks to model inherent patterns of sensor observations that dynamically varies across time cycles. The authors in [18],
proposed strategies for directly identifying the healthy and erroneous state of devices using disk replacement prediction
algorithm with change-point detection and tested their approach on Backblaze data. On the other hand, Aussel et al. [7]
applied SVM, RF and GBT on the same dataset to predict hard disk failures and reported the corresponding precision and
recall.

Various swarm intelligence algorithms [19] including quantum particle swarm optimization [20,21] have also been
used in predicting device health as evidenced by the work of Yu et al. [22] who carried out remaining useful life prediction
3



S. Basak, S. Sengupta, S.-J. Wen et al. Pervasive and Mobile Computing 70 (2021) 101283
Table 1
Approaches for hard disk prognostics.
Approach Paper Contribution

Model-driven Schroeder and Gibson [9] Established that the distribution of failure instances in hard
disks can be approximated by Gamma and Weibull
distributions

Model-driven Wang et al. [3] [9] Showed that the time-between-failure (TBF) distributions are
difficult to model using commonly used statistical
distributions.

Data-driven Gugulothu et al. [10] Put forward a prediction scheme by using a recurrent neural
network model and generating embeddings that capture
multivariate time series data trends.

Data-driven Malhotra et al. [11] Introduced EncDec-AD (Encoder–Decoder scheme for Anomaly
Detection) which seeks to reconstruct normal time-series
behavior and subsequently uses reconstruction error for
anomaly detection. This reinforces the idea of using RNNs to
capture intricate dependencies among sensor observations in
cases where external factors may render time series
observations to be unpredictable.

Data-driven Botezatu et al. [12] Proposed an analysis pipeline using SMART indices which can
efficiently predict disk replacement necessities 10–15 days in
advance over 30000 disks from two major manufacturers,
observed over 17 months of time.

Data-driven Aussel et al. [7] Used the same dataset (Backblaze) in estimating hard disk
failures using SVM, RF and GBT factoring into account the
highly unbalanced nature of the data. They reported a
precision of 95% and a recall of 67% on a one year sample of
over 12million examples with only 2586 failure instances.

Data-driven Li et al. [13] Discussed various data-driven mechanisms in estimating
health and lifetime of lithium ion batteries. They outline in
detail the analytical models based mostly on machine learning
strategies that are used in various works for diagnosis as well
as prognostics purposes. They emphasize on the differential
analysis methods that in general can be used to identify
signatures of device aging across various systems.

of lithium-ion batteries. Aussel et al. [7] used random forest decision trees to predict remain useful life. However, their
method is more closely related to our spatial analysis method rather than the other previous hard disk reliability methods
that use temporal sequences. The Table 1 summarizes various approaches using model-driven and data-driven techniques
for prognosticating device health.

In contrast, we rely on spatio-temporal analysis of device health monitoring. Spatio-temporal grouping of events reveal
patterns and understanding of data distributed in a multi-dimensional space. For example, emerging spatio-temporal
analysis in traffic data helps identify as well as prognosticate traffic propagation patterns under congestion as evidenced
in [23].

3. Our approach

The overall workflow that summarizes the proposed spatio-temporal analysis is described in Fig. 1. We show the
temporal analysis training workflow, temporal analysis inference workflow, spatial model construction workflow and the
combined spatio-temporal inference workflow. We discuss these approaches below in subsequent subsections. However,
we first describe the dataset we use.

3.1. Dataset and SMART features

The Backblaze hard drive dataset [6] contains information about more than 90,000 hard disks from various manufactur-
ers. For each device the records include some basic drive information such as date of the record, model and serial numbers
and a field indicating the status of the disk whether it has failed or is active as well as various S.M.A.R.T parameters.
These S.M.A.R.T (Self Monitoring Analysis and Reporting Technology) parameters indicate various information on drive
usage and error profiles required to monitor the device health. We work with the data from 2017 which reports a total
of 40 S.M.A.R.T statistics for each drive, though all the parameters are not reported by each manufacturer. We chose to
work with Seagate drives due to their high failure instances in the past. Specifically we work with ST400DM000 as it
contributed to most of the failures among all the models from Seagate. Seagate records twenty four S.M.A.R.T. features
out of which we selected five features to work with along the line of our work in the past [4]. The temporal progression
4
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t

Fig. 1. Workflow for applying the spatio-temporal analysis.

Table 2
Summary of SMART features used for analysis.
No. Analysis mode SMART ID Attribute name Description

1 Spatial SMART 1 Raw read error rate
(normalized value)

Rate of hardware error while
reading data from a disk
surface

5 Temporal SMART 7 Seek error rate (raw
value)

Frequency of the errors during
disk head positioning and
increases as the device
approaches failure.

6 Temporal SMART 9 Power-on-hours
count (raw value)

Estimated remaining life of a
device, based on the time a
device was powered on.

9 Spatial SMART 183 Runtime bad block
(raw value)

Number of data blocks with
uncorrectable errors

11 Spatial SMART 187 Reported uncorrect
(raw value)

Number of unrecovered errors

12 Spatial SMART 188 Command timeout
(raw value)

Number of aborted operations
due to HDD timeout

19 Spatial SMART 197 Current pending
sector (raw value)

Number of unstable sectors

21 Spatial SMART 199 Offline uncorrectable
(raw value)

Number of errors in data
transfer through inference
cable

22 Temporal SMART 240 Head flying hours
/transfer error-rate
(raw value)

Time spent for positioning of
the drive heads

23 Temporal SMART 241 Total LBAs written
(raw value)

Related to the usage and aging
process of devices

24 Temporal SMART 242 Total LBAs read (raw
value)

Related to the usage and aging
process of devices

of these features exhibit higher correlation with failure. It is to be noted that these selected features have a monotonically
increasing trend, but their ranges vary vastly among devices even from the same manufacturer to the extent that both
active as well as failure prone devices might exhibit similar feature values. So there is no fixed set of features that uniquely
identifies failure prone situations.

We divide the data into training and validation sets. The training and validation set contains data where we know
he ground truth, i.e. the time and feature corresponding to the failure. This information is used in data preprocessing
5
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Fig. 2. Sorted feature values in ascending order of correlation and Fisher score.

that will be discussed in the subsequent sections. The test dataset contains devices that are active now but may fail soon.
The day of failure for the test devices are unknown. Hence the test data cannot be preprocessed in the same manner as
that of the training data. Now in order to apply the trained model to the test data, the test data should be adjusted and
processed in a way so that it has similar or close pattern of distribution of features as that of training data. This makes
the problem challenging as there is no global set of features w.r.t. which this normalization can be done.

Out of this whole dataset chose to work with features listed in Table 2 that are correlated most with the failure. Note
that out of this different subsets show stronger correlation across spatial and temporal dimensions. We indicate that in a
separate column in the table. We collected the data for all Seagate ST4000DM000 models that failed in June and July, 2017.
Thus the training dataset contains temporal data sequences for each such device up to the day of failure. In the combined
training dataset, we search for unique serial numbers of the devices and the data associated with any particular serial
number is normalized with respect to the features corresponding to the day that device failed. This normalized training
dataset has the label of Remaining Useful Life (RUL) associated with each instance of data. The RUL associated with the
day of failure is zero and increases by 1 as we look back the data for the past days one-by-one. So the normalized training
dataset contains multiple instances of data of different devices from the same manufacturer, but associated with similar
remaining lives.

3.2. Temporal prediction analysis

We describe the feature selection, normalization and training approach for the temporal analysis workflow in this
section.

3.2.1. Feature selection for temporal analysis
For temporal analysis, we chose to work with five features as listed in Table 2 that are correlated most with the

temporal variation of failure. The feature set includes SMART 7 (raw value), SMART 9 (raw value), SMART 240 (raw value),
SMART 241 (raw value) and SMART 242 (raw value). To select these features, we carried out both correlation and Fisher
score analysis. Then, the features were sorted according to their individual correlation with the remaining useful life and
the features with highest value of correlation score were selected.

In Fig. 2 we present the correlation of each feature with failure with the features sorted according to increasing order
f their corresponding correlation values. We also calculate and plot the logarithm of normalized Fisher score [24] values
f each feature of the features in Fig. 2. It prioritizes features having better distinguishing capability i.e., larger variance
f values among separate classes and more similar values within the same class.
We selected the five features that have the highest correlation with failure and the corresponding Fisher score is also

igh. After the first five feature with highest correlations, the correlation score drops significantly by more than 20%.
ncluding features that are not directly tied to failure will hinder the neural network training as it will not be able to
istinctively identify features that are correlated to failures and that is why we restricted our analysis with those features
hat are mostly correlated.

As we worked with this data we needed to arrange it as a three dimensional matrix to be fed at the input of deep
STM networks. A brief overview of LSTM architecture we used is given in Section 3.2.3. An LSTM network accepts input
n the form of number of instances × number of time steps to look back × number of features (Section 3.2.3). For each
raining instance we look back at twenty five days of data to predict the RUL of a device evaluated on the test day. This
ook back sequence varies according to the problem at hand. In this case, this hyperparameter value has been chosen as
t results in the least validation loss for the chosen data.

As discussed earlier, the training and test data pre-processing are different given the RUL estimation approach
eveloped in this work. In order to apply the trained network to the test dataset, the test data distribution should

e similar to that of training data distribution. The problem is that for the training data, the data for each device is

6
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Fig. 3. Variation of feature 2 vs. feature 5 color-coded by feature 3.

Fig. 4. Variation of feature 4 vs. feature 1 color-coded by feature 3.

normalized with respect to the features corresponding to the day of failure. But for the test set, where the devices are
active at present but are going to fail sometime soon, the data cannot be normalized in a similar way. This is because the
features corresponding to the failures are unknown. To overcome this roadblock, we propose a feature-specific, adaptive
normalization approach for the test data which we will discuss next.

3.2.2. Normalization of simulated test data
As discussed earlier, the range of data used for training vary vastly among devices even though all the devices under

training are close to failure. To illustrate this issue further, Fig. 3 shows the scatter plot of feature 2 (SMART 9) vs. feature
5 (SMART 242) color-coded with respect to feature 3 (SMART 240). It shows that feature 2 varies from almost 0 to 35000
whereas feature 5 varies from 0 to 4e11 for the set of training devices. The scatter plot displays multiple groups or chunks
of data made of comparatively similar devices in terms of their feature ranges before failure. The variation of feature 2 vs.
5 is color-coded by the variation in feature 3 which also shows different color patterns at different data chunks. Similarly,
Fig. 4 shows the scatter plot of feature 4 (SMART 241) vs. feature 1 (SMART 7) color-coded by feature 3 (SMART 240).
This presents different grouping patterns of the features with distinct dense and sparse distributions. These differences
in grouping patterns or densities calls for careful choice of normalization threshold for which we also need to take a look
at the historical data distribution.

To normalize the data, we start by looking into two months of data for each device that we work with. We found that
although there are fluctuations in feature values within shorter span of time, the overarching pattern of moving average
has an uptrend over months. The interesting fact is that the distribution of each feature remains mostly similar in a span
of two months (Fig. 5). Thus consideration of past two months of data in fetching historical maximum is appropriate
in the sense that the time period is not too short to be influenced largely by noisy fluctuations of short span of data
sequences and not too long and thus balances the computational overhead. Given the selected data we try two different
normalization strategies.

• Max value normalization (Strategy 1): We normalize the features with respect to the historically maximum feature
value. We assume the devices will last till the maximum attainable value of features are met given the past
7
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Fig. 5. The histogram indicates that the distribution of features selected for temporal analysis for any two consecutive months are similar.

observation. However, note that there is a possibility that maximum value is an outlier and normalization with
respect to that will result in lower fractional values resulting in larger RUL values than actual.

• (75th percentile) (Strategy 2): Thus, we also consider a second strategy where we use the supremum of 3rd quartile
(75th percentile) of the sorted data as the normalization threshold. The motivation for this is driven by the fact that
most of the data is contained within this bound of the distribution. To keep the normalization threshold generic to
be applied to any time of the year we restrict our granularity at the level of quartiles. The 75th percentile threshold
is optimal in this case as it is not too far from the historical maximum containing most of the data samples but
mostly excludes the outliers in the distribution.

3.2.3. LSTM network
In order to capture the temporal progression of various device metrics towards failure we use Long Short Term Memory

networks (LSTM) [5]. LSTMs mitigate the vanishing gradient problem that appears during backpropagation in Recurrent
Neural Networks for processing long data sequences hindering the learning process. Although LSTMs have similar control
flow of information as that of RNNs, each LSTM cell is equipped with forgetting or memorizing relevant information and
contains input, output and forget gate. The sigmoid activation function controlled forget gate captures both the current
input and previous hidden state information to decide upon which information is to be kept or forgotten. The input gate
is controlled by sigmoid and tanh activation function to update the cell state by considering relevant information from
the current state. The output gate determines the next hidden state. The equations governing the workflow of an LSTM
unit are as follows:

ft = σ (Wf .[ht−1, xt ] + bf ) (1)

it = σ (Wi.[ht−1, xt ] + bi) (2)

ct = tanh(Wc .[ht−1, xt ] + bc) (3)

Ct = ft ∗ Ct−1 + it ∗ ct (4)

ot = σ (Wo.[ht−1, xt ] + bo) (5)
ht = ot ∗ tanh(Ct ) (6)

8
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Fig. 6. The LSTM architecture used in this work.

Fig. 7. Selection of optimal dropout ratio.

The input gate it , forget gate ft and output gate ot are responsible for determining the value of the cell state Ct . The
forget gate layer takes the output of previous timestep ht−1, the current input xt and applies ‘sigmoid’ activation function
to output a value between 0 and 1 for each value in the cell state Ct−1 denoting the probability of keeping the previous
information. The input gate layer it , which is also a sigmoid activation layer, decides which of the values to be updated.
The new cell state Ct is influenced by the previous state Ct−1 as well as it , ft and ht−1. A sigmoid output layer ot decides
upon what parts of the cell state to be outputted. The hyperbolic tangent activated cell state multiplied with the output
gate ot produces the output of the LSTM block at current time step.

To train the Remaining Useful Life prediction model we use a bilayered LSTM architecture with 100 units in each layer.
We select RMSprop as the optimizer and use dropout to control overfitting. Fig. 6 shows the LSTM network used for this
problem unfolded in time. Temporal sequences of training instances are fed to the network to predict the RUL of devices.
The figure lists the shape of the outputs produced by each LSTM cell.

During the training we had to select a number of hyperparameters as well. We discuss them below.

1. Dropout Ratio: Very high values of dropout ratio may shut down most of the units of hidden layers resulting
into non-optimal decision boundaries. On the other hand, if the dropout ratio is very low for all the layers, then
the neural network leads to overfitting of the training data and greater error in validation or simulation set. So, a
moderate dropout ratio gives optimal or near optimal decision boundary. The Fig. 7 shows the influence of dropout
ratio on the accuracy of RUL prediction. A dropout ratio of 0.2 is chosen for both the layers according to our findings.

2. Units in each layer: The Fig. 8 shows a graph showing the influence of variation of number of units per layer on
the training and validation loss as well as the execution time. It is evidenced that the optimal number of units per
layer is 100 in this case with moderate training loss, lowest validation loss and quite low execution time which
largely increases with increasing number of units.
9
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Fig. 8. Variation of training loss, validation loss and training time with number of units in each layer.

3. Data normalization length: We wanted to predict failure of a device at most 125 days in advance, that is why we
chose the parameter value as 150 which is the number of days we look back from the current day while performing
the temporal analysis. The LSTM takes the normalization length as 25, that is why the parameter value as 150 so
that even if we want to predict for failure 125 days prior to actual failure we will need data up to 125+25=150 days
back. Now, normalization length of 200 will enable prediction capabilities to identify failures 175 (200−25 = 175)
days in advance, but the predictions will be much weaker.

4. Range of historical data: We look ed at two months of past data to study the data distributions. Also taking any
other range of past data instead of two is completely user-defined. Just the normalization threshold will differ which
needs to be studied from the data distributions of the corresponding time range.

.2.4. Using RUL prediction to predict failures
Note that the remaining useful life prediction at any time step provides the estimate of reliability of the device. If

he RUL is less than a prespecified threshold the data center operators can choose to replace the device. However, as we
now the machine learning based models have an inherent uncertainty and there is always an error and as such we can
stimate an uncertainty bound around the predicted RUL results. We will discuss the specific uncertainty bound that we
etermined for Backblaze datasets in the results section (Section 4).

.3. Spatial analysis

For each day we have access to the SMART statistics of almost 34500 Seagate ST4000DM000 hard disks. Our goal is
o identify the outlier disks through spatial analysis that are going to fail on that day based on a two-step hierarchical
lustering.

.3.1. Feature selection for spatial analysis
Unlike temporal analysis, there are existing recommendations of features (SMART 5, 187, 188, 197, and 198) (Table 2)

hat should be used for spatial clustering, as these features show the best daily correlations [25]. We start with these
eatures and check for the percentage of failure cases where these feature values are greater than zero for Seagate
T4000DM000 devices. We repeat the procedure for 14 consecutive days where there was at least one failure of this
articular device model. The Fig. 9 shows the percentage of failure-related cases when each of these five suggested features
ad their error counts greater than zero. We see that all the failures cannot be explained by any single SMART feature.
n average, at the time of device failures, SMART 5 and SMART 188 were only 19.14% and 6.5% of the times greater than
ero. So they were eliminated from the first phase of hierarchical clustering. SMART 187, 197, and 198 had there error
ount greater than zero for 41.42%, 45.64%, and 45.64% times respectively. Backblaze also suggests that SMART 197 and
MART 198 have very good correlation such that they can be considered as the same index [26]. So we only took into
ccount SMART 187 and 197 for the first phase of clustering. We also noticed that not only the value of the features that
re correlated with failure but the change in the value of the features are important to track. So we used the change in
alues of SMART 187 and 197 as the features for the first phase of the spatial analysis.

.3.2. Data clustering
We follow a two step isolation approach. In the first step, we specifically monitor SMART 187 (raw) which indicates re-

orted uncorrected errors and SMART 197 (raw) indicating current pending sector count. For all the Seagate ST4000DM000
ard disks, we monitor the change in these two error profiles from past four days up to the current day. The choice of
he number of days to monitor the changes in SMART values will be discussed in Section 3.3.3.

We track the changes of these two features denoted as S187change and S197change for all the disks and use hierarchical
clustering [27] to cluster them. We consider the group with maximum number of elements as normal set of devices and
10
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t

Fig. 9. Selection of features for spatial clustering. The plot shows which of the SMART features show variation in their values when the devices fail.

Fig. 10. Spatial Clustering of hard disks to determine outliers.

he rest of the clusters are considered as outliers. Fig. 10 shows an example where out of 34385 Seagate ST4000DM000
hard disks at a particular day, 34358 disks fell into normal category and the rest are considered as outliers.

The goal of the spatial analysis is to improve the recall (based on the RUL prediction from the temporal analysis), i.e. to
lower the value of false negatives. In order to improve the precision we will combine the temporal analysis discussed later
in this section. To improve the recall value as achieved by the first step of spatial analysis, i.e. to identify all or maximum
number of disk failures that happens each day, we go for a second step of disk isolation. Here, we monitor the SMART
parameters including SMART 1 (normalized), SMART 183 (raw), SMART 199 (raw), SMART 188 (raw), SMART 187 (raw)
and SMART 197 (raw). We considered only the current value of all the features for any day and came up with a single
feature value (fcombined) that is a weighted sum of the features discussed above.

One point to note that, Botezatu et al. [18] suggested that for Seagate devices the SMART 1 normalized value great than
117 indicates the necessity of disk replacement on the day. This threshold of SMART 1 normalized value was congruent
with our observations. That is why we chose this specific threshold for SMART 1. Based on our observation, we also found
that other than SMART 1 (normalized), SMART 183 (raw), SMART 199 (raw) and SMART 188 (raw) indicate a failure when
they cross the zero error count. To compute the spatial analysis score, for each device, we initial set the feature fcombined
to zero. If the value for SMART 1 is greater than 117 or any of SMART 183, SMART 199, SMART 188, SMART 187 and
SMART 197 have a value greater than zero, then or each such case, fcombined is increased by 1 giving all the cases equal
importance. Thereafter, we take all three features S187change, S197change, and fcombined for all the ST4000DM000 disks and
use hierarchical clustering to cluster them. Then the cluster with less number of members can be marked as anomalous.
Note that while this approach improves the recall, the number of false positives that fall in the outlier increases. However,
if we restrict the analysis set to only the devices whose RUL predicted by the temporal analysis is below a limit then we
reduce the number of false positives. We will discuss this further when describing the results.

3.3.3. Hyperparameter selection for spatial analysis
For spatial analysis, the choice of the number of days to monitor the changes in feature values is an important

hyperparameter. From current day, we choose to go back up to four days instead of just the day before, because in many
cases, the failing devices have their error profiles changed largely not just between the day of failure and the previous

day, but also between two to three days prior to the failure day. Also, they may have no changes in the error profile just

11
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Fig. 11. Selection of optimal number of days to look back from the current day for spatial analysis.

before the day of failure. So to capture the effects of all the hard disks that have variations of feature values in the last
few days, we empirically arrived at the decision of looking back for the past four days.

For example, on August 9, 2017, three Seagate ST4000DM000 devices failed as indicated by the device indices in Fig. 11.
he plot shows SMART 197 value for all these devices for the day when the device failed as well as one, two, three, four,
nd five days prior to that day. It is observed that for devices 1 and 3, there is a jump in SMART 197 value between the
ay of failure and the previous day and there was no change of value from the past five days to the past one day. But for
evice 2, interestingly there was no change of SMART 197 value between the day of failure and the previous day. So if we
ad looked at SMART parameter changes only between the day of failure and the previous day, we would have missed
arking this device showing possible outlier behavior. The SMART parameter change occurred between 4th and 3rd day,
rd and 2nd day as well as 2nd and 1st day prior to failure and no change was observed between 5th and 4th day prior
o failure. So if we look back past four days from the day of failure we have a better chance to identify outlier disks as the
ifference in SMART values between the day of failure and four days prior to that will incorporate any changes in SMART
rofile between any pair of days within that range. Now we can look at SMART parameter changes occurred more than
our days prior to the current day when a device is being tested for. That is a user-defined hyper-parameter and can be
aried. For our case, we observed that in most of the cases, the fluctuation in SMART parameters can be captured if we
o back up to four days. That is why we chose to monitor error profiles up to four days back.

.4. The combined spatio temporal analysis workflow

Recall that the problem we aim to solve is to improve our device health prediction mechanism using both spatial and
emporal analyses. Observing the evolution of features with respect to time for a particular device is denoted as temporal
pproach whereas observing the entire group behavior of all the devices at a particular time is denoted as the spatial
pproach as it covers the space or expanse of the total set of devices at once. Note that in traditional spatial analysis,
he geographic proximity or distance plays a major role. But in this case, the concept of distance among the devices is
nalogous to the euclidean distance of their features in the entire space of all the devices from the same manufacturer
nd model and we observe their group behavior as a collection of clusters in multidimensional space.
Fig. 12 shows an example of device health prediction for a disk i using spatio-temporal analysis. We feed the temporal

equence of feature set to the pre-trained LSTM model to predict its remaining useful life. If the device is predicted to
ail after k days, we assume that the device will fail within (k − d)th day to (k + d)th day from the current day, where
is the confidence interval of the RUL prediction as discussed in Section 3.2.4. Then, we run the spatial analysis from

k − d)th day to (k + d)th day from the current day to check if the device falls into the outlier category. The example in
he figure shows that the device i falls into the set of normal devices during (k−d)th day to (k−2)th day. It moves to the
utlier category on (k − 1)th day which indicates that the device is supposed to fail on (k − 1)th day or very soon. Note

that in most of the cases a disk may start showing its outlier/failure-prone behavior a few days before the actual failure.
If the device is not removed on (k − 1)th day, then it may fall into the outlier category on (k)th day and actually fails on
that day. So from (k + 1)th day to (k + d)th day the device is not available for testing as it has already failed and is then
removed from the device list.

Thus the problem that we aim to solve is to improve our device health prediction mechanism using both spatial and
temporal analyses. Observing the evolution of features with respect to time for a particular device is denoted as temporal
approach whereas observing the entire group behavior of all the devices at a particular time is denoted as the spatial
approach as it covers the space or expanse of the total set of devices at once. In traditional spatial analysis, the geographic
proximity or distance plays a major role. But in this case, the concept of distance among the devices is analogous to the
euclidean distance of their features in the entire space of all the devices from the same manufacturer and model and we
observe their group behavior as a collection of clusters in multidimensional space. That is why we termed it as spatial
analysis. So in spatio-temporal analysis we tried to emphasize two distinct branches of approach, one looking at the entire

space at a single time and the other looking at the time series progression of individual devices.

12
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Fig. 12. General overview of our approach: the example describes that according to the temporal analysis, if a disk ‘i’ is predicted to fail after ‘k’
days from current time, a spatial analysis is carried out from ‘k-d’ to ‘k+d’ days to check if the device falls into the outlier category.

Fig. 13. Number of disk failures identified by the first and second step of spatial analysis compared to the total number of actual failures on each
day.

4. Results and discussion

4.1. Spatial analysis results

At first we solely performed the spatial analysis for twenty days randomly selected from May to September, 2017.
Fig. 13 shows the total number of disk failures on each day as well as the number of disk failures identified by the first
and second step of spatial analysis. This also indicates the importance for the second step of spatial clustering as some of
the faulty devices could not be identified by the first step. It is seen that in most of the cases all or in some cases most
of the failures can be identified by the first and second step of spatial analysis.

Table 3 shows the precision and recall for identifying faulty disks solely by running spatial analysis for twelve
consecutive days. When a disk failure is identified by the spatial analysis and the disk actually fails, we consider it as
true positive. When a disk is identified to fail as per the spatial analysis but does not actually fail, we consider it as false
positive. When a disk actually fails, but cannot be identified by the spatial analysis, we consider it as false negative. From
the true positive, false positive and false negatives we calculate the corresponding precision and recall in identifying disk
failures solely using spatial analysis. The results indicate that the recall values are high, but the corresponding precision
values are very low. The average recall is 0.87 and the average precision is 0.00018. Note that this is expected because
spatial analysis alone is not very accurate.
13
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Table 3
Precision and recall values for spatial analysis.
Day index Precision Recall

1 0.00018 0.75
2 0.00006 0.5
3 0.00006 1
4 0.00024 1
5 0.00018 1
6 0.00012 1
7 0.00031 0.714
8 0.0003 1
9 0.00012 0.66
10 0.003 0.833
11 0.00018 1
12 0.00012 1

Fig. 14. Comparison of prediction strategy 1 and 2 in RUL estimation of the devices under simulation set.

4.2. Temporal analysis results

Fig. 14 depicts the actual and predicted RUL for devices under simulation set showing the effectiveness of Normalization
Strategy 2 over Normalization Strategy 1 (Section 3.2.2). Normalization strategy 2 is also good for online analysis because
we only use the 75 percentile of the observed values for normalization. We also see from Fig. 14 that the uncertainty of
prediction is lower in case of devices having lower RUL and the prediction error is higher for devices that have enough
time before they fail.

Fig. 15 shows precision, recall and F1 score of prediction of RUL. We have divided the results in two classes. Class 1
indicates the condition that the RUL is less than or equal to 10 days. Class 2 indicates that the RUL is greater than 10 days.
If the actual and predicted RUL both fall in class 1, i.e., if the actual RUL is less than 10 and the predicted RUL is also less
than 10, we consider it as true positive. If both the actual and predicted RUL are in class 2, then we consider it as true
negative. If the actual RUL is in class 1 and the predicted RUL is in class 2, we consider it as false negative. If the actual
RUL is in class 2 and the predicted RUL is in class 1, we consider it as false positive. In order to get a time series variation
of these measures the process is repeated for seven consecutive days. An average Precision of 0.84, Recall of 0.72 and F1
score of 0.77 is achieved as evidenced by the plot. The flat nature of the curves indicate the consistency and robustness
in decision making capabilities using the proposed approach over several consecutive days.

4.2.1. Uncertainty bounds
To establish the uncertainty bounds we study the results using the normalization strategy 2. We can note from Fig. 14

that the maximum error of prediction is 9 days. If the uncertainty interval is reduced to 6 days, 77% of the failure cases
can be identified where the actual failure will lie in between the uncertainty interval of the predicted day of failure. As
spatial analysis is relatively computationally inexpensive to perform, we chose the uncertainty interval as 9 days and
perform the spatial analysis for all the days within that uncertainty interval.

4.3. Spatio-temporal analysis results

To validate our proposed approach for spatio-temporal analysis, we work with the same set of disks for which the
temporal analysis results are shown in Fig. 14. Fig. 16 shows the actual day of failure and the predicted day of failure as
14
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Fig. 15. Precision, recall and F1 score in predicting whether a device is going to fail within next ten days experimented over a period of seven
consecutive days.

Fig. 16. Number of disk failures identified by the first and second step of spatial analysis compared to the total number of actual failures on each
day.

per the temporal analysis for each device. The bars at each device index indicates the number of days before and after
the predicted day of failure, when the spatial analysis has been carried out. If the predicted RUL is less than the lowest
bound of the uncertainty interval, we start the spatial analysis for the device from the current day. It can be noted that
some of the devices are identified as an outlier several days before and are continuously identified as anomalous up to
the day of actual failure. This is because some of the SMART features correspond to cumulative error counts and once
they cross a particular threshold they do not decrease till the day of failure and hence they appear in the outlier set for
several consecutive days. On the other hand, Some devices such as device index 1 and 9 are indicated as outliers just
one or two days before the failure and not on the actual day. This is because the normalized raw read error rate (SMART
1) was higher than the threshold for days before the failure – but not on the actual day of failure – this is one of the
problems of spatial analysis. However, because the device was identified a few days before by spatial analysis and was
also flagged by temporal analysis the data center operator can be more confident in taking decision about replacing it.

4.4. Improvement through spatio-temporal analysis

Since the precision of spatial analysis is too low, we cannot rely on only spatial analysis solely to identify disk failures.
The spatial analysis identifies too many devices that are in the outlier set, out of which very few actually fail. We apply
spatial analysis within the uncertainty interval of temporal analysis as identified in the combined inference analysis
workflow shown in Fig. 1. So if a device is identified to fail by temporal analysis, the improvement by spatiotemporal
analysis is based on how precisely we can identify the day of failure. For the devices that are going to fail in next 10 days,
i.e., the actual RUL is less than or equal to 10 days, the mean absolute error (MAE) between the predicted day of failure
and the actual day of failure is 5 days according to the temporal analysis. On the other hand, for the same set of devices
the MAE between the actual day of failure and the day when the spatio-temporal analysis first identified the disk to fail
was reduced to 2.4 days.

To estimate the precision and recall, we performed our analysis for five consecutive days where we calculated the
total number of failures for model ‘ST4000DM000’ for each day and how many of them were identifiable by the temporal
15
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Fig. 17. (a) The figure shows the RUL prediction results using temporal analysis on a completely different model of Seagate (ST8000DM002), (b)
Spatiotemporal analysis on the subset of devices where the predicted RUL is less than 20 days.

analysis within ten days of the actual day of failure. As spatio-temporal analysis is applied around the uncertainty interval
of the temporally predicted day of failure, we identified how many of the disk failures identified by the temporal analysis
was also identified by the spatio-temporal analysis that actually had the failure. We consider them as true positives. Now
the spatial analysis can identify many false positives, but due to the reduction of analysis set due to the intersection with
results from the temporal analysis approach, we can remove those false positives in the spatiotemporal analysis. Thus
the number of false positives for the spatiotemporal analysis turns to zero in spite of having a large number of false
positives in the spatial analysis which significantly improves the corresponding precision. The number of disks that were
not identified by the spatiotemporal analysis but actually failed were considered as false negatives and was used in the
recall calculation. Based on our analysis for five consecutive days, we got an average precision of 1 and an average recall
of 0.664 for the spatio-temporal analysis.

4.5. Generalizability of the proposed approach

One of the major advantage of our proposed approach on spatio-temporal analysis of device health is that the
echanism is generalizable to other device models from the same manufacturer. For the temporal analysis, the neural
etwork architecture was trained on Seagate model ST4000DM000. We applied the pre-trained model on ST4000DM000
o predict RUL of devices from another Seagate model ST8000DM002. Fig. 17(a) shows the results for RUL prediction on
arious devices using the temporal analysis. We applied the spatio-temporal analysis on the subset of these devices whose
redicted RUL is less than twenty days. Fig. 17(b) shows the result for the spatio-temporal analysis where we see that
he devices fall into the outlier category on the day/s close to the actual failure.

Fig. 1 shows a view of the overall workflow that should be exercised to implement the proposed spatiotemporal
pproach on any set of HDDs from a different manufacturer. Though the overall steps remain same, the feature selection
or both spatial and temporal analysis, training and simulation data preprocessing have to be done again as different
anufacturers report different sets of SMART indices. Also the hard disk failures from other manufacturers may be

riggered from different thresholds on their corresponding feature values. Fig. 1 works as a general guideline of the
igh-level steps to be followed when repeating the procedure for devices from any manufacturer.

. Conclusion and future work

This paper uses both spatial correlation and temporal progression characteristics of the health statistics of the devices
o identify anomalous devices close to failure. The temporal analysis is based on a data-driven framework using deep LSTM
16
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rchitectures for estimation of the remaining useful life of devices where the feature values corresponding to failure are
ot uniform across devices. The architecture proposed is efficient in predicting the remaining useful lives of devices having
mpending failures as well as segregating a set of devices on each day that show largely different feature patterns from
he rest of the group. Although the proposed approaches are tested on the hard disk data, the combined spatio-temporal
ormalization, classification, and inference mechanisms are applicable to any generic time-series data capturing degrading
ystem information. In the future, we expect to use this generalized spatio-temporal data analysis framework in various
elated applications aimed at real-time decision support.
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