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Abstract

The recently raised topic of microbial hotspots in soil requires not only visualizing their spatial
distribution and biochemical analyses, but also statistical approaches to identify these

hotspots and separate them from the surrounding activities (background). We hypothesized
that each type of hotspot (e.g. microbial hotspots of enzyme activities, (bio)chemical hotspots
of root exudation, herbicide accumulation) is a result of local processes driven by biotic

and/or abiotic factors, and the rates of such processes in the hotspots are much higher than
those in the general background. We further hypothesized that the background activities in

soil are normally distributed. Consequently, hotspot determination should be based on
statistical separation of activities significantly higher than the background. We used three
groups of published images: 1) '#C images of carbon input by roots into the rhizosphere, 2)

“C glyphosate accumulation in the plant, and 3) soil zymogram of leucine aminopeptidase
activity in soil. Each image was analyzed for the statistical distribution of grey values. The two
Gaussian distributions were fit (the first representing the background, the second the
hotspots) to the distribution of grey values in the images, the parameters (means and
standard deviations, SD) of the fitted distributions were calculated, and the background was
removed. For the parameters with one distribution, we identified hotspots as areas outside of
the Mean+2SD image intensity (corresponding to the upper ~ 2.5% of activity, being over
97.5% of background values). Finally, we visualized images of solely hotspot locations. We
compared the results with previously used decisions on hotspot intensity thresholding (i.e.
Top-25%, as well as 17 standard thresholding approaches in Imaged) and then presented
and discussed the advantages of the Mean+2SD approach. These advantages include: i)
unification of the thresholding approach for several imaging methods with various principles
of activity distribution, ii) identification of hotspots with various activity levels, iii) analysis of
“time-specific” hotspots in temporal sequences of images. We compared this with 17

standard thresholding methods and conclude that objectively elucidating and separating the
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hotspots, e.g. using the Mean+2SD or Mean+3SD approach, should be based on statistical
tools of distribution analysis. This approach helps to understand the processes responsible

for the highest activities.

Keywords: Microbial hotspots quantification, Statistical analyses, Rhizosphere, Visualization

approaches.
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1. Introduction

Soil imaging methods have developed rapidly in recent decades with the advent of advanced
techniques (Protz et al., 1987). Various non-destructive methods enable visualizing and
quantifying parameters reflecting root-soil-microbial interactions (Oburger and Schmidt,

2016). The non-destructive methods yield soil images at a broad range of scales starting from
a few nm (10°m) up to meters (>1 m ) (Schliiter et al., 2014). These methods reliably identify
the location and spatial distribution of hidden soil life. They are based on a very broad range
of approaches: 1) soil zymography: visualization of enzymatic activity in soil (Spohn et al.,
2013), rhizosphere (Razavi et al., 2019, 2016), detritusphere (Liu et al., 2017) and earthworm
burrows (Hoang et al., 2016); 2) autoradiography and radioisotope imaging: localization of
root exudation patterns (Holz et al., 2018) or pesticide accumulations (Alcantara-de la Cruz et
al., 2016; Nandula and Vencill, 2015; Pereira et al., 2019) in plants and soil; 3) neutron
imaging of water distribution (Carminati et al., 2010); 4) hyperspectral imaging for quantitative
soil classification (Steffens and Buddenbaum, 2013); 5) spatial distribution of SOM fractions
by reflectance (Steffens et al., 2014); 6) nano-scale secondary ion mass spectroscopy
(nanoSIMS) for nano-scale element heterogeneity and speciation (Werner et al., 2017). Other

in situ imaging approaches are described in detail in Oburger and Schmidt (2016).

Spatial visualization is essential for characterizing and quantifying hotspot processes. Such
quantification includes (but is not limited to) the following directions: 1) the principles of
hotspot localization: frequency, distribution, common distances and size — the spatial pattern;
2) thresholding by process intensities; 3) connection between microbial hotspots and the
physicochemical conditions: co-localization of images for various parameters; and 4) clear

separation of the hotspots from the background.



72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

97

The first direction was successfully developed based on the geostatistical analysis and
spatial point pattern analysis of microbial distributions in soil in 2-D (Nunan et al., 2002, 2001)
and 3-D space (Kravchenko et al., 2013; Nunan et al., 2003).

Various approaches related to the second direction have been recently developed for the
hotspots identified using soil zymography. These include thresholding of the Top-25% grey
value intensities (Ma et al., 2017), over 20% (Zhang et al., 2019), 50% (Heitkotter and
Marschner, 2018) or 70% (Liu et al., 2017) of mean grey value, and the percentage of
segmented areas with the highest enzyme activity that were calculated after determining

them as hotspots (Spohn and Kuzyakov, 2014).

The development of correlative imaging (Handschuh et al., 2013; Polzer et al., 2019)
successfully advanced the third direction. Combining 3-D (X-ray) with 2-D light and
fluorescent microscopy, SIMs and NanoSIMs methods revealed that about % of
microorganisms preferably occupy soil micropores <10 um (Schliter et al., 2014) or pores <
100 um (Kravchenko et al., 2019b). The 3-D pore size distributions and particulate organic
matter determined by X-ray uCT was correlated with enzyme-active locations identified on
multiple 2-D soil cross-sections to identify the locations of soil carbon stabilization

(Kravchenko et al., 2019b).

The present methodological study belongs to the 4 direction and is designed to localize the
hotspots based on contrasting image intensities with the background.

In a recent review, Roose et al. (2016) strongly supported the statistical tools for objective
image interpretation. Such tools, including variation indexes (Lv et al., 2019), multiple-linear
regression (Qiu et al., 2003), and linear and non-liner models (Zhu et al., 2017), were
successfully applied for hotspot detection (Table 1). Imaging protocols in neuroscience were
developed by using statistical approaches (Dinov, 2011) based on parametric (e.g., paired t-
test, Two-way ANOVA) and nonparametric (e.g. Kruskal-Wallis, Fliegner-Killeen) statistical

tests (Chu et al., 2009) or spatial mixture models (Logan et al., 2008). K-means cluster
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statistical analysis was applied to define phosphorus-rich regions imaged using NanoSIMs
(Werner et al., 2017) and SIMs (Bertrand et al., 2001) in soil (Table 1). One-way analysis of
variance (ANOVA) was applied to find the boundaries between low and medium activities and
the borders of hotspots visualized by soil zymography (Ge et al., 2017; Hoang et al., 2016).
ANOVA approach was based on comparing mean values for 4 adjacent pixels and applicable
to contrast zones (i.e. rhizosphere, detritusphere, biopores). Unfortunately, the approach was
unreliable in low-contrast areas on images. Applying ANOVA is not entirely suitable for
imaging methods when the activity at two adjacent pixels is interdependent, or when the
prerequisites (independent observations, normal distribution, variance homogeneity) for
ANOVA are not fulfilled.

Microbial hotspots have been defined as small soil patches with considerably higher process
rates than those within the bulk soil (Kuzyakov and Blagodatskaya, 2015). No standardized
statistical approaches are currently available for thresholding hotspots in soil imaging
applications. This study picks up the challenge and develops and tests a simple approach to
identify hotspots in the bulk soil.

We hypothesize that a sharp gradient is present between hotspots and background activity
(e.g., enzyme activity in the rhizosphere and bulk soil). Thus, if the background activity in the
bulk soil follows the normal distribution, then activities above the Mean + 2 standard
deviations (SD) (Mean+2SD) are hotspot related.

To separate the distribution of the probability of hotspot locations from the background and to
set a threshold, we suggest the Mean+2SD approach. This approach enables obtaining an
error probability of < 2.28% (half of all values outside of the £ 2 SD covering 95.44% of all
values within the normal distribution). Consequently, if the hotspot area exceeds 2.28%
(which corresponds to the normal distribution), then there are specific reasons and processes

for the origin of the area with the highest image intensities — the hotspots. According to these
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prerequisites, the statistical definition of hotspots would be: Hotspots are those soil volumes

in which the activities of the studied process exceed 2 SD of the mean in bulk soil.

2. Materials and methods

2.1. Images for statistical analysis of hotspots

Three groups of images representing hotspots of different origin were taken from literature: 1)
spatial distribution of leucine aminopeptidase activity on soil zymogram (Razavi et al., 2017);
2) spatial distribution of '*C labeled glyphosate in plants (Pereira et al., 2019), and 3) '“C
allocation in living roots and exudates (Holz et al., 2018).

All images were processed using the open source software Imaged (Schindelin et al., 2012).
To avoid detailed descriptions of all the underlying experiments elsewhere and to help restrict
the data solely to own studies, we have chosen the digital images presented in already
published papers (see below). Only the original images (untreated and uncorrected) —
monochrome ('“C autoradiograms) or taken under UV light (zymograms) — were used; none
of these images was transformed by the authors of original papers to color images. The color
images (Red-Green-Blue, RGB) usually used in papers for better visualization were excluded
because the blue and red colors corresponding to low and high values of a particular
parameter are commonly adjusted by the authors and may not be proportional to the grey
intensities in the original image. Thus, although color pictures are better for visualization and
presentation in publications, they are not suitable for statistical analysis and can cause
incorrect data interpretation. The monochrome digital images were converted to 8-bit
greyscale images and inversed, if necessary, to obtain lowest value for 0 and the highest

greyscale value for 255.

2.2. Mean + 2SD methodology for hotspot thresholding
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Determining hotspots in each image involved 3 steps: 1) splitting the greyscale histogram of
the image to two histograms with normal distribution of greyscale values; 2) identifying the
greyscale range corresponding to the hotspots; and 3) hotspot mapping on the original

image.

1st step: Splitting the greyscale histogram. The intensity of grey values and the
corresponding number of pixel counts on images (histograms) were calculated using
Histogram toolbox of ImageJ. Statistical analyses were conducted in R, version 3.5.1 (R
Developement Core Team, 2014). The package "mixtools" (Benaglia et al., 2009) was used
for distribution fitting. The parameters of normal distribution were fitted to the original
frequencies of grey values (0...255). Then, the modeled distributions were built and plotted
as a histogram (Fig. S1). The normalmixEM function in the “mixtools” package based on the
expectation—-maximization (EM) algorithm was used to fit two Gaussian component densities
to the histogram of grey value intensities. The following characteristics of the two normal
distributions were identified and calculated (Figs. 1 and S1): lambda (A) corresponds to the
share of each distribution component in the total area occupied by grey values of all activities
in the whole histogram, mu (u) corresponds to the mean value, and sigma (c) corresponds

to the standard deviation (SD) of each histogram (Fig. S1).

29 step: Identifying the greyscale range corresponding to the hotspots. The component with
the lower mean value was chosen as a background distribution, representing the bulk soil,
while the component with the higher mean value represented the hotspots. Because of
considerable overlapping of the two components of the original greyscale histogram (Fig. S1),
any single-value thresholding method attributes part of the overlapped area either to the
background or to the hotspots. In our approach, we consider hotspots to be represented by

pixels with grey values greater than Mean+2SD of the background component of the
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greyscale histogram. Therefore, to remove 97.5% of the background, the sum of the
Mean+2SD was used as a threshold for the original image histogram.

39 step: Hotspot mapping on the original image. Hotspot percentage was calculated, and
solely hotspots were mapped in red on the original images by setting a threshold value using

the open source software ImagedJ, clearly visualizing these locations.

Tested images had two background origins: i) enzyme activity of bulk soil on the zymogram
(Fig. 2) and '“C image of labeled roots and exudates (Fig. 3); and ii) background activity
(noise) on the plate — in the "“C image for glyphosate content in plants (Fig. 4). Therefore, we
applied the parameters (mean and SD) of the component 1 (representing the background)
(Fig. S1) to threshold hotspots in soil (Figs. 2 and 3). Three components were present on the
plant image labeled with *C glyphosate. Specifically, the background around the plant
(component 1), plant without glyphosate (component 2) and plant with glyphosate
(component 3, i.e. hotspot). To identify the hotspots in the plant, we used the parameters of

component 2 (Fig. S1) to threshold hotspots in the scanned plant (Fig. 4).

The hotspot area and hotspot localization for the presented Mean+2SD and Mean+3SD

statistical approaches were compared with the results obtained by the frequently used Top-
25% approach (Ma et al., 2017). The Top-25% hotspot approach is based on the thresholding
grey values (i.e. enzyme activity in soil zymography) in the upper quartile (Top 25%) (Ma et
al., 2017). The Mean+3SD approach is similar to Mean+2SD, but enables separating the

hottest spots (0.15%) by thresholding 99.85% of the background values.

2.3 Comparison with standard thresholding methods

To compare hotspots defined by the proposed Mean+2SD approach with those defined by
traditionally used thresholding methods, we applied 17 thresholding methods built-in in

Imaged software: Default, Otsu, Huang, Triangle, Lee, Mean, MinEntropy, Minimum,
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Percentile, MinError, Shanbhag, IsoData, IJ_IsoData, Moments, Intermodes, RenyiEntropy,
Yen (see details in Landini, 2017, Imaged, ver. 1.16.5 ). Since the original images were
published in 8-bit format (i.e. greyscale values ranged from 0 to 254), the activities in hotspots
were compared in relative units (0-1). The thresholding of the '#C image of glyphosate
distribution in the plant was applied to the plant area to exclude the effect of the background
around the plant on the hotspot detection. The thresholding of the soil zymogram and '4C-
labeled roots was applied to the whole images. The normalized activities and relative area of
the hotspots calculated using the standard thresholding methods and Top-25% approach

were compared with the results of Mean+2SD and Mean+3SD thresholding.

3. Results

3.1. Mean+2SD and Mean+ 3SD vs. Top-25% thresholding

Application of the Mean+2SD and Mean+3SD approaches enabled identifying the hotspots of
enzyme activity on the leucine aminopeptidase zymogram as being 12% and 7.1% of the
image area, respectively (Fig. 2). The hotspots were identified by these statistical approaches
mainly along the roots (rhizosphere hotspots) and in the root-free zones (microbial hotspots).
Mean+2SD yielded 5% more hotspot area than Mean+3SD because of extended rhizosphere
size and due to more micro-hotspots located in the bulk soil (Fig. 2). In contrast, the Top-25%
approach thresholded only 0.2 % as a hotspot located in the most active regions of roots.
Thus, Mean+2SD and Mean+3SD approaches thresholded 60 and 36 times larger hotspot

area for leucine aminopeptidase activity (Fig. 2, Table 2) than the Top-25% approach.

The difference between hotspot areas for the newly tested statistical approaches and Top-

25% for the 'C content in soil and exudates (Fig. 3) was much lower that for soil zymography

10
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(Fig. 2). The total hotspot areas for “C in root exudates and roots (Table 2, Fig. 2) were
about 4 and 3 times larger for the Mean+2SD and Mean+3SD approaches, respectively, than

Top-25%.

The hotspot areas thresholded by the Mean+2SD and Mean+3SD approaches for image of
'“C glyphosate content in plant were 4.6 and 2.6 times larger than Top-25% (Table 2).
Furthermore, hotspots thresholded by Top-25% and Mean+3SD were located in seed but not
in the leaves, whereas Mean+2SD detected hotspots in both plant components (Fig. 4).

Thus, mapping hotspots thresholded by three approaches — Mean+2SD, Mean+3SD and
Top-25% — revealed significant visual and quantitative differences in hotspot features (Figs.
2-4). These differences include: i) the total area covered by the hotspots and ii) the

localization pattern.

3.2. Comparison of suggested approach with standard thresholding methods

The performance of the standard ImagedJ thresholding methods differed for three tested
images. The smallest hotspot area was obtained for the soil zymogram using Minimum
method, while the largest was obtained using Percentile method. The difference between the
smallest and largest areas estimated by the standard methods was 500 times (Fig. 5a). The
ranks of the standard methods changed, though the difference between Minimum and
Percentile methods was still 12-fold when thresholding was applied to the *CO2-labeled root
image (Fig. 5b). The differences between standard methods were even more pronounced for
the '“C-labeled glyphosate image (Fig. 5c), reaching about 1600 times between Shanghang
and Percentile. Changing ranks of the standard methods indicated overall inconsistency in
their performance for detecting hotspots. Persistently intermediate values of the hotspot area
were obtained using the Mean+2SD and Mean+3SD approaches for the first two tested

images and close to mean for the cluster of 7 standard methods for the third image, indicating

11
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robustness of the developed approach. As expected, normalized mean hotspot activities

(from 0 to 1) computed by different standard method but for the same images demonstrated a
trend opposite to that for hotspot areas. Smaller average activities were observed for those
segmentation methods that produced larger hotspot areas (Fig. 6). Similar to the hotspots,
the Mean+2SD and Mean+3SD approaches generated intermediate estimates of the mean
hotspot activity (except for “C-labeled glyphosate in plants, which showed intermediate

estimates only for the cluster of 7 standard methods) among the tested methods.

4. Discussion

4.1. Why statistical methods are necessary for hotspot thresholding

For the first time in 2-D soil imaging, we suggest using a simple and freely available statistical
approach to detect and localize microbial hotspots. The approach based solely on separating
statistical distributions for the background and hotspots is important for quantitatively
assessing hotspot areas and localizing them. Separation based on intensity level (but
ignoring the density of each pixel (Fig. S1)) may either under- or overestimate hotspot areas,
leading to misinterpretation of in situ soil processes and activities. All three examples (Figs. 2-
4, Table 2) showed underestimation of hotspot areas by the frequently used Top-25%
compared to the suggested Mean+2SD approach. We conclude that the main reason for this
underestimation by Top-25% is inherent in the nature of the approach: the Top-25% is
defined by few “hottest” points (Fig. 1) and, in an extreme case, by only one point with

maximal activity, thus making it always strongly biased to the right on the activity distribution
(Fig. 1). As the whole range of pixel intensities will be divided into four quartiles (25% in
each), any points below Top-25% will be automatically disregarded as hotspots, even if they
differ significantly from the normal distribution of the background. On the example of the

distribution of the pixel grey scale (corresponding to intensities, Figs. 1, S1) on the 8-bit

12
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image, all points below grey intensity 192 will be disregarded as hotspots using the Top-25%
approach. In contrast, the Mean+2SD approach will definitely highlight these hotspots,
including those that are much closer to the background (Figs. 1 and S1).

The distributions of pixel intensities on 2-D soil images are generally bimodal, i.e. two-class
pictures consisting of background and hotspots. The main task of thresholding is to determine
the objective reasons and threshold value to separate the pixels with high and low intensities
(light from dark on the images). Various statistical approaches have already been suggested
in soil hydrology (Lv et al., 2019; Qiu et al., 2003; Zhu et al., 2017), but being technique-
specific, they cannot be applied directly to all image types (Aslantas et al., 2017).

In a pioneering study on image processing, the mean and standard deviations for peaks of
grey-value classes were applied for cell types separation corresponding to various grey-value
classes (Prewitt and Mendelsohn, 1966). Mean and standard deviations are the parameters
of the well-established Otsu (1979) thresholding approach, which has been used widely for
40 years in medicine and biology based on its clarity and simplicity. That approach is being
used as a basic technique for distinguishing between cell compartments on various images.
Since that time, various other thresholding approaches (mostly used in diagnostic imaging in
medicine) have been developed (Aslantas et al., 2017; Lee et al., 1990; Matsuyama et al.,
2016) and became available in imaging software. Triangle (Zack et al., 1977) has a good
potential for separating rhizosphere hotspots because it was successfully applied for root
thresholding (Tajima and Kato, 2013, 2011). The thresholded hotspot areas by triangle
method were similar to Mean+3SD approach showing highest p-value (Table S1) for an

image of leucine aminopeptidase distribution along the roots (Fig. 5 a). The Huang method
(Huang and Wang, 1995) produced the exact same hotspot area and mean value (p=1, Table
S1) as the Mean+2SD approach on the 'C image for root and exudates in soil. None of the
17 auto thresholding methods (Figs. S3, Table S1) yielded the results very close to

Mean+2SD (Fig. 5 a-c) on the C image of '“C-labeled glyphosate in plant. Moreover, Yen,
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ReniyEntropy and MaxEntropy were not statistically different from Mean+3SD (Table S1) and
revealed similar results for hotspot areas. Therefore, Yen, Triangle, Huang, ReniyEntropy and
MaxEntropy methods in ImageJ have a very good potential to threshold microbial and
(bio)chemical hotspots on soil images. Nonetheless, further studies are needed to test these

thresholding methods on a broad dataset of soil images.

4.2. Comparison of the Mean+2SD, Mean+3SD and Top-25% approaches

Applying the Mean+2SD and Mean+3SD approaches for hotspot separation on soil
zymograms revealed an up to 36-60 times larger area than the Top-25% approach and
helped better localize root and rhizosphere zones on hotspot images(Figs. 2-4, Table 2).
Following the statement about the rhizosphere being a microbial hotspot (Kuzyakov and
Razavi, 2019), it is evident that hotspots are localized along the whole root system (Fig. 2)
and not restricted to the very few root regions revealed by Top-25% thresholding. Clearly, the
Mean+3SD approach thresholded fewer roots within hotspots than Mean+2SD and should

therefore be applied with caution in rhizosphere studies.

In contrast to the soil zymogram, the difference for hotspot areas on '“C images evaluated by
the three approaches (Mean+2SD and Mean+3SD vs. Top 25%) was much lower (but still
very high — from 2.4 to 4 times) or negligible (< 0.1 %) (Fig. 4 a-b). We explain this lower
difference by the specifics of the '*C imaging method and its processing: i) usually, “C
images have a higher contrast than zymograms (for some uncertainties and constraints of '“C
images, see Holz et al. (2019)); this higher contrast reflects the absence of 'C activity in the
background soil (the radiocarbon or bomb #C can be disregarded compared to '“C labeling;
the same is valid for cosmogenic or geogenic radioisotopes); ii) '*C images contain many

pixels at the maximal grey value of 255, which is not relevant for zymograms. These highest
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values are definitely thresholded by all three approaches (Mean+2SD, Mean+3SD vs. Top
25%) on '“C images.

In contrast to enzyme activities on soil zymograms, the '“C footprint on images is localized
along the roots in soil and in most cases mimics root shape very well (Fig. 4 a-b). Therefore,
shape-based methods for segmenting such “C exudation hotspots (Gao etal., 2019) can be
an option for further thresholding improvement. Note, however, that object-based
segmentation is inapplicable for soil zymography due to the location of micro-hotspots in
micropores (Kravchenko et al., 2019a) and due to the large variation of individual areas from
0.00034 to 2.8 mm? (Guber et al., 2018). To avoid any bias, we recommend the pixel-based
method for evenly distributed (not object-based) enzyme activity in bulk soil. For details on

the advantages and disadvantages of pixel-based and object-based analysis, see the review

of Hussain et al. (2013) .

4.3. Limitations of statistical approaches to distinguish and localize hotspots

Hotspot thresholding by statistical approaches based on the distribution of pixel intensities
has a great advantage because it is person-independent and enables a unified analysis of the
obtained images. Nonetheless, certain shortcomings — which are actually independent of the

used statistical approach — need to be considered.

1) The quality of the original images plays a significant role in precise hotspot determination.
Thus, a low signal-to-noise ratio likely results in a wider Gaussian distribution (Weszka and
Rosenfeld, 1978) and, consequently, larger SD value. Therefore, poor-quality original images
leads to a decrease in some hotspot areas, and some hotspots can even disappear
completely. This problem is relevant for any thresholding approach. Solving this issue in
image analysis requires: i) improving the quality of the original experimental images, and ii)

avoiding the smoothing or de-noising of the original image. This second option may lead to
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losses of some small hotspots (e.g. in micropores with @=60-180 ym (Kravchenko et al.,
2019a) ) or decreases in hotspot areas.

2) The complexity of soil life and processes can yield a few (more than two) distributions of
grey values, each reflecting individual process groups or substance concentrations. Each of
these distributions reflects specific reasons or mechanisms. We assume that the first
distribution (on the leftin Fig. 1) always belongs to the background, and further possible
distributions represent hotspot groups caused by various factors. Each hotspot area (peakin
the intensity distribution) can be segmented by applying the same procedure further and
assuming the next distribution as a background for the remaining hotspots. Thus, evaluating
hotspots originating by various processes requires moving toward multi-level thresholding
(Mortazavi et al., 2012; Satapathy et al., 2018).

3) It is difficult to distinguish between hotspots caused by '*C exudates released from roots
into the soil and “C activity of the roots themselves. In many cases (Holz et al., 2018;
Pausch and Kuzyakov, 2011), '“C activity in living or dry roots corresponds to the highest

grey value (top values on the 255 gray scale) of 8-bit images and creates a peak on the right
border of the 255 scale. Therefore, if the research question involves determining root
exudation hotspots, the activity of roots alone should be separated beforehand by masking.
Otherwise, exudate hotspots may be segmented with the background as well.

Importantly, all these (and probably some other) limitations are the same for all approaches
(Mean+2SD, Mean+3SD, Top-25%, as well as the 17 approaches implemented in ImageJ)
and mainly reflect the nature of the hotspots and the quality of the original images. Further
quality improvements of imaging analysis (Baveye et al., 2010) and ongoing development of
thresholding approaches (lassonov et al., 2009; Sezgin and Sankur, 2004) are necessary for

more objective conclusions on soil hotspot areas, localization and other characteristics.

4.4. Relevance and advantages of statistical approaches
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1) The suggested Mean+2SD thresholding approach helps to avoid subjective biases in
hotspot determination for various parameters such as enzyme activities, rhizodeposition, soil
pH and nutrient concentrations. Thresholding based on intensity may result in multi-fold

higher average activities for B-glucosidase, chitinase and acid phosphatase hotspots in
comparison to non-hotspots (Heitkétter and Marschner, 2018), but much smaller hotspot
areas (Top-25%, Figs. 2 and 3). The enzyme activities in hotspots and background differed
greatly (up to 7 times) because the hotspot segmentation was done by a non-statistical
approach and is biased on a few points with maximal intensity. Moreover, using the

Mean+2SD approach yields hotspot images that are visually similar to the originals, but with a
distinct and completely black background (Figs. 2-4). In contrast, the very small hotspot areas
thresholded using the Top-25% approach yielded subtle (almost “background” covered)
hotspot images for enzyme activity (Fig. 2) and lower contrast images for “C activity (Fig. 3
and 4). Thus, the Mean+2SD thresholding approach enables localizing i) microbial hotspots
along the whole root system for enzyme activity (Fig. 2), ii) *C allocation hotspots in smaller
roots (Fig. 3), and iii) glyphosate accumulation hotspots in the seedling and primary root as

opposed to only in leaves for the Top-25% approach (Fig. 4).

2) The Mean+2SD and Mean+3SD approaches are much more reliable than Top-25% for
microbial (e.g. enzyme activity) hotspot determinations in temporal sequences of images. The
thresholding background with contrasting enzyme activity at successive time points can
highlight hotspot development, the “time-specific’ hotspots and, thus, their lifetime.
Accordingly, the set thresholding value for activity may correspond to hotspots at onetime
point and to the hottest spots at another one (hot moment); the reverse situation is also
possible. The challenge to define hotspots at any time, however, is solved by background
thresholding. Mean+2SD and Mean+3SD are the universal approaches to overcome such

temporal changes of activity and to qualitatively determine hotspot dynamics.
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3) The background thresholding approach enables defining the hotspots for various

properties with the same statistical approach (enzyme activities, '“*C in root exudates, water
content, soil pH, soil CO2 and Oz, nutrient concentrations, etc.). Mean+2SD separates
hotspots from the background regardless of their location within a range of low, medium or
higher activities. Thereafter, hotspot images can be co-localized and conclusions can be

drawn about their spatial co-occurrence.

4) These statistical approaches enable identifying hotspots with various levels of microbial
activities or substance concentrations in soil. Both Mean+2SD and Mean+3SD (Razavi et al.,
2019) can be used to identify hotspots with high and very high activities. The Mean+3SD
approach will highlight the areas with 0.15% highest activities and cut off the “background”
with 99.85% lowest activities. Nonetheless, the Mean+3SD approach should be applied with
caution, especially for microbial hotspots in the rhizosphere. It might disregard the values
along less active rhizosphere parts, and the rhizosphere zones as a microbial hotspot will be
incomplete (Figs. 2 and 3). That approach yielded 1.3-2.2 times smaller hotspot areas than
Mean+2SD. Hotspots in the rhizosphere were lost along the smaller roots (Figs. 2 and 3) by
Mean+3SD. Therefore, that thresholding approach is more appropriate for the highest

microbial or "C activity hotspots and used with discretion for rhizosphere studies.

5) Last but not least, the Mean+1SD/Mean+2SD/ Mean+3SD approaches are very simple

and based on a clear principle. The parameters of normal distribution can be fitted easily by
free and commonly used imaging software and statistical tools (R, ImageJ, etc.). No special
software and tools, nor deep involvement with complex thresholding approaches, are

necessary.

5. Conclusions
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Although microbial hotspots are among the hot topics in soil science, and various imaging
techniques help visualize and localize them, statistical approaches to identify the hotspots
have not been used. For the first time, we propose simple statistical approaches to separate
hotspots from soil background activities on 2-D images. Our approaches are based on the
probability of image areas with intensities higher than mean + 2 standard deviations
(Mean+2SD) or + 3 standard deviations (Mean+3SD) of a normal distribution. The

Mean+2SD or Mean+3SD approaches include: 1) splitting the greyscale histogram of the
image into two histograms with normal distribution of greyscale values; 2) identifying the
greyscale range corresponding to the hotspots; and 3) hotspot mapping on the original

image. This methodology helps to avoid under- or overestimation and bias in images of lower
quality, is applicable to time series experiments, and can couple imaging methods of various

parameters.
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TABLES

Table 1 Approaches to hotspot determination of selected soil parameters in 2-D images

Parameter/ method

Approach

Reference

Enzyme activity/

Soil zymography

Top-25% of grey values

>50% of mean values

>20% of mean grey values

Above of average grey value
(>70%)

ANOVA to confirm the boundaries
by 5 adjusted pixels

Percentage of segmented areas

(thresholded by enzyme activity

Ma et al., 2017
Heitkotter and Marschner,
2018

Zhang et al., 2019

Liu et al., 2017

Hoang et al., 2016, Ge et al.,
2017

Spohn and Kuzyakov, 2014

levels)
Soil moisture content/  Variation indexes Lvetal., 2019
mapping Multiple-linear regression Qiu et al., 2003
Linear and non-liner models Zhu et al., 2017
NanoSIMS Thresholding by size Xiao et al., 2016

Light and fluorescent
microscopy, SIMs and

NanoSIMs

Correlative imaging

Handschuh et al., 2013; Polzer

et al., 2019
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Table 2. Comparison of hotspot areas on three images of activity distribution in soils or plants

calculated by Mean+2SD, Mean+3SD and Top-25% approaches.

Method Parameter Hotspots area, % Hotspot area increase
compared to Top-25%,
times
Top- Mean Mean Mean Mean
25% +2SD +3SD +2SD +3SD
Soil zymography leucine 0.2 12 71 60 36
(Fig. 2) aminopeptidase
activity
"C imaging (Fig. '*C in rootexudates 58 232 174 4 3
3 and 4) and roots
Glyphosate ('“C) in 0.33 152 0.87 4.6 2.6

plant
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638

639  Fig. 1. An example of the grey value distribution (from 0 to 255) for leucine aminopeptidase
640  activity in soil (data extracted from the 8-bit image in Fig. 6b in Razavi et al., 2017). The
641  dashed curve reflects the normal distribution of the grey values of the soil background for
642  enzyme activity with its mean + 2 standard deviations (presented as vertical dashed lines).
643  The hotspot area (S) thresholded by the Mean+2SD approach corresponds to 12% of the
644  whole image. Because the Top-25% approach is strongly biased by the highest grey value

645  (here 255), only 0.2% of the total area are highlighted as hotspots.

646
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647
648

649

650

Original image Mean+2SD Mean+3SD

Fig. 2. Original soil zymograms of leucine aminopeptidase (Razavi et al., 2017) and hotspots
(red) identified using Top-25%, Mean+2SD and Mean+3SD approaches (compare Fig. 1).

Numbers on top left show the percentage of the total image area belonged to the hotspots.
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651 iy ‘ W ' V‘ ;, Mean+2SD Mean+3SD
652  Fig. 3. Original and binarized images of roots and exudates in soil after labeling the plants
653  with "*CO2 (Holz et al., 2018). The hotspots (red) were identified using Top-25%, Mean+2SD
654  and Mean+3SD approaches. Numbers on top left show the percentage of the total image

655  area belonged to the hotspots.

656 Original image Top-25% Mean+2SD Mean+3SD

657  Fig. 4. Original and binarized images of '“C-labeled glyphosate in plants (Fig 5 D, Pereira et
658  al., 2019). The hotspots (red) were identified using Top-25%, Mean+2SD and Mean+3SD
659  approaches. Numbers on top left show the percentage of the total image area belonged to

660  the hotspots.
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Fig. 5. Hotspots in %of the total area thresholded by 17 thresholding built-in methods in ImageJ

’0

and Mean+2SD, Mean+3SD or Top-25% for three test images: a) soil zymogram for leucine
aminopeptidase (Razavi et al., 2017); b) '“C image for “CO2-labeled root and exudates in soil

and c) '“C image of '“C-labeled glyphosate in plants (Pereira et al., 2019).
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673 Fig. 6. Normalized grey value activities for mean and standard deviation values for
674 background and hotspots separated by 17 thresholding built-in methods in ImageJ and
675 Mean+2SD, Mean+3SD or Top-25% for three test images: a) soil zymogram for leucine
676 aminopeptidase (Razavi et al., 2017); b) 'C image for “CO2-labeled root and exudates in soil

677 (Holz et al., 2018) and c) '“C image of '“C-labeled glyphosate in plants (Pereira et al., 2019).

678
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687

Supplementary Materials

7] Density curves

- summary of normalmixEM object:
—————————— > Comp 1 Comp 2

Density
0.00 0.01 0.02 003 0.04
L

lambda 0.89 77 0.10
mu 39.11// 80.47
sigma 9./26 39.67
| loglik a/t/estimate: -321676.9
,/
7
e — /—
| T I T T |
0 50 100 150 200 250
Grey value

Figure S1. An example of the original grey value distribution (bars) for leucine
aminopeptidase activity in soil (data extracted from the 8-bit image in Fig. 6b in Razavi et al.,
2017) and two fitted normal distributions using the normalmixEM function in R. Red and
green lines denote comp 1 and comp 2 distributions in the summary table. Red (comp 1)
normal distribution covers (lambda (A)) 89% of the values, while green covers only 11%.
Mean values (mu (u)) and SD (sigma (o)) were 39 and 81, and 9 and 40 for red and green

distribution, respectively.
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689
690 Figure S2. Montage image with results from all built-in thresholding methods in ImageJ

691 (Schindelin et al., 2012) applied to the soil zymogram for leucine aminopeptidase (Razavi et

692 al., 2017).
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693

694 Figure S3. Montage image with results from all built-in thresholding methods in ImageJ
695 (Schindelin et al., 2012) applied to a C image of “C-labeled glyphosate in plants (Pereira et

696 al., 2019).
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697

698  Figure S4. Montage image with results from all built-in thresholding methods in ImageJ
699  (Schindelin et al., 2012) applied to a '*C image for *CO2-labeled roots and exudates in soil

700  (Holz et al., 2018).

39



701  Table S1. Results of two-samples t-Test for hotspot mean values between statistical

702  approaches (Mean+2/3SD) and standard methods in ImageJ and Top-25%

'“C image for 14 ;
“CO2-labeled root Soil zymogram for leucine | g Ilrréagle Or:c HC-
Method and exudates in aminopeptidase (Razavi et al., ‘abeled gyp qsate
) in plants (Pereira et
soil (Holz et al., 2017) al., 2019)
2018) B
p-values
3SD 2SD 3SD 2SD 2SD 3SD
Default 0 0 1.92E-68 0 0 0
Huang 0 1 0 0 0 0
Intermodes
0 0 0 0 0 0
IsoData 0 0 1.94E-91 0 0 0
IJ_IsoData 0 0 1.92E-68 0 0 0
Li 7.83E-
8.89E-226 0 1.42E-12 74 0 0
MaxEntropy 4 38E-175 0 0 0 0 0.652
Mean 0 0 0 0 0 0
MinError 0 0 0 0 0 0
Minimum 0 0 1.7E-279 0 0 0
Moments 2.4E-
0 0 5.56E-27 269 0 0
Otsu 0 0 1.94E-91 0 0 0
Percentile 0 0 0 0 0 0
RenyiEntropy 8.87E-196 9.6E-241 0 0 0 0.652
Shanbhag 4.52E-91 0 0 0 0 0
. 2.62E-
Triangle 1.94E-99 0 0.008838 112 0 0
Yen 0 2.97E-22 0 0 0 0,148
Top-25% 0 0 0 0 0 0
703
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704

705
706
707
708
709
710
711
712
713
714
715
716
717

Example of script for distribution fitting of distribution parameters in R

install.packages("mixtools")

library(mixtools)

setwd("D:/Research/2019/Hot spot approach/Black and white/data for R")
Zymo1<-read.table('Zymo-leu.ixt', header=T)

head(Zymo1)

value<-Zymo1$value

Amount<-Zymo1$amount

i<-seq(1,256, by=1)

#test normal distributions

vec<-rep(x=valueli], times = Amount[i])
mod <- normalmixEM(vec) #test normal distribution
plot(mod,which=2)

summary(mod)
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