
 

Synthesis of 1,1-Diboryl Alkenes Using the Boryl-Heck Reaction  
Olamide O. Idowu, Jacob C. Hayes, William B. Reid, Donald A. Watson 

Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States  

 

ABSTRACT:  The synthesis of 1,1-diboryl alkenes from ter-
minal alkenes is reported. 1,1-Regioselective addition is ob-
served for both conjugated and unconjugated alkenes, allow-
ing for a single method to prepare a wide range of 1,1-diboryl 
alkenes.  

1,1-Diboryl alkenes are a highly useful class of vinyl boronic 
esters,1 as they allow for stereoselective construction of pol-
ysubstituted alkenes via sequential stereoselective Suzuki-
Miyaura cross-coupling reactions.2 They can also serve as pre-
cursors to 1,1-dihaloolefins and 1,1-diboryl alkanes, can be ox-
idized to give the corresponding carboxylic acid,3 and have 
found additional uses.4  

Traditionally, 1,1-diborylalkenes have been accessed by stoi-
chiometric lithiations of tetraborylmethane or vinyl halides.5 In 
addition, multi-step methods involving the hydroboration of 
pre-formed alkynylboronates have also been reported.6 Re-
cently, milder and more efficient single-step catalytic entries 
into 1,1-diborylalkenes have been described. These include di-
borylation of acetophenones, vinyl ethers, vinyl sulfides, and 
conjugated alkynes using various catalysts.7 While an improve-
ment over other methods, these transformations are largely lim-
ited to the preparation of products bearing conjugated unsatu-
rated groups adjacent to the diborylalkene. In 2017, Chirik re-
ported a cobalt catalyzed diborylation of terminal alkynes.3,8,9 
This, and closely related processes,4a, 10 currently provide the 
most general access to 1,1-diborylalkenes as they can operate 
on both conjugated and aliphatic alkynes. However, these latter 
processes require the use of alkyne starting materials.   

Terminal alkenes present another highly useful class of po-
tential starting materials, as they are widely available, generally 
inexpensive, and highly stable. While the diborylation of termi-
nal alkenes is known via dehydrogenative borylation, most cat-
alysts are limited to the use of aromatic alkenes (Scheme 1A).11 
Two catalysts have been described for the diborylation of ter-
minal aliphatic alkenes, but both selectively lead to 1,2-diboryl 
products (Scheme 1B).12 Thus, a general method for the 1,1-
diborylation of terminal alkenes that tolerates both aromatic and 
aliphatic alkenes has remained unknown.  

 
 

Scheme 1. Diborylation of Alkenes 

 

Recently, we have developed a novel approach to alkene 
borylation using electrophilic boron reagents and palladium-ca-
talysis via a boryl-Heck reaction. In our prior studies, we re-
ported the mono-borylation of both terminal and internal al-
kenes to provide vinyl boronate esters.13,14 In the latter work, we 
developed a highly active catalyst system that was capable of 
engaging more hindered alkenes. We postulated that this more 
reactive catalyst system might allow for polyborylation of less 
hindered terminal alkenes. Herein, we now report that terminal 
alkenes can be diborylated using boryl-Heck protocols (Scheme 
1C). Importantly, the developed reaction conditions tolerate 
both aromatic and aliphatic mono-substituted alkenes, and in 
both cases, give exclusively 1,1-diborylalkenes in good yields. 
Mechanistic studies reveal that this process proceeds via two 
sequential mono-borylation events. This chemistry has been en-
abled by the identification of highly active reaction conditions 
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that can be performed without the aid of a glovebox, making 
this an attractive and practical process for production of 1,1-
diborylalkenes. 

We began our investigation using 4-tert-butyl styrene (1) as 
the model substrate. Using the previously developed conditions 
[2.0 equiv of catBBr, 5 equiv Cy2NMe, with 2.5 mol% (Jes-
sePhosPdI2)2, followed by workup with pinacol], we were 
pleased to see significant amounts of the desired diborylalkene 
3 (65%), along with some of the mono-boryl product (2). Isola-
tion and characterization revealed that both products resulted 
from exclusive borylation on the terminal carbon of the alkene. 
Gratifyingly, use of additional catBBr resulted in nearly quan-
titative yield of 3. In no case, did we detect products resulting 
from additional borylation.  
Table 1. Reaction Optimizationa  

 

entry 
equiv 
catBBr 

conditions yield of 
2 (%) 

yield of 
3 (%) 

1 2.0 solid catBBr 
added  35 65 

2 3.0 solid catBBr 
added 6 93 

3 4.0 solid catBBr 
added 0 99 

4b 4.0 
catBBr added as 
aged solution in 

PhCF3c 
19 81 

5 4.0 run with PhCH3 
in place of PhCF3 

12 88 

6b 4.0 
catBBr added as 
aged solution in 

PhCH3 
0 99 

a Yields determined by 1H NMR against a 1,3,5-trimethoxyben-
zene internal standard. b Using Schlenk-line conditions. c Solution 

prepared 6 h before use.  

The initial optimization studies, however, had been con-
ducted with the aid of a glovebox and had involved the addition 
of solid catBBr to the reaction mixture. In an effort to maximize 
the utility of the method, we wished to develop conditions that 
could be conducted under standard Schlenk conditions, without 
need for a glovebox, and that were compatible with the air-sen-
sitive catBBr. Towards this end, we initially investigated such 
“bench-top” reactions using a solution of catBBr prepared in 
PhCF3 (the reaction solvent). To our disappointment, however, 
unless the solution was used immediately after preparation, we 
found that the reactions were considerably less effective when 
setup in this manner, resulting significant amounts of mono-
borylation product and variable yields (Table 1, entry 4). 11B 
NMR studies revealed that catBBr decomposes in PhCF3 over 
a period of hours at rt, and more rapidly at 70 °C, explaining the 
inconsistencies in our preliminary bench-top experiments. In 
contrast, similar studies revealed that catBBr solutions in 

toluene are much more stable; even after heating at 70 °C for 2 
days, we could not detect decomposition via 11B NMR.  

Unfortunately, attempts to run the diborylation reaction using 
only toluene as the solvent was also met with suboptimal results 
(entry 5). Ultimately, we found that introduction of the toluene 
solution of catBBr to a reaction setup in PhCF3 (final solvent 
ratio 1:1) provided the ultimate combination of reagent stabil-
ity, bench-top accessibility, and productivity, providing the de-
sired product 3 in 99% assay yield. Using this protocol, catBBr 
solutions could be stored for at least a week at rt without ad-
versely affecting the outcome of the reaction. Further, we 
ultimately found that the mixed solvent system was important 
for high yield with aliphatic alkenes (see below), regardless of 
the setup conditions.15  

With the optimized, bench-top conditions in hand, we ex-
plored the scope of the reaction (Scheme 1). The model product 
3 was isolated in an average of 93% yield. Other electron-rich 
styrenes also underwent diborylation smoothly. These included 
those with other alkyl substituents (4), as well as stronger elec-
tron-donors (5-6). In the case of N,N-dimethylaniline 6, we 
found that slow addition of the styrene to the reaction mixture 
provided superior results. We attribute this to reversible binding 
of the dimethylamino group of the starting material to the cat-
BBr, which evidently impedes the reaction when present in high 
concentrations.13a, 16 Product 4 also shows that increased steric 
bulk on the arene can be tolerated.  
Scheme 1. Scope of Styrenyl Derivativesa  

 
a Isolated yields, 1 mmol scale. b Alkene added over 2 h. 

Electron-poor styrenes also generally performed well in the 
reaction (7-8). One exception was for cyanoarenes, which failed 
to provide product (9). We believe the nitrile group competi-
tively binds either the catalyst or boron reagent. Finally, both 
aryl halides (10-12) and a variety of heterocycles (13-14) were 
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tolerated in the reaction, allowing for highly functionalized 
products to be prepared.  
Scheme 2. Scope of Aliphatic/Unconjugated Alkenesa  

 
a Isolated yields, 1 mmol scale. 

We next examined the use of aliphatic terminal alkenes in the 
reaction (Scheme 2). To our delight, not only did these com-
pounds prove to be suitable substrates, but they also gave ex-
clusively 1,1-diborylalkenes as products. This result makes the 
boryl-Heck approach to 1,1-diborylalkenes unique, as it is the 
only method that allows the use of both aromatic and aliphatic 
alkenes as substrates. Both simple alkenes (15) and those con-
taining a variety of functional groups (16-22) could be used and 
resulted in good to excellent yields of products. Tolerated func-
tional groups include aromatic groups (16), alkyl chlorides and 
bromides (17-18), alkyl silanes (19), ethers (20), silyl ethers 
(21), and non-enolizable esters (22). In general, these reactions 
were as efficient as for the aromatic alkenes, however the iso-
lated yields were suppressed due to the slight sensitivity of the 
products to column chromatography.17 We also investigated 
branched aliphatic substrates. For those with allylic branching, 
only mono-borylation was observed (23).18 However, fully sub-
stitution at the homoallylic position was well tolerated (24). Fi-
nally, the reaction with both aromatic and aliphatic substrates 
could be scaled up to 10 mmol scale (10 times larger) and sim-
ilar yields were achieved (see 3 and 15; Scheme 1 and 2) 

To probe the mechanism, we conducted a time course study 
using the model reaction (Figure 1).15 Consistent with our opti-
mization studies, we found that the reaction proceeds via initial 
monoborylation to provide 2. Subsequently, 2 is then converted 
to the product 3 in a second, but slower boryl-Heck reaction. 
This time study is consistent with the proposed mechanism 
shown in Figure 2.19  

 

 
Figure 1. Time Study for the Diborylation of 4-tert-butyl sty-
rene 

In conclusion, we have shown that the boryl-Heck reaction is 
capable of diborylating terminal alkenes. Unlike previously re-
ported systems for alkene diborylation, this reaction is capable 
of utilizing both aromatic and aliphatic alkenes and provides 
1,1-diboryl products regardless of the nature of the substrate. 
Scope studies show that the process is tolerant of a wide array 
of functional groups under bench-top reaction conditions. 
Mechanistic studies demonstrate that the reaction proceeds via 
two sequential mono-boryl-Heck reactions and was enabled by 
the identification of a highly reactive catalyst system. Overall, 
this new methodology provides a unified strategy for the syn-
thesis of 1,1-diboryl alkenes from inexpensive and readily 
available alkene starting materials.  

 

 
Figure 2. Proposed Mechanism for the Diborylation of Al-
kenes 
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