Synthesis of 1,1-Diboryl Alkenes Using the Boryl-Heck Reaction
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ABSTRACT: The synthesis of 1,1-diboryl alkenes from ter-
minal alkenes is reported. 1,1-Regioselective addition is ob-
served for both conjugated and unconjugated alkenes, allow-
ing for a single method to prepare a wide range of 1,1-diboryl
alkenes.

1,1-Diboryl alkenes are a highly useful class of vinyl boronic
esters,' as they allow for stereoselective construction of pol-
ysubstituted alkenes via sequential stereoselective Suzuki-
Miyaura cross-coupling reactions.” They can also serve as pre-
cursors to 1,1-dihaloolefins and 1,1-diboryl alkanes, can be ox-
idized to give the corresponding carboxylic acid,’ and have
found additional uses.*

Traditionally, 1,1-diborylalkenes have been accessed by stoi-
chiometric lithiations of tetraborylmethane or vinyl halides.’ In
addition, multi-step methods involving the hydroboration of
pre-formed alkynylboronates have also been reported.® Re-
cently, milder and more efficient single-step catalytic entries
into 1,1-diborylalkenes have been described. These include di-
borylation of acetophenones, vinyl ethers, vinyl sulfides, and
conjugated alkynes using various catalysts.” While an improve-
ment over other methods, these transformations are largely lim-
ited to the preparation of products bearing conjugated unsatu-
rated groups adjacent to the diborylalkene. In 2017, Chirik re-
ported a cobalt catalyzed diborylation of terminal alkynes.*%’
This, and closely related processes,* ' currently provide the
most general access to 1,1-diborylalkenes as they can operate
on both conjugated and aliphatic alkynes. However, these latter
processes require the use of alkyne starting materials.

Terminal alkenes present another highly useful class of po-
tential starting materials, as they are widely available, generally
inexpensive, and highly stable. While the diborylation of termi-
nal alkenes is known via dehydrogenative borylation, most cat-
alysts are limited to the use of aromatic alkenes (Scheme 1A).!"!
Two catalysts have been described for the diborylation of ter-
minal aliphatic alkenes, but both selectively lead to 1,2-diboryl
products (Scheme 1B)."? Thus, a general method for the 1,1-
diborylation of terminal alkenes that tolerates both aromatic and
aliphatic alkenes has remained unknown.
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Recently, we have developed a novel approach to alkene
borylation using electrophilic boron reagents and palladium-ca-
talysis via a boryl-Heck reaction. In our prior studies, we re-
ported the mono-borylation of both terminal and internal al-
kenes to provide vinyl boronate esters.'>!* In the latter work, we
developed a highly active catalyst system that was capable of
engaging more hindered alkenes. We postulated that this more
reactive catalyst system might allow for polyborylation of less
hindered terminal alkenes. Herein, we now report that terminal
alkenes can be diborylated using boryl-Heck protocols (Scheme
1C). Importantly, the developed reaction conditions tolerate
both aromatic and aliphatic mono-substituted alkenes, and in
both cases, give exclusively 1,1-diborylalkenes in good yields.
Mechanistic studies reveal that this process proceeds via two
sequential mono-borylation events. This chemistry has been en-
abled by the identification of highly active reaction conditions



that can be performed without the aid of a glovebox, making
this an attractive and practical process for production of 1,1-
diborylalkenes.

We began our investigation using 4-tert-butyl styrene (1) as
the model substrate. Using the previously developed conditions
[2.0 equiv of catBBr, 5 equiv Cy,NMe, with 2.5 mol% (Jes-
sePhosPdl,),, followed by workup with pinacol], we were
pleased to see significant amounts of the desired diborylalkene
3 (65%), along with some of the mono-boryl product (2). Isola-
tion and characterization revealed that both products resulted
from exclusive borylation on the terminal carbon of the alkene.
Gratifyingly, use of additional catBBr resulted in nearly quan-
titative yield of 3. In no case, did we detect products resulting
from additional borylation.
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The initial optimization studies, however, had been con-
ducted with the aid of a glovebox and had involved the addition
of solid catBBr to the reaction mixture. In an effort to maximize
the utility of the method, we wished to develop conditions that
could be conducted under standard Schlenk conditions, without
need for a glovebox, and that were compatible with the air-sen-
sitive catBBr. Towards this end, we initially investigated such
“bench-top” reactions using a solution of catBBr prepared in
PhCF; (the reaction solvent). To our disappointment, however,
unless the solution was used immediately after preparation, we
found that the reactions were considerably less effective when
setup in this manner, resulting significant amounts of mono-
borylation product and variable yields (Table 1, entry 4). ''B
NMR studies revealed that catBBr decomposes in PhCF3 over
a period of hours at rt, and more rapidly at 70 °C, explaining the
inconsistencies in our preliminary bench-top experiments. In
contrast, similar studies revealed that catBBr solutions in

toluene are much more stable; even after heating at 70 °C for 2
days, we could not detect decomposition via ''B NMR.

Unfortunately, attempts to run the diborylation reaction using
only toluene as the solvent was also met with suboptimal results
(entry 5). Ultimately, we found that introduction of the toluene
solution of catBBr to a reaction setup in PhCF; (final solvent
ratio 1:1) provided the ultimate combination of reagent stabil-
ity, bench-top accessibility, and productivity, providing the de-
sired product 3 in 99% assay yield. Using this protocol, catBBr
solutions could be stored for at least a week at rt without ad-
versely affecting the outcome of the reaction. Further, we
ultimately found that the mixed solvent system was important
for high yield with aliphatic alkenes (see below), regardless of
the setup conditions.'?

With the optimized, bench-top conditions in hand, we ex-
plored the scope of the reaction (Scheme 1). The model product
3 was isolated in an average of 93% yield. Other electron-rich
styrenes also underwent diborylation smoothly. These included
those with other alkyl substituents (4), as well as stronger elec-
tron-donors (5-6). In the case of N,N-dimethylaniline 6, we
found that slow addition of the styrene to the reaction mixture
provided superior results. We attribute this to reversible binding
of the dimethylamino group of the starting material to the cat-
BBr, which evidently impedes the reaction when present in high
concentrations.'** ' Product 4 also shows that increased steric
bulk on the arene can be tolerated.

Scheme 1. Scope of Styrenyl Derivatives®
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Electron-poor styrenes also generally performed well in the
reaction (7-8). One exception was for cyanoarenes, which failed
to provide product (9). We believe the nitrile group competi-
tively binds either the catalyst or boron reagent. Finally, both
aryl halides (10-12) and a variety of heterocycles (13-14) were



tolerated in the reaction, allowing for highly functionalized
products to be prepared.

Scheme 2. Scope of Aliphatic/Unconjugated Alkenes”
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We next examined the use of aliphatic terminal alkenes in the
reaction (Scheme 2). To our delight, not only did these com-
pounds prove to be suitable substrates, but they also gave ex-
clusively 1,1-diborylalkenes as products. This result makes the
boryl-Heck approach to 1,1-diborylalkenes unique, as it is the
only method that allows the use of both aromatic and aliphatic
alkenes as substrates. Both simple alkenes (15) and those con-
taining a variety of functional groups (16-22) could be used and
resulted in good to excellent yields of products. Tolerated func-
tional groups include aromatic groups (16), alkyl chlorides and
bromides (17-18), alkyl silanes (19), ethers (20), silyl ethers
(21), and non-enolizable esters (22). In general, these reactions
were as efficient as for the aromatic alkenes, however the iso-
lated yields were suppressed due to the slight sensitivity of the
products to column chromatography.'” We also investigated
branched aliphatic substrates. For those with allylic branching,
only mono-borylation was observed (23).'® However, fully sub-
stitution at the homoallylic position was well tolerated (24). Fi-
nally, the reaction with both aromatic and aliphatic substrates
could be scaled up to 10 mmol scale (10 times larger) and sim-
ilar yields were achieved (see 3 and 15; Scheme 1 and 2)

To probe the mechanism, we conducted a time course study
using the model reaction (Figure 1).* Consistent with our opti-
mization studies, we found that the reaction proceeds via initial
monoborylation to provide 2. Subsequently, 2 is then converted
to the product 3 in a second, but slower boryl-Heck reaction.
This time study is consistent with the proposed mechanism
shown in Figure 2."
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Figure 1. Time Study for the Diborylation of 4-tert-butyl sty-
rene

In conclusion, we have shown that the boryl-Heck reaction is
capable of diborylating terminal alkenes. Unlike previously re-
ported systems for alkene diborylation, this reaction is capable
of utilizing both aromatic and aliphatic alkenes and provides
1,1-diboryl products regardless of the nature of the substrate.
Scope studies show that the process is tolerant of a wide array
of functional groups under bench-top reaction conditions.
Mechanistic studies demonstrate that the reaction proceeds via
two sequential mono-boryl-Heck reactions and was enabled by
the identification of a highly reactive catalyst system. Overall,
this new methodology provides a unified strategy for the syn-
thesis of 1,1-diboryl alkenes from inexpensive and readily
available alkene starting materials.
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Figure 2. Proposed Mechanism for the Diborylation of Al-
kenes
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We also investigated the preparation of stereo-defined 1,1-
diborylalkenes containing two different boronic esters. One-pot
procedures led to complex mixtures, but we could borylate trans-1-
styrenyl-(pinacolato)boronic esters with catBBr under the reaction
conditions to deliver the mixed 1,1-diborylalkenes as single geometric
isomers. However, because of instability of the catechol-containing
1,1-diborylalkenes and the inefficiency of this two-step process, and
because the boryl groups of trisubstituted 1,1-diboryl alkenes already
exhibit distinct reactivity (see Ref. 2), we did not pursue this further.
See Supporting Information.



