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Abstract

Changes in postharvest storage conditions due to climate change can directly affect
energy usage and food supply and quality. However, no study has assessed climate
change impacts on postharvest storage conditions in different climate regions over the
contiguous United States (CONUS), a major agricultural producer around the world. The
goal of this study is to assess the impact of climate change on cold storage conditions for
the highest grossing crop for each of the nine climate regions within the CONUS. Storage
degree days (SDDs) accumulate when ambient temperatures increase relative to crop
storage base temperatures. Changes in SDDs and winter subperiod length were calculated
for each regional crop using historical climate data and 20 downscaled global climate
model projections. All regions project significant increases in SDD accumulation and
decreases in winter subperiod length when compared with the historical reference period
(1979-2005). Between years 2020 and 2080, Northwest and Northeast regions’ apples
will be impacted most by SDD accumulation with yearly increases between 261 and 1004
SDDs. Between years 2020 and 2080, Midwest regions’ potatoes are projected to lose the
most days of winter (24-39 days), and Southeast regions’ peanuts will experience the
greatest decrease in winter length (17-23%). Increases in SDD accumulation and de-
creases in winter length will have direct implications on future food supply and storage
costs. This study is the first comprehensive analysis of climate change impacts on the
storage conditions for agricultural commodities over heterogenous climate conditions at
national scale, providing useful information for long-term agricultural storage planning.
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1 Introduction

Increased ambient land temperatures due to anthropogenic increases in atmospheric CO, concen-
trations have the potential to threaten the entire food supply chain beginning with crop develop-
ment and yield (Cammarano and Tian 2018; Chin et al. 2018; Raymundo et al. 2018; Singh et al.
2017), through food cold chain transport (James and James 2010), and into postharvest long-term
storage (Winkler et al. 2018). Increased growing season temperatures and time of harvest have the
potential to directly affect crop integrity and postharvest processing and storage, which both
ultimately affect crop quality (Mutegi et al. 2013; Paull 1998). Microbes begin to degrade soft
tissues once crops are harvested, and increasing temperatures will increase microbial activity and
spoilage in crops based upon the Q;, temperature effect (Watson et al. 2016). This Q, effect
refers to changes in metabolic activity and a 10 °C increase in temperatures will cause a doubling
or tripling of microbial activity which would increase infection or rotting rates (Bron et al. 2005).
Therefore, once crops are harvested, it is imperative that they are subjected to their proper storage
base temperature conditions to prevent accelerated degradation. The storage base temperature is
not the same for all crops and optimal storage temperatures ensure prolonged quality of agricul-
tural commodities (Krishnakumar 2002).

Under cold storage conditions, temperature will continue to affect crop quality and increas-
ing ambient temperatures may exacerbate postharvest losses (James and James 2010). Crop
storage is necessary to ensure a steady flow of product into the agricultural marketplace, but
crop storage is also equally valuable as a mitigation factor against shortage of food supply
(Bediako et al. 2009). If seasonal crop yields are lower than anticipated, crops in cold storage
may be able to offset the seasonal losses — ensuring sufficient food supply. In a study focused
in the state of Michigan, USA, Winkler et al. (2018) suggest that increasing temperatures will
lead to an increase in storage degree day (SDD) accumulation and a decrease in length of
winter subperiod for potato storage. In their study, SDDs are accumulated whenever ambient
temperatures are higher than the storage base temperature required for potatoes (12 °C for the
first 8 weeks and then lowered by 0.1 °C per day to 8 °C). SDDs can be viewed as indicators
for additional energy requirements needed to maintain the storage facility at a specific base
temperature (Winkler et al. 2018). Therefore, an increase in SDD accumulation has the
potential to decrease the ability of a storage facility to effectively store their crops outside of
the growing season. The length of the winter subperiod describes the amount of time that
agricultural commodities, potato in the case of Winkler et al. (2018), can be stored at relatively
low cost since ambient temperatures are below the storage base temperature. Data from
Winkler et al. (2018) gives valuable insight into the effects of climate change on crop storage,
but focused only on a single crop (potato) in a single state (Michigan) with relatively higher
base temperature and longer winter period. Changes in SDD accumulation and length of
winter subperiod can vary by crop types and regions with different climate conditions;
therefore, further study is needed to understand the historical and future climate impacts on
crop storage conditions for different crops in different climate regions across the CONUS.

In order to understand future climate change impacts on crop storage, we need to utilize climate
models to obtain projections of future temperatures. Global circulation models (GCMs) are
physical-based mathematical models that are routinely used for projecting future climate with
different scenarios of greenhouse gas (GHG) concentrations (Akinsanola et al. 2018; Ertugrul
2019; Parrish and Peterson 1988). GCMs used in the fifth Intergovernmental Panel on Climate
Change (IPCC) report are forced through representative concentration pathways (RCPs) to
simulate future climate. These RCPs represent solar radiative forcing, depending on projected
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GHG concentrations, which can be influenced by both anthropogenic and natural sources (van
Vuuren et al. 2011). GCMs are imperfect representations of the climate system. They are global-
scale models running at coarse resolutions and the physical processes at local scale are highly
parameterized, requiring bias correction and downscaling for reliable regional impact analyses
(Fowler et al. 2007). When a sufficiently large number of GCMs are considered, bias of climate
projections due to a single or few GCMs will be minimized because the uncertainty of climate
projections can be quantified (Tebaldi and Knutti 2007).

Storage conditions of different crops may vary under different regions and climate condi-
tions, and the response to the changes of ambient temperature may also be different. Therefore,
this study aims to assess the climate impacts on cold storage conditions of major crops in
different climate regions across the CONUS, one of the largest agricultural producers around
the world. This study is the first to analyze impacts of climate change on crop storage
conditions for different major crops at the national scale with high variability of agricultural
and climate conditions. The knowledge gained in this study will be helpful for long-term
agricultural storage planning.

2 Materials and methods

2.1 Study area and crop selection

This study focuses on nine climate regions (Karl and Koss 1984) over the CONUS (Fig. 1).
Karl and Koss (1984) identified climate regions by taking the areal-weighted average of

recorded temperature and precipitation distributions between years 1895 and 1983 for each
state. Contiguous states with similar patterns and weightings were then grouped together to

Gaines
County

Fig. 1 Nine climate regions in the CONUS. We identified county regions (red-colored) of highest production for
the highest grossing crop requiring cold storage. This map is adapted from Karl and Koss (1984)
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form climatically consistent regions. Each climate region has relatively homogenous climate
conditions and states within each region have similar temperature and precipitation patterns.
The highest grossing crop that requires cold storage was identified for each state using the state
2017 USDA NASS survey report (USDA 2018). High grossing commercial crops that do not
require cold storage were excluded from analysis including barley, beans, canola, coffee,
cotton, hay and haylage, hops, macadamias, maize, millet, mint, oats, peas, rice, rye, safflower,
sorghum, soybeans, sunflower, taro, tobacco, and wheat. The cumulative crop value from all
states within each climate region was then calculated and the highest grossing crop was
selected for cold storage analysis (Table 1).

Identification of proper base temperature and storage dates is crucial to estimate cold
storage conditions for different crops based on SDDs and length of winter subperiod.
Information about the most common crop cultivar, harvest, and storage conditions for each
climate region (Table 2 and Supplemental Material Table S1) was obtained directly from
University of Georgia Extension (UGA 2019), University of California Extension (UC 2019),
scientific journal publications (Bohl and Johnson 2010; Butts et al. 2017; Kerns et al. 1999),
North Dakota State Seed Department (ND.gov 2019), cold storage facility personnel, and the
USDA-ARS agriculture handbook number 66 (USDA 2016).

2.2 Historical climate data

Historical daily maximum temperature (7},,,) and minimum temperature (7,,,) for years
1979-2005 was extracted from the gridMET database (Abatzoglou 2013) (available at
http://www.climatologylab.org/gridmet.html) at the location of the representative storage
facility for each region (the coordinates can be found in Table 2). The 26-year time slice
(1979-2005) is sufficiently long enough for an accurate calculation of climatological means
and changes in climate conditions (Winkler et al. 2018). The horizontal resolution for
gridMET historical data was at ~4 km or 1/24th degree over the CONUS. This data was
produced from gridded parameter-elevation regressions on independent slopes model
(PRISM) data blended with temporal attributes from North American Land Data Assimilation
System (NLDAS-2) regional analysis. The gridMET data has been validated against in situ
observations and widely used in climate impact studies, such as wildfires (Abatzoglou and
Williams 2016; Barbero et al. 2015), crop evapotranspiration (Pereira et al. 2015), and rain-
snow transition zones (Klos et al. 2014).

Table 1 Highest grossing hub crop by region for cold storage analysis. Monetary value is the sum of the highest
grossing hub crop for all states within each region. 2017 USDA NASS survey reports were used to calculate
cumulative monetary value

Climate region Crop chosen Cumulative monetary value
Southeast Peanuts $1,338,961,000.00

South Peanuts $291,447,000.00

Southwest Lettuce $566,773,000.00

West Grapes $5,793,217,000.00
Northwest Apples $2,430,353,000.00
Northern Rockies and Plains Potatoes $380,465,000.00

Upper Midwest Potatoes $674,209,000.00

Ohio Valley Tomatoes $167,492,000.00

Northeast Apples $577,356,000.00
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Table 2 A summary of crop identification, storage facility location, city coordinates, typical planting and
harvesting dates, crop storage dates, and base temperature for crop storage

Region  Crop/ Regional County, City Typical planting  Crop storage Expected
variety  distributor ~city, state latitude and harvesting date(s) and base storage life
and dates temp (C°) (months)
longitude
Southeast Peanut/ Birdsong  Mitchell 31.2313°  Planting Start - 11/01 9
Runner Peanuts County, N Begin April 16; End - 6/30
Camila, 84.2105°  Most active April 13 °C
GA W 25-May 25; (Butts et al.
End June 6 2017)
Harvesting
Begin Sept. 4;
Most active
Sept. 22—
Oct. 22;
End Nov. 1
South Peanut/  Golden Gaines 32.7190°  Planting Start - 12/01 9
Runner Peanut County, N Begin May 7, End - 7/31
Com- Seminol- 102.6449° Most active May 13 °C
pany e, TX w 29-June 31; (Butts et al.
End July 18 2017)
Harvesting
Begin Sept. 7;
Most active
Oct. 10—
Nov. 22;
End Dec. 20

2.3 Future climate projections

The 20 statistically downscaled Coupled Model Intercomparison Project Phase 5 (CMIPS5)
GCMs Tax and Ty, daily projections from years 2020-2080 were derived from the MACAv2
database (Abatzoglou and Brown 2012), at http://www.climatologylab.org/maca.html.
Historical baseline and projected temperature data from MACAv2 downscaled GCMs were
extracted at the location of the representative storage facility for each region, as identified in
Table 2. The horizontal resolution for MACAv2 downscaled GCMs was generated at ~4 km or
1/24th degree and over the CONUS. The 20 downscaled GCMs ensembles (Table 3) included
historical baseline, future scenarios forced by two different RCPs, namely RCP4.5 and
RCP8.5. For RCP4.5, CO, concentrations peak around 2040 with an atmospheric concentra-
tion ~ 650 ppm; for RCP8.5, CO, concentrations rise until the end of the twenty-first century
and peak at ~ 1370 ppm (Moss et al. 2010).

Future climate projections were divided into 3 time slices for analysis: early-century (2020—
2040), mid-century (2040-2060), and late-century (2060—2080). Historical baseline simula-
tions from each GCM were extracted for 1979-2005. The delta change factor method was
utilized to produce projected daily temperature for each location (Anandhi et al. 2011; Winkler
et al. 2018). The delta factor for each location was calculated as the difference of the monthly
average of Tiy,y and Ty, from each future time slice and each RCP scenario with the historical
baseline. The monthly delta factor was then added to the daily observed gridMET historical
Tmax and Ty from 1979 to 2005 for each location. Accordingly, there was a total of 240
monthly delta values (12 months X 20 GCMs) calculated for each location, time slice, and
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Table 3 GCMs derived from CMIP5 climate models to develop ensemble of downscaled projections for RCP4.5
and RCP8.5

Number Model name Model ~ Model agency
country

1 bee-csml-1 China Beijing Climate Center, China Meteorological Administration

2 bee-csml-1-m China Beijing Climate Center, China Meteorological Administration

3 BNU-ESM China College of Global Change and Earth System Science, Beijing
Normal University

4 CanESM2 Canada  Canadian Centre for Climate Modeling and Analysis

5 CCSM4 USA National Center of Atmospheric Research

6 CNRM-CMS5 France  National Centre of Meteorological Research

7 CSIRO-Mk3-6-0 Australia Commonwealth Scientific and Industrial Research
Organization/Queensland Climate Change Centre of Excellence,
Australia

8 GFDL-ESM2M USA NOAA Geophysical Fluid Dynamics Laboratory

9 GFDL-ESM2G USA NOAA Geophysical Fluid Dynamics Laboratory

10 HadGEM2-ES UK Met Office Hadley Center

11 HadGEM2-CC UK Met Office Hadley Center

12 inmem4 Russia  Institute for Numerical Mathematics

13 IPSL-CMS5A-LR France  Institut Pierre Simon Laplace

14 IPSL-CM5A-MR France  Institut Pierre Simon Laplace

15 IPSL-CM5B-LR France  Institut Pierre Simon Laplace

16 MIROCS5 Japan Atmosphere and Ocean Research Institute (The University of

Tokyo), National Institute for Environmental Studies, and Japan
Agency for Marine-Earth Science and Technology

17 MIROC-ESM Japan Japan Agency for Marine-Earth Science and Technology, Atmo-
sphere and Ocean Research Institute (The University of Tokyo),
and National Institute for Environmental Studies

18 MIROC-ESM-CHEM Japan Japan Agency for Marine-Earth Science and Technology, Atmo-
sphere and Ocean Research Institute (The University of Tokyo),
and National Institute for Environmental Studies

19 MRI-CGCM3 Japan Meteorological Research Institute

20 NorESM1-M Norway Norwegian Climate Center

RCP. The monthly delta factors were then added to daily gridMET data to produce future daily
Tnax and Ty, projections for each location, time slice, GCM, and RCP.

2.4 Calculation of SDDs and length of winter subperiod

One index used to measure the impact of increasing temperatures on regional cold storage
conditions was SDD. External energy will be required for cooling to compensate for the
temperature gradient if the temperature on that day is above the base temperature. Therefore,
daily incremental SDD (ASDD) for cold storage facilities can be calculated using the
following formula:

ASDD = max (w ~Toases 0)
SDD is calculated as the accumulation of ASDD over the storage period (Winkler et al. 2018).
For each region, daily SDDs were calculated for (1) historical reference period (1979-2005)
and (2) three future time slices mentioned above (2020-2040; 2040-2060; 2060—-2080) using
the downscaled temperature projections. SDDs were incrementally summed throughout the
storage season and the daily values were smoothed using a 7-day moving average to minimize
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day-to-day fluctuations, as in Winkler et al. (2018). Historical SDD accumulation on the final
day of storage and for each region was used as a reference to compare against RCP4.5 and
RCP8.5 GCM scenarios to determine future impacts.

The second index used to measure climate impacts on cold storage was the length of the
winter subperiod which is considered a continuous period with relatively cool temperature
(i.e., little accumulation in SDDs) compared with the other periods. It is considered a period in
which storage costs are kept low since ambient temperatures can sufficiently cool stored crops
(Winkler et al. 2018). For each region, the length of the winter subperiod was calculated for (1)
historical reference period (1979-2005) and (2) three future time slices (2020-2040; 2040—
2060; 2060-2080). The beginning and end of winter subperiod were identified by analyzing
changes in daily SDD percentage accumulation rates. SDD percentage accumulation rates
were calculated by looking at the SDD daily percentage total and taking a 7-day moving
average to minimize day-to-day fluctuations (Winkler et al. 2018). The beginning of the winter
subperiod for a particular year was defined as the first day in which the daily SDD accumu-
lation fell below a 0.25% threshold for 14 days. The end of the winter subperiod for a
particular year was similarly defined as the first day in which the daily SDD accumulation
fell above a 0.25% threshold for 14 days. This 14-day criterion is used to minimize the
influence of short-term warm or cold spells. The 14-day, 0.25% threshold was chosen due to
past research utilizing this criterion based upon data for the northern United States (Shabbbar
and Bonsal 2003; Winkler et al. 2018). Similar to Winkler et al. (2018), we chose 14-day,
0.25% threshold in this study for convenience of spatial comparisons.

Using the aforementioned definition for beginning and ending of winter subperiod, 0.25%
change for 14 days, the beginning and end dates of winter subperiod were tabulated. Next, the
difference in the number of days between the beginning and end of winter was calculated. The
average of the length of winter subperiod was calculated for the historical reference period of
19792005 and was compared against future RCP scenarios and time slices.

Projected storage parameters were calculated for each RCP/time slice for both changes in
SDD accumulation and length of winter subperiod and compared with the historical reference
period. For each RCP, all 20 GCMs were separated by time slice segments (early-, mid-, late-
century) and the results were averaged to obtain the final mean value of all 20 GCMs for each
time slice. Next, the difference in the climatological means between a future time slice and the
historical reference period was calculated for each RCP and tested for statistical significance
using a one-tailed, two-sample # test assuming unequal variance with standard errors estimated
using the Satterthwaite Approximation (Satterthwaite 1946).

3 Results
3.1 Increases in SDD accumulation and SDD percentage change

SDD accumulation rates differed by region due to the length of the storage season, regional
temperature values, and crop base temperature values. Historical SDD accumulation on the
final day of storage and for each region was used as a reference to compare against RCP4.5
and RCP8.5 GCM scenarios to determine future impacts (Fig. 2). Each regional consecutive
time slice contains higher SDD accumulation rates and percentage changes than the previous
time slice (e.g., 20202040 < 2040-2060 < 2060-2080). All regions in RCP4.5 scenarios
project a significant (p < 0.01) increase by the early-, mid-, and late-century time slice in mean
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Southeast Region South Region Southwest Region
3000 3000 3000

2000 2000 2000

Northwest Region Northern Rockies & Plains Region

Northeast Region

Accumulated SDDs

Fig. 2 Maximum, minimum, and mean daily accumulation of storage degree days (SDDs) during the storage
season of each region for 19792005 (historical reference period). The first Julian day for each region represents
the typical first day of storage for that particular crop. The daily SDDs were smoothed using a 7-day moving
average to minimize day-to-day fluctuations

SDD accumulation and SDD percentage change when compared with their historical reference
period.

For RCP4.5, mean SDD accumulation during the early-century ranges from a minimum
increase of 57.8 SDDs in the Southwest region (lettuce) to a maximum increase of 341.1 SDDs
in the Northwest region (apples) (Fig. 3a, b, ¢), indicating higher storage costs. Mid-century
changes range from a minimum increase of 106.7 SDDs in the Southwest region (lettuce) to a
maximum increase of 505.7 SDDs in the Northwest region (apples). Late-century changes
range from a minimum increase of 127.8 SDDs in the Southwest region (lettuce) to a
maximum increase of 666.1 SDDs in the Northwest region (apples). When examining the
yearly mean of all three future time slices (2020-2080), the Southwest region (lettuce) will be
least impacted with an average yearly increase of 97.5 SDDs and Northwest region (apples)
will be most impacted with an average yearly increase of 504.3 SDDs.

Uncertainty is inherent when assessing the future impacts of climate change and interpre-
tation of ensembles must be conducted carefully (Winkler 2016). We only present the mean
values of our GCM ensembles, but uncertainty in future SDD projections could allow for
actual conditions to be higher or lower than our reported values. To address this uncertainty in
the Northwest region (apples), Fig. 4 displays the maximum and minimum range for all GCMs
for each RCP and time slice. All other regional SDD uncertainty ranges are provided in the
Supplemental Material Fig. S1 to S8.

When looking at the percentage change in SDD accumulation for future time slices under
RCP4.5 (Fig. 5a, b, ¢), some regions appear to be impacted more despite having lower absolute
rates of SDD accumulation (Fig. 3a, b, ¢). Percentage changes reflect the percentage difference
in SDD accumulation when comparing historical and future projections. Early-century chang-
es in percentage difference in SDD accumulation range from a minimum increase of 5.3% in
the Southwest region (lettuce) to a maximum increase of 28.5% in the Upper Midwest region
(potatoes). Mid-century changes range from a minimum increase of 9.6% in the Southwest
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Fig. 3 Projected SDD accumulation by region in the early, mid-, and late-century time slice for RCP4.5 (a, b, ¢)
and RCP8.5 (d, e, f). Final projected value(s) for SDD accumulation were averaged over the 20 GCMs on the
final day of storage for each specific region. Highest increases in SDD accumulation are displayed in dark red

region (lettuce) to a maximum increase of 38.7% in the Upper Midwest region (potatoes).
Late-century changes range from a minimum increase of 11.5% in the Southwest region
(lettuce) to a maximum increase of 45.5% in the Upper Midwest region (potatoes). When
examining the yearly mean of all three future time slices, the Southwest region (lettuce) will be
least impacted with an average yearly SDD increase of 8.8% while the Upper Midwest region
(potatoes) will be most impacted with an average yearly SDD increase of 37.6%.

All regions in RCP8.5 scenarios project significant (p <0.01) increases in mean SDD
accumulation by the early-, mid-, and late-century time slice when compared with their
historical reference period (Fig. 3d, e, f). Due to higher CO, concentrations and the subsequent
effect on atmospheric temperature, all RCP8.5 projections contain higher mean values than
their respective RCP4.5 counterparts for each time slice for both SDD accumulation and
percentage changes. Early-century changes in mean SDD accumulation range from a mini-
mum increase of 72.6 SDDs in the Southwest region (lettuce) to a maximum increase of 386.7
SDDs in the Northwest region (apples). Mid-century changes range from a minimum increase
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Fig. 4 Projected SDD accumulation during the storage period (Sept. 1-Jun. 30) for Northeast region (apples) for
RCP4.5 (a, b, ¢) and RCP8.5 (d, e, f). Projected SDD accumulation for maximum and minimum GCM values are
displayed in the red ribbon, and the mean of all GCMs is represented by the dark red line. Historical mean SDD
accumulation on final day of storage (Jun. 30) is represented by the horizontal dashed line

of 140.0 SDDs in the Southwest region (lettuce) to a maximum increase of 649.3 SDDs in the
Northwest region (apples). Late-century changes range from a minimum increase of 213.0
SDDs in the Southwest region (lettuce) to a maximum increase of 1045.0 SDDs in the
Northeast region (apples). When examining the yearly mean of all three future time slices,
the Southwest region (lettuce) will be least impacted with an average yearly increase of 140.9
SDDs and the Northwest region (apples) will be most impacted with an average yearly
increase of 679.8 SDDs.

RCPS8.5 early-century changes in percentage difference in SDD accumulation range from a
minimum increase of 6.7% in the Southwest region (lettuce) to a maximum increase of 31.1%
in the Upper Midwest region (potatoes) (Fig. 5d, e, f). Mid-century changes range from a
minimum increase of 12.4% in the Southwest region (lettuce) to a maximum increase of 46.2%
in the Upper Midwest region (potatoes). Late-century changes range from a minimum increase
of 18.1% in the Southwest region (lettuce) to a maximum increase of 63.2% in the Upper
Midwest region (potatoes). When examining the mean of all three future time slices, the
Southwest region (lettuce) will be least impacted with an average SDD increase of 12.4% and
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Fig. 5 Projected SDD accumulation percentage increase by region in the early-, mid-, and late-century time slice
for RCP4.5 (a, b, ¢) and RCP8.5 (d, e, f). Final projected value(s) for SDD percentage change were averaged
over the 20 GCMs on the final day of storage for each specific region. Highest increases in SDD percentage are
displayed in dark red

the Upper Midwest region (potatoes) will be most impacted with an average SDD increase of
46.8%.

3.2 Changes in length of winter subperiod and percentage difference

The length of the winter subperiod was determined by percentage changes in SDD accumu-
lation on a day-to-day basis. The historical and projected length of winter subperiod for all
regions with an observable winter subperiod are provided in Fig. 6. The Southwest and West
regions did not have an observable winter subperiod. The Southwest region (lettuce) had a
storage season of only 1 month for fall season and 1 month for spring season. Calculation of a
winter subperiod is not feasible since the storage period is so short based on our beginning and
end 14-day criteria. The West region (grapes) had a storage season of only 3 months and
temperatures did not drop low enough in the storage period for a discernible winter subperiod.
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Fig. 6 Length of winter subperiod by region in the early-, mid-, and late-century time slice for historical,
RCP4.5, and RCP8.5. Southwest and West region(s) did not have a winter subperiod for historical or projected
time slices

Each regional consecutive time slice contains lower winter subperiod length and higher
percentage changes than the previous time slice (e.g., 20202040 < 2040-2060 < 2060-2080).
All regions with a winter subperiod in RCP4.5 scenarios project a significant (»p <0.05)
decrease by the early-, mid-, and late-century time slice in mean length of winter subperiod
and winter percentage change compared with their historical reference period. Early-century
decreases in mean length of winter subperiod range from the smallest loss of 3.3 days in the
South region (peanuts) to the largest loss of 23.7 days in the Upper Midwest region (potatoes)
(Fig. 7a, b, c), indicating less cost-effective storage days. Mid-century decreases range from
the smallest loss of 4.2 days in the South region (peanuts) to the largest loss of 27.5 days in the
Upper Midwest region (potatoes). Late-century decreases range from the smallest loss of
5.3 days in the South region (peanuts) to the largest loss of 30.9 days in the Upper Midwest
region (potatoes). When examining the yearly mean of early-, mid-, and late-century time
slices (2020-2080), the South region (peanuts) will be least impacted with a yearly average
loss of 4.3 winter days and the Upper Midwest region (potatoes) will be most impacted with a
yearly loss of 27.4 winter days.

RCP4.5 early-century differences in percentage decrease in length of winter subperiod
range from a minimum loss in winter days of 5.8% in the South region (peanuts) to a
maximum loss of 16.9% in the Southeast region (peanuts) (Fig. 8a, b, ¢). Mid-century
differences range from a minimum loss of 6.3% in the South region (peanuts) to a maximum
loss of 17.8% in the Southeast region (peanuts). Late-century differences range from a
minimum loss of 6.7% in the South region (peanuts) to a maximum loss of 17.9% in the
Southeast region (peanuts). When examining the yearly mean of all three future time slices, the
South region (peanuts) will be least impacted with an average yearly decrease in winter length
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Fig. 7 Projected decrease in length of winter subperiod by region in the early-, mid-, and late-century time slice
for RCP4.5 (a, b, ¢) and RCP8.5 (d, e, f). Highest decreases in winter length are displayed in dark red. Southwest
and West regions did not have a winter period and are displayed in gray

of 6.3% and the Southeast region (peanuts) will be most impacted with an average yearly
decrease in winter length of 17.5%.

All regions in RCP8.5 project a significant (p < 0.05) decrease by the early-, mid-, and late-
century time slice in mean length of winter subperiod and winter length percentage change
compared with the historical reference period. Due to higher CO, concentrations, all RCP8.5
projections contain lower mean values than their respective RCP4.5 counterparts for each time
slice for both length of winter subperiod and percentage changes. Early-century decreases in
mean length of winter subperiod range from the smallest loss of 3.6 days in the South region
(peanuts) to the largest loss of 23.6 days in the Upper Midwest region (potatoes) (Fig. 7d, e, f).
Mid-century decreases range from the smallest loss of 6.0 days in the South region (peanuts) to
the largest loss of 31.1 days in the Upper Midwest region (potatoes). Late-century decreases
range from the smallest loss of 8.4 days in the South region (peanuts) to the largest loss
0f38.7 days in the Upper Midwest region (potatoes). When examining the yearly mean of all
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Fig. 8 Projected percentage decrease in length of winter by region in the early-, mid-, and late-century time slice
for RCP4.5 (a, b, ¢) and RCP8.5 (d, e, f). Highest decreases in winter percentage change are displayed in dark
red. Southwest and West regions did not have a winter period and are displayed in gray.

three future time slices, the South region (peanuts) will be least impacted with an average
yearly loss of 6.0 days and the Upper Midwest region (potatoes) will be most impacted with an
average yearly loss of 31.1 days.

RCP 8.5 early-century differences in percentage decrease in length of winter subperiod
range from a minimum loss in winter days of .8% in the South region (peanuts) to a maximum
loss of 16.3% in the Southeast region (peanuts) (Fig. 8d, e, f). Mid-century differences in
winter length range from a minimum loss of 7.0% in the South region (peanuts) to a maximum
loss of 19.6% in the Southeast region (peanuts). Late-century decreases in winter length range
from a minimum loss of 8.2% in the South region (peanuts) to a maximum loss 0f 23.0% in the
Southeast region (peanuts). When examining the yearly mean of all three future time slices, the
South region (peanuts) will be least impacted with an average yearly decrease in winter length
of 7.0% and the Southeast region (peanuts) will be most impacted with an average yearly
decrease in winter length of 19.6%.
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4 Discussion
4.1 Most impacted crops and regions in CONUS

All regions are anticipated to have yearly increases between 58 and 1045 SDDs. The largest
impact in SDD accumulation occurs for apples in both Northwest and Northeast regions in all
three time slices and both RCPs with yearly increases between 261 and 1045 SDDs. Increases
in SDD accumulation in the Northwest and Northeast regions and the potential corresponding
increase in storage costs may contribute to future apple scarcity since both regions combined
contribute to over $3billion in apple sales annually (USDA 2018). These SDD increases
during the Northeast storage season may be compounded by additional heat stress days
incurred during the growing season, thus leading to a decrease in yield and increase in food
scarcity (Wolfe et al. 2007).

SDD increases have a positive correlation with increasing temperatures and past research
has identified that CONUS temperatures are expected to increase throughout the twenty-first
century (Karmalkar and Bradley 2017; USGCRP 2014) as well as increasing heat stress in the
South and Southeast regions which can affect negatively future crop yields (Weatherly and
Rosenbaum 2017). Previous studies also showed that temperatures will continually increase in
specific regions of the country including the Upper Midwest region (Hayhoe et al. 2010),
Western and Northwest regions (Rupp et al. 2016), and Northeast region (Hristov et al. 2017).
The percentage change in SDD accumulation also reflects changes in storage requirements and
all regions are anticipated to have yearly SDD percentage increases between 5 and 63%.
Although Northwest and Northeast regions (apples) will have the highest SDD accumulation
increases, the largest percentage change in SDD accumulation occurs in the Ohio Valley
(tomatoes) and the Upper Midwest (potatoes) for all three time slices. SDD percentage changes
may reflect addit ional storage energy requirements affecting future storage costs and poten-
tially decrease food availability (Hadley et al. 2006; McFarland et al. 2015).

Decreases in the length of winter subperiod affect the number of available days that crops
can be stored at minimal costs (Winkler et al. 2018). The length of the winter subperiod is
influenced by ambient temperatures (higher or lower) and not all regions will be equally
affected by future changes in climate. Past research reiterates that climate change will reduce
regional length and intensity of winter in the Upper Midwest (Chin et al. 2018), Northeast
(Scott et al. 2008), and worldwide for fruit industries (Luedeling et al. 2011). Upper Midwest
(potato) storage facilities will experience the highest loss of winter days for all three time slices
and both RCPs (= 27.3 days and =31.1 days each year for RCP4.5 and RCP8.5, respectively).
This implies that storage costs are expected to be much higher in this region under future
scenarios since there are ~27 and ~ 31 fewer cost-effective storage days. But when looking at
percentage decrease in the length of winter subperiod, we find that the Southeast region
(peanuts) will be the most affected out of all three time slices and both RCPs (~17.5%
decrease and ~ 19.6% each year for RCP4.5 and RCP8.5, respectively). The Southeast region
(peanuts) winter subperiod length was already shorter than any other region (historical average
~ 120 winter days), but future climate change will continue to reduce the winter subperiod
length and may affect future food availability related to peanuts. Previous research suggests
that increases in both CO, and temperature will advance the maturation rates of peanuts
(Noorhosseini et al. 2018). Earlier maturation and harvest of peanuts will require longer cold
storage times and this will lead to an increase in SDD accumulation since storage needs to
begin earlier. Although SDD accumulation changes do not directly affect length of winter
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subperiod, our research has shown that increasing temperatures will lead to an increase in SDD
accumulation and a decrease in the winter subperiod (Figs. 3 and 6, respectively). Coupled
increases in SDD accumulation and decreases in winter subperiod length will lead to new
fiscal challenges faced by agronomists as they attempt to increase adaptive resilience of
agricultural systems to climate changes within the CONUS.

4.2 Potential costs associated with SDD accumulation and winter subperiod changes

This study demonstrates how changing climate can potentially impact crop storage conditions
of agricultural commodities over the CONUS. All 9 regions in RCP4.5 and RCP8.5 models
indicated an increase in SDD accumulation for early-, mid-, and late-century time slices and 7
regions projected a decrease in length of winter subperiod for early-, mid-, and late-century
time slices. The exact cost of 1 SDD is likely dependent upon storage facility location, facility
design, and temperature-control technology installed. Despite the difficulty of estimating the
exact cost of 1 SDD increase, increases in temperature will have immediate impacts on storage
costs over CONUS, varied by locations (Hadley et al. 2006; McFarland et al. 2015). Since
storage facilities rely on external energy for refrigeration, increases in temperature will lead to
an increase in energy required to maintain a constant base temperature (Saidur et al. 2002).
Research performed by Jaglom et al. (2014) suggests that increasing temperatures will cost the
US power sector an additional $50 billion by 2050 and some of these costs will be incurred by
the agricultural cold storage industries and ultimately consumers. When the length of the
winter subperiod is shortened, additional costs will be incurred to maintain base temperature.
Normal winter conditions allow for cost-effective storage since ambient temperatures are
below base temperature and very little cooling is required (Winkler et al. 2018). Storage
facilities could estimate costs associated with decreasing winter days by analyzing previous
storage cost data for their winter periods. It is important to note that the impacts on refriger-
ation machinery associated with both winter decrease and SDD increase are not mutually
exclusive. Prolonged SDD accumulation may impact facility operations by causing higher
thermal loads on machinery which may initiate frequent breakdow ns (Saidur et al. 2002).
Shorter winters may also mean that machinery must work longer, and this increased running
time will increase costs and may also contribute to premature breakdown or repair costs
(Jaglom et al. 2014).

4.3 Uncertainties and future work

Some uncertainty sources of this analysis must be considered when interpreting the projected
changes in storage conditions. Definitions for the winter-start and winter-end dates can be
altered based upon typical weather conditions for each region. A 0.25% change in SDD
accumulation was required for 14 days to determine the beginning and end of winter
subperiod. For simplicity, each region was given the same definition for winter period.
Changes in this 0.25% definition can alter the number of winter days for each region and
could allow for more localized planning based on geographical warm and cold spells.
Additionally, our investigation was only interested in heat accumulation and its effect on
storage conditions. Humidity regulation and controlled atmosphere are two additional energy-
consuming processes in cold storage that can be directly affected by temperature. These two
processes may be affected by climate change, but they were not explored during this study.
Furthermore, we used a specific range of storage dates for each crop (Table 2). If climate
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change alters planting or harvesting dates, then storage dates will be subsequently altered.
Storage period shifts are likely in the future and should be continually monitored for more
accurate changes in local cold storage conditions. Lastly, higher storage base temperatures can
greatly decrease the energy demands required for crop storage. Current storage base temper-
atures for specific crops may be too low, and increasing the base temperature could decrease
costs associated with storage. The USDA reported the optimal storage base temperature for
shelled peanuts should be 10 °C for 10 months (USDA 2016). This contrasts to a recent study
that identified that shelled peanuts can be stored at 13 °C for 1 year (Butts et al. 2017). This
3 °C change can have large impacts on daily costs of storage and may allow commaodities to be
stored for a longer period at lower costs. Therefore, additional research must be conducted to
ensure that current storage base temperatures are optimal for crop longevity, quality mainte-
nance, and low-cost storage.

Uncertainty is also inherent when assessing the future impacts of climate change and
interpretation of ensembles must be conducted carefully (Winkler 2016). In our analyses, we
employed 20 GCMs with two RCPs to create our ensemble of climate projections. Some
GCMs predict much higher SDD accumulation values than other GCMs, but e nsemble
averages allow for a better interpretation of potential outcomes. The delta change factor
method used in this study does allow for climate impact assessment based on historical daily
climate measurements and GCMs historical simulations and future projections, but the delta
method does not take into consideration changes in future climate variability, such as extreme
warm or cold spells (Winkler et al. 2018). It is important to note that the magnitude of
projected changes in SDD accumulation is larger for RCP8.5 than RCP4.5, further reflecting
uncertainty. When utilized correctly, GCM ensembles allow for farmers, storage operators,
and policy makers to plan ahead for future climate scenarios by understanding potential
storage condition changes. Logistic planning for worst-case scenarios allows for potential
extreme climate scenarios to have a lesser impact on facility infrastructure. Short-term climate
adaptations may simply require more advanced refrigeration systems, but long-term adapta-
tions may require significant planning and investment in new infrastructure.

5 Conclusion

This study shows that climate change will cause an increase in SDD accumulation and a decrease
in length of winter subperiod in all US regions. The aforementioned changes can reduce food
availability within each region if postharvest losses become substantial. For future SDD accumu-
lation, Northeast and Northwest apples stored at 1 °C are expected to be affected most by climate
change. For SDD percentage changes, Upper Midwest potatoes stored at 12.8 °C and dropped to
8 °C and Ohio Valley tomatoes stored at 14.4 °C will be impacted the most. Upper Midwest
potatoes stored at 12.8 °C and dropped to 8 °C will experience much shorter winter subperiods
than they are accustomed. And Southeast region peanuts stored at 13 °C will experience the
largest percentage decrease in winter subperiod. In future climate scenarios, Upper Midwest
region potatoes may be the most impacted crop due to higher SDD percentage increases and
shorter winter lengths when compared with their historical reference period. While climate
projections are uncertain, with inclusion of multiple GCMs the uncertainty can be quantified.
This study details the role of global warming on cold storage conditions, which until recently have
previously been largely ignored. Cold storage impact assessments for various crops should
become routine when considering potential climate change scenarios.

@ Springer



1304 Climatic Change (2020) 162:1287-1305

Funding This research is supported in part by the Alabama Agricultural Experiment Station and the Hatch
program of the USDA National Institute of Food and Agriculture (NIFA) (Accession No. 1012578), by the NSF
Research Traineeship Program (Award Number: 1922687), and by the Auburn University Presidential Award for
Interdisciplinary Research.

References

Abatzoglou JT (2013) Development of gridded surface meteorological data for ecological applications and
modelling. International Journal of Climatology 33:121-131

Abatzoglou JT, Brown TJ (2012) A comparison of statistical downscaling methods suited for wildfire applica-
tions. International Journal of Climatology 32:772-780

Abatzoglou JT, Williams AP (2016) Impact of anthropogenic climate change on wildfire across Western US
forests. Proceedings of the National Academy of Sciences 113:11770-11775

Akinsanola AA et al (2018) Evaluation of rainfall simulations over West Africa in dynamically downscaled
Cmip5 global circulation models. Theoretical and Applied Climatology:437-450

Anandhi A et al (2011) Examination of change factor methodologies for climate change impact assessment.
Water Resources Research 47

Barbero R et al (2015) Climate change presents increased potential for very large fires in the contiguous United
States. International Journal of Wildland Fire 24:892-899

Bediako JA et al (2009) Crop storage efficiency and market competitiveness: case of groundnut and cowpea in
Ghana. African Journal of Marketing Management 1:081-088

Bohl, W. H., Johnson, S. B. (2010). Commercial potato production in North America.

Bron IU et al (2005) Temperature-related changes in respiration and Q10 coefficient of guava. Science
Agriculture 62:458-463

Butts CL et al (2017) Alternative storage environments for shelled peanuts. Peanut Science 44:111-123

Cammarano D, Tian D (2018) The effects of projected climate and climate extremes on a winter and summer
crop in the Southeast USA. Agricultural and Forest Meteorology 248:109-118

Chin N et al (2018) Assessing potential winter weather response to climate change and implications for tourism
in the U.S. Great Lakes and Midwest. Journal of Hydrology: Regional Studies 19:42-56

Ertugrul M (2019) Future forest fire danger projections using global circulation models (Gems) in Turkey.
Fresenius Environmental Bulletin 28:3261-3269

Fowler HJ et al (2007) Linking climate change modelling to impacts studies: recent advances in downscaling
techniques for hydrological modelling. International Journal of Climatology 27:1547-1578

Hadley SW et al (2006) Responses of energy use to climate change: a climate modeling study. Geophysical
Research Letters 33

Hayhoe K et al (2010) Regional climate change projections for Chicago and the US Great Lakes. Journal of Great
Lakes Research 36:7-21

Hristov AN et al (2017) Climate change effects on livestock in the Northeast US and strategies for adaptation.
Climatic Change 146:33-45

Jaglom WS et al (2014) Assessment of projected temperature impacts from climate change on the U.S. electric
power sector using the Integrated Planning Model®. Energy Policy 73:524-539

James SJ, James C (2010) The food cold-chain and climate change. Food Research International 43:1944-1956

Karl TR, Koss WJ (1984) Regional and national monthly, seasonal, and annual temperature,weighted by area,
1895-1983

Karmalkar AV, Bradley RS (2017) Consequences of global warming of 1.5 degrees C and 2 degrees C for
regional temperature and precipitation changes in the contiguous United States. PLoS One 12:¢0168697

Kerns DL et al (1999) Guidelines for head lettuce production in Arizona. University of Arizona

Klos PZ et al (2014) Extent of the rain-snow transition zone in the Western U.S. under historic and projected
climate. Geophysical Research Letters 41:4560-4568

Krishnakumar TD (2002) Design of cold storage for fruits and vegetables. Initiative I-CTCR. ICAR-Central
Tuber Crops Research Initiative, Trivandrum

Luedeling E et al (2011) Climate change affects winter chill for temperate fruit and nut trees. PLoS One 6:¢20155

McFarland J et al (2015) Impacts of rising air temperatures and emissions mitigation on electricity demand and
supply in the United States: a multi-model comparison. Climatic Change 131:111-125

Moss RH et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463:
747-756

Mutegi CK et al (2013) Effect of storage conditions on quality and aflatoxin contamination of peanuts (Arachis
Hypogaea L.). International Journal of AgriScience 3:746-758

ND.gov. (2019). Nd State Seed Department Contacts. March 07 2019 https://www.nd.gov/seed/.

@ Springer



Climatic Change (2020) 162:1287-1305 1305

Noorhosseini SA et al (2018) Modeling the impact of climate change on peanut production on the basis of
increase 2 degree C temperature in future environmental conditions of Guilan Province, Iran. International
Journal of Agricultural Management and Development (IJAMAD) 8:257-273

Parrish JT, Peterson F (1988) Wind directions predicted from global circulation models and wind directions
determined from eolian sandstones of the western United States - a comparison. Sedimentary Geology 56:
261-282

Paull RE (1998) Effect of temperature and relative humidity on fresh commodity quality. Postharvest Biology
and Technology 15:263-277

Pereira LS et al (2015) Crop evapotranspiration estimation with Fao56: past and future. Agricultural Water
Management 147:4-20

Raymundo R et al (2018) Climate change impact on global potato production. European Journal of Agronomy
100:87-98

Rupp DE et al (2016) Seasonal spatial patterns of projected anthropogenic warming in complex terrain: a
modeling study of the Western US. Climate Dynamics 48:2191-2213

Saidur R et al (2002) Role of ambient temperature, door opening, thermostat setting position and their combined
effect on refrigerator-freezer energy consumption. Energy Conversion and Management 46:845-854

Satterthwaite FE (1946) An approximate distribution of estimates of variance components. Biometrics Bulletin 2:
110-114

Scott D et al (2008) Climate change vulnerability of the US Northeast winter recreation— tourism sector.
Mitigation and Adaptation Strategies for Global Change 13:577-596

Shabbbar A, Bonsal B (2003) An assessment of changes in winter cold and warm spells over Canada. Natural
Hazards 29:173-188

Singh PK et al (2017) Impact of projected climate change on rice (Oryza Sativa L.) yield using ceres-rice model
in different agroclimatic zones of India. Current Science 112:108-115

Tebaldi C, Knutti R (2007) The use of the multi-model ensemble in probabilistic climate projections.
Philosophical Transcations of the Royal Society A: Mathematical, Physical and Engineering Sciences
365:2053-2075

UC. (2019). Uc Cooperative Extension - Kern County. March 09 2019 http://cekern.ucanr.edu/.

UGA. (2019). Food preservation. April 20 2019 https://extension.uga.edu/topic-areas/food-health/food-
preservation.html.

USDA (2016) In: Gross KC, Wang CY, Saltveit M (eds) The commercial storage of fruits, vegetables, and florist
and nursery stocks. Agricultural Research Service, Washington, D.C.

USDA. (2018). Statistics by state. https://www.nass.usda.gov/Statistics_by_State/index.php.

USGCRP. (2014). Climate change impacts in the United States: The Third National Climate Assessment. U.S.
Government Printing Office, U.S. Global Change Research Program.

van Vuuren DP et al (2011) The representative concentration pathways: an overview. Climatic Change 109:5-31

Watson, J. A., et al. (2016). Postharvest storage, packaging and handling of specialty crops: a guide for Florida
small farm producers. In Sciences H (ed.). University of Florida.

Weatherly JW, Rosenbaum MA (2017) Future projections of heat and fire-risk indices for the contiguous United
States. Journal of Applied Meteorology and Climatology 56:863—-876

Winkler JA (2016) Embracing complexity and uncertainty. Annals of the American Association of Geographers
106:1418-1433

Winkler JA et al (2018) Potential impacts of climate change on storage conditions for commercial agriculture: an
example for potato production in Michigan. Climatic Change 151:275-287

Wolfe DW et al (2007) Projected change in climate thresholds in the Northeastern U.S.: implications for crops,
pests, livestock, and farmers. Mitigation and Adaptation Strategies for Global Change 13:555-575

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Affiliations

Kyle Lesinger - Di Tian" « Courtney P. Leisner? « Alvaro Sanz-Saez"

! Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, USA

2 Department of Biological Sciences, Auburn University, Auburn, AL, USA

@ Springer



