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Abstract

Regions that produce a large supply of agriculture commodities can be susceptible to crop failure,
thus causing concern for global food security. The contiguous United States, as one of the major
agricultural producers in the world, is influenced by several large-scale climate oscillations that
contribute to climate variability: Atlantic Multidecadal Oscillation (AMO), North Atlantic
Oscillation (NAO), El-Nifio Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO) and
Pacific-North American (PNA). Since local weather conditions are associated with these climate
oscillations through teleconnections, they are potentially causing changes of crop failure risks. The
objective of this study is to assess climate-induced changes of annual crop failure risks for maize
and winter wheat from 1960 to 2016, by analyzing the associations of large-scale climate
oscillations with the frequency of crop failure in the rainfed regions of the United States using a
Bayesian approach. The analysis revealed that crop failure frequencies showed contrast spatial
patterns and different extent under different climate oscillation phases. Among individual
oscillations, the positive PNA and negative AMO resulted in the most substantial increase in maize
and winter wheat crop failures over a high percentage of climate divisions, respectively. Among
oscillation combinations, the positive AMO and negative PDO and the positive AMO and positive
PDO resulted in the highest percentage of climate divisions experiencing significant increase of
maize and winter wheat crop failures, respectively. Random forest models with climate oscillations
accurately predicted probabilities of crop failure, with the inclusion of local surface climate
variables decreased or increased the predictive accuracy, depending on regions. These results
revealed the plausible drivers of long-term changes of U.S. crop failure risks and underscore the
importance for improving climate oscillation forecasting for early warning of food insecurity.

1. Introduction

Agriculture systems in the modern era are becom-
ing more interconnected, relying on high production
regions deemed breadbaskets. Breadbaskets located in
the mid-latitudes are more vulnerable (Teixeira et al
2013) especially as crop diversity is reduced (Lesk et al
2016). Many environmental and non-environmental
factors contribute to yield decreases and crop failure
such as drought, pests, political turmoil or a combin-
ation of factors (Sperling 1999, Goodwin 2001, Oerke
2006, Lesk et al 2011, Lesk et al 2016, Gaupp et al
2017). Globally, 30% of yield reductions are due to
weather extremes (Gbegbelegbe et al 2014) and 39%
of United States crop failure variation is attributed to

© 2020 The Author(s). Published by IOP Publishing Ltd

the combination of temperature, precipitation, and
soils (Mendelsohn 2007). The history of crop failure
in the United States has experienced several events
since 1980, the most recent being the droughts of 1988
and 2012, and the flooding of 1993. All three events
caused multi-billion dollar losses in agriculture and
property damages, resulting in crop failure ranged
from around 20% to nearly 70% in regions around
the Midwest (National Oceanic and Atmospheric
Administration 1988, Kogan 2002, Rosenzweig et al
2002, Rippey 2015).

Globally, one-third of yield variability can be
attributed to climate variability (Ray et al 2015),
which impacts two-thirds of the global cropland,
including breadbaskets (Heino et al 2018). Climate
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variability can be caused by reoccurring large-
scale ocean-atmospheric circulations called climate
oscillations. One oscillation, the El Nifio South-
ern Oscillation (ENSO), has been the subject of
many agricultural climate impact studies at regional
or global scales (e.g. Hansen et al 1998, Martinez
et al 2009, Tack and Ubilava 2013, 2015, lizumi
et al 2014, Anderson et al 2017, 2018, 2019, FAO,
I[FAD, UNICEE, WFP, WHO 2018, Ubilava and
Abdolrahimi 2019). Besides ENSO, there are differ-
ent climate oscillations in Atlantic and Pacific oceans
influencing global agriculture through teleconnec-
tions. The Atlantic Multidecadal Oscillation (AMO)
causes changes in precipitation promoting drought in
the United States and temperature changes in Brazil
and China (Enfield et al 2001, McCabe et al 2004,
Knight et al 2006, Li and Bates 2007). The North
Atlantic Oscillation (NAO) prominently influences
the intensity of winter conditions in Asia, Europe,
and the United States (Visbeck 2002, Wang and You
2004). Similar to ENSO, Pacific Decadal Oscillation
(PDO) and Pacific North American (PNA) result in
less precipitation in the Ohio and Tennessee River val-
leys and more precipitation along with the Southeast
coastal states (Di Liberto 2016). Influences in agri-
culture production have also been linked to these cli-
mate oscillations regionally and globally (lizumi et al
2014; Ray et al 2015, Anderson et al 2019). While
European agriculture experiences decreases in wheat
and varied spatial yield response from maize under
negative NAO conditions, the United States shows
a small increase in the average of wheat and maize
yields (Kim and McCarl 2005). PDO and ENSO inter-
actions cause yield changes in the Midwest United
States (Henson et al 2017). Maize yields in the south-
east United States are founded to be affected by PNA
(Martinez et al 2009). While these previous studies
have explored the relations between climate oscil-
lations and crop yield variability, few studies have
focused on revealing the linkage between crop failures
and all the aforementioned influential climate oscilla-
tions in Atlantic and Pacific oceans.

Our recent study (Schillerberg et al 2019) has
explored spatial and temporal variability of 5-year
moving average yields of maize and winter wheat
crops and their linkages with climate oscillations,
and found AMO is a major factor associated with
dominant spatial and temporal variations of maize
and winter wheat yields in the rainfed regions of the
United States, and the categorical forecasts of low and
high yields were well predicted by climate indexes. As
a step forward, this paper aims to explore the connec-
tions between annual crop failure events and monthly
climate oscillations considering the uncertainties in
the teleconnections of climate oscillations and maize
and winter wheat crop failure risks over the rainfed
regions of the contiguous United States (CONUS), a
breadbasket of the world. Methodologically, regres-
sion models have been widely used for assessing
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climate impacts on agriculture (e.g. Tack and Ubilava
2013, 2015; Anderson et al 2017, Blanc and Schlen-
ker 2017, Ubilava and Abdolrahimi 2019). However,
the small number of samples for different phases of
climate oscillations means that the robustness of the
assessment for quantifying the linkages between crop
yields and climate oscillations is inherently uncer-
tain. This study uses a Bayesian approach, which fre-
quencies of crop failures as a posterior distribution
conditioned on the phases of climate oscillations,
allowing us to quantify the uncertainties of the influ-
ence of climate oscillations on crop failure frequen-
cies using the conditional posterior distribution. Fol-
lowing each analysis, there is a discussion of probable
causes leading to crop failure, resulting from known
impacts of climate oscillations. Finally, random forest
models with climate oscillations as predictors and
local surface climate variables as control predictors
are developed and evaluated for crop failure predic-
tions. The knowledge and information gained from
this study will be useful for informing food security
management, agribusiness, and climate risk manage-
ment in agriculture.

2. Data and methods

2.1. Study area, yield data, climate indexes, and
local surface climate variables

The study area for this research covered most of cli-
mate divisions located in the eastern regions (100°W
Meridian) of the United States, where majority of the
agricultural lands are rainfed. Irrigation present in
portions of Nebraska, Kansas, Texas, Arkansas, and
Georgia (NASS 2014a, 2014b) can counteract climate
impacts, therefore playing a less important role over
irrigated regions. More information about this region
and climate divisions can be found in supplementary
information S1.1.

Annual county-level crop yield and produc-
tion data were retrieved for maize and winter
wheat from 1960 to 2016 from the National Agri-
cultural Statistic Service (NASS) of the United
States Department of Agriculture (USDA) (via
https://quickstats.nass.usda.gov/). These crops are
considered as the most important summer and
winter crops in the United States. Maize and winter
wheat yields for each climate division were calcu-
lated using weighted averages of county-level yields
where county-level yield productions were used as
weights. Preprocessing and quality control are con-
ducted to ensure the temporal completeness of the
crop yield data for each climate division. After prepro-
cessing, the yield data was de-trended using Ordinary
Least Squares. De-trending helps to minimize the
combined effects of changes in agro-management
practices, technology, socio-economic factors, and
climatic changes. Conducting the preprocessing pro-
cedures resulted in complete datasets of 240 climate
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divisions for maize from 1960 to 2016, and 222 cli-
mate divisions for winter wheat from 1967 to 2016.
More information on preprocessing techniques can
be found in supplementary information S1.2.

Monthly climate indexes data for quantifying cli-
mate oscillations, AMO, NAO, ENSO, PDO, and
PNA, are obtained from different sources, includ-
ing Earth System Research Laboratory at National
Oceanic and Atmospheric Administration (NOAA),
National Center for Atmospheric Research (NCAR),
the Joint Institute for the Study of Atmosphere and
Ocean at the University of Washington, and NOAA
Climate Prediction Center. Point-Biserial Correlation
(Tate 1954) was used to determine the lag correla-
tion between monthly climate indexes and crop fail-
ure at each climate division, assuming a reference
harvest month of October and July for maize and
winter wheat, respectively. Significant correlations are
determined by passing the indexes and crop failure
time series to a Monte Carlo simulation (Livezey
and Chen 1983) to account for the autocorrelation
present in serial data. The Monte Carlo simulation
shuffled the time series of the indexes and determined
correlation with crop failure for 20 000 iterations.
The lag correlation allows for measuring the delayed
impact of large-scale climate circulations on the local
conditions of each climate division. The follow-up
Bayesian analysis is conducted for each climate divi-
sion based on the phases of climate oscillation index
in the month with the maximum lag correlation. The
climate oscillation index is in positive phase (4) when
its value is greater than 0, and is in negative phase (—)
when its value is smaller than 0. Hereafter, we note
positive oscillation phase as Oscillation Name+ (e.g.
AMO+), and negative oscillation phase as Oscillation
Name- (e.g. AMO—). For a risk assessment perspect-
ive, we also calculated the likelihood of individual and
combined climate oscillation phases for each month
and overall period as: a/n where a is the number
of occurrences, and # is the number of years (Wilks
2011).

Monthly surface climate variables for each climate
division, including maximum and minimum tem-
perature (T, and Tyyy,), precipitation, and Palmer
Drought Severity Index (PDSI), are obtained from
the National Center for Environmental Information
(NCEI). Surface climate variables are processed by
taking an average over the three months prior to har-
vest, which are July, August, September for maize and
April, May, June for winter wheat (Sacks et al 2010,
Nleya 2012, Berglund et al 2013, lizumi et al 2014).
These months cover the reproductive stage, a time
when crops are more sensitive to their climate envir-
onments (Mourtzinis et al 2016, Ceglar et al 2017).

2.2. Bayesian approach to assess the influence of
climate oscillations on crop failures

A Bayesian approach allows for the assessment of
uncertainties based on prior knowledge with a limited
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sample size. Previous studies have used Bayesian
approaches to assess uncertainties in drought fore-
casting (Hobbs 1997, Raje and Mujumdar 2010,
Madadgar et al 2013), hurricane intensity (Elsner
and Bossak 2001), detection, analysis and attribution
of climate change in agriculture (Dose and Menzel
2004, Iizumi et al 2009), and uncertainties of climate
impacts concerning hydrology (Kam et al 2014, Sun
et al 2015). Here, we analyze the changes of crop fail-
ure risks associated with climate oscillations using a
similar Bayesian approach as in Kam et al (2014) for
analyzing drought risks. For this study, crop failure
is defined when the yield falls below the lower quart-
ile of the empirical distribution of yield in a climate
division. Defining crop failure as the lower quartile
allows the capture of regional events that may have
decreased yield production such as flooding, heat-
wave, or drought. However, this method may not
well capture total crop loss due to smaller-scale events
such as hail, or instances where producers changed
intended crop use due to total loss (Nleya 2012). Each
crop failure for a climate division is treated as a sample
of a Bernoulli process, and each crop failure occur-
rence X follows a Bernoulli trial with crop failure
occurrence equals 1, and non-crop failure occurrence
equals 0. From 1960 to 2016, there are 14 and 13 crop
failures for maize and winter wheat, respectively; this
is used to calculate the expected frequency of 0.25 for
both crops.

The Bayesian approach allows the use of the
Bernoulli process to compute the posterior distri-
bution of crop failure. Detailed information regard-
ing the Bayesian approach can be found in Sup-
plemental material S1.3. In order to examine the
impact of climate oscillations on crop failure occur-
rence, conditional posterior distributions of crop fail-
ure are computed based on a subset of the crop yield
data given the phase of a climate index: Pr(p|X, Y),
where Y is the phase (positive and negative) of
monthly climate index values. Conditional posterior
distributions are computed for each climate divi-
sion based on phases of climate index and com-
pared with the posterior distribution derived using
the de-trended crop yield data. An example of the
conditional posterior distribution is displayed in fig-
ure S1 (stacks.iop.org/ERL/15/064035/mmedia). An
increase in crop failure frequency occurs when the
expected value of the conditional posterior distribu-
tion for crop failure is greater than that of the original
posterior distribution Pr(p > 0.25|X, Y). A signific-
ant increase in crop failure frequency occurs when the
expected value of the conditional posterior distribu-
tion meets or exceeds the 90th or 95th percentile of
the original posterior distribution.

Climate oscillations interact with each other
intensifying or weakening their impacts. Therefore,
the same Bayesian approach is performed to construct
conditional posterior distributions with the likeli-
hood function dependent on combinations of climate
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oscillations phases and the occurrences of crop fail-
ure. We chose two phase combinations AMO-PDO
and ENSO-PDO for this analysis. This is because
combined ENSO, AMO, and PDO interactions had
strong regional climate impacts in North America
(Gershunov and Barnett 1998, Hu and Huang 2009;
Hu and Feng 2012; Johnson et al 2013; Kushnir et al
2010, Mantua et al 1997; Maleski and Martinez 2018,
McCabe et al 2004; Tootle et al 2005), and these cli-
mate impacts may propagate to crop growths and
yields. McCabe et al (2004) found the combination
of AMO and PDO explained spatial and temporal
variations in drought in the United States. ENSO
and PDO have similar spatial impacts under agree-
ing phases (Mantua et al 1997, Hu and Huang 2009).
Tootle et al (2005) identified the interactions between
the AMO, PDO, and ENSO on hydrologic condi-
tions in the southeastern United States. A recent art-
icle by Maleski and Martinez (2018) identified the
combined interactions of AMO, PDO, and ENSO on
regional climate in the Alabama—Coosa—Tallapoosa
and Apalachicola—Chattahoochee-Flint river basins.
Because of these identified impacts on regional cli-
mate, it is worthwhile to investigate the combined
effects of AMO, PDO, and ENSO oscillation phases
on crop failures.

2.3. Random forest model to predict occurrences of
crop failures

The classification based random forest model was
used to predict probabilities of crop failures for each
climate division. Random forest is based on ensemble
machine learning algorithms that utilize a decision
tree model approach. Random forest constructs mul-
tiple decision trees using bootstrapped resamples of
the training data (See Breiman 2001, Liaw and Wiener
2002, for more details). Two sets of random forest
models were constructed using the R randomPForest
package (Liaw and Wiener 2002). The first model
used climate oscillation indexes to predict crop failure
occurrence. The second model include both climate
oscillation indexes and local surface climate vari-
ables (i.e. Ty and Ty, precipitation, and PDSI), as
local confounding variables. The random forest mod-
els were cross-validated using leave one out cross-
validation. By comparing these two sets of models,
we will know if inclusion of the local climate vari-
ables would have positive or negative effects on the
accuracy of crop failure predictions. A confusion mat-
rix was constructed using the testing data to calculate
accuracy for each climate division. Accuracy of crop
failure predictions was calculated as follows:

Hits 4 Correct negatives

Accuracy = .
Totalnumber of events
Where Hits means event forecast to occur and did
occur, Correct negatives means event forecast not to
occur, and did not occur, an accuracy value equal 1
indicates perfect accuracy.

T A Schillerberg and D Tian

3. Results and discussion

3.1. Temporal patterns of crop failures,
correlations with climate oscillations, and
likelihood of climate oscillation phases

The percentage of climate divisions that experience
annual crop failure is calculated for maize and winter
wheat and shown as a time series in figure 1. Plotted in
figure 1 is monthly climate indexes with a 12-month
moving average for visual comparison with the per-
centage of climate divisions experiencing crop fail-
ures. It shows that the variations of climate oscillation
indexes are generally preceding the variations of crop
failures.

On average, 25% of maize (60) and winter wheat
(56) climate divisions experienced crop failure over
their respective study periods. A high percentage of
maize climate divisions experience crop failure in
1988, 1983, 2002, 2011, and 2012. During the crop
failure years, widespread heat, drought, and flooding
occurred throughout the growing seasons (table 1).
Excess moisture, winter kill, and drought are com-
mon causes of winter wheat crop failure in 1989, 1991,
1993, 1996, and 2015.

In the supplementary information S2.1, we
provided lagged correlations between crop fail-
ures and monthly climate index at each climate
division. The results suggest maize crop failures
have highest correlations with most indexes during
autumn months into late winter and spring months;
winter wheat crop failures have the highest correl-
ations with most of indexes during July to August
and early winter, depending on regions (figures S2
and S3). Tables S1 and S2 in supplementary inform-
ation S2.2 present the overall and monthly likeli-
hood of individual and combined oscillation phases
during 1960-2016. Overall, for the positive (negat-
ive) phase climate oscillation, ENSO is most (least)
likely to occur, followed by NAO, PDO, PNA, and
AMO. For the phase combinations, AMO—/PDO+ is
most likely to occur, followed by ENSO+/PDO+,
AMO—/PDO—, ENSO+/PDO—, ENSO—/PDO+,
AMO+/PDO+, ENSO-/PDO-, AMO-+/PDO—,
respectively. Knowing this likelihood along with the
information from the following Bayesian analysis, we
can further examine risks of crop failure associated
with climate oscillations.

3.2. The impact of individual climate oscillation on
maize crop failure frequencies

The Bayesian analysis revealed that the crop failure
frequencies showed contrast spatial patterns and dif-
ferent spatial extents under different climate oscilla-
tion phases (figure 2). In the left panel of figure 2,
it shows PNA+ resulting in the largest number of
climate divisions (119, in the east of the Mississippi
River) experiencing a significant increase frequency
of maize crop failure (table 2). The difference in the
number of climate divisions experiencing significant
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Figure 1. Time series displaying the percent of climate divisions experiencing crop failure for maize (solid) and winter wheat
(dashed) in the eastern United States, plotted against a 12-month moving average of each climate index.

increases in crop failure frequencies between posit-
ive and negative oscillation phases is the largest for
PNA. PNA+ is associated with below average temper-
ature across the south-central and southeastern U.S.
during winter and early spring (Leathers et al 1991,
Climate Prediction Center Internet Team 2012). The
colder spring temperature due to PNA+ caused freez-
ing soils, cooler soil temperature, and wet early season
soil conditions, which delayed planting date. Signific-
ant maize yield reductions were found when planting
was delayed in mid-South (Bruns and Abbas 2006)
and southeast (Wiatrak and Wright 2004) as well as in
Corn Belt states (Swanson and Wilhelm 1996) mainly
due to more frequent influence and pest and diseases
at late planting (Long et al 2017). PNA+ may have

caused the delayed planting dates, leading to crop
failure nearly 50% (115) of maize producing climate
divisions in 2012.

AMO+ significantly increases the crop failure
frequency in 97 climate divisions (Southern Plains
and Northeast), making it the second-largest influ-
ential oscillation on maize failure frequency next to
PNA (table 1, figure 2). A large extent of area under
AMO+ conditions experience an increase in crop
failure frequency. In contrast, under AMO- condi-
tions, the eastern United States largely experiences a
decrease in frequency with only 24 climate divisions
(northern Great Plains and Arkansas) experiencing a
significant increase in frequency. Drastic changes in
frequency is likely a result of the association between
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Table 1. List of major crop failure events, the percentage of climate divisions affected, and the weather event that caused the failure for

maize and winter wheat.

Percentage of

Year climate divisions Event Reference
Maize 1988 68.75 Drought National Oceanic and Atmospheric Administration 1988;
Opie 1992; Trenberth et al 1988
1993 63.75 Flooding, Drought Lott 1993; National Oceanic and Atmospheric Adminis-

2002 60.00 Drought
1983 50.00 Drought
1980 49.58 Drought
Winter 1991 61.26 Excess Precipita-
Wheat tion, Cold Weather
1996 51.80 Winterkill, Cold
Weather
1993 49.10 Excess Precipita-
tion, Drought
1989 47.75 Drought
2015 44.14 Drought, Excess

Precipitation

tration, National Weather Service, National Agricultural
Statistics Service, World Agricultural Outlook Board 2019
National Drought Mitigation Center, U.S. Department of
Agriculture, National Oceanic and Atmospheric Association
2019; Reyes and Elias 2019

Hillgren 1984; King, S.S. 1983; National Oceanic and Atmo-
spheric Administration, National Weather Service, National
Agricultural Statistics Service, World Agricultural Outlook
Board 2019

Leath et al 1982; National Oceanic and Atmospheric Admin-
istration, National Weather Service, National Agricultural
Statistics Service, World Agricultural Outlook Board 2019
Abbott 1991; Byers 1991; Merry 1991; National Oceanic and
Atmospheric Administration, National Weather Service,
National Agricultural Statistics Service, World Agricultural
Outlook Board 2019

Bureau of Labor Statistics, U.S. Department of Labor 1998

Lott (1993) and National Oceanic and Atmospheric Admin-
istration, National Weather Service, National Agricultural
Statistics Service, World Agricultural Outlook Board (2019)
National Oceanic and Atmospheric Administration,
National Weather Service, National Agricultural Statistics
Service, World Agricultural Outlook Board (2019), Reid
(1989), and Robbins (1989)

Durisin (2015), National Oceanic and Atmospheric Admin-
istration, National Weather Service, National Agricultural
Statistics Service, World Agricultural Outlook Board (2019),
and Reyes and Elias (2019)

AMO and drought in the United States, noted by
Enfield et al (2001), Kam et al (2014), and McCabe
etal (2004). Drought occurrences influenced by AMO
are likely to extend multiple years due to AMO’s
long oscillation period. Long-lasting droughts deplete
soil moisture reserves, affect all growth stages, and
potentially reduced yield more than 60% (Cakir 2004,
Songetal 2018). AMO- events may have contributed
to drought conditions and influenced failure in the
1998, 1999, 2011, and 2012 growing seasons.

NAO+ and ENSO— result in 57 and 40 cli-
mate divisions, respectively, experiencing significant
increases in crop failure frequency. Under NAO-+,
regions experiencing an increase in failure frequency
is northern Midwest and eastern Texas to western
Mississippi, similar to Heino et al (2018), this area
is one of the most sensitive regions to the changes
of NAO phases. However, Kim and McCarl (2018)
found an increase in 12 simulated crops produc-
tion under NAO+. NAO— results in 51 significantly
impacted climate divisions (East coast), with portions
of the Midwest experiencing decreases in crop fail-
ure frequency. The lack of negative impacts on yields
agrees with the slight yield increase under NAO-, as

found by Kim and McCarl (2005). The results indic-
ate that ENSO- conditions cause a significant increase
in crop failure in the northern Midwest region, with
13 climate divisions significant at the 95th percentile
of the posterior distribution. Spatial patterns of crop
failure frequencies are consistent with yield changes
due to ENSO noted by Henson et al (2017) and lizumi
et al (2014). The ENSO— is associated with more
precipitation and warmer temperatures in the eastern
Midwest, which may promote the growth of diseases
and pests, reducing crop yields. Excess precipitation
before planting can delay planting and prevent field
maintenance during the vegetative period impacting
yields prior to the reproductive period (Baum et al
2019). These combined factors likely contributed to
crop failure in the upper Midwest in 2011.

The two phases of PDO result in a similar amount
of climate divisions experiencing significant increases
in crop failure frequency (table 1). Similar to previous
oscillations, there is a distinct spatial pattern in crop
failure frequencies under different phases. Spatial pat-
terns of the crop failure under both PDO regimes
agree with spatial distributions of drought frequency
increases found by Kam et al (2014). Continuous
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Figure 2. Annual crop failure frequency of maize (left) and winter wheat (right) during each phase of climate indexes. Climate
divisions with blue coloring indicate a decrease in crop failure frequency relative to the posterior distribution, while red coloring
indicate an increase in frequency. Hashed climate divisions indicate significant increase in crop failure frequency at the 90th level,
while cross hatching indicates significant increase at the 95th level.

Winter Wheat

035 042
Crop Failure Frequency

PDO+ through 1992-1993 and NAO+ winter may
have contributed to the excess moisture that caused
flooding and delayed planting resulting in 64% (153)
of climate divisions experiencing crop failure.

3.3. The impact of individual climate oscillation on
winter wheat crop failure frequencies

Table 2 shows that, on average, unlike maize, winter
wheat has a smaller portion of climate divisions
experiencing a significant increase in crop failure
under different climate phases, 22% versus 15%,
respectively. The number of climate divisions experi-
encing significant crop failure varies from 53 under
AMO-— conditions to 13 under PDO+ conditions.
The change in AMO phase result in the largest dif-
ference of climate divisions (18) experiencing signi-
ficant increases in winter wheat failure frequencies.
AMO- is associated with increases in precipitation,

which may cause flooding in the Ohio and Mississippi
River Valleys (Enfield et al 2001, Rogers and Coleman
2003). Exposed lengths of time to flooding or pond-
ing water cause decreases in wheat yields (Olgun et al
2008). PNA= results in a similar amount of climate
divisions experiencing significant increases in crop
failure. The combination of AMO— and PNA+ may
have influenced wet and cold conditions in south-
ern states in 1975, preventing fieldwork and delaying
growth.

Regions that experience a significant increase
in crop failure varies by phases of climate indexes
(figure 2, right panel). NAO+ results in two major
areas of significant increase in crop failures, includ-
ing the Ohio River Valley and western Texas through
Nebraska. Reasons for the increase in crop failure
frequency under NAO+ may be due to warmer
temperatures and increased precipitation. Warmer
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Table 2. The number of climate divisions that experience a
significant increase in maize and winter wheat crop failure at the
90th and 95th significance level under different phases of climate
indexes. The climate indexes with the largest numbers of climate
divisions experiencing crop failures are underlined and
highlighted in bold.

T A Schillerberg and D Tian

Table 3. The number of climate divisions that experience a
significant increase in maize and winter wheat crop failure at the
90th and 95th significance level under different combinations of
AMO-PDO and ENSO-PDO phases. The phase combinations
with the largest numbers of climate divisions experiencing crop
failures are underlined and highlighted in bold.

Number of Climate Divisions

Number of Climate Divisions

Climate
Crop Index  Phase 90th 95th Crop Phase Combination 90th 95th
Maize AMO + 97 53 Maize AMO+ PDO+ 94 69
AMO - 24 9 AMO  PDO 97 74
NAO + 57 20 + —
NAO - 51 30 AMO— PDO+ 46 36
ENSO + 19 8 AMO— PDO- 40 33
ENSO - 40 24 ENSO+ PDO-+ 57 37
PDO + 46 16 ENSO+ PDO— 59 42
PDO — 37 15 ENSO— PDO+ 69 42
PNA + 119 69 ENSO— PDO— 66 45
PNA — 26 12 Winter AMO PDO 69 63
Winter AMO + 35 23 Wheat =4 +
Wheat AMO+ PDO- 40 36
AMO — 53 20 AMO— PDO+ 60 48
NAO + 33 15 AMO—- PDO- 59 52
NAO — 38 27 ENSO+ PDO+ 60 42
ENSO + 18 9 ENSO+ PDO-— 65 55
ENSO - 31 24 ENSO— PDO+ 61 57
PDO + 13 10 ENSO— PDO— 46 36
PDO - 28 19
PNA + 45 23
PNA - 48 28

winters may cause the winter wheat to come out of
dormancy earlier, resulting in increased susceptibility
to spring frost and drought, decreasing the quantity
and quality of winter wheat yields (Olgun et al 2008,
Nleya 2012, Trnka et al 2014). NAO+ during the
winter of 1992-1993, may have contributed to overly
wet conditions and increase susceptibility to cold,
causing 49% (109) of climate divisions to experience
crop failure. In contrast, Under NAO—, the afore-
mentioned areas decrease in frequency with much of
the study area experiencing decreases or insignificant
increases in failure frequency due to the opposite con-
ditions caused by the NAO—.

ENSO+ conditions induce significant increases
in winter wheat failure in the southeast (figure 2).
This increase in crop failure frequency is likely due
to cooler, wet conditions that can promote frost kill
and growth of fungal diseases, both of which can sig-
nificantly reduce winter wheat yields (Cunfer 2000,
Cook 2001). The Southeast experiences an increase
in winter wheat failure during ENSO+ events, likely
due to wet conditions promoting flooding and pests.
The Southeast experienced crop failure in 1993 due
to wet conditions and plant diseases, which may be
a result of ENSO+. PDO+ causes increases in crop
failure frequency in the Great Plains and Southeast.
While PDO— increases crop failure in western Texas
and Louisiana to Arkansas. As expected, PDO and
ENSO of simultaneous phases have a similar but more
aggravated impact on spatial distributions of crop
failure frequencies.

3.4. The combined impacts of climate oscillations
on crop failure frequencies

3.4.1. Phase combinations of AMO-PDO impact on
crop failure frequencies

The number of climate divisions experiencing sig-
nificant increases in crop failure frequencies varies
widely among different AMO-PDO phase combina-
tions (table 2). When AMO+ and PDO— concurred,
the largest number of climate divisions experience
significant increases in maize crop failure frequen-
cies. Regions experiencing decreases in maize crop
failure are the northern Great Plains and Arkansas
(figure 3). Conversely, AMO—/PDO— combination
have the least number of climate divisions experien-
cing significant increases in maize crop failure fre-
quency. Spatial impact patterns of maize crop failure
frequencies in figure 3 are consistent with the findings
of drought impacts in McCabe et al (2004). AMO-
PDO combination impacts are concerning because of
their long oscillations, which means favorable crop
failure conditions could persist for several years redu-
cing global maize productions.

The percentage of climate divisions experien-
cing significant winter wheat crop failure frequency
increases vary from 18% (40) to 31% (69) (table 3).
An out-of-phase AMO-PDO combination result in
the largest contrast between regions of significant
increases and decreases in winter wheat crop fail-
ure frequencies (figure 3). When AMO is positive,
the Southeast decreases in crop failure frequency,
while western Texas through Nebraska increases. The
combination of AMO+/PDO+- results in the largest
number of climate divisions experiencing significant
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Figure 3. Annual crop failure frequency of maize during phase combinations of AMO and PDO, and ENSO and PDO for maize
(left images) and winter wheat (right images). Climate divisions with blue coloring indicate a decrease in crop failure relative to
the posterior distribution, while red divisions indicate an increase. Hashed climate divisions indicate significant increase in crop
failure frequency at the 90th level, while cross hatching indicates significant increase at the 95th level.

increases in winter wheat crop failure frequency; this
impacted region includes climate divisions in Neb-
raska and Georgia into the Northeast.

3.4.2. Phase combinations of ENSO-PDO impact on
crop failure frequencies
The combination of ENSO— and PDO+- results in a
larger amount of climate divisions experiencing sig-
nificant maize crop failure than the in-phase com-
binations of ENSO-PDO (table 3). When ENSO and
PDO are in-phase, the southwestern Plains and the
Carolinas experience a significant decrease in maize
crop failure frequency (figure 3), coinciding with
regions that receive less precipitation (Di Liberto
2016). When ENSO-PDO are out-of-phase, a sim-
ilar but opposite pattern occurs, with expected negat-
ive impacts corresponding with increased maize crop
failure frequency. When ENSO is negative and PDO
is positive, the largest number of climate divisions
experiencing an increase in maize crop failure fre-
quencies are present (table 3 and figure 3).

Similar to maize, winter wheat shows the
impact patterns present for the individual impact

of ENSO are also present for the combined
impact of ENSO-PDO (figure 3). In particular,
the pattern is more dominate when ENSO is
negative. Out-of-phase ENSO-PDO result in the
largest number of climate divisions experiencing
significant increases in winter wheat crop fail-
ure frequency at the 90th and 95th percentiles
(table 3).

3.5. Accuracy of crop failure predictions

Figure 4 shows that the average accuracy of predict-
ing maize crop failure is 0.91 and improves to 0.93
with the inclusion of surface climate variables. Over-
all, climate divisions have little (0.02) or no improve-
ment with the inclusion of local surface climate vari-
ables. The largest extent of consistent improvement
occurring in the Ohio Valley with the maximum
improvement in accuracy of 0.11 occurs in Missouri
(figure 4). A decrease in accuracy with the inclu-
sion of surface climate variables occurs in Nebraska
and Texas. The accuracy is lower for winter wheat
for both random forest models. The average predict-
ive accuracy is 0.88 using only climate indexes, and
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0.650-0.688
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C. Difference
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Figure 4. Accuracy of crop failure predictions using random forest model with climate indexes with (B) and without (A) surface
climate variables as predictors for maize (left) and winter wheat (right). Darker values indicate higher scores. The third row shows
the difference between climate indexes with and without surface climate variables. Positive (red) values indicate and improvement
in accuracy with the addition of surface climate variables as predictors.

improves to 0.90 with the inclusion of surface cli-
mate variables. The average increase in accuracy is
0.01. In general, these results indicate that the abil-
ity of climate indexes to predict crop failure increased
or decreased depending on regions, when local con-
founding variables (surface climate variables) are
included in the random forest models. Regions like
Pennsylvania experience both an increase and a
decrease in accuracy with the inclusion of surface cli-
mate variables. Other areas of prominent decrease in
accuracy include the Southeast, Texas, and the upper
Midwest. An improvement occurs when inclusion of
surface climate variables provided local information
that is not explained by large-scale climate oscillations
through teleconnection. However, predictions in cli-
mate divisions decrease in accuracy when the inclu-
sion of surface climate variables do not provide addi-
tional information for the regions where the local cli-
mate variations are dominated by large-scale climate
oscillations.

4. Concluding remarks

In this study, we used a Bayesian approach to quantify
the impact of climate oscillations on annual crop
failures as a conditional posterior distribution for
each climate division over the rainfed regions of
the United States. The analysis revealed that crop
failure frequencies showed contrast spatial patterns
and different extent under different climate oscilla-
tion phases. PNA+ increased the maize crop fail-
ure frequency significantly at nearly 50% climate
divisions, likely due to the delayed planting dates
caused by lower temperature during early spring.
AMO+ increases maize crop failure frequency sig-
nificantly in 40% of the climate divisions, likely due
to drought conditions present throughout the grow-
ing and reproductive period. In contrast, AMO—
results in a significant increase in crop failure of
maize in 10% climate divisions. Winter wheat exper-
iences a lower percentage of climate divisions with
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significant increases in crop failure frequencies, likely
due to higher levels of soil moisture from the winter
months persisting into the spring and early summer
reproductive period. In negative AMO conditions,
53 climate divisions experience significant increases
in winter wheat failure frequency, the largest among
individual climate oscillations phases. During posit-
ive PDO phases, few climate divisions experience sig-
nificant increases in winter wheat failures.

Phase combinations of AMO-PDO and ENSO-
PDO were analyzed to determine their impacts
on crop failure frequency. Climate divisions exper-
iencing significant maize crop failure frequency
increased to 97 under AMO+ and PDO—. The largest
decrease in crop failure frequency occurs when the in-
phase negative AMO-PDO concurred. The in-phase
negative AMO-PDO increase winter wheat crop fail-
ure frequency the most. The combination of ENSO-
PDO showed that when the indexes are out-of-phase,
the magnitudes of the winter wheat crop failure fre-
quencies increases. ENSO+ and PDO— resulted in
the highest number of climate divisions (65) exper-
iencing a significant increase in winter wheat crop
failure frequency. Random forest models with cli-
mate oscillation indexes showed high accuracy for
predicting crop failures. The inclusion of local sur-
face climate variables in random forest models led to
increased or decreased prediction accuracy for maize
crop failures and winter wheat crop failures, depend-
ing on regions.

Knowledge of increases or decreases in crop fail-
ure frequency due to changes of climate oscillations
has the potential to improve early warning of crop
failure at climate divisional level, because of the cyclic
nature and predictability of climate indexes. Advances
in seasonal climate forecasting would allow for a bet-
ter prediction of climate oscillations, leading to an
improvement in agribusinesses handling of operation
and crop lost costs, seasonal climate risks, and mit-
igation practices to decrease vulnerability. While the
impact of ENSO on agriculture has been well docu-
mented, this study demonstrates that not only ENSO
but several climate oscillations individually or jointly
modulate distributions of maize and winter wheat
yields in the United States. From the insurance stand-
point, these impacts can translate into economically
meaningful effects on crop insurance premium rates,
and the impact information can aid decision mak-
ing in the context of crop insurance. Moreover, our
study shows that the months of highest correlations
between crop failures and climate oscillations varied
in space and time, and the month of highest correl-
ations are used for impact analysis of crop failures.
This information may have implications for the time
frame choice of the agricultural weather index insur-
ance (WII). As suggested by Dalhaus et al (2018), it is
important to consider occurrence dates and shifts of
critical growth phases in space and time to improve
agricultural weather index insurance. Future research
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on the implications of climate oscillations on crop
insurance could incorporate these findings. From the
prediction standpoint, future research may integrate
information of climate oscillations and dynamic sea-
sonal climate forecasts for improving crop failure
predictions over different breadbasket regions of the
world. Programs focused on food security (e.g. FEWS
NET) would better be able to predict changes in
global grain stores and price fluctuations that may
result from crop failure in the United States.
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Highlights:

e A Bayesian approach is used to analyze the impact
of climate oscillations on U.S. maize and winter
wheat failures

e The analysis revealed that crop failure frequen-
cies showed contrast spatial patterns and different
extent under different climate oscillation phases

e Among individual oscillations, PNA+ and
AMO— resulted in the most substantial increase
in maize and winter wheat crop failures over
the highest percentage of climate divisions,
respectively
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e Among oscillation combinations, AMO+/PDO—
and AMO+/PDO+ resulted in the highest
percentage of climate divisions experiencing
significant increase of maize and winter wheat
crop failures, respectively

e Random forest models with climate oscillation
indexes showed increased or decreased predictive
accuracy for crop failures when local surface cli-
mate variables are included, depending on regions.
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