

1 **How “hot” are hotspots: Statistically localizing the high-activity areas on soil and
rhizosphere images**

2 *Nataliya Bilyera^{a,b,*}, Irina Kuzyakova^c, Andrey Guber^d, Bahar S. Razavi^a, Yakov Kuzyakov^e*

3 a – Dept. Soil and Plant Microbiome, Institute of Phytopathology, Christian-Albrechts-
4 University of Kiel, 24118 Kiel, Germany

5 b – Dept. of Soil Science, Institute of Soil Science and Plant Nutrition, Christian-Albrechts-
6 University of Kiel, 24118 Kiel, Germany

7 c – Dept. Ecoinformatics, Biometrics and Forest Growth, University of Göttingen, 37077,
8 Göttingen, Germany

9 d – Soil, Plant and Microbial Sciences, Michigan State University, East Lansing, MI 48824,
10 USA

11 e – Dept. of Agricultural Soil Science, Dept. of Soil Science of Temperate Ecosystems,
12 University of Göttingen, 37077, Göttingen, Germany

13

14 * corresponding author

15 E-mail address: nbilyera@yahoo.com (Nataliya Bilyera)

16

17 **Abstract**

18 The recently raised topic of microbial hotspots in soil requires not only visualizing their spatial
19 distribution and biochemical analyses, but also statistical approaches to identify these
20 hotspots and separate them from the surrounding activities (background). We hypothesized
21 that each type of hotspot (e.g. microbial hotspots of enzyme activities, (bio)chemical hotspots
22 of root exudation, herbicide accumulation) is a result of local processes driven by biotic
23 and/or abiotic factors, and the rates of such processes in the hotspots are much higher than
24 those in the general background. We further hypothesized that the background activities in
25 soil are normally distributed. Consequently, hotspot determination should be based on
26 statistical separation of activities significantly higher than the background. We used three
27 groups of published images: 1) ^{14}C images of carbon input by roots into the rhizosphere, 2)
28 ^{14}C glyphosate accumulation in the plant, and 3) soil zymogram of leucine aminopeptidase
29 activity in soil. Each image was analyzed for the statistical distribution of grey values. The two
30 Gaussian distributions were fit (the first representing the background, the second the
31 hotspots) to the distribution of grey values in the images, the parameters (means and
32 standard deviations, SD) of the fitted distributions were calculated, and the background was
33 removed. For the parameters with one distribution, we identified hotspots as areas outside of
34 the Mean+2SD image intensity (corresponding to the upper $\sim 2.5\%$ of activity, being over
35 97.5% of background values). Finally, we visualized images of solely hotspot locations. We
36 compared the results with previously used decisions on hotspot intensity thresholding (i.e.
37 Top-25%, as well as 17 standard thresholding approaches in ImageJ) and then presented
38 and discussed the advantages of the Mean+2SD approach. These advantages include: i)
39 unification of the thresholding approach for several imaging methods with various principles
40 of activity distribution, ii) identification of hotspots with various activity levels, iii) analysis of
41 “time-specific” hotspots in temporal sequences of images. We compared this with 17
42 standard thresholding methods and conclude that objectively elucidating and separating the

43 hotspots, e.g. using the Mean+2SD or Mean+3SD approach, should be based on statistical
44 tools of distribution analysis. This approach helps to understand the processes responsible
45 for the highest activities.

46

47 **Keywords:** Microbial hotspots quantification, Statistical analyses, Rhizosphere, Visualization
48 approaches.

49 **1. Introduction**

50 Soil imaging methods have developed rapidly in recent decades with the advent of advanced
51 techniques (Protz et al., 1987). Various non-destructive methods enable visualizing and
52 quantifying parameters reflecting root-soil-microbial interactions (Oburger and Schmidt,
53 2016). The non-destructive methods yield soil images at a broad range of scales starting from
54 a few nm (10^{-9} m) up to meters (>1 m) (Schlüter et al., 2014). These methods reliably identify
55 the location and spatial distribution of hidden soil life. They are based on a very broad range
56 of approaches: 1) soil zymography: visualization of enzymatic activity in soil (Spohn et al.,
57 2013), rhizosphere (Razavi et al., 2019, 2016), detritusphere (Liu et al., 2017) and earthworm
58 burrows (Hoang et al., 2016); 2) autoradiography and radioisotope imaging: localization of
59 root exudation patterns (Holz et al., 2018) or pesticide accumulations (Alcántara-de la Cruz et
60 al., 2016; Nandula and Vencill, 2015; Pereira et al., 2019) in plants and soil; 3) neutron
61 imaging of water distribution (Carminati et al., 2010); 4) hyperspectral imaging for quantitative
62 soil classification (Steffens and Buddenbaum, 2013); 5) spatial distribution of SOM fractions
63 by reflectance (Steffens et al., 2014); 6) nano-scale secondary ion mass spectroscopy
64 (nanoSIMS) for nano-scale element heterogeneity and speciation (Werner et al., 2017). Other
65 *in situ* imaging approaches are described in detail in Oburger and Schmidt (2016).
66 Spatial visualization is essential for characterizing and quantifying hotspot processes. Such
67 quantification includes (but is not limited to) the following directions: 1) the principles of
68 hotspot localization: frequency, distribution, common distances and size – the spatial pattern;
69 2) thresholding by process intensities; 3) connection between microbial hotspots and the
70 physicochemical conditions: co-localization of images for various parameters; and 4) clear
71 separation of the hotspots from the background.

72 The **first direction** was successfully developed based on the geostatistical analysis and
73 spatial point pattern analysis of microbial distributions in soil in 2-D (Nunan et al., 2002, 2001)
74 and 3-D space (Kravchenko et al., 2013; Nunan et al., 2003).

75 Various approaches related to the **second direction** have been recently developed for the
76 hotspots identified using soil zymography. These include thresholding of the Top-25% grey
77 value intensities (Ma et al., 2017), over 20% (Zhang et al., 2019), 50% (Heitkötter and
78 Marschner, 2018) or 70% (Liu et al., 2017) of mean grey value, and the percentage of
79 segmented areas with the highest enzyme activity that were calculated after determining
80 them as hotspots (Spohn and Kuzyakov, 2014).

81 The development of correlative imaging (Handschoen et al., 2013; Polzer et al., 2019)
82 successfully advanced the **third direction**. Combining 3-D (X-ray) with 2-D light and
83 fluorescent microscopy, SIMs and NanoSIMs methods revealed that about $\frac{3}{4}$ of
84 microorganisms preferably occupy soil micropores $<10 \mu\text{m}$ (Schlüter et al., 2014) or pores $<$
85 $100 \mu\text{m}$ (Kravchenko et al., 2019b). The 3-D pore size distributions and particulate organic
86 matter determined by X-ray μ CT was correlated with enzyme-active locations identified on
87 multiple 2-D soil cross-sections to identify the locations of soil carbon stabilization
88 (Kravchenko et al., 2019b).

89 The present methodological study belongs to the **4th direction** and is designed to localize the
90 hotspots based on contrasting image intensities with the background.

91 In a recent review, Roose et al. (2016) strongly supported the statistical tools for objective
92 image interpretation. Such tools, including variation indexes (Lv et al., 2019), multiple-linear
93 regression (Qiu et al., 2003), and linear and non-linear models (Zhu et al., 2017), were
94 successfully applied for hotspot detection (Table 1). Imaging protocols in neuroscience were
95 developed by using statistical approaches (Dinov, 2011) based on parametric (e.g., paired t -
96 test, Two-way ANOVA) and nonparametric (e.g. Kruskal-Wallis, Fliegner-Killeen) statistical
97 tests (Chu et al., 2009) or spatial mixture models (Logan et al., 2008). K-means cluster

98 statistical analysis was applied to define phosphorus-rich regions imaged using NanoSIMs
99 (Werner et al., 2017) and SIMs (Bertrand et al., 2001) in soil (Table 1). One-way analysis of
100 variance (ANOVA) was applied to find the boundaries between low and medium activities and
101 the borders of hotspots visualized by soil zymography (Ge et al., 2017; Hoang et al., 2016).
102 ANOVA approach was based on comparing mean values for 4 adjacent pixels and applicable
103 to contrast zones (i.e. rhizosphere, detritusphere, biopores). Unfortunately, the approach was
104 unreliable in low-contrast areas on images. Applying ANOVA is not entirely suitable for
105 imaging methods when the activity at two adjacent pixels is interdependent, or when the
106 prerequisites (independent observations, normal distribution, variance homogeneity) for
107 ANOVA are not fulfilled.

108 Microbial hotspots have been defined as small soil patches with considerably higher process
109 rates than those within the bulk soil (Kuzyakov and Blagodatskaya, 2015). No standardized
110 statistical approaches are currently available for thresholding hotspots in soil imaging
111 applications. This study picks up the challenge and develops and tests a simple approach to
112 identify hotspots in the bulk soil.

113 We hypothesize that a sharp gradient is present between hotspots and background activity
114 (e.g., enzyme activity in the rhizosphere and bulk soil). Thus, if the background activity in the
115 bulk soil follows the normal distribution, then activities above the Mean + 2 standard
116 deviations (SD) (Mean+2SD) are hotspot related.

117 To separate the distribution of the probability of hotspot locations from the background and to
118 set a threshold, we suggest the Mean+2SD approach. This approach enables obtaining an
119 error probability of < 2.28% (half of all values outside of the ± 2 SD covering 95.44% of all
120 values within the normal distribution). Consequently, if the hotspot area exceeds 2.28%
121 (which corresponds to the normal distribution), then there are specific reasons and processes
122 for the origin of the area with the highest image intensities – the hotspots. According to these

123 prerequisites, the statistical definition of hotspots would be: Hotspots are those soil volumes
124 in which the activities of the studied process exceed 2 SD of the mean in bulk soil.

125 **2. Materials and methods**

126 *2.1. Images for statistical analysis of hotspots*

127 Three groups of images representing hotspots of different origin were taken from literature: 1)
128 spatial distribution of leucine aminopeptidase activity on soil zymogram (Razavi et al., 2017);
129 2) spatial distribution of ¹⁴C labeled glyphosate in plants (Pereira et al., 2019), and 3) ¹⁴C
130 allocation in living roots and exudates (Holz et al., 2018).

131 All images were processed using the open source software ImageJ (Schindelin et al., 2012).
132 To avoid detailed descriptions of all the underlying experiments elsewhere and to help restrict
133 the data solely to own studies, we have chosen the digital images presented in already
134 published papers (see below). Only the original images (untreated and uncorrected) –
135 monochrome (¹⁴C autoradiograms) or taken under UV light (zymograms) – were used; none
136 of these images was transformed by the authors of original papers to color images. The color
137 images (Red-Green-Blue, RGB) usually used in papers for better visualization were excluded
138 because the blue and red colors corresponding to low and high values of a particular
139 parameter are commonly adjusted by the authors and may not be proportional to the grey
140 intensities in the original image. Thus, although color pictures are better for visualization and
141 presentation in publications, they are not suitable for statistical analysis and can cause
142 incorrect data interpretation. The monochrome digital images were converted to 8-bit
143 greyscale images and inversed, if necessary, to obtain lowest value for 0 and the highest
144 greyscale value for 255.

145 *2.2. Mean + 2SD methodology for hotspot thresholding*

146 Determining hotspots in each image involved 3 steps: 1) splitting the greyscale histogram of
147 the image to two histograms with normal distribution of greyscale values; 2) identifying the
148 greyscale range corresponding to the hotspots; and 3) hotspot mapping on the original
149 image.

150 **1st step:** Splitting the greyscale histogram. The `intensity` of grey values and the
151 corresponding number of pixel counts on images (histograms) were calculated using
152 Histogram toolbox of ImageJ. Statistical analyses were conducted in R, version 3.5.1 (R
153 Developement Core Team, 2014). The package "mixtools" (Benaglia et al., 2009) was used
154 for distribution fitting. The parameters of normal distribution were fitted to the original
155 frequencies of grey values (0...255). Then, the modeled distributions were built and plotted
156 as a histogram (Fig. S1). The `normalmixEM` function in the "mixtools" package based on the
157 expectation–maximization (EM) algorithm was used to fit two Gaussian component densities
158 to the histogram of grey value intensities. The following characteristics of the two normal
159 distributions were identified and calculated (Figs. 1 and S1): **lambda** (λ) corresponds to the
160 share of each distribution component in the total area occupied by grey values of all activities
161 in the whole histogram, **mu** (μ) corresponds to the mean value, and **sigma** (σ) corresponds
162 to the standard deviation (SD) of each histogram (Fig. S1).

163 **2^d step:** Identifying the greyscale range corresponding to the hotspots. The component with
164 the lower mean value was chosen as a background distribution, representing the bulk soil,
165 while the component with the higher mean value represented the hotspots. Because of
166 considerable overlapping of the two components of the original greyscale histogram (Fig. S1),
167 any single-value thresholding method attributes part of the overlapped area either to the
168 background or to the hotspots. In our approach, we consider hotspots to be represented by
169 pixels with grey values greater than Mean+2SD of the background component of the

170 greyscale histogram. Therefore, to remove 97.5% of the background, the sum of the
171 Mean+2SD was used as a threshold for the original image histogram.

172 **3^d step:** Hotspot mapping on the original image. Hotspot percentage was calculated, and
173 solely hotspots were mapped in red on the original images by setting a threshold value using
174 the open source software ImageJ, clearly visualizing these locations.

175 Tested images had two background origins: i) enzyme activity of bulk soil on the zymogram
176 (Fig. 2) and ¹⁴C image of labeled roots and exudates (Fig. 3); and ii) background activity
177 (noise) on the plate – in the ¹⁴C image for glyphosate content in plants (Fig. 4). Therefore, we
178 applied the parameters (mean and SD) of the component 1 (representing the background)
179 (Fig. S1) to threshold hotspots in soil (Figs. 2 and 3). Three components were present on the
180 plant image labeled with ¹⁴C glyphosate. Specifically, the background around the plant
181 (component 1), plant without glyphosate (component 2) and plant with glyphosate
182 (component 3, i.e. hotspot). To identify the hotspots in the plant, we used the parameters of
183 component 2 (Fig. S1) to threshold hotspots in the scanned plant (Fig. 4).

184 The hotspot area and hotspot localization for the presented Mean+2SD and Mean+3SD
185 statistical approaches were compared with the results obtained by the frequently used Top-
186 25% approach (Ma et al., 2017). The Top-25% hotspot approach is based on the thresholding
187 grey values (i.e. enzyme activity in soil zymography) in the upper quartile (Top 25%) (Ma et
188 al., 2017). The Mean+3SD approach is similar to Mean+2SD, but enables separating the
189 hottest spots (0.15%) by thresholding 99.85% of the background values.

190 *2.3 Comparison with standard thresholding methods*

191 To compare hotspots defined by the proposed Mean+2SD approach with those defined by
192 traditionally used thresholding methods, we applied 17 thresholding methods built-in in
193 ImageJ software: Default, Otsu, Huang, Triangle, Lee, Mean, MinEntropy, Minimum,

194 Percentile, MinError, Shanbhag, IsoData, IJ_IsoData, Moments, Intermodes, RenyiEntropy,
195 Yen (see details in Landini, 2017, ImageJ, ver. 1.16.5). Since the original images were
196 published in 8-bit format (i.e. greyscale values ranged from 0 to 254), the activities in hotspots
197 were compared in relative units (0-1). The thresholding of the ^{14}C image of glyphosate
198 distribution in the plant was applied to the plant area to exclude the effect of the background
199 around the plant on the hotspot detection. The thresholding of the soil zymogram and ^{14}C -
200 labeled roots was applied to the whole images. The normalized activities and relative area of
201 the hotspots calculated using the standard thresholding methods and Top-25% approach
202 were compared with the results of Mean+2SD and Mean+3SD thresholding.

203

204 **3. Results**

205 *3.1. Mean+2SD and Mean+ 3SD vs. Top-25% thresholding*

206 Application of the Mean+2SD and Mean+3SD approaches enabled identifying the hotspots of
207 enzyme activity on the leucine aminopeptidase zymogram as being 12% and 7.1% of the
208 image area, respectively (Fig. 2). The hotspots were identified by these statistical approaches
209 mainly along the roots (rhizosphere hotspots) and in the root-free zones (microbial hotspots).
210 Mean+2SD yielded 5% more hotspot area than Mean+3SD because of extended rhizosphere
211 size and due to more micro-hotspots located in the bulk soil (Fig. 2). In contrast, the Top-25%
212 approach thresholded only 0.2 % as a hotspot located in the most active regions of roots.
213 Thus, Mean+2SD and Mean+3SD approaches thresholded 60 and 36 times larger hotspot
214 area for leucine aminopeptidase activity (Fig. 2, Table 2) than the Top-25% approach.

215 The difference between hotspot areas for the newly tested statistical approaches and Top-
216 25% for the ^{14}C content in soil and exudates (Fig. 3) was much lower than for soil zymography

217 (Fig. 2). The total hotspot areas for ^{14}C in root exudates and roots (Table 2, Fig. 2) were
218 about 4 and 3 times larger for the Mean+2SD and Mean+3SD approaches, respectively, than
219 Top-25%.

220 The hotspot areas thresholded by the Mean+2SD and Mean+3SD approaches for image of
221 ^{14}C glyphosate content in plant were 4.6 and 2.6 times larger than Top-25% (Table 2).
222 Furthermore, hotspots thresholded by Top-25% and Mean+3SD were located in seed but not
223 in the leaves, whereas Mean+2SD detected hotspots in both plant components (Fig. 4).
224 Thus, mapping hotspots thresholded by three approaches – Mean+2SD, Mean+3SD and
225 Top-25% – revealed significant visual and quantitative differences in hotspot features (Figs.
226 2-4). These differences include: i) the total area covered by the hotspots and ii) the
227 localization pattern.

228 *3.2. Comparison of suggested approach with standard thresholding methods*

229 The performance of the standard ImageJ thresholding methods differed for three tested
230 images. The smallest hotspot area was obtained for the soil zymogram using Minimum
231 method, while the largest was obtained using Percentile method. The difference between the
232 smallest and largest areas estimated by the standard methods was 500 times (Fig. 5a). The
233 ranks of the standard methods changed, though the difference between Minimum and
234 Percentile methods was still 12-fold when thresholding was applied to the $^{14}\text{CO}_2$ -labeled root
235 image (Fig. 5b). The differences between standard methods were even more pronounced for
236 the ^{14}C -labeled glyphosate image (Fig. 5c), reaching about 1600 times between Shanghang
237 and Percentile. Changing ranks of the standard methods indicated overall inconsistency in
238 their performance for detecting hotspots. Persistently intermediate values of the hotspot area
239 were obtained using the Mean+2SD and Mean+3SD approaches for the first two tested
240 images and close to mean for the cluster of 7 standard methods for the third image, indicating

241 robustness of the developed approach. As expected, normalized mean hotspot activities
242 (from 0 to 1) computed by different standard method but for the same images demonstrated a
243 trend opposite to that for hotspot areas. Smaller average activities were observed for those
244 segmentation methods that produced larger hotspot areas (Fig. 6). Similar to the hotspots,
245 the Mean+2SD and Mean+3SD approaches generated intermediate estimates of the mean
246 hotspot activity (except for ^{14}C -labeled glyphosate in plants, which showed intermediate
247 estimates only for the cluster of 7 standard methods) among the tested methods.

248 **4. Discussion**

249 *4.1. Why statistical methods are necessary for hotspot thresholding*

250 For the first time in 2-D soil imaging, we suggest using a simple and freely available statistical
251 approach to detect and localize microbial hotspots. The approach based solely on separating
252 statistical distributions for the background and hotspots is important for quantitatively
253 assessing hotspot areas and localizing them. Separation based on intensity level (but
254 ignoring the density of each pixel (Fig. S1)) may either under- or overestimate hotspot areas,
255 leading to misinterpretation of *in situ* soil processes and activities. All three examples (Figs. 2-
256 4, Table 2) showed underestimation of hotspot areas by the frequently used Top-25%
257 compared to the suggested Mean+2SD approach. We conclude that the main reason for this
258 underestimation by Top-25% is inherent in the nature of the approach: the Top-25% is
259 defined by few “hottest” points (Fig. 1) and, in an extreme case, by only one point with
260 maximal activity, thus making it always strongly biased to the right on the activity distribution
261 (Fig. 1). As the whole range of pixel intensities will be divided into four quartiles (25% in
262 each), any points below Top-25% will be automatically disregarded as hotspots, even if they
263 differ significantly from the normal distribution of the background. On the example of the
264 distribution of the pixel grey scale (corresponding to intensities, Figs. 1, S1) on the 8-bit

265 image, all points below grey intensity 192 will be disregarded as hotspots using the Top-25%
266 approach. In contrast, the Mean+2SD approach will definitely highlight these hotspots,
267 including those that are much closer to the background (Figs. 1 and S1).
268 The distributions of pixel intensities on 2-D soil images are generally bimodal, i.e. two-class
269 pictures consisting of background and hotspots. The main task of thresholding is to determine
270 the objective reasons and threshold value to separate the pixels with high and low intensities
271 (light from dark on the images). Various statistical approaches have already been suggested
272 in soil hydrology (Lv et al., 2019; Qiu et al., 2003; Zhu et al., 2017), but being technique-
273 specific, they cannot be applied directly to all image types (Aslantas et al., 2017).
274 In a pioneering study on image processing, the mean and standard deviations for peaks of
275 grey-value classes were applied for cell types separation corresponding to various grey-value
276 classes (Prewitt and Mendelsohn, 1966). Mean and standard deviations are the parameters
277 of the well-established Otsu (1979) thresholding approach, which has been used widely for
278 40 years in medicine and biology based on its clarity and simplicity. That approach is being
279 used as a basic technique for distinguishing between cell compartments on various images.
280 Since that time, various other thresholding approaches (mostly used in diagnostic imaging in
281 medicine) have been developed (Aslantas et al., 2017; Lee et al., 1990; Matsuyama et al.,
282 2016) and became available in imaging software. Triangle (Zack et al., 1977) has a good
283 potential for separating rhizosphere hotspots because it was successfully applied for root
284 thresholding (Tajima and Kato, 2013, 2011). The thresholded hotspot areas by triangle
285 method were similar to Mean+3SD approach showing highest p-value (Table S1) for an
286 image of leucine aminopeptidase distribution along the roots (Fig. 5 a). The Huang method
287 (Huang and Wang, 1995) produced the exact same hotspot area and mean value ($p=1$, Table
288 S1) as the Mean+2SD approach on the ^{14}C image for root and exudates in soil. None of the
289 17 auto thresholding methods (Figs. S3, Table S1) yielded the results very close to
290 Mean+2SD (Fig. 5 a-c) on the ^{14}C image of ^{14}C -labeled glyphosate in plant. Moreover, Yen,

291 ReniyEntropy and MaxEntropy were not statistically different from Mean+3SD (Table S1) and
292 revealed similar results for hotspot areas. Therefore, Yen, Triangle, Huang, ReniyEntropy and
293 MaxEntropy methods in ImageJ have a very good potential to threshold microbial and
294 (bio)chemical hotspots on soil images. Nonetheless, further studies are needed to test these
295 thresholding methods on a broad dataset of soil images.

296 *4.2. Comparison of the Mean+2SD, Mean+3SD and Top-25% approaches*

297 Applying the Mean+2SD and Mean+3SD approaches for hotspot separation on soil
298 zymograms revealed an up to 36-60 times larger area than the Top-25% approach and
299 helped better localize root and rhizosphere zones on hotspot images(Figs. 2-4, Table 2).
300 Following the statement about the rhizosphere being a microbial hotspot (Kuzyakov and
301 Razavi, 2019), it is evident that hotspots are localized along the whole root system (Fig. 2)
302 and not restricted to the very few root regions revealed by Top-25% thresholding. Clearly, the
303 Mean+3SD approach thresholded fewer roots within hotspots than Mean+2SD and should
304 therefore be applied with caution in rhizosphere studies.

305 In contrast to the soil zymogram, the difference for hotspot areas on ^{14}C images evaluated by
306 the three approaches (Mean+2SD and Mean+3SD vs. Top 25%) was much lower (but still
307 very high – from 2.4 to 4 times) or negligible (< 0.1 %) (Fig. 4 a-b). We explain this lower
308 difference by the specifics of the ^{14}C imaging method and its processing: i) usually, ^{14}C
309 images have a higher contrast than zymograms (for some uncertainties and constraints of ^{14}C
310 images, see Holz et al. (2019)); this higher contrast reflects the absence of ^{14}C activity in the
311 background soil (the radiocarbon or bomb ^{14}C can be disregarded compared to ^{14}C labeling;
312 the same is valid for cosmogenic or geogenic radioisotopes); ii) ^{14}C images contain many
313 pixels at the maximal grey value of 255, which is not relevant for zymograms. These highest

314 values are definitely thresholded by all three approaches (Mean+2SD, Mean+3SD vs. Top
315 25%) on ^{14}C images.

316 In contrast to enzyme activities on soil zymograms, the ^{14}C footprint on images is localized
317 along the roots in soil and in most cases mimics root shape very well (Fig. 4 a-b). Therefore,
318 shape-based methods for segmenting such ^{14}C exudation hotspots (Gao et al., 2019) can be
319 an option for further thresholding improvement. Note, however, that object-based
320 segmentation is inapplicable for soil zymography due to the location of micro-hotspots in
321 micropores (Kravchenko et al., 2019a) and due to the large variation of individual areas from
322 0.00034 to 2.8 mm^2 (Guber et al., 2018). To avoid any bias, we recommend the pixel-based
323 method for evenly distributed (not object-based) enzyme activity in bulk soil. For details on
324 the advantages and disadvantages of pixel-based and object-based analysis, see the review
325 of Hussain et al. (2013) .

326 *4.3. Limitations of statistical approaches to distinguish and localize hotspots*

327 Hotspot thresholding by statistical approaches based on the distribution of pixel intensities
328 has a great advantage because it is person-independent and enables a unified analysis of the
329 obtained images. Nonetheless, certain shortcomings – which are actually independent of the
330 used statistical approach – need to be considered.

331 1) The quality of the original images plays a significant role in precise hotspot determination.
332 Thus, a **low signal-to-noise ratio** likely results in a wider Gaussian distribution (Weszka and
333 Rosenfeld, 1978) and, consequently, larger SD value. Therefore, poor-quality original images
334 leads to a decrease in some hotspot areas, and some hotspots can even disappear
335 completely. This problem is relevant for any thresholding approach. Solving this issue in
336 image analysis requires: i) improving the quality of the original experimental images, and ii)
337 avoiding the smoothing or de-noising of the original image. This second option may lead to

338 losses of some small hotspots (e.g. in micropores with $\varnothing=60-180 \mu\text{m}$ (Kravchenko et al.,
339 2019a)) or decreases in hotspot areas.

340 2) The complexity of soil life and processes can yield a **few (more than two) distributions** of
341 grey values, each reflecting individual process groups or substance concentrations. Each of
342 these distributions reflects specific reasons or mechanisms. We assume that the first
343 distribution (on the left in Fig. 1) always belongs to the background, and further possible
344 distributions represent hotspot groups caused by various factors. Each hotspot area (peak in
345 the intensity distribution) can be segmented by applying the same procedure further and
346 assuming the next distribution as a background for the remaining hotspots. Thus, evaluating
347 hotspots originating by various processes requires moving toward multi-level thresholding
348 (Mortazavi et al., 2012; Satapathy et al., 2018).

349 3) It is difficult to **distinguish between** hotspots caused by **^{14}C exudates** released from roots
350 into the soil and ^{14}C activity **of the roots themselves**. In many cases (Holz et al., 2018;
351 Pausch and Kuzyakov, 2011), ^{14}C activity in living or dry roots corresponds to the highest
352 grey value (top values on the 255 gray scale) of 8-bit images and creates a peak on the right
353 border of the 255 scale. Therefore, if the research question involves determining root
354 exudation hotspots, the activity of roots alone should be separated beforehand by masking.
355 Otherwise, exudate hotspots may be segmented with the background as well.
356 Importantly, all these (and probably some other) limitations are the same for all approaches
357 (Mean+2SD, Mean+3SD, Top-25%, as well as the 17 approaches implemented in ImageJ)
358 and mainly reflect the nature of the hotspots and the quality of the original images. Further
359 quality improvements of imaging analysis (Baveye et al., 2010) and ongoing development of
360 thresholding approaches (Iassonov et al., 2009; Sezgin and Sankur, 2004) are necessary for
361 more objective conclusions on soil hotspot areas, localization and other characteristics.

362 *4.4. Relevance and advantages of statistical approaches*

363 1) The suggested Mean+2SD thresholding approach helps to avoid subjective biases in
364 hotspot determination for various parameters such as enzyme activities, rhizodeposition, soil
365 pH and nutrient concentrations. Thresholding based on intensity may result in multi-fold
366 higher average activities for β -glucosidase, chitinase and acid phosphatase hotspots in
367 comparison to non-hotspots (Heitkötter and Marschner, 2018), but much smaller hotspot
368 areas (Top-25%, Figs. 2 and 3). The enzyme activities in hotspots and background differed
369 greatly (up to 7 times) because the hotspot segmentation was done by a non-statistical
370 approach and is biased on a few points with maximal intensity. Moreover, using the
371 Mean+2SD approach yields hotspot images that are visually similar to the originals, but with a
372 distinct and completely black background (Figs. 2-4). In contrast, the very small hotspot areas
373 thresholded using the Top-25% approach yielded subtle (almost “background” covered)
374 hotspot images for enzyme activity (Fig. 2) and lower contrast images for ^{14}C activity (Fig. 3
375 and 4). Thus, the Mean+2SD thresholding approach enables localizing i) microbial hotspots
376 along the whole root system for enzyme activity (Fig. 2), ii) ^{14}C allocation hotspots in smaller
377 roots (Fig. 3), and iii) glyphosate accumulation hotspots in the seedling and primary root as
378 opposed to only in leaves for the Top-25% approach (Fig. 4).

379 2) The Mean+2SD and Mean+3SD approaches are much more reliable than Top-25% for
380 microbial (e.g. enzyme activity) hotspot determinations in temporal sequences of images. The
381 thresholding background with contrasting enzyme activity at successive time points can
382 highlight hotspot development, the “time-specific” hotspots and, thus, their lifetime.
383 Accordingly, the set thresholding value for activity may correspond to hotspots at one time
384 point and to the hottest spots at another one (hot moment); the reverse situation is also
385 possible. The challenge to define hotspots at any time, however, is solved by background
386 thresholding. Mean+2SD and Mean+3SD are the universal approaches to overcome such
387 temporal changes of activity and to qualitatively determine hotspot dynamics.

388 3) The background thresholding approach enables defining the hotspots for various
389 properties with the same statistical approach (enzyme activities, ^{14}C in root exudates, water
390 content, soil pH, soil CO_2 and O_2 , nutrient concentrations, etc.). Mean+2SD separates
391 hotspots from the background regardless of their location within a range of low, medium or
392 higher activities. Thereafter, hotspot images can be co-localized and conclusions can be
393 drawn about their spatial co-occurrence.

394 4) These statistical approaches enable identifying hotspots with various levels of microbial
395 activities or substance concentrations in soil. Both Mean+2SD and Mean+3SD (Razavi et al.,
396 2019) can be used to identify hotspots with high and very high activities. The Mean+3SD
397 approach will highlight the areas with 0.15% highest activities and cut off the “background”
398 with 99.85% lowest activities. Nonetheless, the Mean+3SD approach should be applied with
399 caution, especially for microbial hotspots in the rhizosphere. It might disregard the values
400 along less active rhizosphere parts, and the rhizosphere zones as a microbial hotspot will be
401 incomplete (Figs. 2 and 3). That approach yielded 1.3-2.2 times smaller hotspot areas than
402 Mean+2SD. Hotspots in the rhizosphere were lost along the smaller roots (Figs. 2 and 3) by
403 Mean+3SD. Therefore, that thresholding approach is more appropriate for the highest
404 microbial or ^{14}C activity hotspots and used with discretion for rhizosphere studies.

405 5) Last but not least, the Mean+1SD/ Mean+2SD/ Mean+3SD approaches are very simple
406 and based on a clear principle. The parameters of normal distribution can be fitted easily by
407 free and commonly used imaging software and statistical tools (R, ImageJ, etc.). No special
408 software and tools, nor deep involvement with complex thresholding approaches, are
409 necessary.

410 **5. Conclusions**

411 Although microbial hotspots are among the hot topics in soil science, and various imaging
412 techniques help visualize and localize them, statistical approaches to identify the hotspots
413 have not been used. For the first time, we propose simple statistical approaches to separate
414 hotspots from soil background activities on 2-D images. Our approaches are based on the
415 probability of image areas with intensities higher than mean + 2 standard deviations
416 (Mean+2SD) or + 3 standard deviations (Mean+3SD) of a normal distribution. The
417 Mean+2SD or Mean+3SD approaches include: 1) splitting the greyscale histogram of the
418 image into two histograms with normal distribution of greyscale values; 2) identifying the
419 greyscale range corresponding to the hotspots; and 3) hotspot mapping on the original
420 image. This methodology helps to avoid under- or overestimation and bias in images of lower
421 quality, is applicable to time series experiments, and can couple imaging methods of various
422 parameters.

423 **Acknowledgements**

424 We are very thankful to Sandra Spielvogel for her valuable comments that greatly improved the
manuscript. We gratefully acknowledge the Interfaculty Research Cooperation (IRC) "One Health"
at University of Bern, Sub-Project 4. Support for this research was provided in part by the USDA
NIFA Program (Award # 2019-67019-29361), by the NSF LTER Program (DEB 1027253) at the
Kellogg Biological Station, by USDA NC1187 project, by the Great Lakes Bioenergy Research
Center, U.S. Department of Energy, Office of Science, Office of Biological and Environmental
Research under Award Number DE-SC0018409, and by Michigan State University
AgBioResearch. Contribution of Yakov Kuzyakov was supported by the Russian Science
Foundation (project No. 18-14-00362). We would like to thank the two anonymous reviewers for
their suggestions and comments.

425 **References**

426 Alcántara-de la Cruz, R., Fernández-Moreno, P.T., Ozuna, C. V., Rojano-Delgado, A.M.,
427 Cruz-Hipolito, H.E., Domínguez-Valenzuela, J.A., Barro, F., de Prado, R., 2016. Target
428 and non-target site mechanisms developed by glyphosate-resistant hairy beggarticks
429 (*Bidens pilosa* L.) populations from Mexico. *Front. Plant Sci.* 7, 1–12.
433 <https://doi.org/10.3389/fpls.2016.01492>

- 434 Aslantas, A., Emre, D., Çakiroğlu, M., 2017. Comparison of segmentation algorithms for
435 detection of hotspots in bone scintigraphy images and effects on CAD systems. *Biomed.*
436 *Res.* 28, 676–683.
- 437 Baveye, P.C., Laba, M., Otten, W., Bouckaert, L., Dello Sterpaio, P., Goswami, R.R., Grinev,
438 D., Houston, A., Hu, Y., Liu, J., Mooney, S., Pajor, R., Sleutel, S., Tarquis, A., Wang, W.,
439 Wei, Q., Sezgin, M., 2010. Observer-dependent variability of the thresholding step in the
440 quantitative analysis of soil images and X-ray microtomography data. *Geoderma* 157,
441 51–63. <https://doi.org/10.1016/j.geoderma.2010.03.015>
- 442 Benaglia, T., Chauveau, D., Hunter, D.R., Young, D.S., 2009. Mixtools: An R package for
443 analyzing finite mixture models. *J. Stat. Softw.* 32, 1–29.
444 <https://doi.org/10.18637/jss.v032.i06>
- 445 Bertrand, I., Grignon, N., Hinsinger, P., Souche, G., Jaillard, B., 2001. The use of secondary
446 ion mass spectrometry coupled with image analysis to identify and locate chemical
447 elements in soil minerals: The example of phosphorus. *Scanning* 23, 279–291.
448 <https://doi.org/10.1002/sca.4950230409>
- 449 Carminati, A., Moradi, A.B., Vetterlein, D., Vontobel, P., Lehmann, E., Weller, U., Vogel, H.J.,
450 Oswald, S.E., 2010. Dynamics of soil water content in the rhizosphere. *Plant Soil* 332,
451 163–176. <https://doi.org/10.1007/s11104-010-0283-8>
- 452 Chu, A., Cui, J., Dinov, I.D., 2009. SOCR Analyses: Implementation and Demonstration of a
453 New Graphical Statistics Educational Toolkit . *J. Stat. Softw.* 30, 1–19.
454 <https://doi.org/10.18637/jss.v030.i03>
- 455 Dinov, I.D., 2011. Neurological imaging: Statistics behind the pictures. *Imaging Med.*
456 <https://doi.org/10.2217/iim.11.37>
- 457 Gao, W., Schlüter, S., Blaser, S.R.G.A., Shen, J., Vetterlein, D., 2019. A shape-based
458 method for automatic and rapid segmentation of roots in soil from X-ray computed
459 tomography images: Rootine. *Plant Soil* 441, 643–655. [https://doi.org/10.1007/s11104-](https://doi.org/10.1007/s11104-0)

- 460 019-04053-6
- 461 Ge, T., Wei, X., Razavi, B.S., Zhu, Z., Hu, Y., Kuzyakov, Y., Jones, D.L., Wu, J., 2017.
- 462 Stability and dynamics of enzyme activity patterns in the rice rhizosphere: Effects of
- 463 plant growth and temperature. *Soil Biol. Biochem.* 113, 108–115.
- 464 <https://doi.org/10.1016/j.soilbio.2017.06.005>
- 465 Guber, A., Kravchenko, A., Razavi, B.S., Uteau, D., Peth, S., Blagodatskaya, E., Kuzyakov,
- 466 Y., 2018. Quantitative soil zymography: Mechanisms, processes of substrate and
- 467 enzyme diffusion in porous media. *Soil Biol. Biochem.* 127, 156–167.
- 468 <https://doi.org/10.1016/j.soilbio.2018.09.030>
- 469 Handschuh, S., Baeumler, N., Schwaha, T., Ruthensteiner, B., 2013. A correlative approach
- 470 for combining microCT, light and transmission electron microscopy in a single 3D
- 471 scenario. *Front. Zool.* 10, 1. <https://doi.org/10.1186/1742-9994-10-44>
- 472 Heitkötter, J., Marschner, B., 2018. Soil zymography as a powerful tool for exploring hotspots
- 473 and substrate limitation in undisturbed subsoil. *Soil Biol. Biochem.* 124, 210–217.
- 474 <https://doi.org/10.1016/j.soilbio.2018.06.021>
- 475 Hoang, D.T.T., Razavi, B.S., Kuzyakov, Y., Blagodatskaya, E., 2016. Earthworm burrows:
- 476 Kinetics and spatial distribution of enzymes of C-, N- and P- cycles. *Soil Biol. Biochem.*
- 477 99, 94–103. <https://doi.org/10.1016/J.SOILBIO.2016.04.021>
- 478 Holz, M., Zarebanadkouki, M., Carminati, A., Kuzyakov, Y., 2019. Visualization and
- 479 quantification of root exudation using ¹⁴C imaging: challenges and uncertainties. *Plant*
- 480 *Soil* 437, 473–485. <https://doi.org/10.1007/s11104-019-03956-8>
- 481 Holz, M., Zarebanadkouki, M., Kuzyakov, Y., Pausch, J., Carminati, A., 2018. Root hairs
- 482 increase rhizosphere extension and carbon input to soil. *Ann. Bot.* 121, 61–69.
- 483 <https://doi.org/10.1093/aob/mcx127>
- 484 Huang, L.K., Wang, M.J.J., 1995. Image thresholding by minimizing the measures of
- 485 fuzziness. *Pattern Recognit.* 28, 41–51. [https://doi.org/10.1016/0031-3203\(94\)E0043-K](https://doi.org/10.1016/0031-3203(94)E0043-K)

- 486 Hussain, M., Chen, D., Cheng, A., Wei, H., Stanley, D., 2013. Change detection from
487 remotely sensed images: From pixel-based to object-based approaches. *ISPRS J.*
488 *Photogramm. Remote Sens.* <https://doi.org/10.1016/j.isprsjprs.2013.03.006>
- 489 Iassonov, P., Gebrenegus, T., Tuller, M., 2009. Segmentation of X-ray computed tomography
490 images of porous materials: A crucial step for characterization and quantitative analysis
491 of pore structures. *Water Resour. Res.* 45, 1–12.
492 <https://doi.org/10.1029/2009WR008087>
- 493 Kravchenko, A., Chun, H.C., Mazer, M., Wang, W., Rose, J.B., Smucker, A., Rivers, M.,
494 2013. Relationships between intra-aggregate pore structures and distributions of
495 *Escherichia coli* within soil macro-aggregates. *Appl. Soil Ecol.* 63, 134–142.
496 <https://doi.org/10.1016/j.apsoil.2012.10.001>
- 497 Kravchenko, A.N., Guber, A.K., Razavi, B.S., Koestel, J., Blagodatskaya, E. V, Kuzyakov, Y.,
498 2019a. Spatial patterns of extracellular enzymes: Combining X-ray computed micro-
499 tomography and 2D zymography. *Soil Biol. Biochem.* 135, 411–419.
500 <https://doi.org/10.1016/j.soilbio.2019.06.002>
- 501 Kravchenko, A.N., Guber, A.K., Razavi, B.S., Koestel, J., Quigley, M.Y., Robertson, G.P.,
502 Kuzyakov, Y., 2019b. Microbial spatial footprint as a driver of soil carbon stabilization.
503 *Nat. Commun.* 10, 3121. <https://doi.org/10.1038/s41467-019-11057-4>
- 504 Kuzyakov, Y., Blagodatskaya, E., 2015. Microbial hotspots and hot moments in soil: Concept
505 & review. *Soil Biol. Biochem.* 83, 184–199. <https://doi.org/10.1016/j.soilbio.2015.01.025>
- 506 Kuzyakov, Y., Razavi, B.S., 2019. Rhizosphere size and shape: Temporal dynamics and
507 spatial stationarity. *Soil Biol. Biochem.* 135, 343–360.
508 <https://doi.org/10.1016/J.SOILBIO.2019.05.011>
- 509 Landini, G., 2017. ImageJ , 1.16.5 [WWW Document].
- 510 Lee, S.U., Yoon Chung, S., Park, R.H., 1990. A comparative performance study of several
511 global thresholding techniques for segmentation. *Comput. Vision, Graph. Image*

- 512 Process. 52, 171–190. [https://doi.org/10.1016/0734-189X\(90\)90053-X](https://doi.org/10.1016/0734-189X(90)90053-X)
- 513 Liu, S., Razavi, B.S., Su, X., Maharjan, M., Zarebanadkouki, M., Blagodatskaya, E.,
514 Kuzyakov, Y., 2017. Spatio-temporal patterns of enzyme activities after manure
515 application reflect mechanisms of niche differentiation between plants and
516 microorganisms. *Soil Biol. Biochem.* 112, 100–109.
517 <https://doi.org/10.1016/j.soilbio.2017.05.006>
- 518 Logan, B.R., Geliazkova, M.P., Rowe, D.B., 2008. An evaluation of spatial thresholding
519 techniques in fMRI analysis. *Hum. Brain Mapp.* 29, 1379–1389.
520 <https://doi.org/10.1002/hbm.20471>
- 521 Lv, L., Liao, K., Zhou, Z., Zhu, Q., Shen, C., 2019. Determining hot moments/spots of
522 hillslope soil moisture variations based on high-resolution spatiotemporal soil moisture
523 data. *Catena* 173, 150–161. <https://doi.org/10.1016/J.CATENA.2018.10.012>
- 524 Ma, X., Razavi, B.S., Holz, M., Blagodatskaya, E., Kuzyakov, Y., 2017. Warming increases
525 hotspot areas of enzyme activity and shortens the duration of hot moments in the root-
526 detritusphere. *Soil Biol. Biochem.* 107, 226–233.
527 <https://doi.org/10.1016/j.soilbio.2017.01.009>
- 528 Matsuyama, E., Takahashi, N., Watanabe, H., Tsai, D., 2016. A Method of Using Information
529 Entropy of an Image as an Effective Feature for Computer-Aided Diagnostic
530 Applications. *J. Biomed. Sci. Eng.* 09, 315–322. <https://doi.org/10.4236/jbise.2016.96026>
- 531 Mortazavi, D., Z. Kouzani, A., Zadeh, H.S.-, 2012. A 3S Multi-level Thresholding Technique
532 for Intracranial Segmentation from Brain MRI Images. *J. Bioeng. Biomed. Sci.* 02.
533 <https://doi.org/10.4172/2155-9538.1000109>
- 534 Nandula, V.K., Vencill, W.K., 2015. Herbicide Absorption and Translocation in Plants using
535 Radioisotopes. *Weed Sci.* 63, 140–151. <https://doi.org/10.1614/ws-d-13-00107.1>
- 536 Nunan, N., Ritz, K., Crabb, D., Harris, K., Wu, K., Crawford, J.-W., Young, I.-M., 2001.
537 Quantification of the in situ distribution of soil bacteria by large-scale imaging of thin

- 538 sections of undisturbed soil. *FEMS Microbiol. Ecol.* 37 (1), 67-77.
- 539 <https://doi.org/10.1111/j.1574-6941.2001.tb00854.x>
- 540 Nunan, N., Wu, K., Young, I.M., Crawford, J.W., Ritz, K., 2003. Spatial distribution of bacterial
541 communities and their relationships with the micro-architecture of soil. *FEMS Microbiol.*
542 *Ecol.* 44, 203–215. [https://doi.org/10.1016/S0168-6496\(03\)00027-8](https://doi.org/10.1016/S0168-6496(03)00027-8)
- 543 Nunan, N., Wu, K., Young, I.M., Crawford, J.W., Ritz, K., 2002. In situ spatial patterns of soil
544 bacterial populations, mapped at multiple scales, in an arable soil. *Microb. Ecol.* 44,
545 296–305. <https://doi.org/10.1007/s00248-002-2021-0>
- 546 Oburger, E., Schmidt, H., 2016. New Methods To Unravel Rhizosphere Processes. *Trends*
547 *Plant Sci.* 21, 243–255. <https://doi.org/10.1016/j.tplants.2015.12.005>
- 548 Otsu, N., 1979. A Threshold Selection Method from Gray-Level Histograms. *IEEE Trans.*
549 *Syst. Man. Cybern.* 9, 62–66. <https://doi.org/10.1109/TSMC.1979.4310076>
- 550 Pausch, J., Kuzyakov, Y., 2011. Photoassimilate allocation and dynamics of hotspots in roots
551 visualized by ¹⁴C phosphor imaging. *J. Plant Nutr. Soil Sci.* 174, 12–19.
552 <https://doi.org/10.1002/jpln.200900271>
- 553 Pereira, F.C.M., Tayengwa, R., Alves, P.L.D.C.A., Peer, W.A., 2019. Phosphate Status
554 Affects Phosphate Transporter Expression and Glyphosate Uptake and Transport in
555 Grand Eucalyptus (*Eucalyptus grandis*). *Weed Sci.* 67, 29–40.
556 <https://doi.org/10.1017/wsc.2018.58>
- 557 Polzer, C., Ness, S., Mohseni, M., Kellerer, T., Hilleringmann, M., Rädler, J., Hellerer, T.,
558 2019. Correlative two-color two-photon (2C2P) excitation STED microscopy. *Biomed.*
559 *Opt. Express* 10, 4516. <https://doi.org/10.1364/boe.10.004516>
- 560 Prewitt, J.M.S., Mendelsohn, M.L., 1966. The analysis of cell images. *Ann. N. Y. Acad. Sci.*
561 128, 1035–1053. <https://doi.org/10.1111/j.1749-6632.1965.tb11715.x>
- 562 Protz, R., Shipitalo, M.J., Mermut, A.R., Fox, C.A., 1987. Image analysis of soils - present
563 and future. *Geoderma* 40, 115–125. [https://doi.org/10.1016/0016-7061\(87\)90017-6](https://doi.org/10.1016/0016-7061(87)90017-6)

- 564 Qiu, Y., Fu, B., Wang, J., Chen, L., 2003. Spatiotemporal prediction of soil moisture content
565 using multiple-linear regression in a small catchment of the Loess Plateau, China.
566 *Catena* 54, 173–195. [https://doi.org/10.1016/S0341-8162\(03\)00064-X](https://doi.org/10.1016/S0341-8162(03)00064-X)
- 567 R Developement Core Team, 2014. R: a language and environment for statistical computing,
568 R Foundation for Statistical Computing.
- 569 Razavi, B.S., Hoang, D., Kuzyakov, Y., 2017. Visualization of Enzyme Activities in Earthworm
570 Biopores by In Situ Soil Zymography, in: Wilkesman, J., Kurz, L. (Eds.), *Methods in*
571 *Molecular Biology, Methods in Molecular Biology*. Springer New York, New York, NY, pp.
572 229–238. <https://doi.org/10.1007/978-1-4939-7111-4>
- 573 Razavi, B.S., Zarebanadkouki, M., Blagodatskaya, E., Kuzyakov, Y., 2016. Rhizosphere
574 shape of lentil and maize: Spatial distribution of enzyme activities. *Soil Biol. Biochem.*
575 79, 229–237. <https://doi.org/10.1016/j.soilbio.2016.02.020>
- 576 Razavi, B.S., Zhang, X., Bilyera, N., Guber, A., Zarebanadkouki, M., 2019. Soil zymography:
577 Simple and reliable? Review of current knowledge and optimization of the method.
578 *Rhizosphere* 11, 100161. <https://doi.org/10.1016/J.RHISPH.2019.100161>
- 579 Roose, T., Keyes, S.D., Daly, K.R., Carminati, A., Otten, W., Vetterlein, D., Peth, S., 2016.
580 Challenges in imaging and predictive modeling of rhizosphere processes. *Plant Soil* 407,
581 9–38. <https://doi.org/10.1007/s11104-016-2872-7>
- 582 Satapathy, S.C., Sri Madhava Raja, N., Rajinikanth, V., Ashour, A.S., Dey, N., 2018. Multi-
583 level image thresholding using Otsu and chaotic bat algorithm. *Neural Comput. Appl.* 29,
584 1285–1307. <https://doi.org/10.1007/s00521-016-2645-5>
- 585 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch,
586 S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D.J., Hartenstein, V.,
587 Eliceiri, K., Tomancak, P., Cardona, A., 2012. Fiji: an open-source platform for
588 biological-image analysis. *Nat. Methods* 9, 676–682. <https://doi.org/10.1038/nmeth.2019>
- 589 Schlüter, S., Sheppard, A., Brown, K., Wildenschild, D., 2014. Image processing of

- 590 multiphase images obtained via X-ray microtomography: A review. *Water Resour. Res.*
591 50, 3615–3639. <https://doi.org/10.1002/2014WR015256>
- 592 Sezgin, M., Sankur, B., 2004. Survey over image thresholding techniques and quantitative
593 performance evaluation. *J. Electron. Imaging* 13, 146–165.
594 <https://doi.org/10.1117/1.1631315>
- 595 Spohn, M., Carminati, A., Kuzyakov, Y., 2013. Soil zymography - A novel in situ method for
596 mapping distribution of enzyme activity in soil. *Soil Biol. Biochem.* 58, 275–280.
597 <https://doi.org/10.1016/j.soilbio.2012.12.004>
- 598 Spohn, M., Kuzyakov, Y., 2014. Spatial and temporal dynamics of hotspots of enzyme activity
599 in soil as affected by living and dead roots-a soil zymography analysis. *Plant Soil* 379,
600 67–77. <https://doi.org/10.1007/s11104-014-2041-9>
- 601 Steffens, M., Buddenbaum, H., 2013. Laboratory imaging spectroscopy of a stagnic Luvisol
602 profile - High resolution soil characterisation, classification and mapping of elemental
603 concentrations. *Geoderma* 195–196, 122–132.
604 <https://doi.org/10.1016/j.geoderma.2012.11.011>
- 605 Steffens, M., Kohlpaintner, M., Buddenbaum, H., 2014. Fine spatial resolution mapping of soil
606 organic matter quality in a Histosol profile. *Eur. J. Soil Sci.* 65, 827–839.
607 <https://doi.org/10.1111/ejss.12182>
- 608 Tajima, R., Kato, Y., 2013. A quick method to estimate root length in each diameter class
609 using Freeware Imagej. *Plant Prod. Sci.* 16, 9–11. <https://doi.org/10.1626/pps.16.9>
- 610 Tajima, R., Kato, Y., 2011. Comparison of threshold algorithms for automatic image
611 processing of rice roots using freeware ImageJ. *F. Crop. Res.* 121, 460–463.
612 <https://doi.org/10.1016/j.fcr.2011.01.015>
- 613 Werner, F., Mueller, C.W., Thieme, J., Gianoncelli, A., Rivard, C., Höschen, C., Prietzel, J.,
614 2017. Micro-scale heterogeneity of soil phosphorus depends on soil substrate and
615 depth. *Sci. Rep.* 7, 1–9. <https://doi.org/10.1038/s41598-017-03537-8>

- 616 Weszka, J.S., Rosenfeld, A., 1978. Threshold Evaluation Techniques. *IEEE Trans. Syst.*
617 *Man. Cybern.* 8, 622–629. <https://doi.org/10.1109/TSMC.1978.4310038>
- 618 Zack, G.W., Rogers, W.E., Latt, S.A., 1977. Automatic measurement of sister chromatid
619 exchange frequency. *J. Histochem. Cytochem.* 25, 741–753.
620 <https://doi.org/10.1177/25.7.70454>
- 621 Zhang, X., Dippold, M.A., Kuzyakov, Y., Razavi, B.S., 2019. Spatial pattern of enzyme
622 activities depends on root exudate composition. *Soil Biol. Biochem.* 133, 83–93.
623 <https://doi.org/10.1016/J.SOILBIO.2019.02.010>
- 624 Zhu, Q., Zhou, Z., Duncan, E.W., Lv, L., Liao, K., Feng, H., 2017. Integrating real-time and
625 manual monitored data to predict hillslope soil moisture dynamics with high spatio-
626 temporal resolution using linear and non-linear models. *J. Hydrol.* 545, 1–11.
627 <https://doi.org/10.1016/J.JHYDROL.2016.12.014>
- 628

629 **TABLES**630 **Table 1** Approaches to hotspot determination of selected soil parameters in 2-D images

Parameter/ method	Approach	Reference
Enzyme activity/	Top-25% of grey values	Ma et al., 2017
Soil zymography	>50% of mean values	Heitkötter and Marschner, 2018
	>20% of mean grey values	Zhang et al., 2019
	Above of average grey value (>70%)	Liu et al., 2017
	ANOVA to confirm the boundaries by 5 adjusted pixels	Hoang et al., 2016, Ge et al., 2017
	Percentage of segmented areas (thresholded by enzyme activity levels)	Spohn and Kuzyakov, 2014
Soil moisture content/ mapping	Variation indexes	Lv et al., 2019
	Multiple-linear regression	Qiu et al., 2003
	Linear and non-liner models	Zhu et al., 2017
NanoSIMS	Thresholding by size	Xiao et al., 2016
Light and fluorescent microscopy, SIMs and NanoSIMs	Correlative imaging	Handschiuh et al., 2013; Polzer et al., 2019

631

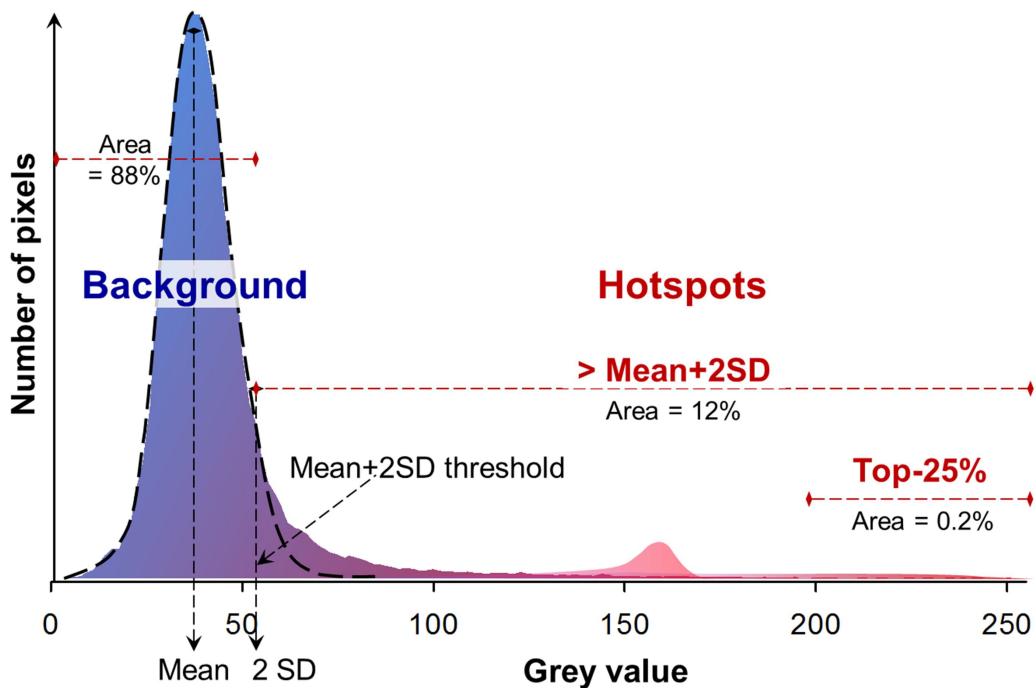
632

633 **Table 2.** Comparison of hotspot areas on three images of activity distribution in soils or plants
 634 calculated by Mean+2SD, Mean+3SD and Top-25% approaches.

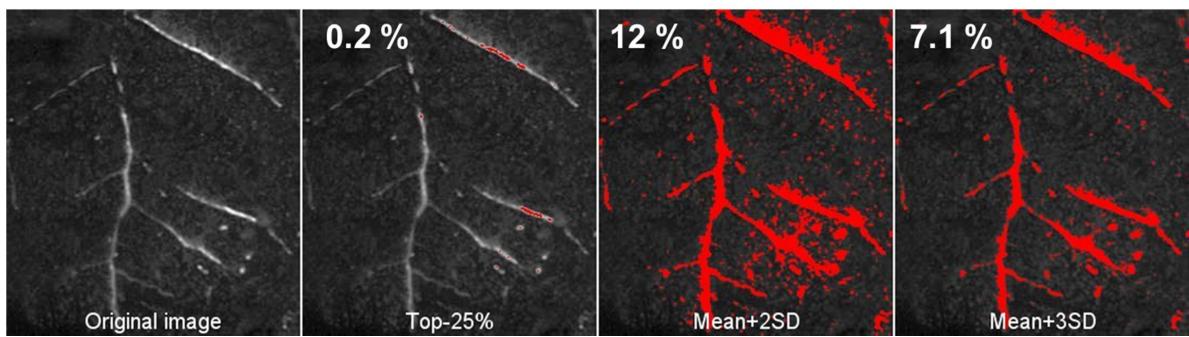
Method	Parameter	Hotspots area, %			Hotspot area increase	
		Top-25%	Mean +2SD	Mean +3SD	Mean +2SD	Mean +3SD
Soil zymography (Fig. 2)	leucine aminopeptidase activity	0.2	12	7.1	60	36
¹⁴ C imaging (Fig. 3 and 4)	¹⁴ C in rootexudates and roots	5.8	23.2	17.1	4	3
	Glyphosate (¹⁴ C) in plant	0.33	1.52	0.87	4.6	2.6

635

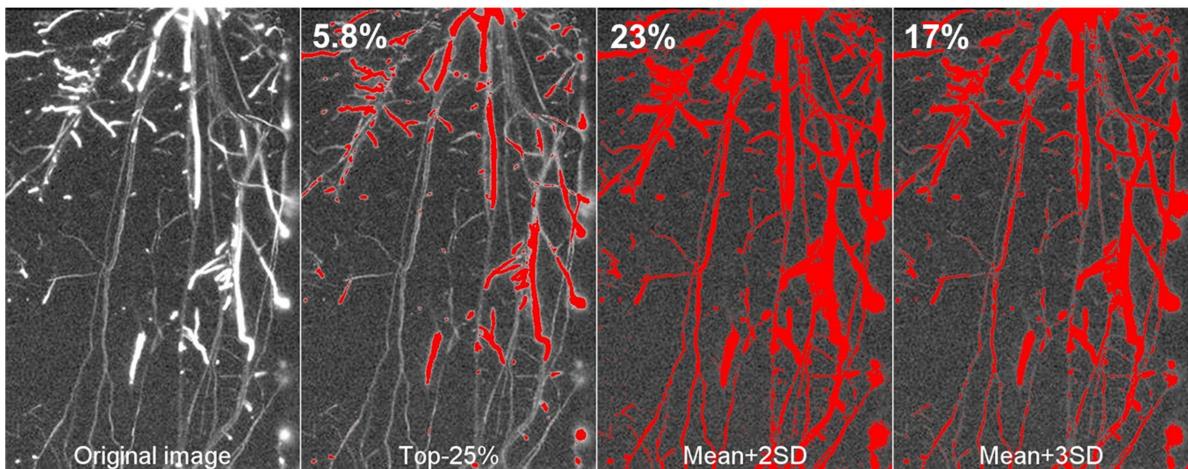
636



639 **Fig. 1.** An example of the grey value distribution (from 0 to 255) for leucine aminopeptidase
 640 activity in soil (data extracted from the 8-bit image in Fig. 6b in Razavi et al., 2017). The
 641 dashed curve reflects the normal distribution of the grey values of the soil background for
 642 enzyme activity with its mean + 2 standard deviations (presented as vertical dashed lines).
 643 The hotspot area (S) thresholded by the Mean+2SD approach corresponds to 12% of the
 644 whole image. Because the Top-25% approach is strongly biased by the highest grey value
 645 (here 255), only 0.2% of the total area are highlighted as hotspots.

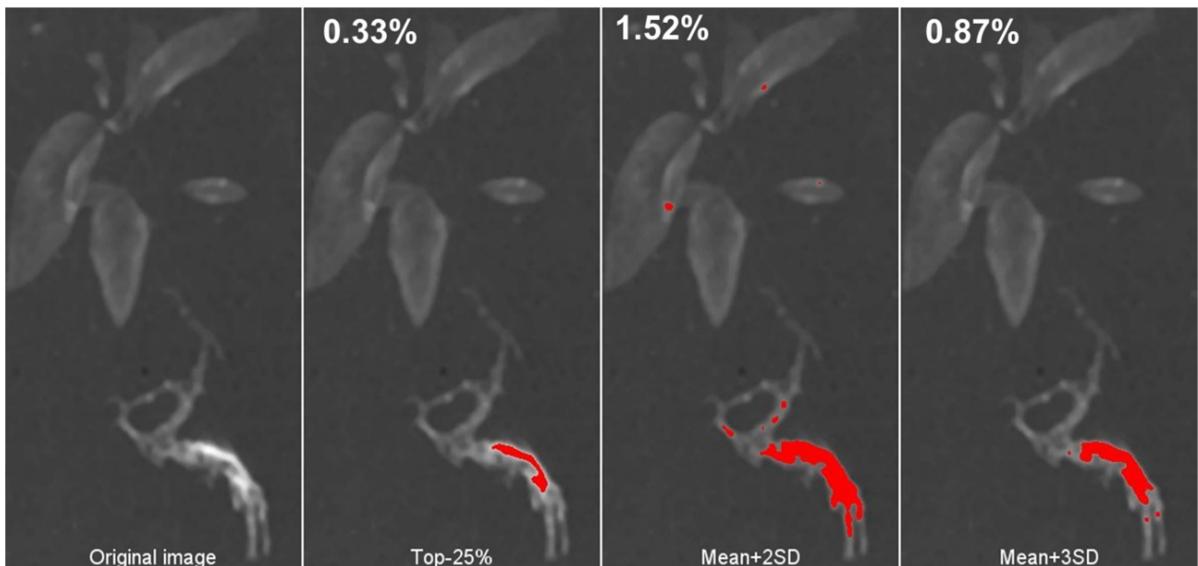


647 **Fig. 2.** Original soil zymograms of leucine aminopeptidase (Razavi et al., 2017) and hotspots
648 (red) identified using Top-25%, Mean+2SD and Mean+3SD approaches (compare Fig. 1).
649
650 Numbers on top left show the percentage of the total image area belonged to the hotspots.



651

652 **Fig. 3.** Original and binarized images of roots and exudates in soil after labeling the plants
 653 with $^{14}\text{CO}_2$ (Holz et al., 2018). The hotspots (red) were identified using Top-25%, Mean+2SD
 654 and Mean+3SD approaches. Numbers on top left show the percentage of the total image
 655 area belonged to the hotspots.

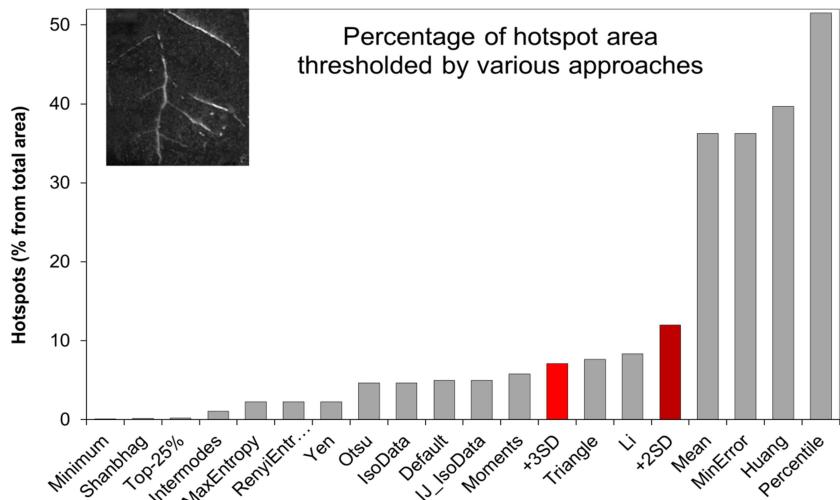


656

657 **Fig. 4.** Original and binarized images of ^{14}C -labeled glyphosate in plants (Fig 5 D, Pereira et
 658 al., 2019). The hotspots (red) were identified using Top-25%, Mean+2SD and Mean+3SD
 659 approaches. Numbers on top left show the percentage of the total image area belonged to
 660 the hotspots.

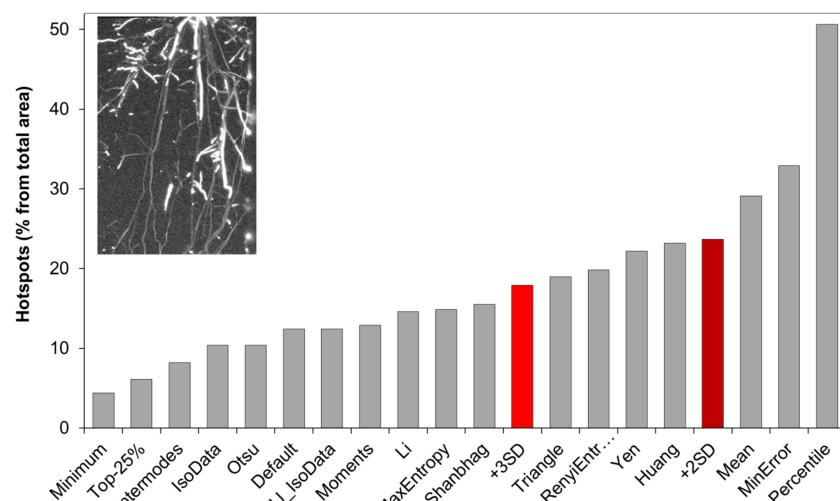
661

a)



663

b)



c)

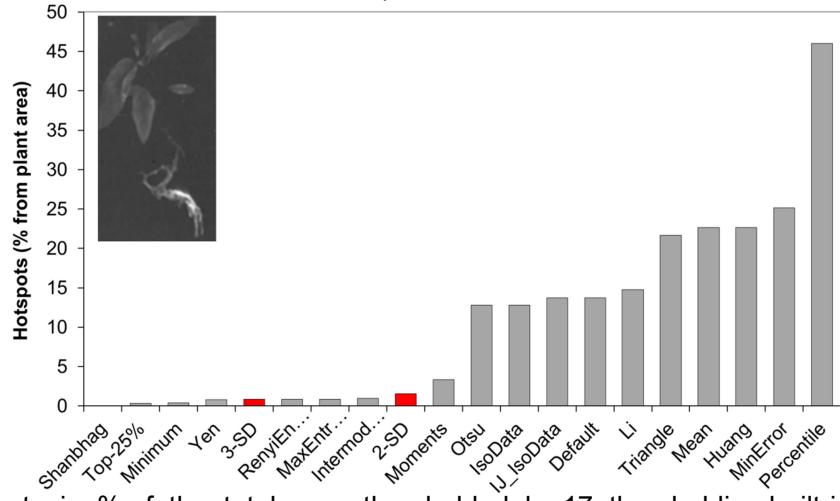
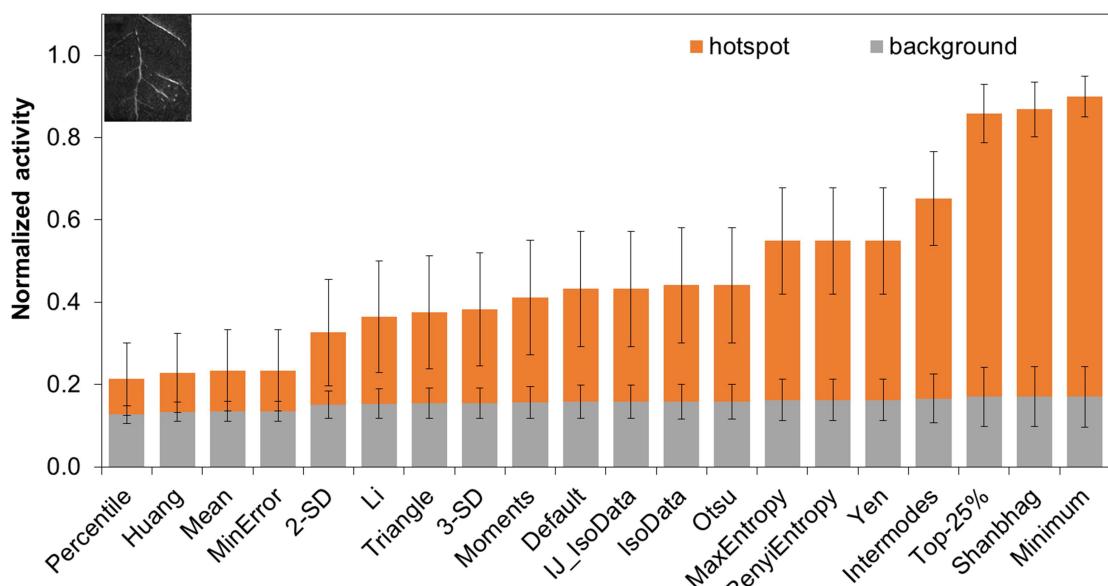
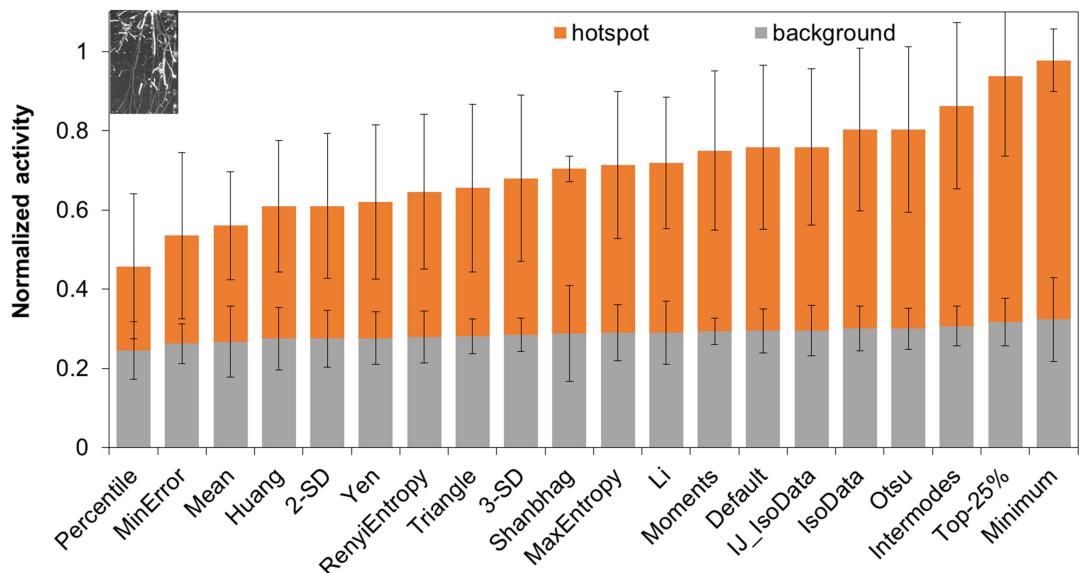


Fig. 5. Hotspots in % of the total area thresholded by 17 thresholding built-in methods in ImageJ and Mean+2SD, Mean+3SD or Top-25% for three test images: a) soil zymogram for leucine aminopeptidase (Razavi et al., 2017); b) ^{14}C image for $^{14}\text{CO}_2$ -labeled root and exudates in soil and c) ^{14}C image of ^{14}C -labeled glyphosate in plants (Pereira et al., 2019).

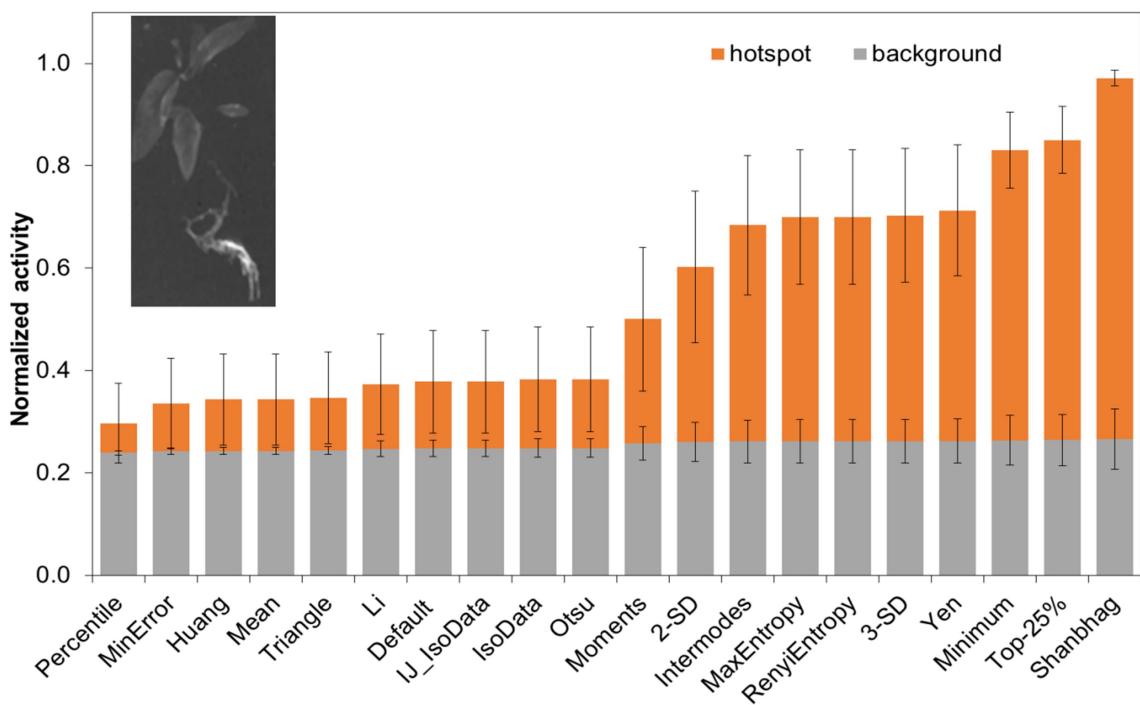
669



670 a)



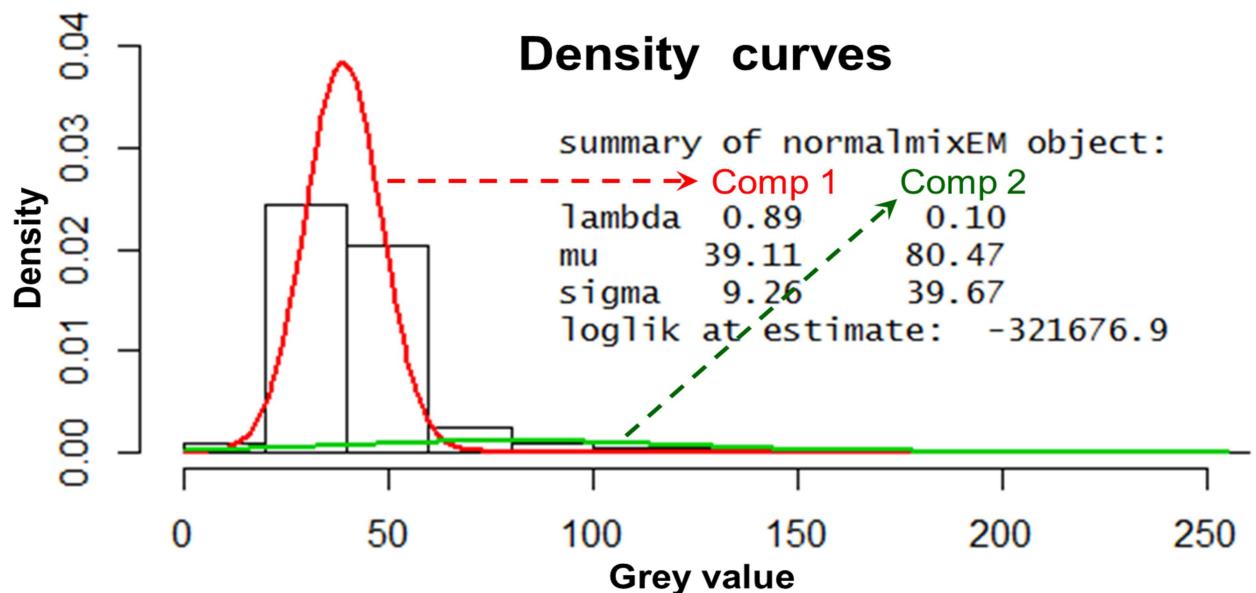
671 b)



672 c)

673 **Fig. 6.** Normalized grey value activities for mean and standard deviation values for
674 background and hotspots separated by 17 thresholding built-in methods in ImageJ and
675 Mean+2SD, Mean+3SD or Top-25% for three test images: a) soil zymogram for leucine
676 aminopeptidase (Razavi et al., 2017); b) ^{14}C image for $^{14}\text{CO}_2$ -labeled root and exudates in soil
677 (Holz et al., 2018) and c) ^{14}C image of ^{14}C -labeled glyphosate in plants (Pereira et al., 2019).

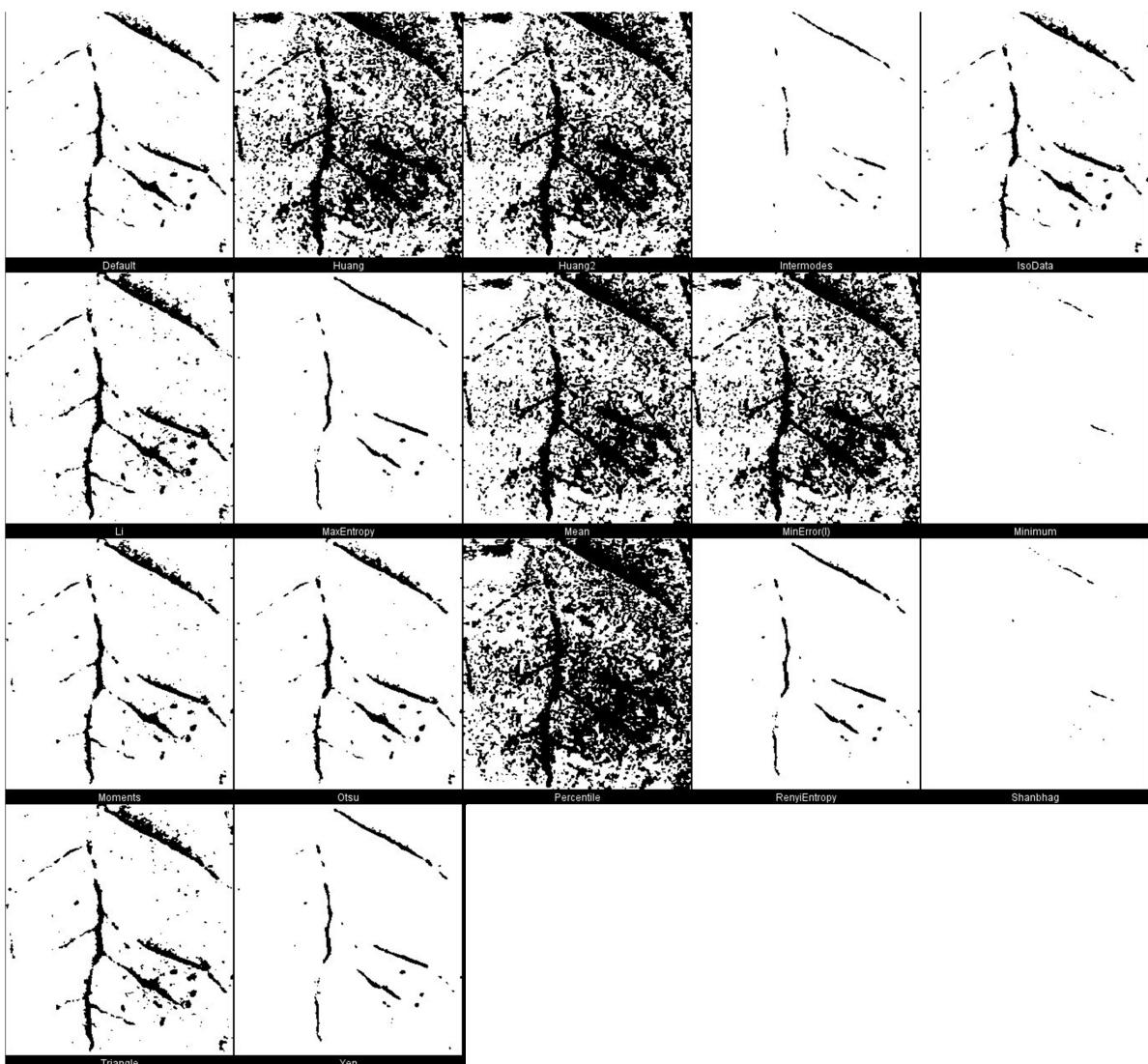
678



680

681 **Figure S1.** An example of the original grey value distribution (bars) for leucine

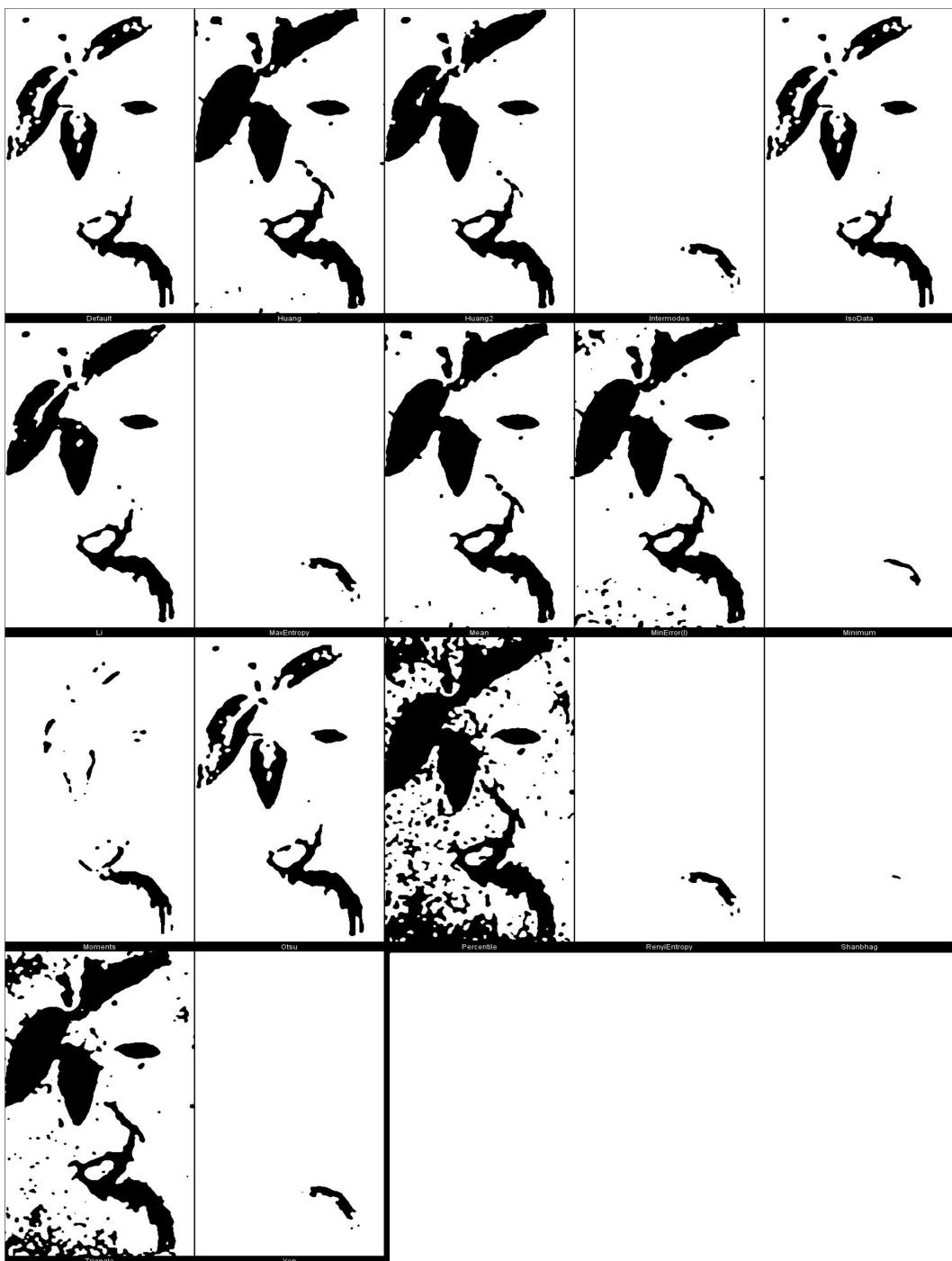
682 aminopeptidase activity in soil (data extracted from the 8-bit image in Fig. 6b in Razavi et al.,
 683 2017) and two fitted normal distributions using the normalmixEM function in R. Red and
 684 green lines denote comp 1 and comp 2 distributions in the summary table. Red (comp 1)
 685 normal distribution covers (lambda (λ)) 89% of the values, while green covers only 11%.
 686 Mean values (mu (μ)) and SD (sigma (σ)) were 39 and 81, and 9 and 40 for red and green
 687 distribution, respectively.



688

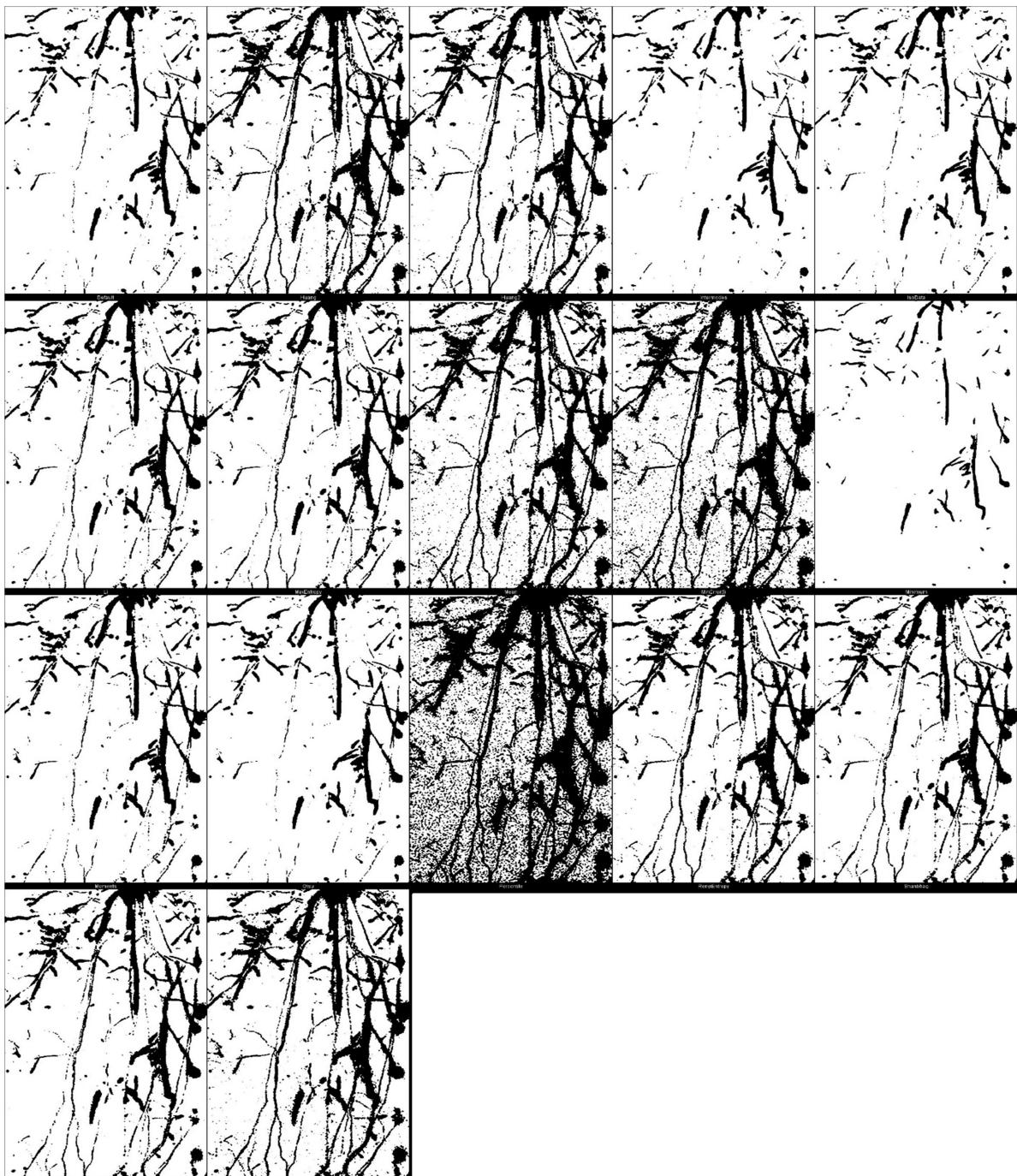
689

690 **Figure S2.** Montage image with results from all built-in thresholding methods in ImageJ
691 (Schindelin et al., 2012) applied to the soil zymogram for leucine aminopeptidase (Razavi et
692 al., 2017).



693

694 **Figure S3.** Montage image with results from all built-in thresholding methods in ImageJ
695 (Schindelin et al., 2012) applied to a ^{14}C image of ^{14}C -labeled glyphosate in plants (Pereira et
696 al., 2019).



697

698 **Figure S4.** Montage image with results from all built-in thresholding methods in ImageJ
699 (Schindelin et al., 2012) applied to a ^{14}C image for $^{14}\text{CO}_2$ -labeled roots and exudates in soil
700 (Holz et al., 2018).

701 **Table S1.** Results of two-samples t-Test for hotspot mean values between statistical
 702 approaches (Mean+2/3SD) and standard methods in ImageJ and Top-25%

Method	¹⁴ C image for ¹⁴ CO ₂ -labeled root and exudates in soil (Holz et al., 2018)	p-values					
		3SD	2SD	3SD	2SD	2SD	3SD
Default	0	0	1.92E-68	0	0	0	0
Huang	0	1	0	0	0	0	0
Intermodes	0	0	0	0	0	0	0
IsoData	0	0	1.94E-91	0	0	0	0
IJ_IsoData	0	0	1.92E-68	0	0	0	0
Li	8.89E-226 4.38E-175	0	1.42E-12	74	0	0	0
MaxEntropy		0	0	0	0	0	0.652
Mean	0	0	0	0	0	0	0
MinError	0	0	0	0	0	0	0
Minimum	0	0	1.7E-279	0	0	0	0
Moments				2.4E-			
	0	0	5.56E-27	269	0	0	0
Otsu	0	0	1.94E-91	0	0	0	0
Percentile	0	0	0	0	0	0	0
RenyiEntropy	8.87E-196	9.6E-241	0	0	0	0	0.652
Shanbhag	4.52E-91	0	0	0	0	0	0
Triangle	1.94E-99	0	0.008838	2.62E-112	0	0	0
Yen	0	2.97E-22	0	0	0	0	0.148
Top-25%	0	0	0	0	0	0	0

703

704 **Example of script for distribution fitting of distribution parameters in R**

```
705  install.packages("mixtools")
706  library(mixtools)
707  setwd("D:/Research/2019/Hot spot approach/Black and white/data for R")
708  Zymo1<-read.table('Zymo-leu.txt', header=T)
709  head(Zymo1)
710  value<-Zymo1$value
711  Amount<-Zymo1$amount
712  i<-seq(1,256, by=1)
713  #test normal distributions
714  vec<-rep(x=value[i], times = Amount[i])
715  mod <- normalmixEM(vec) #test normal distribution
716  plot(mod,which=2)
717  summary(mod)
```