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Abstract: Technical best management practices are the dominant approach promoted to mitigate 4 
agriculture’s significant contributions to environmental degradation. Yet very few social science 5 
studies have examined how farmers actually use these practices. This study focuses on the 6 
outcomes of farmers’ technical best management practice adoption related to synthetic nitrogen 7 
fertilizer management in the context of Midwestern corn agriculture in the United States. Moving 8 
beyond predicting the adoption of nitrogen best management practices, I use structural equation 9 
modeling and data from a sample of over 2,500 farmers to analyze how the number of growing 10 
season applications a farmer uses influences the rate at which synthetic nitrogen is applied at the 11 
field-level. I find that each additional application of N during the growing season is associated 12 
with an average increase of 2.4 kg/ha in farmers’ average N application rate. This result counters 13 
expectation for the outcome of this practice and may suggest that structural pressures are leading 14 
farmers to use additional growing season applications to ensure sufficiently high N rates, rather 15 
than allowing them to reduce rates. I conclude by discussing the implication of this study for 16 
future research and policy.  17 
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1. Introduction 51 

A dominant response to agricultural nutrient pollution in the United States (US) has been the 52 

promotion of technical best management practices (BMPs)—practices that use fertilizer-based, 53 

technical means to increase crop uptake of N and reduce nutrient loss potential (Drinkwater and 54 

Snapp 2007; Blesh and Drinkwater 2013). These practices include devices, tests, or equipment 55 

that enable farmers to more efficiently manage their inputs and thereby significantly reduce 56 

unnecessary contributions to environmental harms. But do farmers actually use these technical 57 

BMPs to conserve resources and reduce chemical input use?  58 

Despite ample evidence from natural science studies measuring the potential 59 

environmental benefits of technical BMPs (e.g., Gardner and Drinkwater 2009) and decades of 60 

social research on what drives farmers’ adoption of BMPs (Prokopy et al. 2019; Ranjan et al. 61 

2019), very few studies have investigated the on-farm outcomes of BMP adoption. In a review of 62 

174 BMP adoption studies from the social sciences, only around 10% explored the outcomes of 63 

adopted practices (Yoder et al. 2019). In other words, little research has examined how farmers 64 

actually use the BMPs they adopt and specifically whether they use these practices toward 65 

conserving resources and reducing the potential for environmental harm.  66 

There is, rather, evidence to suggest efficient or “green” technologies like BMPs are 67 

often employed in ways that lead to more resource use or environmental harm (York 2012; York 68 

and McGee 2016). For instance, Sanderson and Hughes (2019) found that when farmers adopted 69 

more water-efficient irrigation technology, they tended to use more irrigation water. This, the 70 

authors argued, was a result of system-level political-economic pressures, where farmers needed 71 

to expand production to pay-off the cost of the more efficient equipment. This result reflects a 72 

growing body of research that emphasizes how the political economy of agriculture constrains 73 
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farmers’ management choices to necessarily prioritize production and profit (e.g., Levins and 74 

Cochrane 1996; Stuart & Schewe 2017). Given structural pressures, it is possible that technical 75 

BMPs are often not being used to achieve their intended outcomes and are rather applied to 76 

ensure profitability and in consequence accelerate resource use. Should this be the case, it would 77 

further point to the limited potential for within-system, incremental technical approaches to 78 

singularly address agricultural nutrient pollution and instead suggest the need for solutions aimed 79 

at altering the structural social, and ecological conditions of the modern agricultural system 80 

(Drinkwater and Snapp 2007; Gardner and Drinkwater 2009; Joyce et al. 2013; Prokopy et al. 81 

2020). 82 

To help address this research gap, this study focuses specifically on the outcomes of 83 

BMP adoption related to synthetic nitrogen (N) fertilizer use. Like the broader BMP literature, 84 

past research specific to N use has primarily examined what leads farmers to adopt a variety of 85 

technical N BMPs, including N soil tests, the use of variable rate/precision application and split- 86 

(i.e., multiple) and spring N applications (Khanna 2001; McBride and Daberkow 2003; Lambert 87 

et al. 2007; Lemke et al. 2010; Weber and McCann 2015). Moving beyond predicting the 88 

adoption of N BMPs, I use quantitative data from a sample of over 2,500 Midwestern row-crop 89 

farmers in the United States (US) to analyze how the number of applications during the growing 90 

season—with multiple applications being a widely recommended N BMP—relates to farmers’ N 91 

application rate at the field scale. Though technical BMPs like growing season application of N 92 

can reduce the potential for N loss, this benefit is maximized when farmers capitalize on greater 93 

crop uptake of N by lowering their total N application rate (Mackown & Sutton 1997; Tran et al., 94 

1997; Drinkwater and Snapp 2007). Reducing N rates is therefore a key practice outcome of 95 

technical N BMPs. This study explores whether this outcome goal is realized as farmers use 96 

additional growing season applications of N. I begin by discussing the context of N use and 97 

related BMP adoption and outcome research. 98 

2. Background 99 

2.1 N use and loss 100 
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Nitrogen (N) fertilizer is currently an integral agricultural input (Robertson and Vitousek 2009), 101 

contributing to crop yield increases that supply an estimated 40% of the global population with 102 

its caloric needs (Smil 2002). However, when N fertilizer is applied in amounts greater than what 103 

a crop can use quickly, it is a primary cause of excess environmental N (Vitousek et al. 1997). In 104 

the US, corn production in the Midwest region is a key site of N use and loss (Ribaudo et al. 105 

2011; Basso et al. 2019). Midwestern states are the primary corn-growing areas in the nation, and 106 

about 50 percent of all N applied in the US is applied to corn (ERS 2017). Of all the N applied to 107 

corn, approximately 50 percent is typically lost to the environment (Cassman et al. 2002). 108 

Reflecting the prevalence of corn production and the crop’s relationship with N use, nitrous 109 

oxide (N2O) emissions are the primary greenhouse gas from the agricultural sector in the US 110 

Midwest (Larsen et al. 2007). N loss from row-crop agriculture in the region is also the primary 111 

driver of the Gulf of Mexico’s hypoxic “dead zone” (David et al. 2010). Despite years of 112 

scientific and political efforts, recent evidence suggests that N loss from Midwestern states, such 113 

as Iowa, has only increased over the last two decades (Jones et al. 2018). 114 

2.2 Best management practices and multiple applications during the growing season 115 

A variety of factors shape farmers’ N decision-making and contribute to N loss generally (see 116 

Stuart et al. [2015] for a more comprehensive review). Related to farmers’ management, these 117 

include using higher than necessary N application rates as a "risk reduction" strategy (Sheriff 118 

2005), collective action dilemmas (e.g., Yoder 2019), and political-economic factors that 119 

constrain farmers’ choices, leading them to prioritize expanding production over efficient N use 120 

(e.g., Stuart and Schewe 2016). But the question of why farmers voluntarily adopt (or do not 121 

adopt) BMPs has been given the majority of academic attention, being thoroughly examined for 122 

over 30 years (see Prokopy et al. [2019] for a review). This degree of focus is in large part a 123 

reflection of US agricultural policy, which is almost entirely focused on encouraging voluntary 124 

adoption of N BMPs via financial incentives or technical assistance (Ribaudo 2015). While 125 

measures that directly reduce N use, such as taxing N fertilizer or capping total N application 126 

rate, have been shown to be very effective in other national contexts (Hamblin 2009), these 127 

mandatory approaches would likely receive significant pushback from politicians, farmers, and 128 

agribusinesses in the US (Hauter 2012). Consequently, to date, achieving improved 129 

environmental outcomes has largely depended on farmers choosing to adopt new management 130 
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practices. Even among voluntary N BMPs, technical BMPs have received the lion’s share of 131 

attention, rather than ecological-based management approaches (e.g., cover crops, diversified 132 

rotations, conservation tillage) (Blesh and Drinkwater 2013). This is likely a reflection of a 133 

general technology fetish in agricultural production that privileges high tech solutions to 134 

agricultural issues (Altieri 1989; Montenegro de Wit and Iles 2016) and a result of these 135 

practices being pushed by agribusinesses and the fertilizer industry (Weber and Stern 2015; see 136 

TFI, n.d.). 137 

The use of more frequent growing season applications of N or using “split applications” is one of 138 

the technical N BMPs which has received the most attention to date (Caswell et al. 2001; 139 

Robertson and Vitousek 2009; Lemke et al. 2010). Corn crops rely on sufficient N for optimal 140 

growth (Robertson 1997). Too little N will stunt the crop’s yield, while too much will contribute 141 

to environmental harm and waste N. Both harm farmers’ profits. Toward ensuring the most 142 

efficient N management, farmers make key choices about when to apply N. Rather than applying 143 

seasonal N needs at one point in time—such as in the fall—farmers can increase the number of 144 

times they apply throughout the growing season. By more frequently applying N (at planting; 145 

after planting but before crop emergence; after crop emergence; or late season), farmers can 146 

more closely match N supply with corn’s seasonal demand. In this way, more frequent growing 147 

season N applications can increase N use efficiency, or the proportion of applied N that is 148 

captured by the crops (Mackown and Sutton 1997; Tran et al. 1997; Robertson et al. 2013).  149 

2.3 Why using more growing season applications should lead to lower N rates 150 

By increasing N use efficiency, using more frequent N applications during the growing season 151 

can enable farmers to use lower overall rates of N without harming yields, which should translate 152 

into lower input costs and eventually net gains in profits (Robertson and Vitousek 2009; Flis 153 

2017).  Importantly, farmers’ N rates are shaped by several auxiliary factors. Farmers using a 154 

corn-corn rotation require higher N rates, as a corn-soy rotation supplies an organically fixed 155 

source of N (Lasley et al. 1990; Puntel et al. 2016). Similarly, corn yields and N rates should be 156 

roughly positively related, so farmers expecting lower yields will likely apply less N per hectare 157 

(Caswell et al. 2001). However, after accounting for these factors, using more growing season 158 

applications still has the potential to enable farmers to reduce their N rates. Robertson and 159 
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colleagues (2013: 55) reflect this integral nature of lowering N rates as a practice outcome in 160 

saying: “In many cases timing [i.e. growing season applications), placement, and formulation 161 

[other types of N BMPs] provide their benefit by effectively reducing fertilizer N in soil. In this 162 

sense, fertilizer rate is a good integrator of multiple practices.” Practices like more frequent 163 

growing season applications provide some direct benefits in terms of reducing N loss potential. 164 

Yet, farmers ultimately should use additional growing season applications to lower their total N 165 

rate, capitalizing on their greater N use efficiency, as we can expect efficiency gains in N use for 166 

each application.  For instance, compared to conventional application timings, some studies have 167 

suggested that in-season application techniques such as sidedress can enable farmers to lower 168 

their N application rates by around 40% without harming yields (Gehl et al. 2005; Zhang et al. 169 

2015).  170 

To date, there is little evidence to show farmers are using N BMPs, like additional 171 

growing season applications, to reduce N rates. Achieving this practice outcome is particularly 172 

important because, while N rate does not absolutely determine the amount of N lost to the 173 

environment, it is one of the key factors shaping the potential for N loss (Gardner and 174 

Drinkwater 2007; Ribaudo et al. 2011). 175 

2.4 Predicting growing season applications and N rate 176 

Like other work on N BMPs, most research related to growing season applications has focused 177 

on what predicts farmers’ use of the practice (Caswell et al. 2001; Lemke et al. 2010). This 178 

research and related work point to key motivating factors related to farmers’ use of growing 179 

season applications and N rate decisions. Using a greater number of N applications requires more 180 

time spent in the field, along with knowledge of specialized equipment/technologies such as a 181 

sidedress applicator “toolbar.” Farmers who seek out more agricultural information, as well as 182 

those who are more highly educated are more likely to use more growing seasons N applications 183 

(Caswell et al. 2001; Daberkow and McBride 2003; Lemke et al. 2010). More highly educated 184 

farmers and those utilizing more information may then also be likely to use lower N rates, as 185 

some research has found that in-field training can reduce farmers’ N rates (Huang et al. 2015). 186 

Older farmers are generally less progressive in terms of their practice use (Khanna, 2001; 187 

McBride and Daberkow, 2003). Consequently, older farmers will likely use fewer growing 188 
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season applications but may be more likely to adhere to now out-of-date and generous 189 

application rate “rules of thumb” (Reimer et al. 2020). Therefore, age may positively predict N 190 

rate. Farmers must also be able to test for current N availability, as growing season applications 191 

are intended to match applied N with crop N needs. Using N testing methods, such as pre-192 

sidedress nitrate tests (PSNT), is associated with greater use of growing season applications 193 

(Weber and McCann 2015) and should also lead to more conservative N rates. Further, while 194 

multiple applications can reduce N related costs for farmers, it will likely take years of reduced 195 

N use to offset the up-front costs of growing season application technology. Consequently, 196 

farmers who hold pro-environmental attitudes or values are more likely to use multiple growing 197 

season applications (Lambert et al. 2007). Relatedly, farm size often positively predicts BMP 198 

adoption as larger farmers can better offset the costs of equipment due to their economies of 199 

scale (Denny et al. 2019; Prokopy et al. 2019). Farmers operating on more land are likely to use 200 

more growing season applications. However, some work suggests that the size of these farms 201 

promotes a “one size fits all” approach to N rates across the farm, where too much is better than 202 

too little (Reimer et al. 2020). Larger farmers may use greater amounts of N. 203 

It is also common for farmers to hire local chemical businesses to provide N rate 204 

recommendations and to do the applications for them (Stuart et al. 2018). Using hired services 205 

then may increase the use of growing season applications but could also be associated with 206 

higher overall N use as these firms tend to recommend higher N rates because they also often sell 207 

fertilizer (Ibid). Fall application of N is widely considered one of the least efficient times to 208 

apply N fertilizer, as the land is typically barren until the following spring leaving N highly 209 

susceptible to loss (David and Gentry 2000). Farmers using fall application to any extent are 210 

likely to use fewer growing season applications having applied at least a portion of their N pre-211 

season. Fall applicators will also likely use higher N rates to accommodate for lower use 212 

efficiency. Crop/field characteristics will also play a role. In addition to farmers in a corn-corn 213 

rotation likely using higher N rates, they may also be more likely to use more growing 214 

applications given their greater dependence on synthetic N inputs (Caswell et al. 2001). 215 

Evidence specific to the outcomes of using growing season applications is especially 216 

limited. However, in a recent qualitative study, many of the Midwest corn farmers Houser and 217 

Stuart (2020) interviewed used additional growing season applications as a means to increase N 218 
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rates in response to N loss from heavy rainfall events. Rather than achieving lower rates, farmers 219 

in their study commonly saw growing season applications as a means to ensure they had 220 

sufficiently high N rates to maximize yield, even if some N was wasted. This decision was 221 

reported to be in part a constrained choice, shaped by political-economic pressures to achieve 222 

maximized yields and profitability. Other studies have similarly shown these conditions are 223 

present and constrain farmers' capacity to pursue conservation efforts (Schewe and Stuart 2017; 224 

Sanderson and Hughes 2019; Borlu and Glenna 2020; Cilia 2020). If this applies broadly, each 225 

additional growing season application would be associated with higher N rates.  226 

Given the need to reduce agriculture’s environmental impact and the current reliance on 227 

voluntary, technical approaches, we must develop a greater understanding of the outcomes of 228 

farmers' BMP use. To address this need, I examine how additional growing season applications 229 

of N are related to farmers’ N fertilizer application rate.  230 

3. Data and methods 231 

3.1 Data 232 

Data for this analysis comes from a 2017 survey of Midwestern row-crop farmers across four 233 

states: Illinois, Indiana, Michigan, and Ohio. The survey focused on gathering information on 234 

farmers’ N fertilizer use, among other dimensions of crop management during the previous 235 

growing season in 2016. The four states were selected to represent a range of social, economic, 236 

and biophysical factors dispersed across the Midwestern ‘corn belt’ states. Together, planted 237 

hectares of corn in these states made up 26% of the total hectares planted in the US in 238 

20161 (NASS 2016), and these states are located in the agricultural region of the US where the 239 

greatest amount of N is applied (Ribaudo et al. 2011). 240 

      To reach corn-soy farmers in these states, a list of 10,582 farmer addresses was purchased 241 

from a private firm that specializes in agricultural marketing. The percentage of farmers’ 242 

addresses purchased for each state varied according to the state’s total row-crop farming 243 

                                                 
1 Percentage of US total hectares in each state is as follows: Michigan (2.5%); Indiana (6.5%); Illinois (13.2%); 
Ohio (3.8%) (NASS 2016). 



 9 

population. In this way, the sample better reflects the regional population. A stratified random 244 

sample design was then used to ensure adequate representation of large farms. Two categories 245 

were used, farms of less than 202 hectares and farms of more than 202 hectares. In mailing 246 

surveys to farmers in these states, a modified Dillman approach was used, with two mailing 247 

waves beginning in February 2017 (Dillman et al. 2014). To ensure questions were readable and 248 

relevant, local farmers and an Extension educator provided feedback on the survey’s 249 

questionnaire via two focus group discussions before mailing.  250 

      A usable response rate of approximately 26% was achieved. This response rate accords well 251 

with other recent mail surveys of Midwestern corn farmers (e.g., Stuart et al. 2012; Arbuckle et 252 

al. 2013). Over-sampling of large farms led to a high percentage of respondents operating over 253 

404 hectares (39%). In consequence, this sample may over-represent large farmers in these states 254 

(see appendix for more details). Given the ongoing trend of farm consolidation (MacDonald 255 

2020) and that I am primarily concerned about farmers’ environmental impact, a sample that 256 

overly represents those with the largest potential environmental footprints is a desirable bias.   257 

      To focus on synthetic N management, I excluded all farmers in the sample who utilized 258 

manure (n=185), leaving a usable sample of 2,573 farmers. Related to management, the analysis 259 

draws on results from questions regarding farmers’ N fertilizer use and best N management 260 

practice use on the largest field on which they grew corn in the 2016 growing season. Following 261 

the practice of USDA’s Agricultural Resource Management Survey (ARMS)2, these questions 262 

about nutrient use and practice adoption were asked regarding a specific field with two primary 263 

benefits: focusing on a specific management area increases the ease of responding for farmers 264 

and, given that this is the largest field, it is likely representative of the practice’s farmers use 265 

across the majority of their tillable land. 266 

3.2 Conceptual and analytical approach  267 

For this analysis, I conceptualize growing season application and N application rate as linked in a 268 

causal path, where farmers’ N rate (the practice outcome) is related to their use of growing 269 

                                                 
2 See the ARMS survey at: https://www.ers.usda.gov/data-products/arms-farm-financial-and-crop-production-
practices/ 
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season applications (the BMP), along with the relevant decision-making and field-specific 270 

management factors. To account for this conceptual relationship, I use structural equation 271 

modeling with latent variables (SEMLV) to accurately account for direct and indirect paths as 272 

specified in the model shown in Figure 1 below (Bollen 1989; Hoyle 2012).  273 

SEMLV is a multi-equation regression technique that accommodates relations between 274 

multiple exogenous and endogenous variables simultaneously and includes both latent and 275 

observed variables. SEMLV can simultaneously analyze multiple relationships between 276 

exogenous and endogenous variables. I use SEMLV techniques to conduct a path model that 277 

predicts N application rate, working through the number of growing season applications. 278 

Consequently, my analysis predicting total N application rate accounts for the indirect effects of 279 

variables predicting practice adoption and the direct effect of practice adoption on farmers’ N 280 

application rate, along with other relevant control variables. This technique ensures the practice 281 

of growing season applications remains exogenous to N rate, helping to avoid potential 282 

endogeneity issues in the final model. 283 

A latent construct, also called a latent variable, is an unobserved variable that captures the 284 

relations between the multiple observed variables being used to measure it (Bollen 1989). As is 285 

standard practice in SEMLV, I evaluate the fit of each of the two latent variables used as 286 

predictors in my model via measurement models (or confirmatory factor analysis (CFA)). I use 287 

STATA 15, and AMOS 27 for my analyses (Long and Freese 2006; Arbuckle 2010). Missing 288 

data was present.3 Following recommendations (Cham et al. 2017), SEM’s full information 289 

maximum likelihood estimation (FIML), with the means and intercepts option in AMOS, was 290 

used in estimation to address missing data.4  291 

                                                 
3 The average item missingness was approximately 36%. Total N application rate and total number of growing 
season applications had the highest at approximately 47% & 43% missing respectively. Question length likely 
explains higher rates of missingness. These two variables were asked as part of a detailed, page-length table on 
nutrient management. Future work should simplify these questions to single items to encourage higher response 
rates.  
4 FIML has been shown to produce relatively unbiased estimates at 75% missing data even in small sample sizes 
(e.g., n=300 complete cases) and it is often compared favorably to other missing data techniques, including multiple 
imputations (Allison 2012; Enders et al. 2001; Newman 2003). While FIML is appropriate for this analysis, for 
reliability’s sake the model was examined using three missing data techniques: FIML, multiple imputations (w/ OLS 
regression), and listwise deletion. Results suggest the FIML analysis presented here is robust: in every case, the 
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CFA results provide fit statistics for each measure or component included in the latent 292 

variable and the overall fit or quality of the latent construct, both of which need to be examined 293 

to comprehensively assess the fit of the latent constructs and evaluate their appropriateness for 294 

use in the analysis. The component fit of an acceptable latent variable has standardized and 295 

unstandardized factor loadings close to one another (the former above .40 and the latter around 296 

1.00), which taken together with other aspects of component fit show that the included measures 297 

are valid and reliable measures of the latent construct. Overall model fit statistics for such a 298 

latent variable include a non-significant chi-square value (indicating that the estimated model is 299 

not significantly different from the data), fit indices like the Comparative Fit Index (CFI), and a 300 

Root Mean Square Error of Approximation (RMSEA) (West et al. 2012). CFIs compare the fit of 301 

a target model to the fit of an independent, or null, model. Good models achieve CFI’s that are 302 

approximately 0.95 or above. RMSEA’s is an absolute measure of fit based on the non-centrality 303 

parameter. RMSEA’s that are below 0.05 are considered good fitting models (see West et al. 304 

2012 for more detail). These fit statistics will also be used the assess the overall model fit.   305 

<Figure 1 about here> 306 

3.3 Variables and models 307 

Variables in this model reflect the above depicted conceptual categories and relationships (Figure 308 

1; see appendix for a description in Table A5). Two models are simultaneously examined in this 309 

analysis. The “first” model’s outcome is the number of growing season applications. This is 310 

treated as a continuous variable, which measures the total number of growing season applications 311 

of N undertaken by the farmer, including applying N: (1) before planting, (2) at planting, (3) and 312 

post-crop emergence, which includes both sidedress and after sidedress/late season. For analysis, 313 

the range of this variable was expanded for better prediction (1=3.333; 2=6.666; 3=10). Higher 314 

values equate to a greater number of applications. The number of growing season 315 

applications applies specifically to a farmer’s largest field.  316 

                                                 
relationship between growing season applications and N rate was significant, positive, and had approximately the 
same coefficient shown in this paper.  
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The second outcome, and the one of primary interest, is N application rate. Following the 317 

past literature, N application is measured at the field scale, in kg/ha (e.g., Hoben et al. 2011) and 318 

is specific to a farmer’s largest field. N rate per hectare is calculated by aggregating the kg/ha 319 

application rate of all N products used by respondents. Some farmers reported the amount of N 320 

product they applied (e.g., lbs of urea). These figures were converted to reflect the kilograms of 321 

actual N applied using standard measures for the percent of N within each product. After visual 322 

inspection of the distribution of the N application rate variable, three outlying responses were 323 

dropped.5 Each additional growing season application of N should be associated with lower N 324 

rates if farmers are using the practice as expected.  325 

3.4 Predictors of farmers’ N management  326 

The model also includes several auxiliary variables that may shape farmers’ decision-making 327 

related to N rate, as well as drive the number of growing season applications (see appendix for a 328 

descriptive table). Based on the past literature discussed above and a meta-analysis of the BMP 329 

adoption literature (Prokopy et al. 2019), I include measures for farmers’ value orientations, 330 

information use, field characteristics, operation characteristics, and farmer characteristics.  331 

Farmers’ values are measured by two latent constructs. Environmental 332 

values and economic values are latent constructs that each include four variables gauging values 333 

related to how important the items were to being a farmer and managing their operation. These 334 

are measured on a scale from 1=low importance to 5=high importance. The indicator variables 335 

and CFA results and fit statistics for each latent construct are shown in Table 1. Results indicate 336 

a good (environmental values) to very good fit (economic values) (West et al. 2012).  337 

Information use is captured by two variables. First, PSNT use (a test used to determine 338 

current N availability in soil) is a binary variable, with use being defined by the regular or 339 

occasional use of a PSNT in corn years (use=1). Second, information source use 340 

index, which measures farmers’ total use of agricultural information sources, with higher values 341 

being associated with higher total use frequency in the following information sources: (1) 342 

campus-based extension faculty, (2) county-based extension educators, (3) chemical dealers, (4) 343 

                                                 
5 The decisions were ultimately based on the author’s existing knowledge of farmers’ N management.  
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seed dealers, (5) independent agronomists, (6) other farmers and family, (7) agricultural 344 

magazines, (8) agricultural websites and smart-phone apps, (9) grower associations, and (10) any 345 

other agricultural information sources used. Response options ranged from the farmer using the 346 

source “Never” (=1) to “Daily” (=5). The information source use index variable ranges from 9-347 

35.  348 

Field characteristics includes three variables. These are intended to control for factors 349 

that would influence farmers’ N rate. Custom fertilizer use is a binary, dummy variable. Custom 350 

fertilizer use measures whether the farmer reported any custom blends of fertilizer (1=custom 351 

blend used). Given the difficulty of accurately assessing actual N rates in these blends, this was 352 

converted to a binary variable to control for potential N supplied, or other benefits farmers’ may 353 

anticipate from their custom blends. If used (1=custom blend used), it should reduce N rate from 354 

primary sources. Custom blends are typically granular forms of N, and thus less applicable post-355 

crop emergence. Using a custom blend may therefore reduce the total number of applications 356 

used. Crop rotation on the largest field was included as three dummy variables: corn-357 

corn rotation, other crop-corn, and corn-soy. Corn-soy is used as the reference category as it is 358 

the rotation used by the majority of survey respondents. Finally, the 2014 corn yield goal is also 359 

included as a continuous variable to capture the effect of yield goal on N application rate.6 As 360 

most farmers were in corn-soy rotation, the 2014 corn yield represents the majority of sampled 361 

farmers who had most recently grown corn on their largest field.7 All variables are specific to the 362 

largest-field and thus accord with the measure of N application rate and growing season 363 

application.  364 

Operation characteristics includes the variables fall application, farm size, hired fertilizer 365 

sampling and recommendation, and hired fertilizer application. Fall application is a 366 

dichotomous variable, measuring the effect of whether a farmer applies N in the fall or not 367 

(1=yes). Farm size is a continuous variable, measuring farmers' total hectares operated. Hired 368 

fertilizer sampling and recommendation (1=hired) and hired fertilizer application (1=hired) are 369 

both binary, dummy variables. These variables capture whether or not a farmer did fertilizer 370 

                                                 
6 Visual inspection of a dot plot of the yield variable was used to detect and drop outliers. A total of 8 cases were 
dropped.  
7 For those in rotations other than corn-soy (i.e., they did not grow corn and thus didn’t have corn yields to provide) 
2016 corn yields were imputed when possible. 
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sampling and applications themselves or hired another individual or private contracting company 371 

to do them.  372 

Farmer characteristics includes three variables. Education comes from a question asking 373 

respondents to select their highest level of education. It is treated as a continuous measure, where 374 

higher scores equate to higher levels of education. Farmers’ age is measured as a continuous 375 

variable, with higher scores indicating older ages. Finally, the state in which the farm was 376 

located was also included, with Ohio, Michigan, Indiana, and Illinois (reference) compared as 377 

dummy variables.8 Illinois represented the majority of sampled farmers and for this reason, it 378 

was used as a reference group. 379 

<Table 1 about here> 380 

<Table 2 about here> 381 

4. Results 382 

Descriptive results for the variables used in the analysis are presented in Table 2. Table 3 383 

contains results from my SEMLV model predicting (1) number of growing season applications 384 

and (2) farmers’ N application rate. Again, these outcomes were modeled simultaneously, but 385 

results are presented in two columns in Table 3 for readability.  386 

<Table 3 about here> 387 

 In predicting the number of growing season applications, a variety of predictors were 388 

significant at the 0.05 level (see Table 3). The information source use index variable was 389 

significantly and positively related to growing season applications, where an increase in 390 

information source use led to a 0.05 increase in the number of applications. Farmers using 391 

custom fertilizers (compared to those not using them) used significantly fewer growing season 392 

applications (-0.594). Farmers who practiced a corn-corn rotation on their largest field used more 393 

applications compared to those who had a corn-soy rotation (0.428). Farm size positively 394 

                                                 
8 Intraclass correlation coefficient (ICC) test showed that 2.3% and 5.5% of the variability in farmers’ N rate and 
number of growing season applications was attributed to the state-level, respectively.  
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predicted the number of applications, where a per acre increase in farm size was associated with 395 

a <0.0001 increase in the number of applications. Compared to farmers who only applied N 396 

during the growing season, those who applied at least some N in the fall used significantly fewer 397 

applications during the growing seasons (-0.46). Finally, state of residence also mattered. 398 

Farmers in Indiana (1.200), Michigan (0.624), and Ohio (1.461) all were significantly more 399 

likely to use a greater number of N applications than Illinois farmers. These variables predict 400 

around 12% of the variation in total number of growing season applications on the largest field. 401 

Controlling for these relationships, the model shows several significant predictors of N 402 

application rate at the 0.05 level. Most notably, the total number of growing season applications 403 

positively and significantly predicted per hectare N rate, with each increase in the number of 404 

applications leading to a 2.4 kg/ha increase in the amount of N applied. Turning to values, 405 

farmers’ economic value orientations, measured as a latent construct, positively and significantly 406 

predicted N application rate (4.477). Farmers applying custom fertilizer blends applied 407 

significantly lower N rates (-8.093) compared to those who did not, while farmers using a corn-408 

corn (9.085) and other rotation (10.708) used significantly more N than those using a corn-soy 409 

rotation on their largest fields. Increases in corn yield expectations led to a 0.292 increase in N 410 

application rate. Farm size (0.004) also significantly and positively predicted N application rate. 411 

Farmers who applied N in the fall to any extent, compared to those who did not, also used 412 

significantly more N (10.205). Michigan (-7.884) farmers had significantly lower total N rates 413 

than Illinois farmers, where Indiana (9.277) and Ohio (8.676) farmers used significantly more N 414 

on their largest fields than Illinois farmers. These variables predict just over 15% of the variation 415 

in N application rate on the largest field. Overall model fit is reasonable. The chi-square value is 416 

significant (p = 0.000), though this is expected given the number of cases in the model (West et 417 

al. 2012). The CFI is 0.932 and the RMSEA is 0.045 (CI=0.042, 0.048), both suggesting good 418 

overall model fit (West et al. 2012). 419 

5. Discussion  420 

Few studies to date have examined how farmers use the BMPs they adopt (Yoder et al. 2019). 421 

My analysis shows that each additional growing season application is associated with higher 422 

application rates of synthetic N fertilizer, controlling for a range of other variables. Each 423 
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additional application of N is associated with an approximately 2.4 kg/ha increase in synthetic N 424 

application rate. The average N application rate across the sample was approximately 205 kg/ha. 425 

Consequently, per application increases were relatively small. Yet, if applied consistently across 426 

an entire farm, they represent significant increases in total N applied. Importantly, using a greater 427 

number of growing season applications, along with other technical N BMPs, has been shown to 428 

increase N use efficiency, meaning that using this practice will mitigate N pollution at least to a 429 

degree even without reducing N rates (Mackown and Sutton 1997; Tran et al. 1997). However, 430 

the ecological benefits of using more growing season applications are most realized if N rates are 431 

also reduced (Gardner and Drinkwater 2009). N rates are often positively associated with N loss, 432 

especially N2O emissions (Millar et al. 2010). Consequently, because additional growing season 433 

applications of N were associated with higher N rates, this result suggests that the BMP is not 434 

being used to achieve its full potential in terms of reducing agricultural N pollution levels.  435 

This result engages with and builds on recent work in the agricultural BMP literature. 436 

Like past work showing that adopted practices may not be used in their intended manner 437 

(Genskow 2012; Osmond et al. 2014; Ulrich-Schad et al. 2017; Sanderson and Hughes 2019), 438 

my findings suggest farmers may adopt N BMPs, but use them in ways that increase, rather than 439 

decrease, N rate. Though initially counterintuitive, this relationship reflects the general 440 

perspective of a significant vein of the environmental sociology literature, which shows that 441 

“green” or more efficient technologies are often used in ways that lead to greater resource use 442 

(York and McGee 2016). This effect is argued to be a result of social context, primarily political-443 

economic forces, which encourage continual increases in production, meaning that more 444 

environmentally efficient technologies are often deployed to increase production, rather than 445 

conserve resources (York 2012). More specifically, this finding relates to Houser and Stuart’s 446 

(2020) recent study. They found that farmers used additional growing season applications to 447 

increase their N rates to ensure they maximized corn yields, rather than as an attempt to 448 

minimize N rate and pollution. The current analysis suggests many Midwest farmers may 449 

similarly use their growing season applications. Like the environmental sociology research on 450 

green technologies, Houser and Stuart (2020) along with others (Ashwood et al. 2014; Roesch-451 

McNally et al. 2018; Hendrickson et al. 2019) emphasize that farmers’ capacity to prioritize 452 

conservation over profitability is highly constrained by structural, political-economic pressures. 453 
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The systematic pressure to ensure profitability and high yields may then be driving the positive 454 

relationship between growing season applications and increased N rate. 455 

That said, alternative or complementary explanations for this relationship are certainly 456 

possible. Rebound effects—where the benefits of a more efficient practice are reduced, or offset 457 

given how the practice is used—are widely noted in conservation literature and this effect can be 458 

explained by rather small benefits that emerge from complex feedbacks (Sorrell and 459 

Dimitropoulos 2008). For instance, it could be that farmers who use more growing season 460 

applications have unique access to lower-priced fertilizer products. By applying N throughout 461 

the season, these farmers may be able to avoid the “spring rush” on N and therefore purchase at 462 

least some of their product at a lower price. Capitalizing on their lower prices, these farmers may 463 

also apply more N in the hopes of achieving higher yields. Alternatively, it could be a case of 464 

complex information feedbacks. For instance, where a farmer takes soil or leaf samples before 465 

each additional application and, seeing lower residual N than they expect or are accustomed to, 466 

they add a little more N as a security measure. Given the limited cost of applying extra N and the 467 

pressures to ensure profitability, farmers are likely generally inclined to apply an excess of N, 468 

rather than minimal (Pannell 2017). Again, these possible explanations are not necessarily 469 

alternatives to the structural one proposed here. The systematic pressures to achieve profitability 470 

would help explain why farmers would act on these “benefits” by applying more N. 471 

In any case, the results of this analysis further point to the limited potential of addressing 472 

modern agriculture’s environmental issues through voluntary, technical solutions alone 473 

(Drinkwater and Snapp 2009; York and Clark 2010). Technical N BMPs, like growing season N 474 

applications, are an incremental attempt to improve the corn-soy industrial agricultural system—475 

i.e., they do not fundamentally change the system’s current social, economic, and ecological 476 

relations. If the structure of modern agriculture is the key factor limiting farmers’ capacity or 477 

willingness to use N BMPs to lower their N rates, it suggests that the problem with agriculture is 478 

not primarily a technical one, but rather a structural one and thus we need to pursue solutions 479 

which change the structure of the agricultural system itself. Calls for structural solutions have 480 

already widely emerged, with scholars promoting the need for system transformation toward a 481 

bio-diverse, low-input agroecological system that relies on ecologically-based management 482 

approaches (e.g. conservation tillage, diversified rotations) (Drinkwater and Snapp 2007; Altieri 483 
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and Nicholls 2012; Ponisio et al. 2015; DeLonge and Basche 2017). Agroecological approaches 484 

such as these are not only more effective at reducing N loss than technical approaches alone 485 

(Gardner and Drinkwater 2009) they would also likely improve farmers’ profitability (Prokopy et 486 

al. 2020) and promote climate resilience (Frison 2016). Recent work has begun to focus on what 487 

leads or prevents Midwestern farmers from individually undertaking these more fundamental 488 

management shifts (Blesh and Wolf 2014; Roesch-McNally et al. 2018; Houser et al. 2020) and 489 

the results from this study suggest the need for greater attention to this topic. Should future 490 

studies continue to confirm that farmers use technical N BMPs in ways that do not maximize 491 

their potential to reduce N loss, it will further suggest the need for a more effective policy that 492 

can motivate or enable farmers to transition row-crop agriculture toward an agroecological 493 

approach.  494 

While the relationship between N rate and growing season applications is the main focus 495 

of this study, several auxiliary variables also deem brief mention. Few studies have explored the 496 

empirical drivers of N application rate at the individual level (Arbuckle and Rosman 2014; c.f., 497 

Lasley et al. 1990), especially using inferential, quantitative methods (c.f., Schewe and Stuart 498 

2017). First, my results suggest significant variations in average N rates and the number of 499 

growing season applications by farmer’s state of residence. Because this study is focused on 500 

regional level trends, dummy variables were used to account for the fact that there are 501 

differences across states within this region. This approach, however, cannot tell us why these 502 

variations occur. N rate and practice use may vary across states for a variety of reasons that are 503 

unaccounted for in this model, including distinct biophysical conditions such as growing season 504 

length, soil characteristics, and differences in corn varieties that may be associated with these 505 

differences, though evidence suggests biophysical factors are not the major factor in N 506 

management outcomes (Drinkwater and Snapp 2007). State-level differences in policy or 507 

variability in access to, use of, or recommendations about N use information may also be 508 

important. Intraclass correlation coefficients (ICC) show (results not shown) that approximately 509 

2% of the variance in total N rate and 5% of the variance in growing season application use were 510 

attributable to state-level factors. While this is a small amount of variability, future studies—511 

using a sampling approach designed to include a sufficient number of level 2 cases (units into 512 

which farmers can be clustered. E.g., watersheds, states, counties)—should employ a multi-level 513 
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modeling approach to examine the state- and individual-level drivers of N rate variations across 514 

the region (Raudenbush and Bryk 2002).  515 

Additionally, while farm size is often found to positively predict BMP use (Prokopy et al. 516 

2019), here farm size significantly and positively predicted N rate. Larger farms may be 517 

associated with higher average N rates because farmers who manage more hectares are less able 518 

to precisely manage inputs, and as a means to reduce the decision-making burden, they use 519 

higher rates to simplify their decision and ensure they have enough N (Reimer et al. 2020). That 520 

farmers with greater economic-value orientations use significantly higher amounts of N suggest 521 

that this is a profit-seeking behavior, as others have shown (Stuart and Houser 2018; Stuart et al. 522 

2012). This finding further builds the case for the importance of farmers’ values in shaping 523 

management decisions, outcomes, and general views (Lambert et al. 2007; Reimer et al. 2012; 524 

Sanderson et al. 2018; Denny et al. 2019). Finally, it is also clear that some N BMPs are being 525 

used as expected. Due to the conceptual focus of this study, whether a farmer applied N in the 526 

fall was largely treated as a control variable. However, it is widely considered an important N 527 

BMP, as fall application of N is highly inefficient (David and Gentry 2000). Not surprisingly 528 

then, farmers who applied at least some of their N in the fall tended to use more total N per 529 

hectare. This points to the importance of continuing to discourage this practice.  530 

My analysis focuses on the N BMP of the number of growing season applications, and 531 

neglects to consider other important N BMPs including the use of N stabilizers, the placement of 532 

the fertilizer (e.g., broadcast versus injected under the soil surface), and the use of non-technical 533 

practices, such as cover crops (Gardner and Drinkwater 2009; Robertson et al. 2013). All of 534 

these may be important factors that also shape farmers’ N rates, and potentially interact with or 535 

even outweigh the influence of multiple growing season applications. Future work should build 536 

on this study by examining the outcomes of the adoption of different and multiple N BMPs 537 

(Adrian et al. 2005; Price and Leviston 2014; Denny et al. 2019). Similarly, in modeling, I 538 

treated the number of growing season N applications as a continuous variable, examining the 539 

effect of each additional application. This may miss key categorical differences, such as between 540 

farmers who apply only at planting compared to those who applying N post crop emergence (i.e., 541 

sidedress). Alternative estimating and modeling procedures than those used here, like 542 

generalized SEM, can handle binary or ordinal outcomes while still be able to simultaneously 543 
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estimate multiple equations (Rabe-Hesketh et al. 2004). Future research may consider employing 544 

these methods to examine the outcomes of new combinations and comparisons of N BMPs. 545 

Finally, other work may further refine the dependent variable used as the practice outcome 546 

measure. I focused on the outcome of N application rate. While lowering N application rate is a 547 

key outcome goal of N BMPs, future studies would benefit from incorporating measures of N 548 

use efficiency (e.g., partial factor productivity), which could serve as a more direct proxy of N 549 

pollution levels (McLellan et al. 2018). Including additional independent variables—potentially 550 

N price—may also increase the explanatory power of these models. While this study leaves 551 

much room for refinement and future analysis, in being one of the first social studies to explore 552 

the on-farm outcome of BMP adoption, it offers key guiding insights for this coming work.  553 

6. Conclusion 554 

To date, little research has explored how farmers actually use the BMP that they adopt (Yoder et 555 

al. 2019). Focusing on the context of N fertilizer loss, I began to address this research gap by 556 

examining if Midwest corn farmers who used more applications of N fertilizer during the 557 

growing season had lower total N application rates at the field scale. Applying N more frequently 558 

during the growing season increases N use efficiency and thereby enables farmers to reduce their 559 

overall N application rate, which would reduce costs and mitigate the potential for fertilizer loss 560 

to the environment (Mackown and Sutton 1997; Tran et al. 1997; Robertson et al. 2013). Though 561 

past qualitative work has indicated that farmers may be using growing season applications of N 562 

to increase N rates (Houser and Stuart 2020), this study is among the first to use quantitative 563 

methods to investigate the relationship between this BMP and farmers’ N application rate. Using 564 

SEM to analyze the data from over 2,500 Midwest row-crop farmers, this study indicated that 565 

each additional application of N during the growing season was associated with an average 566 

increase of 2.4 kg/ha of N.   567 

Ultimately, my results counter optimistic expectations for the outcome of this practice. 568 

Instead, like Houser and Stuart’s (2020) results, the outcome here suggests that Midwest corn 569 

farmers may be using growing season applications to ensure sufficiently high, rather than 570 

minimal, N rates. This positive association between use and N rate undercuts this BMP’s full 571 

potential to mitigate N loss to the environment. Maybe more than anything, this result continues 572 
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to point to the need for further research into the outcomes of N BMP adoption (Urlich-Schad et 573 

al. 2017). Without doing this type of work, technical BMP-focused policy and outreach efforts 574 

run the risk of promoting technical solutions that are not in themselves sufficient to address their 575 

intended problems. If future research continues to suggest technical N BMPs are not being used 576 

by farmers to conserve resources and maximize their potential to reduce N loss given structural 577 

conditions, then there is an even greater and more urgent need to direct our research and policy 578 

efforts toward understanding and encouraging system-level shifts in the US agricultural system, 579 

like agroecological approaches to crop and nutrient management (Delonge and Basche 2017; 580 

Prokopy et al. 2020).  581 
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7. Appendix 1 

 
<Table A4 about here> 
 
<Table A5 about here> 
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Table 1: Measurement model and component fit statistics for latent variables 

Latent variable Variables (factors) Unstandardized 
factor loadings 

Reliability 
estimates 

Composite 
reliability 

Environmental 
values 

Looking after the 
environment 0.49 0.85 

0.79 

Concern about 
agricultural 
contributions to 
hypoxia 

0.86 0.70 

Concern about 
agricultural 
contributions to 
ground water 
contamination 

0.83 0.71 

Concern about 
agricultural 
contributions to algal 
blooms 

0.90 0.64 

Economic 
values 
 

Importance of being 
among the best in the 
industry 

0.71 0.74 

0.74 

Importance of 
building up wealth 
and family assets 

0.77 0.66 

Importance of profit 
maximization 0.72 0.68 

Importance of 
earning a high 
income 

0.81 0.62 
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Measurement 
model fit Chi-Square: CFI TLF RMSEA 

(CI) 

Environmental 
values p = 0.02 0.995 0.986 

.060 (90% 
CI=0.020-
.11) 

Economic 
values 

p = 0.204 0.998 0.995 0.027 (90% 
CI=0.0-
0.08) 

 
Table 2: Descriptive results  

Variables Mean Standard 
Dev. 

Range 

Outcome variables    
Per acre N application rate (kg/ha) 205 36.2 51-300 
Number of growing-season applications 3.970 2.15 3.333-10 
Values    
Environmental values  3.6 .82 1-5 
Economic values 3.97 .66 1-5 
Information Use    
Information use index  20.2 4.55s 9-35 
PSNT use .175 .387 0-1 
Field Characteristics    
Custom fertilizer use .16 .21 0-1 
Corn-corn rotation  .125 .32 0-1 
Other crop-corn rotation .108 .30 0-1 
Soy-corn rotation   .74 .41 0-1 
Yield goals (Mg/ha) 11.4 2.11 5.65-17.35 
Operation Characteristics    
Farm size (ha) 205.5 289 1-17,000 
Hired fertilizer sampling and recommendation .492 .50 0-1 
Hired fertilizer application .51 .50 0-1 
Fall application .19 .389 0-1 
Farmer Characteristics     
Age (years) 63.77 11.51 24-100 
Education (level) 2.76 .84 0-4 
Indiana farmers .23 .38 0-1 
Michigan farmers .19 .36 0-1 
Ohio farmers .27 .46 0-1 
Illinois farmers .31 .48 0-1 
Total n 2,572 -- -- 
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Table 3: Unstandardized effects for SEMLV model 
Unstandardized effects for path analysis Number of growing 

season applications 
Per acre N application 

rate (kg/ha) 
Number of growing season applications -- 2.4*** 
  (0.497) 
Values   
Environmental values -0.028 0.111 
 (0.058) (1.055) 
Economic values -0.119 4.477* 
 (0.097) (1.772) 
Information Use   
Information source use index 0.050*** 0.295 

 
 (0.014) (0.265) 
PSNT-use 0.251 -4.866 
 (0.154) (2.804) 
Field Characteristics   
Custom fertilizer use -0.594*** -8.093** 
 (0.156) (2.870) 
Corn-corn rotation 0.428* 9.085* 
 (0.184) (3.368) 
Other crop-corn rotation -0.216 10.708** 
 (0.201) (3.667) 
Soy-corn rotation (ref) -- -- 
   
Yield goal (Mg/ha) 0.002 0.292*** 
 (0.002) (0.033) 
Operation Characteristics   
Farm size (acres) 0.000* 0.004* 
 (0.000) (0.002) 
Hired fertilizer sampling and 
recommendations 

-0.276 1.231 

 (0.154) (2.826) 
Hired fertilizer application 0.011 2.69 
 (0.151) (2.782) 
Fall application  -0.460** 10.205*** 
 (0.155) (2.849) 
Farmer Characteristics   
Age (years)  -0.008 -0.036 
 (0.005) (0.091) 
Education (level) 0.094 1.927 
 (0.068) (1.254) 
Indiana farmer 1.200*** 9.277** 
 (0.157) (2.950) 
Michigan farmer 0.624*** -7.884* 
 (0.180) (3.325) 
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Table A4: Sample versus population characteristics  

Characteristics Survey (row-
crop farmers) 

Census (2017/all 
farmers) ERS (2016) 

Farmers’ 
average age 63.55 56.475 NA 

Farm size (ha) 213.8 103.8 NA 

Yield (Mg/ha) 11.4 10.6 NA 
N rate on corn 

(kg/ha) 205  NA 174  

*All table figures are specific to the sample states of IL, IN, MI, OH. 
 
 
 
Table A5: Model variables and descriptions  
Variable category Variable Description 

Values Environmental 
values  

Importance of environmental outcomes in farm 
management  

 Economic values Importance of economic outcomes in farm management 
Information Use Information Use 

Index  
farmers’ total use of agricultural information sources 

 PSNT use Use of pre-sidedress nitrate test (yes = 1; no = 0) 
Field 
Characteristics 

Custom fertilizer 
use 

Use a custom blend of fertilizer on largest field (yes = 1; 
no = 0) 

 Corn-corn rotation  Use a corn-corn rotation on largest field (yes = 1; no = 0) 
 Other crop-corn 

rotation 
Use an “other” crop-corn rotation on largest field (yes = 1; 
no = 0) 

 Soy-corn rotation 
(ref) 

Use a soy-corn rotation on largest field (yes = 1; no = 0). 
Base reference category for rotation variables.  

 Yield goals  Corn yield goals, from 2014 season, for largest field in 
bushels per acre.  

Ohio farmer 1.461*** 8.676** 
 (0.162) (3.070) 
Illinois farmer (ref) -- -- 
Squared Multiple Correlations .122 .154 
Significance levels key: *=.05; **=.01 ***=.001; Standard errors in parentheses.  
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Operation 
Characteristics 

Farm size  Total farm size, in aces 

 Fall application Does a farmer apply N, to any extent, in the fall (yes=1; 
no=0) 

 Hired fertilizer 
sampling and 
recommendation 

Use a hired fertilizer sampling and recommendation 
service (yes = 1; no = 0) 

 Hired fertilizer 
application 

Use a hired fertilizer application service (yes = 1; no = 0) 

Farmer 
Characteristics  

Age Farmers’ age in years 

 Education  Level of education farmer achieve  
 Indiana farmers Farm located in Indiana (yes = 1; no = 0) 
 Michigan farmer Farm located in Michigan (yes = 1; no = 0) 
 Ohio farmer Farm located in Ohio (yes = 1; no = 0) 
 Illinois farmer  Farm located in Illinois (yes = 1; no = 0). Base reference 

category for state variables.  
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