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Long-term monitoring programs are a fundamental part of both understanding ecological
systems and informing management decisions. However, there are many constraints
which might prevent monitoring programs from being designed to consider statistical
power, site selection, or the full costs and benefits of monitoring. Key considerations can
be incorporated into the optimal design of a management program with simulations and
experiments. Here, we advocate for the expanded use of a third approach: non-random
resampling of previously-collected data. This approach conducts experiments with
available data to understand the consequences of different monitoring approaches. We
first illustrate non-random resampling in determining the optimal length and frequency
of monitoring programs to assess species trends. We then apply the approach
to a pair of additional case studies, from fisheries and agriculture. Non-random
resampling of previously-collected data is underutilized, but has the potential to improve
monitoring programs.
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1. LONG-TERM ENVIRONMENTAL MONITORING

Long-term monitoring programs are an essential piece of modern ecological research and
conservation science (Hughes et al., 2017). Numerous studies have demonstrated that long-term
monitoring can have disproportionately large contributions in terms of advancing scientific
understanding and policy (Giron-Nava et al., 2017). Environmental monitoring programs, like
the USA-based Long Term Ecological Research (LTER) Network, as well as compilations of time
series, like the Living Planet Index, show the scope of long-term datasets now available (Maguran
et al., 2010; Foundation, 2016). Furthermore, with the advent of infrastructure that connects
and stores data collected by a wide variety of professional and amateur naturalists, monitoring
should continue to become more feasible and cost-effective. For example, large-scale citizen science
programs, like iNaturalist (https://www.inaturalist.org/) and eBird (https://ebird.org/home), allow
for increased collection of data documenting species occurrence, extent and relative population
size, as well as providing platforms to support data use and reuse across a variety of applications
(Sullivan et al., 2009; Joppa, 2017). Similarly, numerous new technologies, including eDNA and
drones, will bring down the cost of monitoring through automation and increasing the sheer
taxonomic, temporal, and spatial resolution of observations (Bohmann et al., 2014; Hodgson et al.,
2018). All of these efforts will lead to increases in the number of species monitored as well as the
quantity and quality of the data collected, to previously unimaginable levels.
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2. CHALLENGES OF MONITORING
PROGRAMS

Despite the recognized importance of long-term monitoring
programs, key questions remain. Several authors have pointed
out that long-term monitoring programs are not necessarily
designed in a way to best address key questions of interest (Legg
and Nagy, 2006; Nichols and Williams, 2006; Field et al., 2007;
McDonald-Madden et al., 2010; Lindenmayer et al., 2012, 2020).
For instance, suppose that a monitoring site was selected to
monitor dynamics in a bird population near a university. A
long-term study could certainly reveal the population trend for
that specific location. However, the site may have been chosen
specifically because it was at high abundance at the beginning
of the study—this causes a site-selection bias (Fournier et al.,
2019). Populations naturally vary, both in time and in space,
so the very act of initially selecting a site to monitor with
particular population attributes can potentially confound the
very patterns they seek to monitor. Birds in this hypothetical
population may undergo a cyclic dynamic related to resource
exploitation, or rotate between different patches for nesting from
year to year. Thus, when we ask new questions of long-term
monitoring data, we have to think carefully about how the
monitoring program was originally designed and whether or not
we have adequate statistical power (Lindenmayer and Likens,
2010; White, 2019) as well as the risks of making type I vs.
type II errors (Mapstone, 1995). These considerations, amongst
others, are especially relevant when data from different sources
are combined for comparisons—which is increasingly performed
(Maguran et al., 2010; Keith et al., 2015; Giron-Nava et al., 2017;
White, 2019). Lastly, the tradeoff between information gained
from monitoring and the cost of monitoring has to be considered
(Bennett et al., 2018).

3. DESIGNING MONITORING PROGRAMS

Principles from experimental design, including randomization
and replication, are key components in designing any monitoring
program (Seavy and Reynolds, 2007). However, many tools from
experimental design are inadequate for monitoring programs.
For example, by their very nature, data from monitoring
programs require handling spatial and temporal auto-correlation
between sampling points. In order to manage these issues, a
lot of work on optimizing monitoring programs has its roots
in decision science (McDonald-Madden et al., 2010). Decision
theory allows one to build a structured process to decide
between alternative solutions while accounting for costs and
benefits (Raiffa, 1968; McDonald-Madden et al., 2010; Conroy
and Peterson, 2012). In addition, decision theory allows for
the incorporation of uncertainties (McCarthy, 2014). In the
context of environmental monitoring, decision theory can help
formalize the process of selecting sites and the specific survey
design (Gerber et al., 2005; Chades et al., 2011; Tulloch et al.,
2013). As an example, Hauser et al. (2006) explored how
frequently a managed population of red kangaroo (Macropus
rufus) in Australia should be monitored. They used a simulation

approach to determine how frequently monitoring should
occur given tradeoffs between the costs of monitoring and
the potential insights for management. They found that an
adaptive monitoring program outperformed the standard fixed-
interval monitoring.

This leads to one of the most important contributions of
decision theory to environmental monitoring—the value of
information (Canessa et al., 2015; Maxwell et al., 2015; Bennett
et al,, 2018). Value of information theory explicitly accounts for
the information gained from performing some action, and the
costs associated with doing so, when designing a management
plan. For example, Bennett et al. (2018) used information theory
in the context of threatened plant management in Southern
Ontario. They simulate a situation where a conservation agency is
willing to pay landowners to protect part of their land. However,
species occurrence is uncertain on each plot of land. Thus, it
is necessary assess the value of the information gained from
monitoring versus its costs. They were able to demonstrate how
the information gained from monitoring increased with high
levels of species detectability and low costs of monitoring.

4. TOOLS FOR DESIGNING MONITORING
PROGRAMS

4.1. Simulations

To address the challenges associated with designing monitoring
programs, there are three classes of tools available to design and
evaluate monitoring programs. First, the most commonly used
approach are simulation models (Gerrodette, 1987; Rhodes and
Jonzen, 2011). Using prior knowledge about the system under
question, a virtual ecologist (Zurell et al., 2010) approach would
use simulation models constructed to incorporate key factors that
affect species dynamics. With an appropriate model, simulations
can then be run for a variety of scenarios, including changing
the number of samples taken per year, altering the number of
sites sampled, and sampling for different lengths of time (Rhodes
and Jonzen, 2011; Barry et al., 2017; Christie et al., 2019; Weiser
et al., 2019; White, 2019). Simulations can also be useful in
deciding which streams of data to use (Weiser et al., 2020) or
the effect of changing sampling methodology during the course
of a study (Southwell et al., 2019). A lot of prior work has also
used simulations to better understand optimal sampling schemes
for invasive species (Chades et al., 2011; Holden and Ellner,
2016). Although powerful, this approach is limited to systems in
which many aspects of the biology are already known, or can be
reasonably estimated.

4.2. Experimental and Comparative

Second, experiments can also be used to test the effect of
different sampling protocols. As in the case of simulation models,
experiments with different levels of monitoring, or different
monitoring approaches, can be used. Experiments provide
replication, which is important to understand the probability that
monitoring is likely to achieve the desired goals given inherent
variability in the system (White et al., 2019). A related approach
would simply be to compare different sampling regimes across
systems to evaluate which are the most successful at realizing
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FIGURE 1 | (A) The general process of non-random resampling of past data from left to right (i.e., sequentially, starting with data from farthest into the past) includes:
dividing data into non-random subsamples (based on the question of interest), calculating metrics on those subsamples, and comparing the subsample metrics to the
combined (i.e. “true metric”) dataset, (B) same process as Table (a), but for specific example of examining the minimum number of years required to detect long-term
population trends (White, 2019). The pair of figures on the bottom right show how the (C) average slope and the (D) probability of correcting identifying a trend change

monitoring goals. Indeed, integrated population modeling was
developed as an analytical approach to identify and address data
discrepancies between data taken by differing methodologies
or at differing times in a species’s life history (Saunders et al.,
2019). This method has been applied with great success to
advance understanding of the trajectories of populations of
well-monitored taxa such as waterfowl (Arnold et al., 2018).
However, the key disadvantage of this approach is, like simulation
models, integrative modeling approaches are reliant on the
availability of large amounts of data, documenting multiple facets
of a species’ biology. Of course, these types of experiments
providing multi-faceted data are often infeasible or impossible for
many systems.

4.3. Non-random Resampling

Here, we advocate for the expanded use of a third approach:
non-random resampling of previously-collected monitoring
data. Non-random sampling involves artificially “degrading” a
complete data set into smaller data samples for comparison. This
concept leverages existing information by starting with long-term

monitoring data already collected for a system. The data is
then subsampled, or divided, in non-random ways depending
on the question of interest (Figure 1A). Then a metric (for
example, a mean or a slope) is calculated for each subsample.
Each subsample metric is then compared to the metric for
complete data (all the data combined). The complete data acts
as a “true value” for comparison. This is analogous to simulation
studies where the true parameters are known (Bolker, 2008).
Thus, the assumption that the complete data set can serve as a
“true” comparison is critical. Non-random sampling differs from
random sampling approaches (e.g., jackknifing, bootstrapping)
where random subsamples are taken, allowing estimation of
various statistics. With non-random sampling, we learn about
the elements of a good monitoring program by examining which
subsamples of the data are most influential and the number
of subsamples needed to have a high probability of detecting
the true value of the metric. Bahlai et al. (2020) describes
this technique from a computational viewpoint specifically for
time series. Although this approach has been used previously
(Grantham et al., 2008; Bennett et al., 2016; Wauchope et al,,
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2019; White, 2019; Bahlai et al., 2020; Cusser et al., 2020), its
adoption has been largely informal and not specifically stated.
This approach is best described with a simple example
(Figure 1B). White (2019) studied how many years of
monitoring were required to detect population trends. For a
given time series, White (2019) examined all possible subsamples
of different lengths of time. For instance, a 10-year time series
consists of two 9-year subsamples, three 8-year subsamples,
and so forth. This is different than taking random subsamples
of data as the subsamples are chosen to maintain the temporal
autocorrelation. White (2019) then calculated the population
trend (i.e., the slope from linear regression) for each subsample
(Figure 1B). The fraction of subsamples of a particular length,
that had the same overall trend as the complete time series (i.e.,
the “true trend”), is the statistical power. Thus, the minimum
time series required was the time series length that met a high
enough threshold of statistical power. White (2019) applied this
approach to 822 population time series, allowing for comparison
across species and systems. Using resampling of the breeding

bird survey, Wauchope et al. (2019) found that sampling for
a short period, or infrequently, was adequate to determine the
species trend direction, i.e., positive or negative. However, more
frequent and longer monitoring was required to estimate the
percent changes over time.

Monitoring programs need to be designed to both adequately
address a question of interest and to be cost effective (Grantham
et al,, 2008; Rout et al, 2014; Maxwell et al,, 2015; Bennett
et al,, 2018). In this context, it is essential to study the trade-off
between the information gained from monitoring and the cost.
For example, Bennett et al. (2016) used resampling approaches
to study monitoring requirements for diatoms in lake samples.
They found that in several cases much lower levels of sampling,
in terms of the number of lakes sampled and observer effort,
were required to ensure accuracy. This translated into potentially
millions of dollars in savings (Bennett et al.,, 2016). Bruel and
White (2020) used a similar approach to show how lake soil
core sampling could be optimized to ensure accuracy in detecting
ecosystem shifts while also reducing costs.
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Non-random resampling of past data also helps address some
common issues with other approaches to designing monitoring
programs. For instance, mechanistic simulation models require
at least some knowledge of the basic species biology in order
to construct the model (Zurell et al, 2010). In addition,
although possible with simulations, resampling approaches
already explicitly account for the inherent temporal and spatial
autocorrelation of monitoring data. Resampling approaches are
also particularly useful in situations where experiments are
expensive or impractical. Lastly, resampling approaches are also
quick and easy to implement. Along with these advantages,
resampling of past data has two major limitations. First,
monitoring data already has to be available for the system of
interest or a related one. And second, the previously-collected
data needs to be a good representation of the system dynamics.
This is due to the full data acting as the “true representation”
of this system. Similarly, if resampling approaches are used for
one system to learn about another, the original system has to be a
good representation of the latter in terms of the general system
dynamics. Nonetheless, long-term monitoring programs are
always under pressure from logistical and financial constraints.
These resampling methods can be a useful tool for researchers
and managers to refine and update programs as funding changes
and still achieve their research goals.

5. NON-RANDOM RESAMPLING IN OTHER
CONTEXTS

5.1. Fisheries Management

Non-random resampling of past data can be applied to a variety
of contexts beyond estimating long-term population trends. For
example, to study data-poor fisheries (Dowling et al., 2015, Table
1 of Chrysafi and Kuparinen, 2015), past work has primarily used

TABLE 1 | Example questions that could be addressed using non-random
resampling.

Question Non-random resampling approach

How many test water wells
should be drilled to
understand subsurface
water flow?

We would start with an example system where a
large number of test wells produced accurate
dynamics. Then, we artificially degrade this data
using less test wells. Last, we would examine when
the predicted dynamics change as a result of less
test wells.

We first select data from a well-resolved tree that
does identify organisms to the species level. Then,
we artificially degrade the data in a way where we
pretend a tree is only resolved to the genus or family
level. We could then study the effect of not
identifying organisms to the species level.

What is the effect of not
being able to identify
microorganisms to the
species level?

What is the effect of scuba
diving depth limitations on
estimates of biological
diversity?

We would use high-quality diver survey data that
was collected along a gradient of depths. We would
then artificially degrade the data by removing
deeper dives. We could then compare the diversity
metrics when all the data is included versus only
shallow dives.

simulation models. To study data-poor fisheries using random
and non-random resampling, one should instead study data-rich
fisheries. The goal would be to artificially degrade the data-rich
examples until the point that the fishery would be considered
data-poor (Figure 2). We can then see how various methods
of data-poor fisheries perform given that we have the full data
set to act as a “true” comparison. As an example, we took data
on darkblotched rockfish (Sebastes crameri) from the U.S. West
Coast Groundfish Bottom Trawl Survey data (Keller et al., 2017;
Stock et al., 2019). We then conducted two “experiments” with
the data.

First, suppose we only had access to shallow or deep data
because of technology limitations. We can test the effect of these
data limitations by non-randomly resampling the data depending
on whether the samples came from deep or shallow trawls. We
show that regression estimates of parameters differs based on
which depths were included in Figure 2B. This contrasts with
random resampling of the data. Suppose instead, we examine
the effect of degrading the data to only a fraction of the totals
records we have available. This is actually random resampling as
we are taking actual random samples from the time series. We
see that model estimates for the effect of being within a rockfish
conservation area are not accurate until a large fraction of the
original data is included (Figure 2C).

5.2. Agricultural Practices

Agricultural management recommendations are often based on
conclusions from short to medium-term field trials (ca. 1-5
years), and it is common to observe contradictory findings
between trials. When multiple factors are considered, such
as crop water use, greenhouse gas emissions and relative
profitability of practices, responses may vary dramatically and
unequally to short-term environmental variation. Cusser et al.
(2020) applied a non-random sequential resampling algorithm
(Bahlai, 2019) to long-term data examining the effects of
tillage practices on productivity, sustainability attributes, and
return-on investment. They found that, because of high natural
variability in the system, 15 years of data of data were
required to observe the “true” pattern of difference between
treatments in soil water availability and crop yield, and that
more than a third of the sampled sequences shorter than
10 years led to outright misleading results. Furthermore, they
were unable to detect consistent treatment differences in nitrus
oxide emissions, although non-random resampling indicated
that spurious trends could be observed in observation periods
as long as 9 years. Finally, although profitability of adopting
a new tillage practice was highly variable in initial years after
adoption, by 10 years after, 86% of resampled windows indicated
a net financial gain associated with the change. Whereas, it
is unlikely that practitioners making management decisions
can consistently rely on a decade of data to guide them, the
results of the non-random sequential resampling of long-term
data provide guidance on reconciling apparently differing trends
between trials. Furthermore, non-random resampling gives land
managers insight into the likelihood and duration of a particular
management outcome in a variable environment.
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6. CONCLUSIONS

Data from long-term monitoring programs are used in assessing
trends in environmental observations, understanding system
dynamics, and making management decisions. It is critical that
these monitoring programs be designed in order to address
our questions of interest (Field et al., 2007; McDonald-Madden
et al, 2010; Lindenmayer et al, 2020). This is particularly
relevant when new questions are asked of monitoring data or
data from disparate monitoring programs are combined. We
show that non-random resampling of past monitoring programs
can be used to understand sampling requirements and the
consequences of bias (Figures1, 2). This approach can be
applied to a variety of systems and questions (Table 1) beyond
environmental monitoring. In addition to simulations and
experimental approaches, we argue that non-random resampling
of past data should be used more widely to study questions
related to sampling design. Combined with information on
the cost of monitoring, this approach also helps identify when
ecological monitoring is a good investment or when it may be
a waste of effort that does not answer to a program’s aims and
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