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1 Introduction

Peptide and peptide-derived molecules are widely used to target protein-protein

interactions for medicinal purposes and basic biological research. In-silico models

play an increasingly significant role in the study of protein-peptide interactions. As

excellently reviewed elsewhere,[1, 2, 3] computational methods for studying protein-

peptide interactions have evolved on somewhat separate tracks from those used for

small molecule-protein interactions. These differences are partly due to the greater

flexibility and size of peptides and their tendency to interact with proteins through

many relatively weak interactions. Nevertheless, because the same fundamental

physical forces regulate all molecular recognition phenomena, it is helpful to relate

computational models under a standard set of principles.

This chapter is devoted to a class of physics-based free energy methods consid-

ered the most accurate and detailed for modeling the thermodynamics of molecular

binding equilibria. These methods model the interactions between molecules as

well as their motion at the atomic level. We derive each method discussed from a

well-established statistical mechanics theory of non-covalent molecular association.

The chapter attempts to demystify the theory and the seemingly arcane formulas

and computational procedures used in the field and point out the specific features

of the methods that make them more or less suitable for studying protein-peptide

interactions.

There is an implicit acknowledgment here that an understanding of these method-

ologies and how to select and apply them appropriately cannot be accomplished

fully without referring to the underlying theory. The treatment employed here re-

quires only a basic familiarity with concepts of statistics (probability distributions,

averages, marginalization) and of classical statistical thermodynamics (classical par-

tition functions and their manipulations, and their relationship with the free energy).
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After presenting the theory and methods, we then illustrate their applications by

discussing three case studies. We hope that this format will help convey the charac-

teristics and relationships between the various methodologies and the fundamental

principles on which they are based.

2 Statistical Mechanics Formulation

In this section, we derive and discuss a statistical mechanics theory of molecular

binding. The concepts and the formulas expressed here will be used later to rationalize

the specific computational methods and practices used in the case studies reviewed

in Section 3.

We attempt to use unambiguous notation throughout, but sometimes we adopt a

simplified notation to unclutter the equations. For example, in intermediate formulas,

we often omit limits of integration and Jacobian factors for curvilinear coordinates

when they do not affect the form and interpretation of the final result. In some places,

we use function arguments to distinguish two functions. For example, we might

denote the ligand and receptor’s potential energy functions with the same symbol*,

as* (G!) and* (G'), even though they are different mathematical functions.

2.1 The Standard Free Energy of Binding

We will consider here the reversible non-covalent binding equilibrium between

receptor molecules R and ligand molecules L to form a complex RL in an ideal

solution:

R + L⇋ RL, (1)

with the dimensionless equilibrium constant
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 1 =

[
[RL]/�◦

( [R]/�◦) ( [L]/�◦)

]

eq

, (2)

where [. . .] are concentrations,�◦ is the standard state concentration (conventionally

set as 1 M or 1 molecule/1668 Å3), and the "eq" subscript states that all concentrations

are evaluated at equilibrium. The Gibb’s molar standard binding free energy, which

is the main objective of the computational models of binding discussed here, is

defined as

Δ�◦
1 = −:B) ln 1 (3)

where :B is Boltzmann’s constant and ) is the temperature in the Kelvin scale (in

the following we will assume constant temperature pressure conditions).

Implicit in this quasi-chemical description of the binding equilibrium is the idea

that the separated species in solution R and L, as well as the complex RL, are defined

in some way. In an experimental setting, the apparatus used to measure equilibrium

concentrations provides a working definition of the species. The nature of the ex-

perimental reporter used to monitor the formation of the complex is of particular

relevance.[4] The change of a spectroscopic signal, as in NMR and UV/VIS fluores-

cence assays,[5] likely probes a set of conformations of the complex in which specific

groups of the receptor and the ligand are in contact. Hence, different spectroscopic

reporters would, in general, yield different estimates of the standard free energy of

binding.[6] Spectroscopic reporters stand in contrast to experimental reporters, such

as those in calorimetric, surface plasmon resonance (SPR), amplified luminescent

proximity (AlphaScreen), and equilibrium dialysis binding assays, that probe unspe-

cific molecular association.[4, 7, 8, 9, 6] Here, we focus mainly on computational

models that define the complex using structural means–typically specific distances

and angles between groups of atoms [10]–and are therefore more suitable to de-

scribe measurements of binding constants with specific spectroscopic experimental

reporters.
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In practice, the association between a peptide ligand and a protein receptor is also

often monitored by indirect biochemical means, such as enzymatic inhibition[11]

or pull-down assays,[12] that are only indirectly related to the equilibrium binding

constant of the ligand-receptor complex. The computational models’ ability to re-

produce or explain this type of data is expected to be semi-quantitative at best, as it

would be a correlation between experimental binding constants and activity data.

While ambiguities in relating molecular computer simulations to experimental

biophysical data of molecular binding exist for any molecular complex, the issue

is explicitly discussed here because it is expected to be particularly widespread for

the study of the interactions involving peptides, which are generally more flexible

than most small-molecule drug compounds and engage protein receptors over a large

binding surface in a variety of binding modes. It is useful to keep these issues in

mind when designing a computational model and the answers that one can reasonably

extract from it. Computational modeling can be a valuable tool when used judiciously

by exploiting its strengths while managing its unavoidable limitations.

2.2 Statistical Mechanics Theory of Non-Covalent Molecular Binding

Under the assumptions above, Gilson et al.[13] derived a statistical mechanics expres-

sion for the binding constant [Eq. (2)] which, with a few reasonable approximations

(discussed below), can be written as:[14]

 1 =
�◦

8c2

I'!

I'I!
, (4)

where I8 is the intramolecular configurational partition function of one molecules of

species 8 in solution.
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A full derivation of Eq. (4) is beyond the scope of this chapter. However, it is

briefly outlined here to introduce the notation. Eq. (4) is derived by writing the molar

standard binding free energy as the difference of the standard chemical potentials of

the complex and those of the receptor and ligand

Δ�◦
1 = `◦'! − `◦' − `◦! (5)

and employing the McMillan-Mayer expression for the standard chemical potential

of a solute in an ideal solution[15]

`◦8 = −:�) ln
q8

Λ3
8
�◦

(6)

where q8 the internal canonical molecular partition function of solute 8 in solution

and Λ8 is the thermal De Broglie wavelength of the center of mass of the solute. The

internal molecular partition function includes only the internal degrees of freedom

of the solute obtained after separating the translational degrees of freedom of the

molecular center of mass. Furthermore, the solute’s internal canonical molecular

partition function in solution is understood in the context of the concept of the

solvent potential of mean force,[16] in which the solvent degrees are averaged out.

While a quantum-mechanical treatment is required in general, adopting a clas-

sical expression for the molecular partition function is appropriate for the present

discussion limited to non-covalent molecular association equilibria, which do not in-

volve the formation or breaking of chemical bonds. The internal canonical molecular

partition function is written as

q8 =
8c2I8∏

9 _
3
9

(7)
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where the denominator comes from the integration over the momenta,1 the factor

of 8c2 comes from the integration over the orientational degrees of freedom of the

solute,2 and I8 is the vibrational molecular configurational partition function

I8 =

∫
3x84

−VΨ8 (x8) (8)

where V = 1/(:�)) is the inverse temperature, x8 denotes the collection of the

vibrational degrees of freedom of solute 8 and

Ψ8 (x8) = *8 (x8) +,8 (x8) (9)

is the effective potential energy of a specific configuration of the solute in solution.

The effective potential energy is given by the sum of the intramolecular potential

energy *8 (x8) and the solvent of potential of mean force ,8 (x8), defined as the

free energy of solvation of the solute kept rigid in configuration x8 .3 In the present

notation,

4−V,8 (x8) =
1
/#

∫
3r#E 4

−V*8 (r
#
E ,x8) (10)

where r
#
E denotes the collection of degrees of freedom of # solvent molecules,

*8 (r
#
E , x8) is the potential energy of the mixture of # solvent molecules and one

solute molecule 8, and /# is the configurational partition function of the pure

solvent,4 expressed as the integral in Eq. (10) but without the solute.

1 The details are omitted since the the contributions from momenta cancel out in this classical
treatment.

2 We assume that the orientational degrees of freedom can be separated from the vibrational degrees
of freedom without significant loss of accuracy. This is generally an excellent approximation at
moderate temperatures.

3 It should be noted that the solvent potential of mean force formalism does not introduce new
assumptions or approximations than the ones already adopted. In this context, it is only a convenient
notation aid. We will discuss later implicit solvation models which approximate the solvent potential
of mean force.

4 The notation can be easily extended to solvent mixtures including ions and co-solvents.
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Eq. (4) is obtained by inserting Eq. (6) for each species, using Eqs. (7–10), into

Eq. (5) noticing that the kinetic energy factors cancel out, and finally inverting Eq.

(3).

The definition of the vibrational configurational partition function of the complex,

I'! , receives special consideration in this theory.[13] In the complex, the transla-

tional and orientational degrees of freedom of the ligand are represented by the

internal degrees of freedom of the complex that specify the position and orientation

of the ligand with respect to a coordinate system attached to the receptor.[10] Fur-

thermore, the integration along these coordinates is limited to some specified range

of configurational space that encodes our structural definition of what constitutes a

valid configuration of a ligand "bound" to the receptor (see the discussion in Section

2.1). The structural definition of the bound complex is a necessary and somewhat

arbitrary input of the theory.[13, 4, 14, 7] Without it, the free energy of the bound

complex relative to the unbound state is undefined and, consequently, the standard

binding free energy and the binding constant would also be undefined in this theory.

It is customary to represent the bound region of the complex by an indicator function

� (Z!), where Z! represents the collection of the six coordinates5 that specify the

position and orientation of the ligand relative to the receptor.[10]6 The indicator

function is set to 1 if the position and orientation of the ligand is such that receptor

and ligand are considered bound and zero otherwise so that I'! can be written as

I'! =

∫
3x'3x!3Z! � (Z!)4

−VΨ'! (x' ,x! ,Z! ) (11)

5 Three translations and three orientations for a non-linear ligand.

6 The specific choice of the Z! coordinates is arbitrary as long as they do not couple directly or
indirectly the intramolecular coordinates of the receptor or the ligand.
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2.3 The Binding Free Energy Formula

Since the direct evaluation of partition functions is not generally feasible, Eq. (4) is

not amenable to direct computation. One strategy is to transform it into an average

over the conformational ensemble in which receptor and ligand are uncoupled. To

do so, we reorganize the integration variables in the numerator so that they match

exactly those in the denominator. First, define

∫
3Z! � (Z!) = +siteΩsite (12)

which measures the spatial (+site) and angular (Ωsite) extent of the bound state of the

complex when receptor and ligand are uncoupled. 7 Then, multiply and divide Eq.

(4) by Eq. (12) by keeping the integral form in the denominator and the integrated

form in the numerator. The result is

 1 = �◦+site

Ωsite

8c2
〈4−VD〉0 (13)

where

〈4−VD〉0 =

∫
3x'3x!3Z!4

−VD (x' ,x! ,Z! ) d0 (x', x! , Z!) (14)

is the ensemble average of the Boltzmann weight of the effective binding energy D of

defined as the difference in effective potential energies of the complex in the specified

configuration and of that of the separated receptor and ligand without changing their

internal configurations

7 Eq. (12)is is colloquially referred to as the volume of the receptor binding site. The notation
used here suggests that translational and orientational components are not coupled in the definition
of � (Z!) . The present treatment is still valid if this is not the case, except that in this case
the value of the integral of the indicator function is not written as the product of spatial and
orientational components. Finally, Ωsite = 8c2 if the definition of the bound complex does not
involve orientational coordinates, that is when only the position of the ligand is used to judge
whether it is bound to the receptor.
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D(x', x! , Z!) = Ψ'! (x', x! , Z!) −Ψ' (x') −Ψ! (x!) (15)

with the normalized probability density function

d0 (x', x! , Z!) =
� (Z!)4

−VΨ' (x')4−VΨ! (x! )

∫
3x'3x!3Z! � (Z!)4−VΨ' (x')4−VΨ! (x! )

(16)

which corresponds to an unphysical state of the complex in which the ligand is bound

to the receptor (the density is zero unless � (Z!) = 1) but it does not interact with it

(the potential function lacks receptor-ligand coupling terms). We will hereafter refer

to this state as the decoupled state of the complex. Conversely, the coupled state of

the complex is the physical state in which the bound ligand and the receptor interact

through the Ψ'! (x', x! , Z!) potential function.

Inserting Eq. (13) into Eq. (3) yields the following expression for the standard

free energy of binding

Δ�◦
1 = Δ�◦

1,id + Δ�1 (17)

where

Δ�◦
1,id = −:�) ln�◦+site − :�) ln

Ωsite

8c2
(18)

is the ideal component of the standard free energy of binding, corresponding to the

reversible work for transferring a ligand from an ideal solution at concentration �◦

to the binding site region in the absence of ligand-receptor interactions, and

Δ�1 = −:�) ln〈4−VD〉0 (19)

is the excess component of the standard free energy of binding, corresponding to

the reversible work for turning on the receptor-ligand interactions while the ligand

is sequestered within the binding site region of the receptor. The goal of the compu-

tational models discussed in this chapter is the estimation of the excess free energy
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of binding. The ideal component is generally computed analytically by integration

of the expression that defines the indicator function of the bound complex.

Eq. (19) provides, in principle, a computational route to evaluate the binding free

energy. The process is often called alchemical because it is unrealizable in Nature.

Never the less it produces estimates that can be compared to experimental measure-

ments. It instructs to (i) obtain a sample of Boltzmann’s-distributed conformations of

the complex in the uncoupled state (by molecular dynamics, typically), (ii) evaluate

the binding energy function D [Eq. (15)] for each sample by turning on without con-

formational rearrangements the coupling between ligand and receptor, and finally

(iii) find the average of the Boltzmann weight exp(−VD). While straightforward, this

process is numerically ill-conditioned, and it fails for all but the simplest systems.

This problem arises because atoms of the ligand and the receptor are very likely

to clash when uncoupled. Consequently, the binding energy D is large and positive,

and exp(−VD) is negligibly small for the vast majority of samples. Effectively, the

sampling process generates mostly zeros, and the average is dominated by the very

rare cases when, by chance, ligand and receptor do not clash and are primed to form

favorable interactions even in the absence of such interactions.

To appreciate more quantitatively the severity of this numerical problem, let’s

rewrite the ensemble average in Eq. (19) as a statistical average

〈4−VD〉0 =

∫ +∞

−∞

3D 4−VD ?0 (D) (20)

where ?0 (D) is the probability density distribution of the binding energy in the

uncoupled state. As shown for example in Fig. (1) for the complex between 3-

iodotoluene and the L99A mutant of T4-lysozyme,[17] ?0 (D) (in green) is greatest

for large and positive values of the binding energy. For this system, the probability

of finding a conformation for which the integrand of Eq. (20) is significant (the red

curve) is six or more orders of magnitude smaller than the probability of occurrence
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In practice, various strategies ranging from stratification (break up the bind-

ing process by introducing appropriate intermediate states) to importance sampling

(preferential sampling of bound states) have been devised to overcome the numer-

ical problems in alchemical free energy averages. Some of these strategies will be

discussed in the case studies later in this chapter. While often very useful, applying

these advanced strategies to protein-peptide complexes remains very challenging,

as reflected in the paucity of successful alchemical absolute binding free energy

calculations for protein-peptide complexes reported in the literature.

2.3.1 The Double-Decoupling Method

Eq. (19) is not directly applicable to the calculation of binding free energies unless the

solvent potential of mean force,,8 (x8), or a suitable implicit solvent approximation

for it, is available for the ligand, the receptor, and their complex. The solvent potential

of mean force is required for conformational sampling and the evaluation of effective

binding energies for each sample using Eqs. (15) and (9).

The alternative is to employ an explicit representation of the solvent. The relevant

partition functions include integrating the solutes’ internal degrees of freedom and

the degrees of freedom of the solvent molecules. The result is a binding free energy

formulation known as double-decoupling[13] involving two exponential averages

of the same form as Eq. (19), one for coupling the ligand from vacuum to the

solvated receptor and another for coupling the ligand to the pure solvent. These two

processes, the second of which is related to the solvation of the ligand, are part of

a thermodynamic cycle that brings the ligand from the solvent bulk to the solvated

receptor through an intermediate state in which the ligand is in vacuum (Fig. 2).

The double-decoupling method is regarded as the leading computational model for

calculating protein-small molecule binding free energies. However, due to their sizes,
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Fig. 2 Schematic illustration of the thermodynamic cycle of the double decoupling method for
the calculation of the binding free energy between a molecular receptor (orange doughnut) and a
ligand (black circle). The dashed circle within the receptor represents the binding site region. The
blue boxes represent the solvent. The bound and unbound end states are transformed to a common
intermediate state in which the ligand is in vacuum (white). The excess binding free energy is the
difference of the free energy changes of the two legs, Δ�1 = Δ�2 − Δ�1.

it is not generally applicable to peptides. It is presented here because it forms the basis

for the relative binding free energy method employed in the case study of Section

3.2. To see why double-decoupling is not readily applicable to peptides, consider, for

example, the first leg in Fig. (2), which is the inverse of the coupling of the peptide

to the solvated receptor. For the same reasons outlined above concerning Eq. (17),

it would be very challenging to compute the free energy of this process because, in

addition to the many atomic clashes with the receptor atoms, the uncoupled peptide

will also clash with solvent molecules that would be present in the binding site.

Similar challenges would exist for the hydration leg.

The double-decoupling formula is derived from the statistical mechanics theory

outlined in Section 2.2 by first inserting the definition of the solvent potential of

mean force [Eq. (10)] in each of the configurational partition functions in Eq. (4) and

then multiplying and dividing by the configurational partition function of the ligand

in vacuum /0,! to obtain:
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 1 =
�◦

8c2

/# ,'!

/# ,'/0,!

/# /0,!

/# ,!

(21)

where /# ,8 is the configurational partition function of a system with # solvent

molecules with one molecule of species 8 whose position and orientation, like in

Section 2.2, is fixed. So for example

/# ,'! =

∫
3x'3x!3Z! � (Z!)3r

#
E 4

−V* (x' ,x! ,Z! ,r
#
E ) (22)

where* (x', x! , Z! , r
#
E ) is the potential energy function of a system with # solvent

molecules containing the receptor-ligand complex '! in the configuration specified

by the internal degrees of freedom x', x! , and Z! . /0,! represents the configurational

partition function of the ligand in vacuum.

The reciprocal of the last term in Eq. (21) can be written as

/# ,!

/# /0,!
=

∫
3x!3r

#
E 4

−V* (x! ,r
#
E )

∫
3x!3r

#
E 4

−V* (x! )4−V* (r#E )
= 〈4−VD! 〉#+! = 4VΔ�2 (23)

where D! = * (x! , r
#
E ) −* (x!) −* (r#E ) is the instantaneous change in potential

energy for bringing the ligand from vacuum to solution and 〈. . .〉#+! indicates the

ensemble average over pure solvent and the ligand in vacuum. As indicated in Eq.

(23), this term is related to the solvation free energy of the ligand9 or the opposite

process of leg 2 in Figure 2.

The ratio of partition functions corresponding to the complex in Eq. (21) is

converted to an average by multiplying and dividing by +siteΩsite as done earlier to

derive Eq. (13)

/# ,'!

/# ,'/0,!

= +siteΩsite〈4
−VD'! 〉# ,'+! = +siteΩsite4

VΔ�1 (24)

9 Specifically, the free energy of a solute in a fixed position and orientation in vacuum to a fixed
position and orientation in solution; a quantity also known as the solvation free energy in the
Ben-Naim standard state.[19, 20]
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where D'! = * (x', x! , Z! , r
#
E ) −* (x', r

#
E ) −* (x!) is the instantaneous change

in potential energy for bringing the ligand from vacuum to a position and orientation

Z! relative to receptor in a solution containing the receptor, and 〈. . .〉# ,'+! , similarly

to Eq. (19), indicates the ensemble average over the uncoupled ensemble in which

the ligand is bound to the receptor (� (Z!) = 1) but it does not interact with either the

receptor nor the solvent. As indicated in Eq. (24) this ensemble average gives the free

energy of the inverse of leg 1 in Figure 2. Combining Eqs. (23), (24), (21), (17), (18)

and (3) we finally arrive at the double-decoupling expression for the excess binding

free energy:

Δ�1 = Δ�2 − Δ�1 (25)

as illustrated in Figure 2.

Note that the free energy formula for each leg is in the same form of an exponential

average [Eq. (24)] of the alchemical potential energy change as the direct binding

free energy formula we derived in Section 2.3. Thus, similar considerations apply for

each leg of double-decoupling. In each case, the formula instructs to obtain samples

of configurations of either the systems with the ligand in solution or the ligand in

the solvated receptor in their decoupled ensembles. It then instructs to average over

the set of samples the Boltmann’s weight of the potential energy change for turning

on the coupling between the ligand and the environment without conformational

rearrangements. Here too, each leg’s averaging process is expected to be numerically

ill-conditioned (see, for example, Figure 1) and not generally applicable directly in

molecular simulations. Some numerical approaches to this problem are illustrated

in the Case Studies section of this chapter.
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2.4 The Potential of Mean Force Method

In this section we derive a non-alchemical formulation of the statistical mechanics

expression (4) which leads to the potential of mean force formula for the of binding

constant.

Using the definition of the internal configurational partition function of the com-

plex in Eq. (11) and the analogous ones for the receptor and ligand, Eq. (4) is written

as

 1 =
�◦

8c2

∫
3x'3x!3Z! � (Z!)4

−VΨ'! (x' ,x! ,Z! )

∫
3x'3x!4

−VΨ'! (x' ,x! ,Z
∗
!
)

(26)

where we have written the product I'I! of the separated receptor and ligand as the

partition function of a single system in which the ligand is placed in an arbitrary

position Z∗
!

sufficiently removed from the receptor so that it does not interact with it.

Eq. (26) is then written as

 1 =
�◦

8c2

∫

site

3Z!4
−VΔ� (Z! ) (27)

where the integration is within the binding site region where � (Z!) ≠ 0, and the

potential of mean force (PMF) function is defined as

4−VΔ� (Z! ) =

∫
3x'3x!4

−VΨ'! (x' ,x! ,Z! )

∫
3x'3x!4

−VΨ'! (x' ,x! ,Z
∗
!
)

(28)

where Δ� (Z!) is the value of the PMF at Z! relative to the value far away from the

receptor. With this definition the PMF is zero at any point far away from the receptor.

The PMF as defined corresponds to the probability density of ?(Z!) of finding

the ligand in the orientation and position Z! relative to the receptor:

?(Z!) =

∫
3x'3x!4

−VΨ'! (x' ,x! ,Z! )

∫
3x'3x!3Z

′
!
4−VΨ'! (x' ,x! ,Z! )

= 〈X(Z ′! − Z!)〉 (29)
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so that

Δ� (Z!) = −:�) ln
?(Z!)

?(Z∗
!
)

(30)

The potential of mean force expression (27) formally instructs to map out the prob-

ability density (29) to observe the ligand around the receptor in orientation and

position Z! , including far away from the receptor and within the binding site region,

and to then integrate it within the binding site region to obtain the binding constant

using Eq. (27).

Some comments are in order. First, the PMF function can be obtained in the

solvent of potential of mean force formulation as suggested by Eq. (28) or using

an explicit representation of the solvent by inserting the definitions of the effective

potential energy Ψ and of the solvent of potential of mean force (10) into Eq. (28)

4−VΔ� (Z! ) =

∫
3x'3x!3r

#
E 4

−V* (x' ,x! ,r
#
E ,Z! )

∫
3x'3x!3r

#
E 4

−V* (x' ,x! ,3r
#
E ,Z ∗

!
)

(31)

It is evident therefore that the PMF is obtained by monitoring the probability of

occurrence of the ligand at Z! whether an implicit or explicit description of the

solvent is used.

Secondly, the potential of mean force formula for the binding constant (27) does

not require knowledge of the probability density ?(Z!) everywhere around the

receptor. It requires it only within the binding site region and at one arbitrary point

Z∗
!

far away from the receptor in the solvent bulk to compute Δ� (Z!) from Eq.

(30). The latter is a fundamental point. It is not sufficient to study the distribution of

placements of the ligand in the binding site o compute the binding free energy. We

also require the probability of finding the ligand in the binding site relative to finding

it somewhere in the solvent bulk. In practice, the PMF is obtained in a volume that

includes both the binding site and positions far away from the receptor to connect

the two regions in a statistical sense.[21, 22, 23]
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Finally, the PMF is rarely obtained over all six degrees of freedom of Z! (three

positions and three orientations). In practice, the PMF is collected only along some

of the dimensions by averaging over the others. The averaging procedure is formally

described by marginalization of ?(Z!). For example, to obtain the probability of

the position r! of the ligand regardless of its orientation we integrate ?(Z!) =

?(r! , \1, k1, k2) over the three Euler angles \1, k1, and k2

?(r!) =

∫
3 (cos \1)3k13k2?(r! , \1, k1, k2) (32)

In the bulk, the ligand distribution does not depend on the orientation and we get

?(r∗!) =

∫
3 (cos \1)3k13k2?(r

∗
! , \1, k1, k2) = 8c2?(Z∗!) (33)

Next, integrate Eq. (27) over \1, k1, and k2, assuming that the binding site definition

does not depend on orientations, and expressing 4−VΔ� (Z! ) as ?(Z!)/?(Z∗!), to obtain

 1 =
�◦

8c2

∫

site

3r! ?(r!)/?(Z
∗
!) =  1 = �◦

∫

site

3r!4
−VΔ� (r! ) (34)

where

Δ� (r!) = −:�) ln
?(r!)

?(r∗
!
)

(35)

and we have used Eqs. (32) and (33). The implementation of Eq. (34) requires the

PMF with respect to the position of the ligand regardless of its orientation.
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3 Case Studies of Applications of Free Energy Methods to

Protein-Peptide Binding Free Energy Estimation

In this section, we review some applications of the free energy methods derived

from the statistical mechanics theory of non-covalent molecular binding introduced

in Section 2.2 to the study of protein-peptide binding phenomena. We will focus

in particular on theoretical and methodological aspects that will be introduced and

discussed as needed. The following case studies are far from an exhaustive repre-

sentation of the literature in the field. They have been selected primarily to illustrate

the application of the theory and methods presented in Section 2. We also do not

attempt to review each work exhaustively.

3.1 Binding of Cyclic Peptides to HIV Integrase with the

Single-Decoupling Method and Implicit Solvation

As part of the infection cycle, HIV inserts its genome into a human chromosome.

The HIV integrase (IN) enzyme responsible for this process is recruited to the

nuclear chromatin by the human lens epithelium-derived growth factor (LEDGF)

transcriptional coactivator.[24] There have been significant attempts[8, 25, 26, 27]

to develop therapies against HIV based on disrupting the interaction of LEDGF with

HIV IN, which occurs at the so-called LEDGF binding domain of integrase (Fig. 3).

The study of the interaction of LEDGF and LEDGF-derived synthetic peptides with

HIV-IN has provided useful insights for competitive inhibitors’ design.[28, 29] As

an example, Figure 3 illustrates the crystal structure of the LEDGF binding domain

of the HIV IN dimer complexed with a cyclic peptide.[29]

Building upon an earlier successful application of alchemical binding free

energy calculations of small-molecule inhibitors targeting the LEDGF/HIV IN
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as a plugin of the OpenMM molecular dynamics library[34] has been named the

Single-Decoupling Method (SDM),[17]10 a name chosen to better place it in the

same theoretical context as the Double-Decoupling Method (DDM)[13] discussed

in Section 2.3.1. In the following, we will use the latter name to refer to both imple-

mentations. SDM has been used in two studies involving protein-peptide binding to

date.[35, 31]

The implementation of Eq. (17) requires the averaging of the Boltzmann weight

of the effective binding energy in Eq. (15), which in turn requires the specification

of the intramolecular potential energy*8 (x8) and the solvent potential of mean force

,8 (x8) for each configuration x8 of the molecular species involved. The former is

available from a molecular mechanics force field (OPLS-AA[36] in the applications

discussed here) while the solvent potential of mean force is approximated by an

implicit solvent model.[16] SDM employs the Analytical Generalized Born plus

Non-Polar (AGBNP) implicit solvent model[37, 38] which is now maintained as an

OpenMM plugin.[39]11

3.1.1 Alchemical Pathways and Stratification

We use this case study to illustrate the very general concept of an alchemical pathway

and the idea of performing conformational sampling along the pathway to improve

the convergence characteristics of the basic binding free energy formula [Eq. (19)].

This technique, commonly known in the field as stratification is used in many free

energy estimation problems.[40]

As discussed in Section 2.3, Eq. (19) is not directly applicable in numerical simu-

lations because, fundamentally, the coupled and uncoupled ensembles preferentially

visit distinct regions of conformational space (see Figure 1 for example). The free

10 github.com/rajatkrpal/openmm_sdm_plugin

11 github.com/egallicc/openmm_agbnp_plugin
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energy, however, is a thermodynamic state function, and it should be possible to

compute it as the sum of free energy changes over a series of intermediate states,

each sufficiently similar to its neighbors so that free energy estimation formulas such

as Eq. (19) among these are numerically well-behaved.[41, 42] 12 The intermediate

so-called alchemical states are generally implemented by means of an alchemical

progress parameter _ that tunes the system’s potential energy function such that

_ = 0 corresponds to the initial state and _ = 1 corresponds to the final state. A

simple–but not necessarily the most efficient[17, 43] choice–is a linear interpolating

function of the form

*_ (G) = *0 (G) + _D(G) (36)

where *0 (G) is the potential energy function that describes the initial state and

D(G) = *1 (G) −*0 (G), where*1 (G) is the potential function of the final state, is the

perturbation potential. The progress parameter _ and the specific parameterization

of the alchemical potential is said to define an alchemical path that connects, in a

thermodynamic sense, the initial and final states.

The specific alchemical potential energy function adopted by Kilburg & Gallicchio[31]

to study peptide binding is, in the notation of Section 2.3,

Ψ_ (x', x! , Z!) = Ψ(x') +Ψ(x!) + _D(x', x! , Z!) (37)

where the first term on the r.h.s. is the potential energy function of the decoupled

ensemble (corresponding to *0 (G) in Eq. (36)) and the binding energy function

D is defined by Eq. (15). 13 It is straightforward to see that Ψ_ at _ = 1 is the

potential energy function of the coupled state. An alchemical binding free energy

12 This concept has since evolved into rigorous statistical interpretations and numerical algorithms,
some of which are discussed later in this section.

13 To improve convergence, Kilburg & Gallicchio actually used a soft-core form of the binding
energy function.[44, 17] Soft-core functions are critical aspects of alchemical binding free energy
calculations.
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profile, Δ� (_), along the thermodynamic path is defined, which corresponds to the

free energy of the intermediate alchemical state at _ relative to the uncoupled state

(_ = 0)[18]

Δ� (_) = −:�) ln〈4−V_D〉0 (38)

which is Eq. (19) with D replaced with _D, the perturbation energy at the alchemical

state at _. By definition, the excess free energy of binding (19) is the difference

between the end points of the alchemical binding free energy profile

Δ�1 = Δ� (_ = 1) − Δ� (_ = 0) (39)

In Kilburg & Gallicchio’s study, the alchemical path was subdivided into 26

intermediate states mostly linearly spaced between 0 and 1, except the region near

_ = 0, which required more closely spaced points. Conformational sampling was

conducted at each _-state by molecular dynamics (MD)14 using the alchemical

potential energy function (37). The binding energy function (15) and its gradients

were evaluated at each MD time step by first evaluating the potential energy of the

complex Ψ'! (x', x! , Z!) and then displacing the peptide in the implicit solvent

medium at a large distance away from the protein receptor to evaluate the potential

energy Ψ' (x') + Ψ! (x!) without protein-peptide interactions.15 Samples of the

decoupled energy Ψ0 = Ψ' (x') + Ψ! (x!) and of the binding energy D were saved

at each alchemical state at regular intervals. As discussed in Section 3.1.3, these

are the inputs for the estimation of the binding free energy profile and of the excess

binding free energy through Eq. (39).

14 Specifically by replica-exchange molecular dynamics in temperature and _ space as described in
Section 3.1.2)

15 The ligand displacement approach to compute the alchemical potential energy was made neces-
sary by the many-body nature of the implicit solvation model. As briefly discussed in Section 3.2,
with pairwise decomposable potentials it is more common that _ is is integrated into the calculation
of individual interatomic interaction energies.
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3.1.2 Replica Exchange Conformational Sampling

Stratification implies that an alchemical binding free energy calculation is commonly

carried out as a collection of molecular simulations, each with a different alchemical

potential energy function [Eq. (36)] at a series of values of the alchemical progress

parameter _. The accuracy of alchemical free energy calculations depends heavily on

the conformational sampling’s quality at each _-state. In this context, the conforma-

tional sampling’s challenge is to generate a diverse set of configurations distributed

according to Boltzmann’s distribution for the given temperature and potential energy

function. It is not sufficient, like in molecular docking, to propose a set of low-energy

configurations. The configurations should also appear according to their probability

of occurrence. Conformational sampling in alchemical simulations is carried out

by Monte Carlo and, more often, Molecular Dynamics (MD). MD conformational

sampling is limited by the slow time-scales of biomolecules’ motion, and a host of

advanced conformational sampling algorithms have been devised to overcome it.[45]

Kilburg & Gallicchio employed two-dimensional replica-exchange conformational

sampling in temperature and alchemical spaces.[46, 31]

It is useful to consider separately the problem of sampling intermolecular degrees

of freedom (the position and orientation of the ligand relative to the receptor, denoted

by Z! above) from the sampling of intramolecular degrees of freedom (the individ-

ual conformations of the peptide and the receptor, denoted by x! and x'). The first

problem is related to the simulation algorithm’s ability to explore all relevant binding

modes of the protein-receptor complex for fixed receptor and peptide conformations.

Missing the most stable binding mode would, of course, underestimate the binding

affinity. The sampling of intermolecular degrees of freedom is straightforward near

the decoupled state (_ ≃ 0) where protein-peptide interactions are weak, and the

peptide can nearly freely translate and rotate within the binding site volume. In con-

trast, because of receptor-peptide interactions, rotations and translations are severely
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hindered near the coupled state (_ ≃ 1) where the peptide visits alternative binding

modes only very rarely. Therefore, one solution to this problem is to make it so that

the MD thread evolves the system in conformational space as well as _ space. In

this way, new binding modes are formed when _ is small and, if they are sufficiently

stable, they will be retained when the MD thread visits more strongly coupled states

at _ ≃ 1. Conversely, an MD thread in a metastable binding mode at _ ≃ 1 would

have an opportunity to acquire a smaller _ and convert to another binding mode.

Of course, the excursions in _ space have to be so that a canonical ensemble of

conformations is generated at each alchemical state.

The replica exchange algorithm achieves this by evolving as many MD threads as

there are alchemical states. At any one point in time, each MD thread 9 is assigned the

_ value of a unique alchemical state 9 . The collection of threads, called replicas, forms

an ensemble of independent canonical systems with the joint canonical statistical

weight function

dRE (G1, . . . , G= |_1, . . . , _=) = exp


−

=∑

9=1

VΨ_ 9
(G 9 )


(40)

where Ψ_ (G) is the alchemical potential energy function (37), G 9 denotes the con-

figuration of replica 9 , and _ 9 is the value of _ assigned to it. The joint distribution

is sampled by alternating updates of coordinates G 9 at a fixed assignment of _ val-

ues, which is accomplished independently for each replica by conventional constant

temperature MD, with updates of the _ assignments. The latter is performed at fixed

by proposing permutations of _ assignments {_1, . . . , _=} → {_′
1
, . . . , _′=} at fixed

configurations G 9 and accepting and rejecting the move using the Metropolis Monte

Carlo algorithm based on the ratio of the values of the proposed and original weight

functions
dRE (G1, . . . , G= |_

′
1
, . . . , _′=)

dRE (G1, . . . , G= |_1, . . . , _=)
(41)
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There are many variations of replica-exchange differing in the nature of the repli-

cas, the scheme of permutations of state assignments, and the computational

implementation.[47] Schemes, such as the one illustrated above, that modify the

parameters of the potential energy function are known in the field as Hamiltonian

replica exchange algorithms.[48] Kilburg & Gallicchio used the Gibbs Indepen-

dent Sampling Algorithm[17] for Hamiltonian reassignments and an asynchronous

implementation[46] of replica-exchange for that allows running the collection of

replica simulations on heterogeneous and potentially unreliable computational re-

sources such as on computational grids.[49]

Hamiltonian replica exchange addresses the sampling of intermolecular degrees

of freedom. However, because _ couples receptor-peptide interactions, it has only

an indirect influence on the rate at which intramolecular degrees of freedom are

sampled. Peptides are very flexible and often change conformation upon binding.

They often interact with the protein over an extended surface and induce substan-

tial induced-fit reorganization of the receptor. Conformational rearrangements of

peptides occur very slowly at room temperature, especially of the cyclic peptides in-

vestigated in this study. The temperature replica-exchange algorithm, one of the first

versions of replica-exchange proposed,[50] is very useful for accelerating the sam-

pling of the conformational space of peptides and proteins,[51, 52] and is applicable

to free energy calculations.[53] Kilburg & Gallicchio adopted a two-dimensional

replica-exchange scheme in which both the _ and temperature assignments undergo

permutations. The joint canonical weight is generalized as

dRE [G1, . . . , G= | (V, _)1, . . . , (V, _)=)] = exp


−

=∑

9=1

V 9Ψ_ 9
(G 9 )


(42)

where V 9 and _ 9 are the inverse temperature and _ assigned to replica 9 , and (V, _)

is one of the = pair combinations of a set of inverse temperatures and alchemical
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states. Kilburg & Gallicchio employed 8 temperatures between 300 to 379 K and

26 alchemical states for a total of 208 replicas for each protein-peptide complex.

The multi-dimensional replica-exchange algorithm employed allowed to explore

simultaneously multiple conformations of the peptide and multiplied binding modes

of each conformation.

3.1.3 Multi-State Free Energy Estimation

While Eq. (19) is formally correct, it is not an optimal free energy estimator. Optimal

here refers to a free energy estimator’s ability to return a free energy estimate with

the smallest bias relative to the true free energy (accuracy) and smallest variance

(precision) with a given finite set of samples. Kilburg & Gallicchio employed the

Unbinned Weighted Histogram Analysis Method (UWHAM) estimator[44] which

is considered an optimal free energy estimator when no information of the system

is known other than the samples from the molecular simulations. The statistical and

mathematical origins of the method[54, 44] are beyond the scope of this chapter.

The main idea is to arrive at an estimate of the free energy Δ� (_) [Eq. (38)] at _ by

using the data collected at all _-states. UWHAM can be interpreted as an extension

of the familiar Weighted Histogram Analysis Method (WHAM),[55] applied to Eq.

(20) for the maximum likelihood estimation of the distribution of binding energies

in the uncoupled ensemble ?0 (D) from the corresponding distributions along the

alchemical path ?_ (D).

In this case, Kilburg & Gallicchio collected data as a function of temperature as

well as _ on a grid of 208 states. UWHAM provides, in this case, optimal estimates

of the dimensionless free energy factor for each state defined as, up to a additive

constant,16

16 Note that, because I'! is not dimensionless, the ambiguity of the additive constant is also related
to the arbitrariness of the units chosen to evaluate the logarithm.
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�A = ln I'! (VA , _A ) (43)

where VA and _A are the values of the inverse temperature and of the alchemical

progress parameter of state A and I'! (V, _) is defined by Eq. (11). Given the free

energy factors, the free energy profile as function of temperature and _ is given by

Eq. (38), or17

Δ� (VA , _A ) = −:�)�A . (44)

The dimensionless free energy factors minimize the convex objective function[44]18

1
#

#∑

B=1

ln

[
=∑

A=1

#A

#
4−�A 4−EAB

]

+

=∑

A=1

#A

#
�A (45)

where # is the total number samples collected at any of the = states, #A is the number

of samples collected at state A , and

EAB = VA [Ψ0,B + _ADB] (46)

is the dimensionless energy of sample B in state A, whereΨ0,B and DB are, respectively,

the values of the decoupled potential energy and of the binding energy of the sample

collected during the replica-exchange alchemical simulations. The UWHAM opti-

mizer implemented in the statistical program Rwas used to obtain the dimensionless

free energy factors (cran.r-project.org/web/packages/UWHAM).19

Note that setting to zero the gradient of the UWHAM objective function leads to

the self-consistent equations

17 Because the free energy estimates are known up to a temperature-dependent additive factor,
differences between free energies at different temperatures are generally meaningless. However
differences along _ at different temperature can be compared. For example, the binding free energy
at one temperature Δ�1 (V) = Δ� (V, _ = 1) − Δ� (V, _ = 0) can be compared to the binding
free energy estimate at a different temperature to, for example, estimate the binding entropy.

18 The convexity property guarantees that there is a unique minimum.

19 Ding, Vilseck, and Brooks[56] developed a GPU implementation of UWHAM called FastMBAR
(github.com/xqding/FastMBAR).[56]
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5 −1
A =

#∑

B=1

4−EAB
∑=

A ′=1 #A ′ 5A ′4−EA′B
(47)

where 5A = 4−�A . Eq. (47) is the basis of the equivalent Multistate Bennet Accep-

tance Ratio (MBAR) method to obtain the free energy factors.[57] The UWHAM

formulation of multi-state reweighting has been found to be more generalizable than

MBAR’s.[56] For example it has been recently employed to impose global restraints

on the free energy solutions.[58]

3.2 Effect of Mutations on the Binding Affinity of Peptides to PDZ

Protein Domains

PDZ protein domains are widespread protein-protein interaction modules. They

specifically recognize the 4 to 8 aminoacids at the C-terminus sequence of proteins.

Peptides and peptide derivatives that mimic these binding motifs are investigated

as potential therapeutics for many diseases.[59] Panel et al.[60] studied the binding

free energies between the TIAM1 PDZ domain and a series of peptides derived

from its syndecan-1 and caspr4 protein targets (Figure 4) using an alchemical rela-

tive binding free energy computational method generally known in the field as Free

Energy Perturbation (FEP).[61, 62] The study’s goal was to validate the methodol-

ogy for protein-peptide binding and obtain physical and structural insights into the

recognition mechanisms that allow PDZ domain to target specific sequences.

3.2.1 Theory of Relative Binding Free Energy Calculations

The dataset considered by Panel et al.[60] included the TIAM1 PDZ domain bound

to the wild-type peptides and a series of single and double mutants. As discussed

in Section 2.3.1, peptides are generally too large and complex to be studied by
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 1 (2)
 1 (1)

=
/# ,'!2

/# ,'!1

/# ,!1

/# ,!2

= 4−V [Δ�bound−Δ�solv ] (48)

where the ratio of partition functions involving the receptor correspond to the free

energy difference Δ�bound between the complex with ligand !2 in the solvent and

the same system but with ligand !2 replaced by !1. Similarly, the ratio of partition

functions of the ligands in solution correspond to the free energy difference Δ�solv.

20 Finally, using Eq. (2), we obtain

ΔΔ�1 := Δ�1 (2) − Δ�1 (1) = Δ�bound − Δ�solv (49)

which is the key formula of the relative binding FEP method.

Fig. 5 The thermodynamic cycle used in the relative free energy perturbation method. The vertical
transformations correspond to the association equilibrium between the receptor R and one of two
ligands L1 and L2. The horizontal legs correspond to the alchemical transformation of one ligand
into the other alone in solution (top) or in the complex (bottom).

20 Comparing the free energies of systems with different atomic composition and number of degrees
of freedom is arguably physically meaningless at this level of theory. However, note that the overall
ratio of partition functions in Eq. (48) if physically well defined. It represents the free energy
difference between two systems, the first composed of two solutions one containing the complex
with !2 and the other containing !1, and the second in which !2 and !1 have swapped places.
Evidently, the free energy differenceΔ�bound−Δ�solv, which is the target of the theory, is physically
well defined even though the individual components may not be.
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Let’s now turn to the evaluation of Δ�bound and Δ�solv by alchemical computer

simulations. As usual, the strategy is to compute ratios of partition functions as

ensemble averages. However, for example, the expression

/# ,!2

/# ,!1

=

∫
3x!2

3r#E 4
−V* (x!2

,r#E )

∫
3x!1

3r#E 4
−V* (x!1

,r#E )
(50)

cannot be directly turned into the form of an ensemble average because, in general,

the number and kind of the internal degrees of freedom of the two ligands differ.

Panel et al.[60] adopted the so-called dual topology strategy to address this issue,21

in which the simulation is conducted with a hybrid peptide in which the wild-type,

say, and mutated aminoacid side chains are both represented at the same time (Figure

6). The alchemical potential energy function is constructed so that the environment

(the water solution or the solvated receptor) interacts with the atoms of both forms of

the sidechain with a strength that depends on the alchemical charging parameter _.

Similarly, the intramolecular potential energy function is designed so that the atoms

of the protein backbone interact by bond stretching, bond angle, torsional, and 1,4

non-bonded interactions with both forms of the sidechain. The atoms of the two

forms of the sidechain being mutated never interact directly with each other.

Formally, the dual-topology approach is derived from Eq. (48) by multiplying and

dividing each term by an appropriate partition function that introduces the additional

degrees of freedom to turn each peptide into the hybrid peptide with both forms of the

sidechain. For example, if /# ,!1
term represents the peptide with the phenylalinine

(PHE) sidechain in solution (Figure 6, red), multiplying and combining it with

/ILE =

∫
3ZILE3xILE4

−V* (ZILE)4−V* (xILE) (51)

21 There is an analogous single-topology strategy[64] which we do not discuss here.
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does not otherwise interact with the environment. The same procedure applied to

the partition function of the complex of the original peptide bound to the receptor

/# ,'!1 in the denominator of Eq. (48) yields the partition function /# ,'!1(2) of the

hybrid peptide in the PHE state bound to the receptor. Similarly, multiplying and

dividing by the term /PHE analogous to Eq. (51) to install a PHE sidechain onto the

peptide with the ILE sidechain, yields the partition functions /# ,!(1)2
and /# ,'!(1)2

for the hybrid peptides in solution and bound to the receptor in their ILE states.

With these preparations, finally Eq. (48) is rewritten as

 1 (2)

 1 (1)
=
/# ,'!(1)2

/# ,'!1(2)

/# ,!1(2)

/# ,!(1)2

= 4−VΔ�bound4+VΔ�solv (52)

where

Δ�bound = −:�) ln
/# ,'!(1)2

/# ,'!1(2)

= −:�) ln〈4−VD2〉1 (53)

where D2 is the change in potential energy of the system for a given configuration

of the solvated complex with the hybrid peptide due to, in this example, turning off

PHE sidechain and turning on the ILE sidechain, and 〈. . .〉1 represents the average

over the ensemble in which the PHE sidechain is on and the ILE sidechain is off. An

analogous ensemble average gives Δ�solv for the transformation of PHE into ILE in

solution.

3.2.2 Alchemical Transformations for Relative Binding Free Energies

As discussed in Sections 2.3 and 3.1.1 the free energies Δ�solv and Δ�bound for mu-

tating one sidechain into another are calculated in practice using an hybrid alchemical

potential energy function *_ (G) parametrized by a progress parameter _. Panel et

al.[60] used the NAMD molecular simulation package[66] which implements the

alchemical potential[65]
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*_ (G) = *!12 (G) + (1 − _)*!1 (G, 1 − _) + _*!2 (G, _) (54)

where G is the collection of all of the degrees of freedom of the dual-topology peptide

system,*!12 (G) contains the potential energy terms that do not depend on _

*!12 (G) = *0 (G) +*
SD
!1

(Z1) +*
SD
!2

(Z2) (55)

where *0 (G) is the unperturbed component of the potential energy (including the

intramolecular potential energy terms of the dual-topology sidechains not affected

by the transformation, but excluding interactions between the two sidechains), and

the terms*SD
!8

(Z8) represent the auxiliary restraints used in the dual-topology scheme

to anchor each sidechain to the backbone [see Eq. (51)], and

*!8
(G, _) = *NB

!8
(G, _) +*SS

!8
(G) +*SD

!8
(G) (56)

where*NB
!8

denotes non-bonded interactions between the sidechain atoms and the en-

vironment,*SS
!8

denotes the bonded (1-2, 1-3, and 1-4 interactions) among backbone

atoms with sidechain 8, and *SD
!8

is the corresponding term for bonded interactions

between the backbone atoms and the sidechain. 25 As illustrated by Eq. (56), the non-

bonded component has an explicit _ dependence due to the use of separation-shifted

soft-core pair potentials[67, 65] to describe the non-bonded interactions between the

dual-topology sidechains and the rest of the system.

It is straightforward to see that Eq. (54) evaluated at _ = 0 describes the !1(2)

state of the dual-topology peptide with sidechain 2 turned off and, conversely, _ = 1

describes the ! (1)2 state. Panel et al.[60] simulated 11 alchemical states from _ = 0

to _ = 1. The change in free energy from _A to _A+1 was evaluated using the Bennet

Acceptance Ratio (BAR) method, which is MBAR [Eq. (47)] for two states and

25 The S symbol stands for the single-topology region (the backbone in this case), and D stands for
dual-topology region (the two sidechains).[67, 65]
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where, in this case,

EAB = V*_A (GB) (57)

is the alchemical potential energy at _A of the conformational sample GB collected at

either _A or _A+1.26

3.3 Potential of Mean Force Study of the Binding of the MEEVD

peptide to the TPR2A Receptor

The heat shock organizing protein (Hop) binds specifically to the heat shock protein

Hsp90 through its tetraticopeptide repeat (TPR) domain TPR2A. TPR modules

are widespread protein domains responsible for the specific recognition patterns of

many proteins. Due to their molecular recognition characteristics, engineered TPR

domains are seen as potential alternatives to antibody-derived biological medicines.

Lapelosa[22] studied the binding of the MEEVD peptide from Hsp90 to the TPR2A

domain of Hop (Figure 7) using the potential of mean force methodology outlined

in Section 2.4. The work yielded an estimate of the standard free energy of binding

between TPR2A and MEEVD in good agreement with experimental measurements.

It provided structural insights into the entry and exit mechanism of the peptide from

the receptor binding site.

3.3.1 Calculation of the Standard Binding Free Energy

Lapelosa[22] computed a 1-dimensional radial potential of mean force (PMF),

Δ� (A), along the center of mass separation A between the receptor and the pep-

tide (Figure 7) using the Adaptive Biasing Force (ABF) method described in the

26 The numerator and the denominator of Eq. (47) are often combined to cast the formula in terms
of energy differences EA ′B − EAB .
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where ?(A∗, \∗, q∗) = ?(r∗
!
), and

?(A) =

∫ 1

cos \0

3 (cos \)

∫ 2c

0

3q?(A, \, q) (58)

is the polar angle-averaged probability density of the ligand position in the conical

region. Considering the value of the radial probability density at distance A∗ in the

canonical region far away from the receptor and integrated over the polar angles,

?(A∗) = 2c(1 − cos \0)?(A
∗, \∗, q∗) (59)

we finally obtain 27

 1 = 2c(1 − cos \0)�
◦

∫ A1

0

3AA24−VΔ� (A ) (60)

where A1 = 20 Å is the limiting radial distance of the binding site region and \0 = 60◦

is the angle of aperture of the cone, and

Δ� (A) = −:�) ln
?(A)

?(A∗)
(61)

is the radial PMF relative to the bulk distance A∗ = 30 Å.

3.3.2 Calculation of the Potential of Mean Force Using the Adaptive Biasing

Force Method

The peptide’s radial PMF, Δ� (A), was evaluated using the Adaptive Biasing Force

(ABF) method.[69] ABF serves the dual purpose of accelerating the sampling of

the peptide positions relative to the receptor and providing an estimate of the PMF.

27 Probably because of a typo, the 2c factor is missing in the corresponding expression (equation
2) of the paper by Lapelosa[22].
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ABF introduces a fictitious biasing force 51 (A) along the radial direction such that

the observed distribution of distances with the addition of the biasing force, ?obs (A),

is flat within the sampling region (in this case the region within the cone illustrated

in Figure 7 with \0 = 60◦ angle of aperture and up to A < A∗ = 30 Å).

A derivation of ABF is beyond the scope of this chapter, however to motivate it,

first note that differentiation of Eq. (31) leads to the conclusion that the gradient of

the PMF with respect of Z! is the average gradient of the system potential energy

function
mΔ� (Z!)

mZ!
= 〈

m*

mZ!
〉Z! (62)

where* is the potential energy function of the solvated system and 〈. . .〉Z! represents

an ensemble average at fixed Z! . In other words, the negative of the gradient of the

PMF is the system force averaged over the degrees of freedom of the system other than

those along which the PMF is defined, thereby justifying the name potential of mean

force for Δ� (Z!). The same conclusion applies to forms of the PMF averaged over

some coordinates such as ligand orientations [Eq. (30)], including the 1-dimensional

radial PMF, Δ� (A), considered in the work of Lapelosa.28

Also, note that the PMF along a coordinate is proportional to the logarithm of

the probability distribution for that coordinate [Eq. (30)]. Thus, a flat distribution

indicates that the overall force, the mean force, plus the biasing force along the

coordinate is zero or, equivalently, that the added biasing force is equal and opposite

to the mean force. This implies that the potential of mean force can be obtained

by integrating the biasing force that flattens the radial distribution. The additional

benefit of having a flat distribution is that the dynamics along the chosen coordinate

are more likely to be diffusive and not impeded by free energy barriers. Indeed,

28 In this case the radial force is interpreted in terms of the force of a central potential, and Eq. (62)
has additional terms due to the Jacobian of the radial coordinate.[69]
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several independent binding/unbinding events have been reported in the study by

Lapelosa.[22]

4 Conclusion

This chapter has shown how a statistical mechanics formulation of the non-covalent

molecular association from first principles gives rise to different computational

methods to estimate the binding free energies of protein-peptide complexes. The

three case studies illustrate the application of each method to particular molecular

complexes and how they are tailored to achieve specific goals. It is much more

challenging to apply rigorous binding free energy estimation methods to protein-

peptide complexes relative to small-molecule binding. We hope that this chapter

illustrates how a good appreciation of the underlying theories and their computational

implementations helps understand the practices connected with each approach and

its strengths and limitations.
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