Macaques preferentially attend to intermediately surprising information
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Abstract

Normative learning theories dictate that we should preferen-
tially attend to informative sources, but only up to the point that
our limited learning systems can process their content. Hu-
mans, including infants, show this predicted strategic deploy-
ment of attention. Here we demonstrate that rhesus monkeys,
much like humans, attend to events of moderate surprising-
ness over both more and less surprising events. They do this
in the absence of any specific goal or contingent reward, indi-
cating that the behavioral pattern is spontaneous. We suggest
this U-shaped attentional preference represents an evolutionar-
ily preserved strategy for guiding intelligent organisms toward
material that is maximally useful for learning.
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Introduction

Intelligent organisms acquire knowledge through their expe-
riences in the world; however, there is far more information
in the world than any explorer could hope to exhaustively
explore, much less encode (Oudeyer & Smith, 2016; Wang
& Hayden, 2020). Thus, intelligent organisms must have
a method for organizing their search for information in the
world.

Adaptive theories of curiosity posit that learners’ explo-
ration may be guided by their uncertainty in the absence
of any explicit reward (Berlyne, 1960; Loewenstein, 1994;
Schulz & Bonawitz, 2007; Kang et al., 2009; Bonawitz, van
Schijndel, Friel, & Schulz, 2012; Kidd & Hayden, 2015;
Dubey & Griffiths, 2020). An inverse-U-shaped curve that
correlates attention with information complexity is a key sig-
nature of strategic information-seeking. That is, adaptive
learners should preferentially attend to information of in-
termediate complexity—overly simple information offers lit-
tle to learn from and overly complex information is beyond
the learners’ capacities to process (Dember & Earl, 1957;
Berlyne, 1960; Fantz, 1964; Piaget, 1970; Kinney & Kagan,
1976; Hunter & Ames, 1988; Aslin, 2007; Kidd, Piantadosi,

& Aslin, 2012, 2014; Cubit, Canale, Handsman, Kidd, &
Bennetto, 2021; Kidd & Hayden, 2015). If intelligent organ-
isms possess this general, curiosity-driven mechanism that
guides them towards material that is intermediately surpris-
ing, it would prevent them from wasting time on information
which is already known, and also information which is un-
predictable or overly complex. As a result, the information
overload problem is resolved elegantly.

Human infants are drawn to material that is intermedi-
ately surprising (Kidd et al., 2012, 2014; Piantadosi, Kidd, &
Aslin, 2014), as are older children (Cubit et al., 2021). While
this pattern has never been observed outside of humans, there
is some evidence that strategic information-seeking applies
to monkeys as well when there is no reward tied to a specific
task. For example, macaques are willing to sacrifice some
amount of liquid reward in exchange for information that has
no clear strategic benefit (Blanchard, Hayden, & Bromberg-
Martin, 2015; Wang & Hayden, 2019b) and engage in di-
rected exploration (Ebitz, Tu, & Hayden, 2020; Pearson,
Hayden, Raghavachari, & Platt, 2009). These data raise the
possibility that the strategic information-seeking patterns ob-
served in humans may be shared with other species, possibly
reflective of an evolutionarily ancient capacity for adaptive
regulation of information gathering. Extending these obser-
vations from humans to animals would demonstrate that these
are general principles of advanced evolved learners rather
than uniquely specialized human skills.

Here, we employ a variation on the infant paradigm with
rhesus macaques, in the interest of testing the hypothesis that
adaptive regulation of information seeking is a cognitive skill
shared with our common ancestor. Unlike most previous
work on curiosity in macaques, we employ a free-viewing
paradigm without rewards tied to any particular response or
behavior. The benefit of this approach is that it tests for spon-
taneous preference and avoids possible learning effects. We
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Figure 1: a) Example of Sequential Visual Display. The illustration shows five different time points in a sequence. Each display
featured three boxes, each occluding a unique geometric object (e.g., a green star). At each event in the sequence, one of the
three objects popped up from behind one of three boxes. b) Idealized Learning Model. The schematic shows an example of
how the idealized learning model forms probabilistic expectations about the surprisingness of the next event in a sequence.

find that macaques’ visual attention is strikingly similar to
that of human infants.

Methods
Subjects

All animal procedures were performed at the University of
Rochester (Rochester, NY, USA) and were approved by the
University of Rochester Animal Care and Use Committee.
All experiments were conducted in compliance with the Pub-
lic Health Service’s Guide for the Care and Use of Animals.
Five male rhesus macaques (Macaca mulatta) served as sub-
jects !. Each subject had a small head-holding prosthesis for
collecting high-resolution measurements of eye movements.
Subjects had full access to standard chow while in their home
cages. Subjects received at minimum 20 mL/kg water per
day, although in practice they received close to double this
amount in the lab as a result of our experiments. Subjects had
been trained to perform oculomotor tasks for liquid rewards
through positive-reward-only reinforcement training.

Stimuli

Visual stimuli were colored shapes on a computer monitor
(see Figure 1a). Stimuli were controlled by Matlab with Psy-
chtoolbox. Eye positions were measured with Eyelink Tool-
box (Cornelissen, Peters, & Palmer, 2002). A solenoid valve
controlled the delivery duration of fluid rewards. Eye posi-
tions were sampled at 1,000 Hz by an infrared eye-monitoring
camera system (SR Research, Osgoode, ON, Canada).

1Using single-sex macaques would prevent fighting and over-
mating opportunities among subjects. We also do not expect sex
differences in macaques’ behaviors based on the results from the
infant version of this study (Kidd et al., 2012).

We designed the displayed stimuli to be easily captured by
a simple statistical model (as in Kidd et al. 2012, 2014; Cubit
et al., 2021). Each trial featured one of 80 possible visual-
event sequences. Sequences were designed to vary in terms of
their statistical properties. All sequences were presented to all
subjects in a different randomized order. Only one sequence
was presented per trial, and each was presented in the form of
a unique animated display generated by a Matlab script. An
example video can be seen at haydenlab.com/surprisal.

Each animated display featured three identical boxes in
three distinct, randomly-chosen spatial locations on the
screen that remained static throughout the sequence. Each
box concealed one unique geometric object, which was ran-
domly selected from a set of 32 colored geometric shapes in-
cluding 4 different shapes in 8 colors (e.g., a yellow triangle,
a red star, or a blue circle). Geometric objects remained as-
sociated with their respective gray boxes throughout the se-
quence, but were chosen randomly from the set across trials.
(following the methods in Kidd et al., 2012, 2014; Piantadosi
et al., 2014; Cubit et al., 2021).

Each of the 80 sequences was conveyed by the order in
which objects appeared from boxes on the displays. Each
event within a sequence consisted of one of the three unique
objects popping out from behind one of the three boxes (750
ms), and then back into the box (750 ms), with these pop-ups
presented sequentially with no overlap or delay. 32 out of
the 80 sequences contained 30 pop-up events, while the rest
sequences had 60 pop-up events. The 80 unique sequences
were generated to maximize the difference of their theoret-
ical information property, such that the pop-up probabilities
of each geometric object varied. Some sequences contained
many predictable pop-up events (e.g., %% # ) while others
contained more unpredictable ones (e.g., ** AKX ).
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Figure 2: Look-Away Probability as a Function of Unigram Surprisal. a) Subjects probability of looking away (y-axis) as a
function of surprisal (x-axis) as measured by the unigram model. The points and error bars show the raw probability of looking
away; the smooth curve shows the fit of a generalized additive model with 95% confidence interval. Vertical tick marks show
values of surprisal attained in the experiment. b) The relationship between look-away probability (y—axis) and unigram surprisal

(x-axis), while controlling for all covariate factors.

Exhaustive randomization and counterbalancing of ex-
traneous variables (e.g., sequence order, object identity,
color, shape, spatial location) across trials and subjects
served to control for uncertainty about—and variation
across—subjects’ existing mental representations, processing
speeds, and biases for stimulus salience.

Procedure

We recorded eye movements as subjects watched the visual
displays. The system delivered a 53 pL water reward when
each object was at its peak (every 1.5 sec.), regardless of
where or whether the subject was looking. The intermittent
and fully predictable reward is a standard procedure in pri-
mate behavior studies in which there are no task-specific re-
wards (See in Azab & Hayden, 2017, 2018). This reliable,
non-contingent reward was designed to increase general task
participation and arousal without making any particular task
events reward-associated. Regardless of subjects’ gaze be-
havior, each sequence (one per trial) was displayed in full.
The rate of presentation was between 0 and 2 trials per day,
interspersed within between 400 and 2,000 unrelated trials for
other studies (Strait, Sleezer, & Hayden, 2015; Blanchard,
Wolfe, Vlaev, Winston, & Hayden, 2014; Azab & Hayden,
2018). We recorded all spatial and temporal details of the ran-
domized, Matlab-generated sequential displays we presented,
as well as all macaque visual fixations during the stimulus
presentations.

Analysis

We computed three dependent behavioral measures from the
data: look-aways, reaction times, and predictive-looking.
Look-aways are defined as the first point in the sequence

when the macaque looked off-screen for 0.75 sec (50 %
of the total pop-up event duration, as in Kidd et al., 2012,
2014 and Cubit et al., 2021). Reaction time (RT) measures
the subjects’ latency to shift gaze to the object after it ap-
peared. Predictive-looking ? is a binary variable that indi-
cates whether the subject was already looking at the current
object when it first became active but before the object ac-
tually popped up. We analyzed these three behavioral mea-
sures as a function of the surprisal value of each event in the
sequence, which is simply the negative log probability of the
event’s occurrence, according to unigram and bigram Markov
Dirichlet-Multinomial (ideal observer) models (again follow-
ing the analysis methods of Kidd et al. 2012, 2014 and Cubit
et al., 2021). The unigram model treats each event as statis-
tically independent, while the bigram model assumes event-
order dependence and tracks the conditional probability on
the immediately preceding event. The models begin with a
simple prior corresponding to the implicit beliefs a learner
possesses before beginning to make any observations. By us-
ing a flat (or uninformative) prior, we assume that the learner
begins the sequence presentation with the implicit belief that
each of the three possible objects is equally likely to pop-up
from behind their occluding boxes. Once the sequence pre-

%In this paradigm, the pop-up events occurred temporally pre-
dictable (every 1,500 ms), with no breaks between, and thus a pre-
dictive look could not be expected to yield any early information be-
yond enabling the subject to view the entirety of a new pop-up event,
without the costs that would be incurred by attentional switch. Thus,
these predictive looks differ from those elicited in most predictive-
looking paradigms, where delays between events specifically en-
courage predictive looking. Regardless, predictive looks may be
taken to indicate some degree of attentional allocation to inactive
boxes in advance of their opening.
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Figure 3: Reaction Time (ms) as a Function of Unigram Surprisal. a) Subjects reaction time (latency) to fixate the active object
(y-axis) as a function of surprisal (x-axis) as measured by the unigram model; the smooth curve shows the fit of a generalized
additive model with standard errors. b) Reaction Time (y—axis) and unigram surprisal (x-axis), while controlling for all factors.

sentation begins, the model estimates the surprisal value of
the current event at each item in the sequence. To do this,
it combines the simple prior with the learner’s previous ob-
servations from the sequence in order to form a posterior or
updated belief. The next object pop-up event then conveys
the surprisal value according to the probabilistic expectations
of the updated belief (see Figure 1b). We also evaluated the
statistical significance of each variable using mixed effect lin-
ear or logistic regressions with random intercepts, and linear
and quadratic surprisal slopes. A generalized additive model
(GAM) was used to visualize the relationship between the
surprisal estimate from the computational model and the be-
havioral data.

Results

Preferential gaze towards events of intermediate
surprisal

Estimated by the unigram GAM analysis, subjects were more
likely to terminate attention to highly predictable (low sur-
prisal) events and also highly unexpected (high surprisal)
events (Figure 2a). The GAM’s estimated relationship be-
tween the unigram surprisal measure and the look-away prob-
ability exhibits a clear U-shape. In the regression that con-
siders only surprisal and squared surprisal measures, both
the linear term (fp = —0.45,z = —5.87,p < 0.001) and the
quadratic term are statistically significant (B = 0.11,z =
3.679, p < 0.001). The GAM visualization with other covari-
ates being controlled for still shows a clear U-shaped relation-
ship (Figure 2b). The logistic regression reveals a statistically
robust linear term (B =-0.16,z = —1.78, p < 0.08), but not
a statistically robust quadratic term (B = 0.03,z =0.86,p <
0.40), most likely due to data sparsity in the highest surprisal
range (right side) of the U shape. Results from the transitional

model shows that there is a U-shaped relationship in the raw
model and model fits, with the quadratic trend being statisti-
cally significant (B = 0.06,z = 2.69, p < 0.008). However,
this pattern disappears when other variables are controlled
for. This suggests that the transitional model does not well-
predict subjects’ lookaway patterns, in contrast to the robust
linear and likely quadratic trends exhibited by the unigram
model. Our results also show that all five subjects exhibit
preference for stimuli of intermediate surprisal, suggesting
that the U-shape relationship holds within rhesus macaques
and is not due to subject average. This consistent pattern ob-
served in each macaque subject was also found within indi-
vidual human infants who reserve attention for events that are
moderately predictable (Piantadosi et al., 2014).

Quicker deployment of gaze for events of
intermediate surprisal

The unigram GAM analysis shows that the relationship be-
tween reaction times and subjects’ expectations about stim-
ulus predictability is U-shaped, with subjects exhibiting the
fastest RTs for intermediately predictable stimuli (Figure 3a).
The regression reveals both a significant linear term (§ =
—64.68,t = -9.42, p < 0.0002) and a significant quadratic
term (B = 14.372,t = 6.37,p < 0.002). The relationship
holds for each individual subject. The U-shape relationship
also holds when other variables are controlled in the GAM
model, as well as revealed by the significant linear (f =
—26.19,t = -3.02,p < 0.02) and quadratic (B = 6.00,7 =
2.62, p < 0.03) terms in the controlled regression (Figure 3b).
The significance of the quadratic term likely corresponds to a
genuine U over the range of surprisal, especially in light of the
fact that the significance holds even in the controlled GAM.
However, in the GAM analysis for the transitional surprisal
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Figure 4: Predictive-Look Probability as a Function of Uni-
gram Surprisal. Subjects probability of predictively looking
to the currently active object (y-axis) on their first appearance
as a function of surprisal (x-axis) as measured by the unigram
model; the smooth curve shows the fit of a generalized addi-
tive model with 95% confidence interval.

measures, it shows a much shallower U-shape, with only the
linear trend being significant in the raw model. Once all pre-
dictors are included, the curve becomes mostly flat. This
shows that the unigram model is more robust than the tran-
sitional model to capture the relationship between subjects’
RTs and the surprisingness of stimuli.

Predictive looks towards unshown items

Subjects are more likely to predictively look at objects on
their first appearance when the pop-up events are less sur-
prising. The estimated GAM plot shows a decreasing trend
between the probability of predictive-looking and the sur-
prisal value, as in Figure 4. The pattern is supported by the
unigram controlled regression model, which finds statistical
significance in the linear trend (f = —2.72,z = —2.65,p <
0.009). Subjects are also more likely to predictively look
at never shown objects if they appear earlier in a sequence
(B=—-12.61,z=—-2.13,p < 0.04). These results show that
subjects might be curious about unknown information, ex-
pecting that there is some change that will occur and, if it
does, it will be informative. They also suggest that over time,
as it is increasingly unlikely to see unopened box will ever
open, they are less likely to allocate their attentional resources
towards monitoring unopened box.

Discussion

Humans do not indiscriminately attempt to absorb any in-
formation they encounter. Instead, information-gathering
is highly regulated and indeed strategic—we actively seek
out information that is maximally useful (Oudeyer & Smith,
2016; Wang & Hayden, 2020; Cervera, Wang, & Hayden,
2020; Kidd & Hayden, 2015). One result of this strategic

allocation of information-gathering effort is that we pay spe-
cial attention to moderately surprising events. Unsurprising
events, which provide no additional information beyond what
we already understand, do not need constant monitoring to
verify their unsurprisingness because sparse sampling is suffi-
cient if there is no change in the underlying statistics. Overly
surprising events are also disfavored, likely because they ex-
ceed our learning capacity. As a consequence, an inverse-U-
shaped preference function is a key signature of the strategic
allocation of attention in the service of information gather-
ing. Here we show that this pattern, previously only observed
in humans (Kidd et al., 2012, 2014; Piantadosi et al., 2014;
Cubit et al., 2021), is also observed in rhesus macaques, a pri-
mate species that diverged from humans roughly 25 million
years ago.

The presence of this pattern in rhesus macaques suggests
that the capacity to adaptively seek maximally useful in-
formation is not uniquely human, but instead reflects long-
standing evolutionary pressures that have been present since
at least the time of our last common ancestor. This is impor-
tant because a good deal of theorizing highlights the unique-
ness of human curiosity, with the implication that curiosity
is a factor that has driven human divergence (Berlyne, 1957).
Our results, then, suggest an alternative hypothesis that hu-
mans and animals share a broad suite of cognitive adapta-
tions, and that humans differ in quantity but not in quality
from non-human animals. We found that unigram statis-
tics were a more robust predictor of monkey learners’ be-
haviors than the transitional statistics—in contrast to infants,
for whom transitional models outperformed unigram models
for both visual (Kidd et al., 2012) and auditory (Kidd et al.,
2014) stimuli. This difference may suggest a species-level
difference in attentional preferences; however, it is important
to note that this conclusion is premature in light of the fact
that the macaque participants tested here were in the habit of
tasks that require tracking unigram statistics (e.g., k-arm ban-
dit tasks). The apparent species-level difference, thus, could
instead be the result of experiential differences across our par-
ticular participant pools.

Finally, these results highlight the importance of executive
control in curiosity. We do not simply amble around the
world gleaning whatever information is available to us;
instead we act in concert with our environment, following
cues, taking hints, and moving towards stimuli and settings
that likely offer us the best chance of getting information.
Indeed, we search for information in an optimizing manner.
Just as we forage for food, we deliberately seek a rich
and balanced diet of information that can drive maximally
efficient learning and, ultimately, adaptive fitness. It would
be interesting to know how the brain processes underlying
these two forms of foraging relate (Hayden, Pearson, & Platt,
2011; Blanchard et al., 2015).
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