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17 Abstract 
 

18 The recently raised topic of microbial hotspots in soil requires not only visualizing their spatial 

19 distribution and biochemical analyses, but also statistical approaches to identify these 

20 hotspots and separate them from the surrounding activities (background). We hypothesized 

21 that each type of hotspot (e.g. microbial hotspots of enzyme activities, (bio)chemical hotspots 

22 of root exudation, herbicide accumulation) is a result of local processes driven by biotic 

23 and/or abiotic factors, and the rates of such processes in the hotspots are much higher than 

24 those in the general background. We further hypothesized that the background activities in 

25 soil are normally distributed. Consequently, hotspot determination should be based on 

26 statistical separation of activities significantly higher than the background. We used three 

27 groups of published images: 1) 14C images of carbon input by roots into the rhizosphere, 2) 

28 14C glyphosate accumulation in the plant, and 3) soil zymogram of leucine aminopeptidase 

29 activity in soil. Each image was analyzed for the statistical distribution of grey values. The two 

30 Gaussian  distributions  were  fit  (the  first  representing  the  background,  the  second  the 

31 hotspots)  to  the  distribution  of  grey  values  in  the  images,  the  parameters  (means  and 

32 standard deviations, SD) of the fitted distributions were calculated, and the background was 

33 removed. For the parameters with one distribution, we identified hotspots as areas outside of 

34 the Mean+2SD image intensity (corresponding to the upper ~ 2.5% of activity, being over 

35 97.5%  of  background  values). Finally,  we visualized  images  of  solely hotspot locations. We 

36 compared  the  results with  previously used  decisions  on hotspot  intensity  thresholding (i.e. 

37 Top-25%,  as  well  as  17  standard  thresholding approaches  in ImageJ)  and  then presented 

38 and  discussed  the  advantages  of  the  Mean+2SD  approach.  These  advantages  include: i) 

39 unification of the thresholding approach for several imaging methods with various principles 

40 of activity distribution, ii) identification of hotspots with various activity levels, iii) analysis of 

41 “time-specific” hotspots in temporal sequences of images. We compared this with 17 

42 standard thresholding methods and conclude that objectively elucidating and separating the 
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43 hotspots, e.g. using the Mean+2SD or Mean+3SD approach, should be based on statistical 

44 tools of distribution analysis. This approach helps to understand the processes responsible 

45 for the highest activities. 
 

46 
 

47 Keywords: Microbial hotspots quantification, Statistical analyses, Rhizosphere, Visualization 

48 approaches. 
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49 1. Introduction 
 
 

50 Soil imaging methods have developed rapidly in recent decades with the advent of advanced 

51 techniques (Protz et al., 1987). Various non-destructive methods enable visualizing and 

52 quantifying parameters reflecting root-soil-microbial interactions (Oburger and Schmidt, 

53 2016). The non-destructive methods yield soil images at a broad range of scales starting from 

54 a few nm (10-9 m) up to meters (>1 m ) (Schlüter et al., 2014). These methods reliably identify 

55 the location and spatial distribution of hidden soil life. They are based on a very broad range 

56 of  approaches:  1)  soil  zymography:  visualization of  enzymatic  activity in  soil (Spohn  et al., 

57 2013), rhizosphere (Razavi et al., 2019, 2016), detritusphere (Liu et al., 2017) and earthworm 

58 burrows (Hoang et al., 2016); 2) autoradiography and radioisotope imaging: localization of 

59 root exudation patterns (Holz et al., 2018) or pesticide accumulations (Alcántara-de la Cruz et 

60 al., 2016; Nandula and Vencill, 2015; Pereira et al., 2019) in plants and soil; 3) neutron 

61 imaging of water distribution (Carminati et al., 2010); 4) hyperspectral imaging for quantitative 

62 soil classification (Steffens and Buddenbaum, 2013); 5) spatial distribution of SOM fractions 

63 by reflectance (Steffens et al., 2014); 6) nano-scale secondary ion mass spectroscopy 

64 (nanoSIMS) for nano-scale element heterogeneity and speciation (Werner et al., 2017). Other 

65 in situ imaging approaches are described in detail in Oburger and Schmidt (2016). 
 

66 Spatial visualization is essential for characterizing and quantifying hotspot processes. Such 

67 quantification includes (but is not limited to) the following directions: 1) the principles of 

68 hotspot localization: frequency, distribution, common distances and size – the spatial pattern; 

69 2) thresholding by process intensities; 3) connection between microbial hotspots and the 

70 physicochemical conditions: co-localization of images for various parameters; and 4) clear 

71 separation of the hotspots from the background. 
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72 The first direction was successfully developed based on the geostatistical analysis and 

73 spatial point pattern analysis of microbial distributions in soil in 2-D (Nunan et al., 2002, 2001) 

74 and 3-D space (Kravchenko et al., 2013; Nunan et al., 2003). 

75 Various approaches related to the second direction have been recently developed for the 

76 hotspots identified using soil zymography. These include thresholding of the Top-25% grey 

77 value intensities (Ma et al., 2017), over 20% (Zhang et al., 2019), 50% (Heitkötter and 

78 Marschner, 2018) or 70% (Liu et al., 2017) of mean grey value, and the percentage of 

79 segmented areas with the highest enzyme activity that were calculated after determining 

80 them as hotspots (Spohn and Kuzyakov, 2014). 

81 The development of correlative imaging (Handschuh et al., 2013; Polzer et al., 2019) 

82 successfully advanced the third direction. Combining 3-D (X-ray) with 2-D light and 

83 fluorescent microscopy, SIMs and NanoSIMs methods revealed that about ¾ of 

84 microorganisms  preferably occupy soil micropores  <10  µm (Schlüter et  al.,  2014) or  pores < 

85 100 µm (Kravchenko et al., 2019b). The 3-D pore size distributions and particulate organic 

86 matter determined by X-ray µCT was correlated with enzyme-active locations identified on 

87 multiple 2-D soil cross-sections to identify the locations of soil carbon stabilization 

88 (Kravchenko et al., 2019b). 

89 The present methodological study belongs to the 4th direction and is designed to localize the 

90 hotspots based on contrasting image intensities with the background. 

91 In a recent review, Roose et al. (2016) strongly supported the statistical tools for objective 

92 image interpretation. Such tools, including variation indexes (Lv et al., 2019), multiple-linear 

93 regression  (Qiu  et  al.,  2003),  and  linear  and  non-liner  models  (Zhu  et  al.,  2017),  were 

94 successfully applied for hotspot detection (Table 1). Imaging protocols in neuroscience were 

95 developed by using statistical approaches (Dinov, 2011) based on parametric (e.g., paired t- 

96 test, Two-way ANOVA) and nonparametric (e.g. Kruskal-Wallis, Fliegner-Killeen) statistical 

97 tests (Chu et al., 2009) or spatial mixture models (Logan et al., 2008). K-means cluster 
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98 statistical  analysis  was  applied  to  define  phosphorus-rich regions  imaged  using NanoSIMs 

99 (Werner et al., 2017) and SIMs (Bertrand et al., 2001) in soil (Table 1). One-way analysis of 

100 variance (ANOVA) was applied to find the boundaries between low and medium activities and 

101 the borders of hotspots visualized by soil zymography (Ge et al., 2017; Hoang et al., 2016). 

102 ANOVA approach was based on comparing mean values for 4 adjacent pixels and applicable 

103 to contrast zones (i.e. rhizosphere, detritusphere, biopores). Unfortunately, the approach was 

104 unreliable in low-contrast areas on images. Applying ANOVA is not entirely suitable for 

105 imaging methods when the activity at two adjacent pixels is interdependent, or when the 

106 prerequisites (independent observations, normal distribution, variance homogeneity) for 

107 ANOVA are not fulfilled. 

108 Microbial hotspots have been defined as small soil patches with considerably higher process 

109 rates than those within the bulk soil (Kuzyakov and Blagodatskaya, 2015). No standardized 

110 statistical approaches are currently available for thresholding hotspots in soil imaging 

111 applications. This study picks up the challenge and develops and tests a simple approach to 

112 identify hotspots in the bulk soil. 

113 We hypothesize that a sharp gradient is present between hotspots and background activity 

114 (e.g., enzyme activity in the rhizosphere and bulk soil). Thus, if the background activity in the 

115 bulk soil follows the normal distribution, then activities above the Mean + 2 standard 

116 deviations (SD) (Mean+2SD) are hotspot related. 

117 To separate the distribution of the probability of hotspot locations from the background and to 

118 set a threshold, we suggest the Mean+2SD approach. This approach enables obtaining an 

119 error probability of < 2.28% (half of all values outside of the ± 2 SD covering 95.44% of all 

120 values within the normal distribution). Consequently, if the hotspot area exceeds 2.28% 

121 (which corresponds to the normal distribution), then there are specific reasons and processes 

122 for the origin of the area with the highest image intensities – the hotspots. According to these 
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123 prerequisites, the statistical definition of hotspots would be: Hotspots are those soil volumes 

124 in which the activities of the studied process exceed 2 SD of the mean in bulk soil. 
 

125 2. Materials and methods 
 

126 2.1. Images for statistical analysis of hotspots 
 
 

127 Three groups of images representing hotspots of different origin were taken from literature: 1) 

128 spatial distribution of leucine aminopeptidase activity on soil zymogram (Razavi et al., 2017); 

129 2) spatial distribution of 14C labeled glyphosate in plants (Pereira et al., 2019), and 3) 14C 

130 allocation in living roots and exudates (Holz et al., 2018). 

131 All images were processed using the open source software ImageJ (Schindelin et al., 2012). 

132 To avoid detailed descriptions of all the underlying experiments elsewhere and to help restrict 

133 the data solely to own studies, we have chosen the digital images presented in already 

134 published papers (see below). Only the original images (untreated and uncorrected) – 

135 monochrome (14C autoradiograms) or taken under UV light (zymograms) – were used; none 

136 of  these images was  transformed  by the authors of  original papers to color images. The color 

137 images (Red-Green-Blue, RGB) usually used in papers for better visualization were excluded 

138 because  the  blue  and  red  colors  corresponding  to  low  and  high  values  of  a  particular 

139 parameter are commonly adjusted by the authors and may not be proportional to the grey 

140 intensities in the original image. Thus, although color pictures are better for visualization and 

141 presentation in publications, they are not suitable for statistical analysis and can cause 

142 incorrect data interpretation. The monochrome digital images were converted to 8-bit 

143 greyscale images and inversed, if necessary, to obtain lowest value for 0 and the highest 

144 greyscale value for 255. 
 
 

145 2.2. Mean + 2SD methodology for hotspot thresholding 
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146 Determining hotspots in each image involved 3 steps: 1) splitting the greyscale histogram of 

147 the image to two histograms with normal distribution of greyscale values; 2) identifying the 

148 greyscale range corresponding to the hotspots; and 3) hotspot mapping on the original 

149 image. 
 

150 1st step: Splitting the greyscale histogram. The intensity of grey values and the 

151 corresponding number of pixel counts on images (histograms) were calculated using 

152 Histogram toolbox of ImageJ. Statistical analyses were conducted in R, version 3.5.1 (R 

153 Developement Core Team, 2014). The package "mixtools" (Benaglia et al., 2009) was used 

154 for distribution fitting. The parameters of normal distribution were fitted to the original 

155 frequencies of grey values (0…255). Then, the modeled distributions were built and plotted 

156 as a histogram (Fig. S1). The normalmixEM function in the “mixtools” package based on the 

157 expectation–maximization (EM) algorithm was used to fit two Gaussian component densities 

158 to the histogram of grey value intensities. The following characteristics of the two normal 

159 distributions were identified and calculated (Figs. 1 and S1): lambda (λ) corresponds to the 

160 share of each distribution component in the total area occupied by grey values of all activities 

161 in the whole histogram, mu (μ) corresponds to the mean value, and sigma (σ) corresponds 

162 to the standard deviation (SD) of each histogram (Fig. S1). 
 

163 2d step: Identifying the greyscale range corresponding to the hotspots. The component with 

164 the lower mean value was chosen as a background distribution, representing the bulk soil, 

165 while the component with the higher mean value represented the hotspots. Because of 

166 considerable overlapping of the two components of the original greyscale histogram (Fig. S1), 

167 any single-value thresholding method attributes part of the overlapped area either to the 

168 background or to the hotspots. In our approach, we consider hotspots to be represented by 

169 pixels with grey values greater than Mean+2SD of the background component of the 
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170 greyscale histogram. Therefore, to remove 97.5% of the background, the sum of the 

171 Mean+2SD was used as a threshold for the original image histogram. 

172 3d step: Hotspot mapping on the original image. Hotspot percentage was calculated, and 

173 solely hotspots were mapped in red on the original images by setting a threshold value using 

174 the open source software ImageJ, clearly visualizing these locations. 
 

175 Tested images had two background origins: i) enzyme activity of bulk soil on the zymogram 

176 (Fig. 2) and 14C image of labeled roots and exudates (Fig. 3); and ii) background activity 

177 (noise) on the plate – in the 14C image for glyphosate content in plants (Fig. 4). Therefore, we 

178 applied the parameters (mean and SD) of the component 1 (representing the background) 

179 (Fig. S1) to threshold hotspots in soil (Figs. 2 and 3). Three components were present on the 

180 plant image labeled with 14C glyphosate. Specifically, the background around the plant 

181 (component 1), plant without glyphosate (component 2) and plant with glyphosate 

182 (component 3, i.e. hotspot). To identify the hotspots in the plant, we used the parameters of 

183 component 2 (Fig. S1) to threshold hotspots in the scanned plant (Fig. 4). 
 

184 The hotspot area and hotspot localization for the presented Mean+2SD and Mean+3SD 

185 statistical approaches were compared with the results obtained by the frequently used Top- 

186 25% approach (Ma et al., 2017). The Top-25% hotspot approach is based on the thresholding 

187 grey values (i.e. enzyme activity in soil zymography) in the upper quartile (Top 25%) (Ma et 

188 al., 2017). The Mean+3SD approach is similar to Mean+2SD, but enables separating the 

189 hottest spots (0.15%) by thresholding 99.85% of the background values. 
 
 

190 2.3 Comparison with standard thresholding methods 
 
 

191 To compare hotspots defined by the proposed Mean+2SD approach with those defined by 

192 traditionally  used  thresholding   methods,   we   applied  17  thresholding   methods   built-in in 

193 ImageJ   software:   Default,   Otsu,   Huang,   Triangle,   Lee,   Mean,   MinEntropy,  Minimum, 
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194 Percentile, MinError, Shanbhag, IsoData, IJ_IsoData, Moments, Intermodes, RenyiEntropy, 

195 Yen (see details in Landini, 2017, ImageJ, ver. 1.16.5 ). Since the original images were 

196 published in 8-bit format (i.e. greyscale values ranged from 0 to 254), the activities in hotspots 

197 were compared in relative units (0-1). The thresholding of the 14C image of glyphosate 

198 distribution in the plant was applied to the plant area to exclude the effect of the background 

199 around the plant on the hotspot detection. The thresholding of the soil zymogram and 14C- 

200 labeled roots was applied to the whole images. The normalized activities and relative area of 

201 the hotspots calculated using the standard thresholding methods and Top-25% approach 

202 were compared with the results of Mean+2SD and Mean+3SD thresholding. 
 
 

203  
 
 

204 3. Results 
 
 

205 3.1. Mean+2SD and Mean+ 3SD vs. Top-25% thresholding 
 
 

206 Application of the Mean+2SD and Mean+3SD approaches enabled identifying the hotspots of 

207 enzyme activity on the leucine aminopeptidase zymogram as being 12% and 7.1% of the 

208 image area, respectively (Fig. 2). The hotspots were identified by these statistical approaches 

209 mainly along the roots (rhizosphere hotspots) and in the root-free zones (microbial hotspots). 

210 Mean+2SD yielded 5% more hotspot area than Mean+3SD because of extended rhizosphere 

211 size and due to more micro-hotspots located in the bulk soil (Fig. 2). In contrast, the Top-25% 

212 approach thresholded only 0.2 % as a hotspot located in the most active regions of roots. 

213 Thus, Mean+2SD and Mean+3SD approaches thresholded 60 and 36 times larger hotspot 

214 area for leucine aminopeptidase activity (Fig. 2, Table 2) than the Top-25% approach. 
 

215 The difference between hotspot areas for the newly tested statistical approaches and Top- 

216 25% for the 14C content in soil and exudates (Fig. 3) was much lower that for soil zymography 
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217 (Fig. 2). The total hotspot areas for 14C in root exudates and roots (Table 2, Fig. 2) were 

218 about 4 and 3 times larger for the Mean+2SD and Mean+3SD approaches, respectively, than 

219 Top-25%. 
 

220 The hotspot areas thresholded by the Mean+2SD and Mean+3SD approaches for image of 

221 14C glyphosate content in plant were 4.6 and 2.6 times larger than Top-25% (Table 2). 

222 Furthermore, hotspots thresholded by Top-25% and Mean+3SD were located in seed but not 

223 in the leaves, whereas Mean+2SD detected hotspots in both plant components (Fig. 4). 

224 Thus, mapping hotspots thresholded by three approaches – Mean+2SD, Mean+3SD and 

225 Top-25% – revealed significant visual and quantitative differences in hotspot features (Figs. 

226 2-4). These differences include: i) the total area covered by the hotspots and ii) the 

227 localization pattern. 
 
 

228 3.2. Comparison of suggested approach with standard thresholding methods 
 
 

229 The performance of the standard ImageJ thresholding methods differed for three tested 

230 images. The smallest hotspot area was obtained for the soil zymogram using Minimum 

231 method, while the largest was obtained using Percentile method. The difference between the 

232 smallest and largest areas estimated by the standard methods was 500 times (Fig. 5a). The 

233 ranks  of  the  standard  methods  changed,  though  the  difference  between  Minimum  and 

234 Percentile methods was still 12-fold when thresholding was applied to the 14CO2-labeled root 

235 image (Fig. 5b). The differences between standard methods were even more pronounced for 

236 the 14C-labeled glyphosate image (Fig. 5c), reaching about 1600 times between Shanghang 

237 and Percentile. Changing ranks of the standard methods indicated overall inconsistency in 

238 their performance for detecting hotspots. Persistently intermediate values of the hotspot area 

239 were obtained using the Mean+2SD and Mean+3SD approaches for the first two tested 

240 images and close to mean for the cluster of 7 standard methods for the third image, indicating 
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241 robustness of the developed approach. As expected, normalized mean hotspot activities 

242 (from 0 to 1) computed by different standard method but for the same images demonstrated a 

243 trend opposite to that for hotspot areas. Smaller average activities were observed for those 

244 segmentation methods that produced larger hotspot areas (Fig. 6). Similar to the hotspots, 

245 the Mean+2SD and Mean+3SD approaches generated intermediate estimates of the mean 

246 hotspot activity (except for 14C-labeled glyphosate in plants, which showed intermediate 

247 estimates only for the cluster of 7 standard methods) among the tested methods. 
 
 

248 4. Discussion 
 
 

249 4.1. Why statistical methods are necessary for hotspot thresholding 
 
 

250 For the first time in 2-D soil imaging, we suggest using a simple and freely available statistical 

251 approach to detect and localize microbial hotspots. The approach based solely on separating 

252 statistical distributions for the background and hotspots is important for quantitatively 

253 assessing hotspot areas and localizing them. Separation based on intensity level (but 

254 ignoring the density of each pixel (Fig. S1)) may either under- or overestimate hotspot areas, 

255 leading to misinterpretation of in situ soil processes and activities. All three examples (Figs. 2- 

256 4, Table 2) showed underestimation of hotspot areas by the frequently used Top-25% 

257 compared to the suggested Mean+2SD approach. We conclude that the main reason for this 

258 underestimation by Top-25% is inherent in the nature of the approach: the Top-25% is 

259 defined by few “hottest” points (Fig. 1) and, in an extreme case, by only one point with 

260 maximal activity, thus making it always strongly biased to the right on the activity distribution 

261 (Fig. 1). As the whole range of pixel intensities will be divided into four quartiles (25% in 

262 each), any points below Top-25% will be automatically disregarded as hotspots, even if they 

263 differ significantly from the normal distribution of the background. On the example of the 

264 distribution of the pixel grey scale (corresponding to intensities, Figs. 1, S1) on the 8-bit 
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265 image, all points below grey intensity 192 will be disregarded as hotspots using the Top-25% 

266 approach.  In  contrast,  the  Mean+2SD  approach  will  definitely  highlight  these  hotspots, 

267 including those that are much closer to the background (Figs. 1 and S1). 

268 The distributions of pixel intensities on 2-D soil images are generally bimodal, i.e. two-class 

269 pictures consisting of background and hotspots. The main task  of  thresholding is to  determine 

270 the objective reasons and threshold value to separate the pixels with high and low intensities 

271 (light from dark on the images). Various statistical approaches have already been suggested 

272 in soil hydrology (Lv et al., 2019; Qiu et al., 2003; Zhu et al., 2017), but being technique- 

273 specific, they cannot be applied directly to all image types (Aslantas et al., 2017). 

274 In a pioneering study on image processing, the mean and standard deviations for peaks of 

275 grey-value classes were applied for cell types separation corresponding to various grey-value 

276 classes (Prewitt and Mendelsohn, 1966). Mean and standard deviations are the parameters 

277 of the well-established Otsu (1979) thresholding approach, which has been used widely for 

278 40 years in medicine and biology based on its clarity and simplicity. That approach is being 

279 used as a basic technique for distinguishing between cell compartments on various images. 

280 Since that time, various other thresholding approaches (mostly used in diagnostic imaging in 

281 medicine) have been developed (Aslantas et al., 2017; Lee et al., 1990; Matsuyama et al., 

282 2016) and became available in imaging software. Triangle (Zack et al., 1977) has a good 

283 potential for separating rhizosphere hotspots because it was successfully applied for root 

284 thresholding  (Tajima  and  Kato,  2013,  2011).  The thresholded hotspot areas by triangle 

285 method were similar to Mean+3SD approach showing highest p-value (Table S1) for an 

286 image of leucine aminopeptidase distribution along the roots (Fig. 5 a). The Huang method 

287 (Huang and Wang, 1995) produced the exact same hotspot area and mean value (p=1, Table 

288 S1) as the Mean+2SD approach on the 14C image for root and exudates in soil. None of the 

289 17 auto thresholding methods (Figs. S3, Table S1) yielded the results very close to 

290 Mean+2SD (Fig. 5 a-c) on the 14C image of 14C-labeled glyphosate in plant. Moreover, Yen, 



14  

 

291 ReniyEntropy and MaxEntropy were not statistically different from Mean+3SD (Table S1) and 

292 revealed similar results for  hotspot areas. Therefore, Yen,  Triangle, Huang, ReniyEntropy and 

293 MaxEntropy  methods   in  ImageJ   have  a  very  good   potential  to   threshold  microbial and 

294 (bio)chemical hotspots on soil images. Nonetheless, further studies are needed to test these 

295 thresholding methods on a broad dataset of soil images. 
 
 

296 4.2. Comparison of the Mean+2SD, Mean+3SD and Top-25% approaches 
 
 

297 Applying   the   Mean+2SD   and   Mean+3SD   approaches   for   hotspot   separation   on  soil 

298 zymograms  revealed  an  up  to  36-60  times  larger  area  than  the  Top-25%  approach  and 

299 helped better localize root and rhizosphere zones on hotspot images(Figs. 2-4, Table 2). 

300 Following the statement about the rhizosphere being a microbial hotspot (Kuzyakov and 

301 Razavi, 2019), it is evident that hotspots are localized along the whole root system (Fig. 2) 

302 and not restricted to the very few root regions revealed by Top-25% thresholding. Clearly, the 

303 Mean+3SD approach thresholded fewer roots within hotspots than Mean+2SD and should 

304 therefore be applied with caution in rhizosphere studies. 
 
 

305 In contrast to the soil zymogram, the difference for hotspot areas on 14C images evaluated by 

306 the three approaches (Mean+2SD and Mean+3SD vs. Top 25%) was much lower (but still 

307 very high – from 2.4 to 4 times) or negligible (< 0.1 %) (Fig. 4 a-b). We explain this lower 

308 difference by the specifics of the 14C imaging method and its processing: i) usually, 14C 

309 images have a higher contrast than zymograms (for some uncertainties and constraints of 14C 

310 images, see Holz et al. (2019)); this higher contrast reflects the absence of 14C activity in the 

311 background soil (the radiocarbon or bomb 14C can be disregarded compared to 14C labeling; 

312 the same is valid for cosmogenic or geogenic radioisotopes); ii) 14C images contain many 

313 pixels at the maximal grey value of 255, which is not relevant for zymograms. These highest 
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314 values are definitely thresholded by all three approaches (Mean+2SD, Mean+3SD vs. Top 

315 25%) on 14C images. 

316 In contrast to enzyme activities on soil zymograms, the 14C footprint on images is localized 

317 along the roots in soil and in most cases mimics root shape very well (Fig. 4 a-b). Therefore, 

318 shape-based methods for segmenting such 14C exudation hotspots (Gao et al., 2019) can be 

319 an option for further thresholding improvement. Note, however, that object-based 

320 segmentation is inapplicable for soil zymography due to the location of micro-hotspots in 

321 micropores (Kravchenko et al., 2019a) and due to the large variation of individual areas from 

322 0.00034 to 2.8 mm2 (Guber et al., 2018). To avoid any bias, we recommend the pixel-based 

323 method for evenly distributed (not object-based) enzyme activity in bulk soil. For details on 

324 the advantages and disadvantages of pixel-based and object-based analysis, see the review 

325 of Hussain et al. (2013) . 
 
 

326 4.3. Limitations of statistical approaches to distinguish and localize hotspots 
 
 

327 Hotspot thresholding by statistical approaches based on the distribution of pixel intensities 

328 has a great advantage because it is person-independent and enables a unified analysis of the 

329 obtained images. Nonetheless, certain shortcomings –  which are actually  independent  of  the 

330 used statistical approach – need to be considered. 
 
 

331 1) The quality of the original images plays a significant role in precise hotspot determination. 

332 Thus, a low signal-to-noise ratio likely results in a wider Gaussian distribution (Weszka and 

333 Rosenfeld, 1978) and, consequently, larger SD value. Therefore, poor-quality original images 

334 leads to a decrease in some hotspot areas, and some hotspots can even disappear 

335 completely. This problem is relevant for any thresholding approach. Solving this issue in 

336 image analysis requires: i) improving the quality of the original experimental images, and ii) 

337 avoiding the smoothing or de-noising of the original image. This second option may lead to 
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338 losses of some small hotspots (e.g. in micropores with Ǿ=60-180 µm (Kravchenko et al., 

339 2019a) ) or decreases in hotspot areas. 

340 2) The complexity of soil life and processes can yield a few (more than two) distributions of 

341 grey values, each reflecting individual process groups or substance concentrations. Each of 

342 these distributions reflects specific reasons or mechanisms. We assume that the first 

343 distribution  (on the  left in Fig.  1)  always   belongs  to  the  background,  and  further  possible 

344 distributions  represent hotspot  groups  caused  by various factors. Each hotspot  area (peak in 

345 the intensity distribution) can be segmented by applying the same procedure further and 

346 assuming the next distribution as a background for the remaining hotspots. Thus, evaluating 

347 hotspots originating by various processes requires moving toward multi-level thresholding 

348 (Mortazavi et al., 2012; Satapathy et al., 2018). 

349 3) It is difficult to distinguish between hotspots caused by 14C exudates released from roots 

350 into the soil and 14C activity of the roots themselves. In many cases (Holz et al., 2018; 

351 Pausch and Kuzyakov, 2011), 14C activity in living or dry roots corresponds to the highest 

352 grey value (top values on the 255 gray scale) of 8-bit images and creates a peak on the right 

353 border of the 255 scale. Therefore, if the research question involves determining root 

354 exudation hotspots, the activity of roots alone should be separated beforehand by masking. 

355 Otherwise, exudate hotspots may be segmented with the background as well. 

356 Importantly, all these (and probably some other) limitations are the same for all approaches 

357 (Mean+2SD, Mean+3SD, Top-25%, as well as the 17 approaches implemented in ImageJ) 

358 and mainly reflect the nature of the hotspots and the quality of the original images. Further 

359 quality improvements of imaging analysis (Baveye et al., 2010) and ongoing development of 

360 thresholding approaches (Iassonov et al., 2009; Sezgin and Sankur, 2004) are necessary for 

361 more objective conclusions on soil hotspot areas, localization and other characteristics. 
 
 

362 4.4. Relevance and advantages of statistical approaches 
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363 1) The suggested Mean+2SD thresholding approach helps to avoid subjective biases in 

364 hotspot determination for various parameters such as enzyme activities, rhizodeposition, soil 

365 pH and nutrient concentrations. Thresholding based on intensity may result in multi-fold 

366 higher average activities for β-glucosidase, chitinase and acid phosphatase hotspots in 

367 comparison  to  non-hotspots  (Heitkötter  and  Marschner,  2018),  but  much  smaller  hotspot 

368 areas (Top-25%, Figs. 2 and 3). The enzyme activities in hotspots and background differed 

369 greatly (up to 7 times) because the hotspot segmentation was done by a non-statistical 

370 approach and is biased on a few points with maximal intensity. Moreover, using the 

371 Mean+2SD approach yields hotspot images that are visually similar to the originals, but with a 

372 distinct and completely black background (Figs. 2-4). In contrast, the very small hotspot areas 

373 thresholded using the Top-25% approach yielded subtle (almost “background” covered) 

374 hotspot images for enzyme activity (Fig. 2) and lower contrast images for 14C activity (Fig. 3 

375 and 4). Thus, the Mean+2SD thresholding approach enables localizing i) microbial hotspots 

376 along the whole root system for enzyme activity (Fig. 2), ii) 14C allocation hotspots in smaller 

377 roots (Fig. 3), and iii) glyphosate accumulation hotspots in the seedling and primary root as 

378 opposed to only in leaves for the Top-25% approach (Fig. 4). 
 
 

379 2) The Mean+2SD and Mean+3SD approaches are much more reliable than Top-25% for 

380 microbial (e.g. enzyme activity) hotspot determinations in temporal sequences of images. The 

381 thresholding  background  with  contrasting  enzyme  activity  at   successive   time  points  can 

382 highlight hotspot development, the “time-specific” hotspots and, thus, their lifetime. 

383 Accordingly,  the set  thresholding  value for  activity  may  correspond  to  hotspots at  one time 

384 point  and  to the  hottest  spots  at  another  one  (hot  moment); the  reverse  situation  is  also 

385 possible. The challenge to define hotspots at any time, however, is solved by background 

386 thresholding. Mean+2SD and Mean+3SD are the universal approaches to overcome such 

387 temporal changes of activity and to qualitatively determine hotspot dynamics. 
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388 3) The background thresholding approach enables defining the hotspots for various 

389 properties with the same statistical approach (enzyme activities, 14C in root exudates, water 

390 content, soil pH, soil CO2 and O2, nutrient concentrations, etc.). Mean+2SD separates 

391 hotspots from the background regardless of their location within a range of low, medium or 

392 higher activities. Thereafter, hotspot images can be co-localized and conclusions can be 

393 drawn about their spatial co-occurrence. 
 
 

394 4) These statistical approaches enable identifying hotspots with various levels of microbial 

395 activities or substance concentrations in soil. Both Mean+2SD and Mean+3SD (Razavi et al., 

396 2019) can be used to identify hotspots with high and very high activities. The Mean+3SD 

397 approach will highlight the areas with 0.15% highest activities and cut off the “background” 

398 with 99.85% lowest activities. Nonetheless, the Mean+3SD approach should be applied with 

399 caution,  especially for  microbial  hotspots in  the  rhizosphere.  It  might  disregard the   values 

400 along less active rhizosphere parts, and the rhizosphere zones as a microbial hotspot will be 

401 incomplete (Figs. 2 and 3). That approach yielded 1.3-2.2 times smaller hotspot areas than 

402 Mean+2SD. Hotspots in the rhizosphere were lost along the smaller roots (Figs. 2 and 3) by 

403 Mean+3SD. Therefore, that thresholding approach is more appropriate for the highest 

404 microbial or 14C activity hotspots and used with discretion for rhizosphere studies. 
 
 

405 5) Last but not least, the Mean+1SD/Mean+2SD/ Mean+3SD approaches are very simple 

406 and based on a clear principle. The parameters of normal distribution can be fitted easily by 

407 free and commonly used imaging software and statistical tools (R, ImageJ, etc.). No special 

408 software and tools, nor deep involvement with complex thresholding approaches, are 

409 necessary. 
 
 

410 5. Conclusions 
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411 Although microbial hotspots are among the hot topics in soil science, and various imaging 

412 techniques  help  visualize  and  localize  them,  statistical  approaches  to  identify the hotspots 

413 have not been used. For the first time, we propose simple statistical approaches to separate 

414 hotspots from soil background activities on 2-D images. Our approaches are based on the 

415 probability of image areas with intensities higher than mean + 2 standard deviations 

416 (Mean+2SD) or + 3 standard deviations (Mean+3SD) of a normal distribution. The 

417 Mean+2SD  or  Mean+3SD  approaches  include:  1)  splitting  the  greyscale  histogram  of the 

418 image  into  two  histograms  with  normal  distribution  of  greyscale  values;  2)  identifying the 

419 greyscale range corresponding to the hotspots; and 3) hotspot mapping on the original 

420 image. This methodology helps to avoid under- or overestimation and bias in images of lower 

421 quality, is applicable to time series experiments, and can couple imaging methods of various 

422 parameters. 
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629 TABLES 
 

630 Table 1 Approaches to hotspot determination of selected soil parameters in 2-D images 
 
 

Parameter/ method Approach Reference 
 

 

Enzyme activity/ 

Soil zymography 

Top-25% of grey values Ma et al., 2017 
 

>50% of mean values Heitkötter and Marschner, 

2018 

>20% of mean grey values Zhang et al., 2019 
 

Above of average grey value 

(>70%) 

Liu et al., 2017 

ANOVA to confirm the boundaries 

by 5 adjusted pixels 

Hoang et al., 2016, Ge et al., 

2017 

Percentage of segmented areas 

(thresholded by enzyme activity 

levels) 

Spohn and Kuzyakov, 2014 

Soil moisture content/ 

mapping 

Variation indexes Lv et al., 2019 
 

Multiple-linear regression Qiu et al., 2003 

Linear and non-liner models Zhu et al., 2017 
 

NanoSIMS Thresholding by size Xiao et al., 2016 
 

 
 
 
 
 

631 

 
632 

Light and fluorescent 

microscopy, SIMs and 

NanoSIMs 

Correlative imaging  Handschuh et al., 2013; Polzer 

et al., 2019 
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633 Table 2. Comparison of hotspot areas on three images of activity distribution in soils or plants 

634 calculated by Mean+2SD, Mean+3SD and Top-25% approaches. 
 
 

Method Parameter Hotspots area, % Hotspot area increase 
 

compared to Top-25%, 

times 

Top- 

25% 

Mean 
 

+2SD 

Mean 
 

+3SD 

Mean 
 

+2SD 

Mean 
 

+3SD 

 
 
 
 
 
 
 
 
 
 
 

635 

636 

Soil zymography 

(Fig. 2) 

 
14С imaging (Fig. 

3 and 4) 

leucine 

aminopeptidase 

activity 

14C in root exudates 
 

and roots 

Glyphosate (14C) in 

plant 

0.2 12 7.1 60 36 
 
 
 
 

5.8 23.2 17.1 4 3 
 
 

0.33 1.52 0.87 4.6 2.6 
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637 FIGURES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

638 
 

639 Fig. 1. An example of the grey value distribution (from 0 to 255) for leucine aminopeptidase 

640 activity in soil (data extracted from the 8-bit image in Fig. 6b in Razavi et al., 2017). The    

641 dashed curve reflects the normal distribution of the grey values of the soil background for 

642 enzyme activity with its mean + 2 standard deviations (presented as vertical dashed lines). 

643 The hotspot area (S) thresholded by the Mean+2SD approach corresponds to 12% of the 

644 whole image. Because the Top-25% approach is strongly biased by the highest grey value 

645 (here 255), only 0.2% of the total area are highlighted as hotspots. 

646 
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647 

648 Fig. 2. Original soil zymograms of leucine aminopeptidase (Razavi et al., 2017) and hotspots 

649 (red) identified using Top-25%, Mean+2SD and Mean+3SD approaches (compare Fig. 1). 

650 Numbers on top left show the percentage of the total image area belonged to the hotspots. 
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651 

652 Fig. 3. Original and binarized images of roots and exudates in soil after labeling the plants  

653 with 14CO2 (Holz et al., 2018). The hotspots (red) were identified using Top-25%, Mean+2SD 

654 and Mean+3SD approaches. Numbers on top left show the percentage of the total image   

655 area belonged to the hotspots. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

656 
 

657 Fig. 4. Original and binarized images of 14C-labeled glyphosate in plants (Fig 5 D, Pereira et 

658 al., 2019). The hotspots (red) were identified using Top-25%, Mean+2SD and Mean+3SD  

659 approaches. Numbers on top left show the percentage of the total image area belonged to 

660 the hotspots. 
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661 
 
 
 
 
 
 
 
 
 
 
 
 

a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

663 b) 

 

 

 

 

 

 

 

c) 

665  

Fig. 5.  Hotspots  in  % of  the  total  area  thresholded  by 17  thresholding built-in  methods  in ImageJ 

and Mean+2SD, Mean+3SD or Top-25% for  three test images: a) soil zymogram  for leucine  

aminopeptidase  (Razavi  et  al.,  2017);  b)  14C  image  for  14CO2-labeled  root  and  exudates in soil 

and c) 14C image of 14C-labeled glyphosate in plants (Pereira et al., 2019). 
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669 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

670 a) 
 
 

671 b) 
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672 c) 

673  Fig.  6.  Normalized   grey   value   activities  for  mean   and   standard   deviation   values  for 

674  background  and  hotspots  separated  by  17  thresholding  built-in  methods  in  ImageJ  and  

675 Mean+2SD,  Mean+3SD  or  Top-25%  for  three  test  images:  a)  soil  zymogram  for  leucine 

676 aminopeptidase (Razavi et al., 2017); b)  14C image for 14CO2-labeled root and exudates in soil 

677 (Holz et al., 2018) and c) 14C image of 14C-labeled glyphosate in plants (Pereira et al., 2019). 

678 
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679 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

680 
681 

682 

683 

684 

685 

686 

687 

Supplementary Materials 
 
 

 
Figure S1. An example of the original grey value distribution (bars) for leucine 

aminopeptidase activity in soil (data extracted from the 8-bit image in Fig. 6b in Razavi et al., 

2017) and two fitted normal distributions using the normalmixEM function in R. Red and  

green lines denote comp 1 and comp 2 distributions in the summary table. Red (comp 1) 

normal distribution covers (lambda (λ)) 89% of the values, while green covers only 11%. 

Mean values (mu (μ)) and SD (sigma (σ)) were 39 and 81, and 9 and 40 for red and green 

distribution, respectively. 
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688 
 

689 

690 Figure  S2.  Montage  image  with  results  from  all  built-in  thresholding  methods  in  ImageJ 

691  (Schindelin et al., 2012) applied to the soil zymogram  for leucine aminopeptidase (Razavi  et   

692 al., 2017). 



38  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

693 
 

694 Figure  S3.  Montage  image  with  results  from  all  built-in  thresholding  methods  in  ImageJ 

695  (Schindelin et al., 2012) applied to a 14C image of 14C-labeled glyphosate in plants (Pereira et   

696 al., 2019). 
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697 
 

698 Figure S4. Montage image with results from all built-in thresholding methods in ImageJ   

699 (Schindelin et al., 2012) applied to a 14C image for 14CO2-labeled roots and exudates in soil 

700 (Holz et al., 2018). 
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701 Table S1. Results of two-samples t-Test for hotspot mean values between statistical 

702 approaches (Mean+2/3SD) and standard methods in ImageJ and Top-25% 
 
 
 

Method 

14C image for 
14CO2-labeled root 
and exudates in 
soil (Holz et al., 

2018) 

 
Soil zymogram for leucine 

aminopeptidase (Razavi et al., 
2017) 

 
p-values 

14C image of 14C- 
labeled glyphosate 
in plants (Pereira et 

al., 2019) 

 3SD 2SD 3SD 2SD 2SD 3SD 
Default 0 0 1.92E-68 0 0 0 
Huang 0 1  0 0 0 0 

Intermodes 
      

 0 0 0 0 0 0 
IsoData 0 0 1.94E-91 0 0 0 
IJ_IsoData 0 0 1.92E-68 0 0 0 
Li 7.83E- 

 
 
 
 
 
 
 
 
 
 

RenyiEntropy 

Shanbhag 

Triangle 

Yen 

 8.89E-226 0 1.42E-12 74 0 0 
MaxEntropy 4.38E-175 0 0 0 0 0 .652 
Mean 0 0 0 0 0 0 
MinError 0 0 0 0 0 0 
Minimum 0 0 1.7E-279 0 0 0 
Moments 2.4E- 

 0 0 5.56E-27 269 0 0 
Otsu 0 0 1.94E-91 0 0 0 
Percentile 0 0 0 0 0 0 
 

  0 2.97E-22 0 0 0 0 .148 
Top-25% 0 0 0 0 0 0 

703        
 

8.87E-196 9.6E-241 0 0 0 0 .652 

4.52E-91 0 0 0 0 0 
 
1.94E-99 

 
0 

 
0 .008838 

2.62E- 
112 

 
0 

 
0 
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704 Example of script for distribution fitting of distribution parameters in R 
 

705 install.packages("mixtools") 

706 library(mixtools) 

707 setwd("D:/Research/2019/Hot spot approach/Black and white/data for R") 

708 Zymo1<-read.table('Zymo-leu.txt', header=T) 

709 head(Zymo1) 

710 value<-Zymo1$value 

711 Amount<-Zymo1$amount 

712 i<-seq(1,256, by=1) 

713 #test normal distributions 

714 vec<-rep(x=value[i], times = Amount[i]) 

715 mod <- normalmixEM(vec) #test normal distribution 

716 plot(mod,which=2) 

717 summary(mod) 
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