Research Data Management Track Paper

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

A Generalized Approach for Reducing Expensive Distance Calls
for A Broad Class of Proximity Problems

Jees Augustine
The University of Texas at Arlington
jees.augustine@mavs.uta.edu

Senjuti Basu Roy
New Jersey Institute of Technology
senjutib@njit.edu

ABSTRACT

In this paper, we revisit a suite of popular proximity problems
(such as, KNN, clustering, minimum spanning tree) that repeatedly
perform distance computations to compare distances during their
execution. Our effort here is to design principled solutions to mini-
mize distance computations for such problems in general metric
spaces, especially for the scenarios where calling an expensive or-
acle to resolve unknown distances are the dominant cost of the
algorithms for these problems. We present a suite of techniques,
including a novel formulation of the problem, that studies how dis-
tance comparisons between objects could be modelled as a system
of linear inequalities that assists in saving distance computations,
multiple graph based solutions, as well as a practitioners guide to
adopt our solution frameworks to proximity problems. We compare
our designed solutions conceptually and empirically with respect to
a broad range of existing works. We finally present a comprehensive
set of experimental results using multiple large scale real-world
datasets and a suite of popular proximity algorithms to demonstrate
the effectiveness of our proposed approaches.

CCS CONCEPTS

« Theory of computation — Dynamic graph algorithms; Near-
est neighbor algorithms; « Information systems — Crowdsourc-
ing.

KEYWORDS

Metric Space; Lower Bound Computation; Proximity Problems;
Minimum Spanning Trees; k-Nearest Neighbour Graphs, Clustering

ACM Reference Format:

Jees Augustine, Suraj Shetiya, Mohammadreza Esfandiari, Senjuti Basu Roy,
and Gautam Das. 2021. A Generalized Approach for Reducing Expensive
Distance Calls for A Broad Class of Proximity Problems. In Proceedings of
the 2021 International Conference on Management of Data (SIGMOD °21),
June 20-25, 2021, Virtual Event, China. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3448016.3457303

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGMOD 21, June 20-25, 2021, Virtual Event, China

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8343-1/21/06...$15.00
https://doi.org/10.1145/3448016.3457303

Suraj Shetiya
The University of Texas at Arlington
suraj.shetiya@mavs.uta.edu

142

Mohammadreza Esfandiari
New Jersey Institute of Technology
me76@njit.edu

Gautam Das
The University of Texas at Arlington
gdas@cse.uta.edu

1 INTRODUCTION

Given a set of n objects with distances defined between each pair of
objects, various classical proximity problems have been investigated
over the decades in data management research, such as k-nearest
neighbor, clustering, shortest path, minimum spanning tree, and
several others. In this paper, we consider the setting where the
objects are in a general metric space and distance computations are
the dominant cost of algorithms for these problems.

1.1 Novelty, Motivation, and Applications

The novelty and motivation behind our proposed approach hinges
on the following three characteristics:

Characteristic 1: General Metric Spaces: We study proximity
problems in general metric spaces. That is, we are given a collec-
tion of atomic objects, and a general distance function between
pairs of objects that obeys the triangle inequality or relaxed trian-
gle inequality. Beyond that, we do not assume special cases such
as Euclidean or vector spaces, where the objects are further de-
composed/represented as vectors of attributes, and the distance
function is defined over pairs of vectors (e.g., Euclidean distance,
Cosine similarity, etc). This renders most of the vast collection of
existing proximity research in Euclidean/vector spaces inapplicable
to our problem (Section 6 has further details).

Characteristic 2: Optimizing Distance Computations: We
consider scenarios and applications where distance computations
require access to a distance oracle which is an expensive function.
Thus these applications benefit from specifically minimizing dis-
tance computation costs - sometimes at the expense of increased
CPU computation. This unique optimization goal has not been ad-
dressed by prior general metric space proximity research; most such
works do not separate distance computation from CPU computation
costs (see related work in Section 6.)

Characteristic 3: Unified Framework with Exact Outputs:
One of the significant highlights of our approach is, rather than
redesigning all prior existing algorithms for the myriad proximity
problems on a case-by-case basis, we provide a unified framework
in the form of a general solution scheme. We show how such a
framework can be easily applied to making minor modifications
to prior proximity algorithms, resulting in a significant reduction
in the number of calls to the distance oracle, at the expense of a
comparatively small increase in the rest of the computation costs.
Moreover, our framework does not change the outputs of the origi-
nal algorithm. For example, if we use our framework to modify a
classical general metric space k-nearest-neighbor algorithm, the

https://doi.org/10.1145/3448016.3457303
https://doi.org/10.1145/3448016.3457303

Research Data Management Track Paper

modified algorithm will produce the correct k-nearest-neighbors,
but make fewer distance calls.

Applications: There are several important and emerging ap-
plications that have the above three characteristics, and conse-
quently can leverage our framework. Notable examples include
spatial applications that require geo-referencing, computer vision
applications, as well as applications from bioinformatics and medi-
cal imaging. Also of interest are spatial applications that require
calling third party API’s (such as, Google! or Bing? map) to obtain
distances between pairs of locations, GPS and other map based
services that need to obtain point-to-point driving time (typically
calculated based on distance, traffic condition, etc). Several com-
pelling computer vision applications, including Hyperspectral Im-
age comparison[1, 7], Image database search [8], Image compar-
isons under Hausdorff distance [22] or Video Database Search-
ing [12] make use of triangle inequality. Additionally, DNA [48]
sequence analysis, protein Database search [15] are some of the com-
pelling bioinformatics applications that require expensive distance
computations. In fact, as related works suggest, efficient compari-
son in metric space is even desirable for studying medical imaging
technologies, like MRI Scan [32], fMRI Scans[43], CAT-SCAN([20]
analysis. All these applications stand to benefit from our work.

1.2 Technical Contributions

The heart of our techniques is based upon the following observa-
tions. During the process of computation, most proximity algo-
rithms repeatedly need to compare distances between various pairs
of objects, or compare various distance aggregates such as sums of
distances. For example, while computing the k-nearest neighbor of
a query object u, existing algorithms iteratively check if there is any
other object v whose distance from u is smaller than the object’s
distance from its current k-th nearest neighbor w (i.e., whether
dist(u,v) < dist(u, w)). If this answer turns out to be true, then
the current k-th nearest neighbor is updated. However, for the al-
gorithm, it is not necessary to always know the precise distances
dist(u,v) and dist(u, w). It is just sufficient to know whether the
linear inequality dist(u,v) — dist(u, w) < 0 is true. If true, then v
can be safely discarded, thus saving on distance calls.

We leverage the above observations to make the following tech-
nical contributions:

Contribution 1: Linear Program Modeling (Section 2.2): Our
first contribution is in identifying IF statements in proximity algo-
rithms that compare linear distance expressions, and showing how
they can be more efficiently redesigned without having to invoke
expensive distance oracle calls by modelling them as a system of
linear inequalities. For such IF statements, we provide guidelines
for re-authoring them such that expensive distance oracle calls are
replaced by linear constraints. We present a model, DIRECT FEASI-
BILITY TEST, that involves expressing the problem as a system of
linear inequalities which can be solved by only using local CPU
resources (Section 2). To the best of our knowledge, no prior work
has presented this formalism before.

!https://cloud.google.com/maps-platform
Zhttps://www.microsoft.com/en-us/maps/choose-your-bing-maps-api

143

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

Contribution 2: Graph-Theoretic Modeling and Efficient Al-
gorithms (Sections 3 and 4): For scenarios where solving lin-
ear programs place unacceptable demands on local computation
resources, we propose a simpler yet novel redesign of IF state-
ments by mapping them to lower and upper bound distance com-
putation problems. As an illustrative example, if the upper bound
of dist(u,v) can be shown to be smaller than the lower bound of
dist(u, w), then this implies that dist(u,v) < dist(u, w). We show
that such upper and lower bound problems can be mapped to inter-
esting computation problems over sparse weighted graphs, which
although suboptimal compared to the LP formulation (the former
approach saves more distance calls), they allow for more efficient
algorithms that make far less demands on local CPU resources.

We present a new lower bound estimation algorithm, referred
to as Shortest Path Based Solution Scheme (SPLUB in short) which
considers the sparsity of the graph while computing the lower
bound improving the computational efficiently of the algorithm.

Then, we present an optimized “lightweight” bound estimation
algorithm Triangle Based Solution Scheme (Tri Scheme in short) that
is highly scalable, by constraining to search to a local neighborhood
of paths of length 2 of the graph. We also present an expected case
analysis for Tri Scheme in Section 4.2.2

Contribution 3: Extensive Experimentation (Section 5): Our
final contribution lies in performing extensive experiments and
outperforming the appropriately adapted current-state-of-the-art
solutions with the help of real-world datasets. Besides demonstrat-
ing algorithmic efficiency, our experiments also highlighted the
ease with which our proposed re-authoring methods can be adapted
for a wide class of proximity algorithms.

2 DISTANCE COST MINIMIZATION

In this section, we study how existing proximity algorithms incur
distance cost inside the computational loop and propose a general
purpose model, DIRECT FEASIBILITY TEST to minimize that cost.

2.1 Working Principles of Proximity
Algorithms

Proximity problems rely on establishing proximity relationship
among different objects in order to decide the best set of outputs,
and play fundamental roles in database research. Examples of such
problems include the k-NN, computing Minimum Spanning Tree
(MST), clustering problems, etc.

(1) IF statements involving distance calls - At the heart of
the proximity problems, there exist repeated distance comparisons.
Typically, one or more calls to the distance oracle are associated with
every invocation of such comparison. As an example, consider any
clustering algorithm with the overarching goal of putting similar
objects together in the same group, and keeping dissimilar objects
in different groups. These algorithms repeatedly compare distances
between a set of objects to make such a decision.

if dist(o;, 0j) > dist(og, 07)
do something

else
do something_else

Research Data Management Track Paper

Figure 1: 7 objects and their corresponding known and un-
known distances.

(2) Saving distance calls in IF statements - When the dis-
tances are from a general metric space, there exists a relationship
between the distances - our goal is to exploit that in saving distance
calls.

Consider a set, O = {0;,02,...,05} of n objects. We assume no
two objects in O are the same. The underlying dissimilarity between
each pair is the distance between them, represented by dist(o;, 0j).

Metric Spaces and Triangle Inequality: A Metric Space is an
ordered pair (M, d) where M is a collection of objects and dist is a
distance metric on M. In addition, for any triplets (m;, mj, my) € M,

dist(mj,mj) =0 = (m; = m;j)
dist(m;, mj) = dist(mj, m;)
dist(m;, mj) < dist(m;, mg) + dist(mg, mj) (A inequality)

Informally, the triangle inequality implied that the distance be-
tween any pair of objects is less than or equal to the distance of a
path between the same pair of objects that goes through any other
object(s).

Example 2.1. (RUNNING ExaMPpLE) : Consider a set of 7 objects
{0,1,2,3,4,5,6}. Let us also assume that the distance between every
pair of objects is between 0 and 1. Assume these distances satisfy
the metric property, i.e., triangle inequality of distances.

The running example is shown in Figure 1. As shown in the
figure, we also assume that 8 pairwise distances are known (i.e., the
distance oracle has been called for each of these pairs). The solid
lines between the objects represent the distance that is known.

2.2 DiIrect FEASIBILITY TEST

The triangle inequality relationship among the objects could be
represented using a set of inequalities involving O.

Using the example in Figure 1, let us create (}) variables of the
form x;j, where each variable represents the distance between the
respective pair of objects. Next, we create linear inequalities that
constrain the values these variables can have. For example, for
the pair of objects (01, 03) whose distance is known, we add two
inequalities of the form (x13 — 0.8 < 0) and (- x13 + 0.8 < 0) (i.e.,
together equivalent to the equation x13 = 0.8). Similarly, for each
pair of objects whose distance is unknown, for example, (01, 02),
we add constraints of the form (x;2 — 1 < 0) and (- x12 < 0). Thus
far, the system will have (2 x ('21) — 42) inequalities, with two
inequalities corresponding to each x;;.

Next, corresponding to each triangle, x12, x23, x13 we will have
additional inequalities of the form, (x12 — x23 — x13 < 0), (—x12 —
x23 +x13 < 0) and, (—x12 + x23 — x13 < 0). There are (g)((;) in the
example) number of triangles in a set of n objects. Each triangle

144

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

gives rise to a set of 3 linear inequalities. Thus for our running
example, the consideration of all triangles adds (3 x (3) — 105)
number of linear inequalities to the linear system.

For an IF statement such as if dist(02,06) < dist(03,05), we
formulate a corresponding additional constraint, (x26 — x35) < 0.
However, we should be checking for the absence of any feasible
region for the reversed constraint, expressed as follows, (—x2¢ +
x35) < 0. This reversed constraint is added to the system of linear
constraints.

Thus, in order to save distance calls in the IF statement, our
approach is to solve the following decision problem: Does there exist
no feasible solution to the system of inequalities? if the answer to
that question is YES, the if condition is satisfied. If the answer is
NO, then the proximity algorithm may call the distance oracle to
obtain the exact distances and repeat the computation. This, in a
nutshell, is the core idea of our proposed approach.

Solving the system of linear inequalities: Formally, the system
of linear inequalities can be written as follows:

AX <b (1)

where A forms the coefficient matrix, X is a vector of unknown
distances, b is a vector of known coefficients.

Determining whether this system of linear inequalities has a
feasible region or not could be solved using existing off-the-shelf
linear programming tools. For example, SIMPLEX [50] could be
used to solve this problem. However, the number of iterations
for SIMPLEX in the worst case is exponential in the number of
objects [28]. A more practical approach to linear programming
through the ellipsoid algorithm [27] also could be used. However,
solving linear inequalities through this method is in O(n®). These
algorithms thus are not practical even for a small number of objects.

3 GRAPH THEORETIC APPROACH

Contrary to employing expensive linear programming to resolve
the IF statements statement exactly - an alternative, less expensive
approach is to redo the IF statements statement as follows:

if LBdist(o;, 0j) > UBdist(oy, 07)
do something

else
do something_else

This above formulation is designed to compute the lower bound
(LB) of distance between 0;,0; and compare that with the upper
bound (UB) of distance between oy, 0;. We emphasize that such a
reformulation of the IF condition is not the same as the original IF
condition; If the reformulated condition is true, the original condi-
tion is true, but not vice versa. In the vice versa case, the distance
oracle has to be invoked to accurately resolve the IF statement.

The advantage of the reformulated condition is that it allows us
to use much more efficient and scalable graph theoretic approaches
for resolving the condition as compared to the linear programming
approaches described earlier, thus resulting in dramatic savings
in local CPU computations, at the cost of a small increase in the
number of calls to the distance oracle.

Thus our next set of investigation hinges on finding lower and
upper bounds of distances using a suite of computational techniques

Research Data Management Track Paper

X Py 0; o; SPyoi y
o SPy x y SPyr2 o

LB

Figure 2: Geometric Interpretation of LB. [Top] Shortest
Paths through Known Edge. [Bottom] Wrapping SP onto
Known Edge.

that considers the underlying abstraction to be a complete graph
on general metric spaces. Specifically, if indeed LBdist(o;, 0;) >
UBdist(oy, 07), then two distance calls to the oracle dist(0;,0;) and
dist(og, 0;) could be saved.

3.1 Data Model

Abstractly, the distance relationship over the given set of objects is
abstracted as a weighted complete graph, G. The nodes are defined
over the set of objects (O), and every pair of nodes in the object set,
(0i,0;) forms the edges in the graph whose edge weights are in-
duced by the distance function, dist(0;,0). As before, the distance
between the objects satisfy the metric property, i.e., the triangle
inequality.

DEFINITION 1. The Tightest Upper Bound of the distance between
(0,05) (or TUB%ist(0.0))) s the largest possible distance that an
unknown edge can assume without violating the triangle inequality,
considering all other known distances in G.

It is easy to see that the tightest upper bound of distance between
o; and o; is the length of the shortest-path(sp) distance between
those objects [45] that will go through additional intermediate
objects. Note that, there might be other paths between (0;,0;)
Bdist(oi,

which also provide an upper bound on U %) but are not as

tight as TUB®151(01:0))),

TUBdist(o,—,oj) _ Sp(Oi, Oj) < UBdist(o,—,oj))

DEFINITION 2. The Tightest Lower Bound of the distance between
(0i,05) (or TLBAist(0i:05)) is the lowest possible distance that an un-
known edge can assume without violating the triangle inequality,
considering all other known distances in G.

The tightest lower bound TLB?5¢(°:0}) inyolves computing LB
between o; and o considering every path and taking the maximum.
For each path, the TLB could be computed using the generalized
metric property proposed in [42] - which involves subtracting the
weight of the rest of the path (computed by taking the sum of known
distances) from the highest weight edge (let that be dist(og, 0;)
between o, 0;) in p. Similar to upper bounds, any other path could
lead to a lower bound which might not be tightest as TLB®5¢(0:-0;)
and, we refer to them as LBdist(0i,0))

TLBA1st(010)) = n;t{ax{dist(ok, 07) — path(oj, o) — path(oj,05)}
P

(3)
LB%st(06:0) < Vp{dist(oy,0;) — path(o;, o) — path(oj,05)}

(4)
To explain further, we refer to Figure 2 to find out TLBAist(X.Y)

Let SPx ,, be the shortest path between X and o; (curved lines in

145

SIGMOD °21, June 20-25, 2021, Virtual Event, China

blue). Similarly, SPy ,, be the shortest path between Y and o;. Thus,
we can visualize the equation 4 in the light of the figure as shown by
the wrapping of shortest paths from X and Y on to the known edge
(0i,05). The lower bound, LBdiSt(X’Y), obtained from this path [X-
SPx o,-(0i, Oj)-SPoj,y-Y], is the residue on edge length (dist(0;,05) -
SPx .o, - SPo;,y) from the wrap over (highlighted interval in yellow).
By definition 2, TLBYst(X.Y) s the maximum of all such lower
bounds over all paths available between X and Y. Recall Figure 1
again and note that an alternative representation of the figure is a
weighted complete graph on metric space, for which some of the
edges are known and the rest are unknown. Using Example 2.1,
only 8 out of 21 (;) edges are known (the solid lines), while the
remaining 13 edges are unknown. As given in the figure, if the
distance dist(1, 3) = 0.8 and dist(3, 4) = 0.1 then the tightest
bounds for distance d(1, 4) may be computed as follows:

|dist(01,03) — dist(03,04)| < dist(01,04) < dist(01,03) + dist(04, 03)
ie., 0.7 < dist(01,04) < 0.9

3.2 Problem Definitions

In this section, we formally define the studied problems considering
the underlying abstraction to be a complete graph:

ProBLEM 1. (BoUuNDs PROBLEM) : Given a partial graph,
G(O,E), and an unknown edge (o, 0j) in the graph, find the
tightest (i) lower bound of distances (or TLBAist(0.0})) and (ii)
find the tightest upper bound of distances (or TUB%5t(0:-0}))
without violating the triangle inequality, considering all other
known distances in G but avoiding any calls to the expensive
distance oracle, O.

For instance, from the discussion following Example 2.1, the
query problem on the partial graph for the edge dist(01, 03), would
yield, the tightest lower bound as 0.7 and tightest upper bound as
0.9.

A proximity algorithm may have to make two calls to the distance
oracleif the produced bounds are not effective to follow either of the
branches of the IF statements statement. Following each call to the
distance oracle on an unknown edge and its subsequent resolution,
the partial graph evolves by adding an additional known edge to
the graph. The graph will be represented as an adjacency matrix or
adjacency list representation. Consequently, upon a new distance
resolution, we have to update respective edge information to the
graph data structures. Correspondingly, after an edge resolution,
data structures keeping track of upper and lower bounds also may
have to be updated. Here, we define the update problem as follows,

ProOBLEM 2. (UPDATE PROBLEM) : Given a partial graph,
G (O, E), the actual distance (from oracle call) of a newly known
edge (0;,0;), update the data structures that keep track of the
lower and upper bounds of the remaining unknown edges.

In the next Sections, we present multiple solutions that trade-off
between tightness of produced bounds and running time to solve
the 1 and 2 problems.

Research Data Management Track Paper

4 BOUND COMPUTATION ALGORITHMS

Solutions to every proximity problems involve two fundamen-
tal steps which often works in tandem, contributing towards the
progress of the algorithm, (i) a distance resolution procedure for es-
timating the unknown distance and, (ii) an update operation which
adds the resolved edge to the graph and associated data structures.

Our proposed two solution schemes trade-off between time and
tightness of the produced bounds during the update. Neverthe-
less, when used in conjunction with any proximity algorithm, they
both produce an exact and identical solution as that of the original
algorithm.

Discussion - Running Example - Let us take the example of the
same two unknown edges (02, 0¢) and (03, 05). Let us also assume an
IF statements in proximity problems need to evaluate is of the form
IF (02, 06) > (03, 05). Considering graph theoretic approaches, we re-
state this IF statements as, IF(LBYi5¢(02:06) > {ypdist(03.05)) From
the definitions of upper and lower bounds earlier in this section,
it could be shown that LB5¢(02:00) = 0.3 and UB45t(05:05) = 0.
Since 0.3 # 0.6, it is evident from this example that a distance save up,
which previously facilitated by DIRECT FEASIBILITY TEST , cannot
be obtained here thus necessitating two oracle calls for dist (02, 06)
and dist (03, 05).

4.1 Exact Algorithms

WE describe exact Algorithm SPLUB(Shortest Path Based Lower and
Upper Bound algorithm) for bounds computation and the update
problem. SPLUB is sparsity sensitive - hence its running time de-
pends on the number of known edges when it is invoked.

4.1.1 Algorithm Development:

Recall from Definition 1 that, in any given graph, the tightest upper
bound of the distance between objects o0; and o; is the length of
the shortest-path(sp) distance between those objects that will go
through additional intermediate objects.

Similarly, by Definition 2, the tightest lower bound LB%(%:-0))
involves computing LB between o; and o; considering every path
and taking the maximum.

Aforementioned definitions, their application in examples 2.1
and understanding the sparsity of the graph formally sets the foun-
dation for the SPLUB algorithm.

Exact Upper Bound Algorithm - Our upper bound computa-
tion is inspired by Dijkstra’s Algorithm [17].

To find out the TUB between an unknown pair of edge (o, 0j),
we start a shortest path algorithm from one endpoint, let us say
from o; to find the shortest path to the other endpoint o;. This in
turn solves the problem of upper bound using the Equation 2.

Developing Exact Lower Bound Algorithm - Essentially, for
each of the unknown edge in the graph, the lower bound can be
estimated with the help of known edges. As established earlier,
we run two shortest path algorithms from each endpoint of the
unknown edge for which we need to compute the lower bound.
Thus, for each known edge in the graph, we compute the shortest
path from both the endpoints of the unknown edge to both the
endpoints of the known edge. Since the tightest lower bound is
largest of the all available lower bound distances, we only keep
track of the current largest value at each iteration.

146

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

Algorithm 1 SPLUB
Input : graph G = (O,E), unknown edge (0;, 0), Dijkstra’s sp algo
SPpijk()
Output : TLB4(01:0) Ty Bd(0i-05)
2l — O;ub «— 1
: Spo; < SPpijk(0i)
: Spo; < SPpijk(0))
: for edge(k,) in E do

L N N

Ib = max(Ib, dist(o,,0;) — (SPo; [0k] + spo, [07]),
dist(or,0) = (sPo; [0k] + 5po; [01]))
: end for
: ub = min(ub, spo;[0;j])
. TLB4(01:0)) = [p
. TUB4(9:0)) = yp
10: return TLB?(0:0) TUBd(0::05)

© ® 3 o

Further Ilustration - SPLUB. As an example, let us consider
the unknown edge (01, 02) from Example 2.1, for which Algorithm
SPLUB is to be invoked to compute its TUB and TLB.

The lower and upper bounds for the edge is initialized as ‘0’ and
‘1’ respectively. After that, steps 2 and 3 of SPLUB computes all pair
shortest paths from 07 and from o0y. Next, for each of the 8 known
edges in the graph, the LB is updated using Equation 4 and the TLB
of (01, 02) is 0.7, the max of all lower bound values.

The TUB of (01, 02) is 0.7, computed in line 7 of the algorithm as
the shortest path between these two objects.

LEmMaA 4.1. The bound computed by the Lower Bound Algorithm
in SPLUB, produces exact tightest lower bounds for the unknown edge.

ProoF. Assume that we do no produce the tightest lower bound
on the given unknown edge (0;, 0;) in the graph. This also means
that we have not investigated all the shortest paths from all the
known edges in the graph to the nodes o; and o;. However, from
each edge of the unknown edge, from o; and from o, we find
all pairs shortest paths. In subsequent steps, the algorithm goes
over each of the known edges in sequence assuming that edge it
longest in its shortest path and subtracting the shortest path from
its length. From Equation 4 for lower bounds, and by going over
the shortest paths through known edges, we have investigated all
the shortest paths through all available known edges implicitly.
This contradicts our assumption that we did not investigate all the
known edges in the graph, thus proving the tightness of the lower
bound produced. O

For efficiency, we can package both the upper and lower bound
algorithms as a single algorithm. The details of the algorithm are
given in Algorithm 1 as SPLUB.

Running Time Analysis for SPLUB

We shall show here, that the running time of SPLUB depends on
the sparsity of the underlying graph G.

Upon examination, it is clear that the step 2 and step 3 are the
time consuming steps which are the execution of shortest path
algorithms from both endpoints of the unknown edge. Dijkstra’s

Research Data Management Track Paper

Algorithm [17] with its standard implementation taken O(m +
nlogn) time to run. Thus we estimate the overall running time of
the combined steps 2 and 3 as O(m + nlogn).

The remainder of the steps, step 6 and step 7, are executed only
as the number of known edges in the graph, m. Thus the total time
of SPLUB is estimated as O(m + nlogn) + O(m). The leading term
is the first term and thus we claim the overall running time of the
algorithm to be O(m + nlogn).

Update Algorithm - Given the simplicity of the algorithm and
absence of any intermediate data structures, updates are rather
straight forward in SPLUB Scheme. Once a previously unknown
edge is resolved, the only data-structure that needs an update is the
underlying graph structure. The update to the graph data-structure,
in any representational format (adjacency list or adjacency matrix),
is a constant order operation, thus, obtaining the overall complexity
of update operation as O(1).

4.2 Approximate Algorithms

In this section we strive to answer the following questions: Can one
design solutions that produce not the tightest bounds, yet are highly
scalable and faithfully produce the exact solutions to the proximity
problems? Can we design efficient and effective data structure update
schemes supporting the approximate bounds?

Let us assume that instead of going through all the known edges
in the graph and their shortest paths, we only restrict ourselves to
a subset of the known edges. From Equation 4, it is evident that the
bound obtained will not be tight. As an example, considering only
the path [0; — 03 — 03 — 04] to compute the LB of (01, 04), the
lower bound will be 0.5.

An important point to note here is that, to develop practically
viable algorithms, the developed solution must avoid the following
two bottlenecks (i) the Shortest Path computations, (ii) exploration
of all the known edges in the graph. We propose a highly scalable
yet effective heuristic Tri Scheme to that end.

4.2.1 Triangle Induced Solution Scheme. The overall idea of Tri
Scheme is to restrict ourselves to small neighborhoods (in particular
triangles) and use the relationship imposed by the triangles in
producing bounds.

Upper and Lower Bounds: Basically, Tri Scheme looks at
every triangle between o; and o; and computes lower and upper
bounds. However finding every triangle which are incident on the
unknown edge (0, 0;) and whose other two sides are known is also
computationally challenging. To further explain, we wanted to find
out all £04,0;,005 where (0;,07) and (0}, 0;) are known, solving the
bounds problem efficiently.

Updates: As seen above, in Tri Scheme, for answering queries,
we need to access the triangles, whose two sides (edges) are known
and the edge being queried is the only missing edge. We use an
adjacency list representation of the graph to speed up the search for
such triangles. We take the lists corresponding to two endpoints of
the unknown edge o; and o0}, and find their intersection to find such
triangles. Finding intersections of two lists by direct comparisons
are in the O (size of the list). In adjacency list corresponding to each
node in the graph, we use a balanced binary search tree[14] to
make comparisons faster. However, this scheme has increased the
new edge insertions to be in O(log(n)), which updates two binary

147

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

Algorithm 2 Tri Scheme

Input : graph G = (O,E), unknown edge (0, 0;)
Output : LB%(0:0;) ypd(0i05)
. adj; = AdjacencyList(o;)
: adjj = AdjacencyList(o;)
Ib=0
ub=1
: while i < len(adj;)andj < len(adjj) do
if adj;[i] == adj;[j] then
Ib = max(ib, |Eloy, adj;[11] - Elo;, adj; [1]
ub = min(ub, E[0;, adj;[i]] + E[oj, adj;[j]])
L j=(0+1),(+1)
else
if adj;[i] > adj;[j] then
j=j+1
else
i=i+1
end if
end if
: end while
: LB(0i0)) = [
. UB4(00)) = yp
. return LB4(01:0)) pd(0i:0))

R B A A T o -

L T S
S O 0 NN R W N = O

search trees one corresponding to each endpoint of the resolved
edge in the adjacency list with the edge value.

Further Illustration - Tri Scheme. Consider unknown edge
(03, 05) and Algorithm 2, Tri Scheme, to understand how LB and UB
of (03, 05) are produced. The algorithm looks up the corresponding
adjacency lists, adjs and ad js from the graph. From adjz and adjs,
it iteratively finds the common endpoints in both lists, here, 0;
and oy. For each of such endpoints, which forms a triangle with
03, 05, it computes the lower and upper bounds using triangle
inequalities. 0.6, which is the max of all lower bounds obtained
from each endpoints is the . Bdist(03,05) Similarly, 0.6, the min of
all the upper bounds obtained is returned as the UB%5¢(03.05)

One can note from pseudo-code of Tri Scheme, Algorithm 2,
that, the computational bottleneck from SPLUB are entirely avoided
to generate a simpler and practical algorithm. We present some
theoretical properties of Tri Scheme next.

4.2.2 Expected Case Analysis for Tri Scheme.

THEOREM 4.2. Expected running time for Tri Scheme to lookup
an edge is O(m/n)

Proor. By design, the algorithm Tri Scheme is proximity algo-
rithm agnostic. Thus, it works for any general metric space prox-
imity problems. The proximity algorithm can choose any edge and
query for the upper and lower bounds. The expected time to lookup
an edge can be written as,

E[time] = Z P[sample (u,v)] * lookup(u,v)
(u,v) EE’

where the probability is for the event of sampling the unknown
edge (u,v) and lookup represents the amount of time taken by Tri
Scheme for looking up the bounds for edge (u,v).

Research Data Management Track Paper

Under the assumption that any one of the unknown edges could
be queried next with equal probability (uninformed prior) by the
proximity algorithm, there is a uniform probability of sampling any
of the unknown edges. Hence, the probability of looking up any
of the unknown edge is 1/(n? — m). Tri Scheme uses a balanced
BST in order to perform set intersection and needs to go over all
the edges incident on both u and v to obtain the bounds on edge
(u,v). Hence the time taken for resolving the bounds for the edge
(u,v) is dy + dy where d,, stands for the degree of edge u.

By making use of the above formulation in the expectation for-
mula,

1
E[time] = Z (dy +dy)
n?-m
(u,v) €EE’
For every missing edge that is incident on u, dy, is added to the
expected time. There a n — d;, number of unknown edges incident
on u. Hence, the expectation amounts to,

n
1
E[time] = Z 5
= Tm

To create an adversarial case, we would like to maximize the above
formula to obtain an upper bound on the expected time. Also, we
know that there are a total of m known edges and hence the total

" nd; — d?

di(n_di):Z -

i=1

n?—m

n

sum of degrees should amount to 2m. Hence, the constraint },d; =
i=1

2m, needs to be satisfied.

1 nd,- - dlz n
maximize ZZ— s.t.2m = Zdi
- n2—m .
i=1 i=1
The expected time is maximized when the negative term, dl.2 is
n
minimized. As the constraint 2m =)} d; exists, the term di2 is

i=1
minimized when d; = 2m/n. Hence,

n n
2nm — Y, (2m/n)? 2nm—4m2/n221

n 2
nd; — d; i=1 i=1
E[time] = L < - = —
[| ;nz—m n2-m n2-m
2nm—4m2/n 4mn2/2-m
Eltime] < 2nm=4m/n _dmnj2 - m
n2-m n n2-m
Replacing n?/2 with n? in the numerator, we get,
amn®/2 —m amn®-m 4m m
E[time] < — / — =—e€e0(—)
n ni-m nni-m n n
Thus, proved. O

Bootstrapping Tri Scheme through Landmarks: In Section 4.2,
we have developed the Tri Scheme, a scalable algorithm. Our goal
here is to study how Tri Scheme could be designed in conjunction
with landmark based solutions, such as, LAESA [36] to bootstrap Tri
Scheme. Landmark based solutions, as described in Related Works
is a pivot based solutions that use a specified number of nodes and
resolve the distances between them to obtain a tighter bound on
the rest. Recall our problem setting described in Section 3.1 that
assumes m edges are resolved at the beginning of the algorithm.
We use an initialization of the graph G by bootstrapping it with
LAESA inside every proximity algorithm, for different values of

148

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

m. Later in the experiment section, Section 5 we shall show the
effectiveness of our schemes due to this initialization.

5 EXPERIMENTAL EVALUATION

Algorithms are developed in Python 3.6 and the experiments are
conducted on an Intel(R) Core(TM) i7-6850K CPU @ 3.60GHz run-
ning a Linux distribution, Ubuntu 18.04.5 LTS using 64 GB. Our code

and data can be found at https://github.com/jeesaugustine/metric-
space-proximity-algo/.

5.1 Experimental Setup

5.1.1 Datasets. We use 3 real datasets, vary different parameters
considering various proximity problems, summarized in Table 1.
The actual pairwise distances (i.e., ground truth) are known.

5.1.2 Implemented Baselines. (1) We implement ADM [42] algorithm
which provides the exact upper, lower bounds and updates. We refer
to the baseline algorithm as, ADM. (2) We implement landmark based
algorithm LAESA [36]. (3) We implement TLAESA [35], a follow up
work of LAESA.

These baselines are compared with (i) DFT in Section 2.2, (ii)
SPLUB in Section 3 and, (iii) Tri Scheme in Section 4.2. We use
k =log(n) landmarks unless otherwise mentioned.

5.1.3 Proximity Algorithms. We consider 3 classes of metric space
proximity problems (i) kNNG construction, @ Minimum Spanning
Tree Construction (MST) and, Clustering and evaluate how
they could benefit from our proposed approach in saving distance
computation and overall cost wrt multiple competitors.

(@ k Nearest Neighbor Graph (k-NNG) Construction: We
implement KNNrp, a popular and recent k-NNG proposed in [39]
that computes the k-NNG of a given set of objects. @ MST: We
implement the popular Prim’s [17] and Kruskal’s [29] algorithm for

evaluation. Clustering: We implement two popular centroid
based swapping algorithms, PAM [26] and CLARANS [38].

5.1.4 Experimentation Goals. (Subsection 5.3) Analyzing DIRECT
FeasIBILITY TEST (through Prim’s Algorithm) to demonstrate its
effectiveness and limitations.

(Subsection 5.4) Comparison between proposed graph theoretic
techniques (SPLUB and Tri Scheme), and compare with ADM and
LAESA and TLAESA, on the following parameters. (i) Quality of
bounds and, (ii) In computation time.

(Subsection 5.5) Comparison between Tri Scheme and LAESA and
TLAESA, in saving distance calls for various proximity algorithms.
(Subsection 5.6) Comparison between Tri Scheme, LAESA, TLAESA,
and the original algorithm in overall running time by varying the
cost of distance oracle.

(Subsection 5.7) Varying proximity algorithms parameters [and
k and its effect on CPU overhead and Distance Calls.

5.1.5 Evaluation Measures. Our main investigation here is to study
how SPLUB and Tri Scheme compare with ADM and LAESA in pro-
ducing distance bounds, as well as their effectiveness in saving
distance calls and overall running time inside different proximity
algorithms. [1]| Relative Error & CPU Overhead: We present relative
error of the produced bounds of different algorithms wrt ADM. CPU

https://github.com/jeesaugustine/metric-space-proximity-algo/
https://github.com/jeesaugustine/metric-space-proximity-algo/
https://github.com/jeesaugustine/metric-space-proximity-algo/
https://github.com/jeesaugustine/metric-space-proximity-algo/

Research Data Management Track Paper

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

Dataset Algorithm Num. Objects Num. of Edges Dimension Distance Function
SF POI k-NNG, Clustering, MST 21,048 221,498, 628 2 Google Maps API
FlickerIM k-NNG 10k 49995000 256 Eucledian

UrbanGB k-NNG, Clustering, MST 360, 177 64, 863, 555,576 2 Google Maps API

Table 1: Dataset Description

overhead is captured as the difference between the total time and
the total distance oracle time. |2| Percentage Save-ups: We compute
the percentage of the distance calls save-up of our algorithms wrt
the baselines. |3| Proximity Algorithm Completion Time: We capture
the overall running time of the proximity algorithms after they are
augmented with SPLUB, Tri Scheme, LAESA and TLAESA.

Additionally, we present some deeper analysis that compares Tri
Scheme with LAESA and ADM qualitatively and running time-wise.

Please note here that, for brevity, we only present a subset of the
results that are representative.

5.2 Summary of Results

@ Consistent with our theoretical analysis, DIRECT FEASIBILITY
TEsT provides the largest savings in distance calls, better than the
best known algorithm (ADM) (2x improvement even for moderate
size graphs). However, this formulation is computationally expen-
sive, as discussed in Section 2.2, and thus, is limited to graphs of
smaller sizes, which are in the order of a few hundreds of edges.
@ On every proximity algorithm SPLUB produces the exact bounds
as ADM, while being significantly faster in computation time than
ADM. Consequently, the number of distance calls solicited is identical
to that of ADM but takes less time to complete. While ADM only runs
in smaller graphs (in the order of a few thousand edges), SPLUB can
be scaled easily to moderate sized graphs (a few hundred thousand
edges). ADM, a cubic algorithm, requires more than 2x more time
than that of SPLUB.

@ Tri Scheme turns out to be the unanimous choice to be used
in large scale third party applications where distance calls are ex-
pensive. Tri Scheme runs significantly faster in running time com-
pared to SPLUB with comparable quality of bounds. Compared to
LAESA and TLAESA, Tri Scheme produces tighter bounds at the ex-
pense of a marginal increase in CPU time. While the actual number
of calls saved depends on the proximity algorithm, under all set-
tings and algorithms, Tri Scheme saves more distances compared to
LAESA and TLAESA. On average, Tri Scheme saves 42%(~ 2.4X) and
36% distance calls compared to LAESA and TLAESA across datasets
and across the algorithms. However, for Prim’s using UrbanGB,
the savings go up to 70% and beyond for very large graphs with 33M
edges for LAESA and 62% for TLAESA. When used inside proximity
algorithms, Tri Scheme on an average takes only 40% of the time
compared to LAESA and 33% of the time compared to TLAESA mak-
ing it an excellent choice to be used as a plug-in. In some cases,
proximity algorithms using Tri Scheme take half the time of that
of using TLAESA.

5.3 Direct FEasiBILITY TEST (DFT)

We implemented DFT using the linear programming solver CPLEX>
through its Python API and integrated inside different proximity al-
gorithms. For brevity, we include results from the Prim’ s algorithm.

3https://www.ibm.com/products/ilog-cplex-optimization-studio/

149

We compare the results with the exact state-of-the-art solution ADM.
The distance oracle considered for these experiments consumes
10775 for obtaining a pairwise distance.

To illustrate concretely, for a graph with 45 edges, a variable is
defined per edge. Since each edge is normalized between [0, 1], this
process adds 90 linear inequalities to satisfy the ranges. Additionally,
for each triangle involving 3 edges, we add two constraints to satisfy
the triangle inequality. In summary, the total number of constraints
for solving DFT for a graph of 45 edges involve satisfying 450 linear
constraints. Clearly, DFT could only be implemented on very small
graphs and the results are presented in Section 2.2.

Figures 4a and 4b present the average of 10 runs of Prim’s algo-
rithm and compare DFT with ADM. Figure 4a exhibits that DFT con-
sistently requires a smaller number of distance calls compared to
ADM. With an increase in the number of edges, the percentage of
distance calls savings increases consistently for DFT(between 27%
and 58% empirically).

On the other hand, Figure 4b presents the CPU time of running
Prim’s using DFT. For graphs with 325 edges and 496 edges, it
takes about 3 hours and more than 8 hours, respectively. The com-
putational bottleneck lies in satisfying a massive number of linear
constraints during each run of DFT , limiting its use as a practical
solution in real-world settings.

To summarize, these experiments corroborate our theoretical
analysis, (1) DFT is an alternative formulation to the problem, pro-
duces tightest bounds, and outperforms ADM in saving distances
(43% on an average). (2) DFT incurs substantial CPU cost and is not
scalable to large graphs (takes 1.6 hours on an average for graphs
with a few hundreds of edges).

5.4 Tightness of Bounds and Running Time

Figure 3a demonstrates SPLUB produces the exact same bounds
(upper and lower) as ADM and the error bar is virtually collapsed.
Bounds produced by Tri Scheme(Figure 3b) are looser than ADM,
however much tighter compared to LAESA and TLAESA. These re-
sults corroborate that the Tri Scheme is a practical yet viable
solution for our studied problems. Figure 3¢ and Figure 5a provide
additional insights: ADM, even though produces the best bounds, is
not scalable. Neither SPLUB nor ADM is suitable for larger graphs in
terms of CPU overhead. Figure 5a shows that even though LAESA is
the fastest among all the algorithms, the relative error is much
higher(Figure 3a).

5.4.1 Limitation of LAESA and TLAESA. Limitations of LAESA and
TLAESA, discussed in Section 4.2 are experimentally corroborated
in figure 5b. We experimentally observe that the optimal value
of the number of landmarks for LAESA and TLAESA for Prim’s al-
gorithm using SF dataset 1.9M configuration is 3 X log(n). But
this varies largely across datasets and proximity algorithms and
there is no obvious way to determine this parameter. Additionally,
TLAESA maintains a tree data-structure which aids in estimating

Research Data Management Track Paper

»

)

©

»

Average Relative Error Bounds
° o o o
o >

)

2 LR L P

% NSNS
SF TS &S
& S T

(a) [SF 135K][Bounds] Relative Error
is 0 for SPLUB with ADM & for Tri
Scheme lesser than LAESA & TLAESA, es-
pecially UB.

SIGMOD °21, June 20-25, 2021, Virtual Event, China

o
o
3

o
o
£

Average Relative Error Bounds
o
=
3

o
o
5]

B}

* S

(b) [SF] Tri Scheme Bounds Varying #
Edges. With increasing edges, (LB-UB)
gap reduces drastically(3.3X across 2k
& 134Kk)

Time -- Seconds

o A+

(c) [SF] Time: ADM is not scalable. SPLUB
produces same bound with 50% of
time. Tri Scheme improves time by 99%
(highest: 23s)

Figure 3: Bounds Comparison for UB & LB (a) Relative Error 0 for SPLUB with ADM and for Tri Scheme much lesser than LAESA

(AVG) Oracle Count
g

8
(Log Scale) Avg Time

PRPRNN N PR N
P e DL E S PP L P R i 4

Total Edges in the Graph Size of the Graph

(a) [Prim’s] Distance calls of DFT (b) [Prim’s] [Logscale] Running
and ADM time of DFT and ADM

Figure 4: DFT vs ADM distance calls & run time comparison

x10°

| LAESA
52 [|—Teaesa

[Log Scale] Time - Seconds
Oracle Call Count
S
&

Number of Landmarks Chosen

(a) [SF] fast but loose bounds of (b) [SF] ideal # landmarks selec-
LAESA and TLAESA tion problem in LAESA and TLAESA

Figure 5: Limitations of LAESA, TLAESA

the upper and lower bounds, however, the construction of which
incurs additional distance computations.

5.5 Tri Scheme for Distance Counts

In this subsection, we turn the attention to our practical approach,
Tri Scheme, and study how it saves distance calls inside various
proximity algorithms wrt baselines LAESA and TLAESA.

These experiments confirm our previous findings. Proximity algo-
rithms augmented with Tri Scheme shows significant improvement
in saving the distance calls when compared with the other two base-
lines. We also note that as the size of the dataset grows the gap between
the number of calls made widens in the context of all proximity algo-
rithms.

150

We compare our results against the empirically found the best
(lowest) count for distance calls in LAESA and TLAESA.

5.5.1 Evaluation of MST Algorithms. We compare the classical
Prim’s and Kruskal’s algorithms for the MST problem with their
augmented versions through Tri Scheme varying number of ob-
jects. Table 2 and Table 3 present comprehensive results.

Column “TS-NB’ represents the number of oracle calls for the com-
pletion of Prim’s for Tri Scheme with no bootstrap. Column ‘Boot-
strap’ represents the number of oracle calls for bootstrapping with
LAESA. The percentage saving for the Tri Scheme in completion
of Prim’s with bootstrap wrt LAESA and TLAESA are given in cor-
responding Save(%) columns. The number of landmarks used for
bootstrapping can be found within parenthesis.

Save-ups is increased with increasing size of the datasets, shown
in bold as a percentage of distance calls saved in Tri Scheme com-
pared to LAESA and TLAESA, demonstrating the efficacy of Tri
Scheme. TS-NB outperforms LAESA and TLAESA always. While TS-
NB performs better than Tri Scheme in many cases, there are
certain configurations where the opposite is true in Table 3.

Figure 6a represent the distance save up. It is interesting to
note that, proximity algorithms, in general, are sensitive to the total
number of pairwise distances. The efficacy of Tri Scheme in saving
the distance calls is evident in both the figure and Tables.

5.5.2 Evaluation of Clustering. We compare the two [-medoid (I =
10) algorithms PAM and CLARANS with their augmented versions
with Tri Scheme and compare with the baselines. Overall, algo-
rithms augmented with Tri Scheme use on average one third the
number of distance calculations.

Figures 6c, 6d, 7a, 7b, and 7c exhibit that, as the number of
objects grows, the number of distance calculations increases, and
the save-up for Tri Scheme compared with baselines also grows.

We observe the maximum saving up of 36%(20%) for SF and a
save up of 55%(43%) for the UrbanGB datasets for LAESA(TLAESA).
We also note that the perceived large running time of PAM is due to
its inherent nature, and not due to Tri Scheme.

5.5.3 Evaluation of k-NNG. The objective of this set of experiments
is to compare the vanilla KNNrp [37] (k = 5) with the KNNrp aug-
mented by the algorithmic scheme, Tri Scheme developed in this
work in saving distance calls. Figure 6b describes the number of

Research Data Management Track Paper

SIGMOD °21, June 20-25, 2021, Virtual Event, China

UrbanGB Dataset [Oracle Call Count]
Prims Algorithm [k = log,(n)]
of Edges | Without Plug | TS-NB | Bootstrap | Tri Scheme LAESA Save (%) | TLAESA | Save (%)
2016 2016 916 363 999 (6) 1097 (6) | 8.93 1184 | 15.63
8128 8128 2819 868 2980 (7) 3343 (7) 10.86 3583 16.83
32640 32640 9454 2012 10017 (8) 15123 (18) 33.76 12718 21.24
130816 130816 29043 4563 30045 (9) 59619 (27) 49.60 38302 21.56
499500 499500 82419 9945 86199 (10) 160306 (30) 46.23 117906 26.89
1999000 1999000 | 259237 21934 280004 (11) 606517 (22) 53.83 462207 39.42
7998000 7998000 | 779707 47922 800985 (12) | 2198589 (24) 63.57 1650752 51.48

Table 2: # of expensive Oracle Calls by Prim’s Algorithm with TS-NB, Tri Scheme , LAESA and TLAESA along with parameters

SF Dataset [Oracle Call Count |
Prims Algorithm [k =log(n)]
of Edges | Without Plug | TS-NB | Bootstrap | Tri Scheme | LAESA Save (%) | TLAESA | Save (%)

2016 2016 1216 363 1230 (6) 1408 (6) 12.64 1408 12.64
8128 8128 3681 868 3670 (7) 3813 (7) 3.75 4238 13.40
32640 32640 11966 2012 12081 (8) 13212 (8) | 8.56 14102 | 14.33
130816 130816 40115 4563 40547 (9) 48317 (18) 16.08 46835 13.43
499500 499500 138179 9945 143122 (10) 182600 (40) 21.62 171003 16.30
1999000 1999000 372863 21934 384059 (11) 542937 (33) 29.26 499760 23.15
7998000 7998000 1326373 47922 | 1399769 (12) | 2298327 (48) 39.10 2049026 31.69

Table 3: # of expensive Oracle Calls by Prim’s Algorithm with TS-NB, Tri Scheme , LAESA and TLAESA along with parameters

.
6 X10
LAESA

i
5 | [8=TLaesn

NS

Oracle Call Count

10

Oracle Call Count

L v
a*

(a) [UrbanGB] Kruskal’s distance
save varying dataset size(47% save Tri Scheme bounds match SPLUB
- TLAESA & 10% - LAESA for 1.9M).

%104
™
LAESA
=B TLAESA-

x104

i

Number of Oracle Calls

a*

%

bounds

n *
o &

(b) [UrbanGB] KNNrp distance save

[TLAESA
g | [EJLAESA

+
o

+
&

save(%) increases for Tri Scheme

g x10¢

T
[TLAESA
[EILAESA

3

®

Number of Oracle Calls
s o

~

o

&
K

. (c) [UrbanGB] PAM Vary Size - With (d) [SF] PAM Vary Size. With in-
increasing dataset size, distance creasing dataset size, thedistance

save % increases for Tri Scheme

Figure 6: Number of Expensive Oracle Calls for completion of Kruskal’s, KNNrp and PAM Algorithms

Number of Oracle Calls

(a) [SF]CLARANS Var Size. Scale to (b) [Flicker1M] PAM Varying Size. (c) [UrbanGB] CLARANS Algorithm (d)

&

35

Number of Oracle Calls
o

s

[ELAESA

N @ s o

Number of Oracle Calls

°

&

[ELAESA

&
)
S

D @ s oo N @

Prox Algo Completion Time (s)

°

K3

[UrbanGB

Varied Oracle Time

1.99M][Prox

large graphs(no save compromise) 20%(24%) save up in largest setting Varying Size. 31%(18%) save up for Time] Prim’s 53%(39%) save up
LAESA(TLAESA) for 1.2s oracle

36%(22%) save in LAESA(TLAESA)

for LAESA(TLAESA)

LAESA(TLAESA)

Figure 7: (a,b,c)Number of Expensive Oracle Calls For Algorithms PAM and CLARANS (d) Completion Time of Prim’s

151

Research Data Management Track Paper

x10°

o
& LAESA
¥ TLAESA

x10°

@ oy e ©

e

Prox Algo Completion Time (s)
S

Prox Algo Completion Time (s)

R
Varied Oracle Time

S
Varied Oracle Time

SIGMOD °21, June 20-25, 2021, Virtual Event, China

Oracle Call Count
Oracle Call Count

g v
¥ ¥

S > 3 »
S 5 J ¥
2 7 K ¥

Number of Nearest Neighbours Chosen

N >
S
& <

Number of Clusters Chosen

(a) [Flicker1M 1.99M] [Prox Time] (b) [SF 1.99M][Prox Time] 20% (c)[SF 130K][Oracle Count] Stabil- (d) [SF 130K][Oracle Count] Sta-
59% (40%) save for LAESA(TLAESA) (14%) save for LAESA(TLAESA) 2.5s ity of Tri Scheme to variance of [bility of Tri Scheme to variance of

(2.5s oracle) for completing PAM

oracle on completion of CLARANS

in PAM

[in CLARANS

Figure 8: (a,b)Actual Proximity Algo Completion Time for PAM & CLARANS varying distance oracle cost (c,d) Effect of varying [in
PAM & CLARANS on distance counts. CLARANS improves dist calls but stability across [is limited by choices in randomized search

distance calls made by the algorithm. The findings are similar to
other proximity algorithms.

5.6 Tri Scheme for Running Time

We present the end-to-end completion of the proximity algorithms,
when augmented by Tri Scheme, LAESA, and TLAESA by varying the
cost of distance computation. We observe that the overhead induced
by our algorithms, are nominal when compared with the results from
LAESA and TLAESA. However, when induced with expensive oracle
calls, owing to a large number of distance calls, the time spent in
completion is higher than the baseline algorithms.

5.6.1 Evaluation of MST Algorithms - Time. Figure 7d presents the
overall time taken by Prim’s varying oracle time. Tri Scheme, on
an average, saves time by 53%(only takes half the time) compared
to LAESA and 39% compared to TLAESA, even when each distance
computation takes 1.2s.

5.6.2 Evaluation of Clustering - Time. Figures 8a and 8b show the
running time of PAM and CLARANS (I = 10) in conjunction with Tri
Scheme, LAESA, and TLAESA varying oracle cost.

The overall time save-up of Tri Scheme is 39% wrt LAESA and

26% wrt TLAESA. The savings for PAM goes up to 59% with LAESA and
40% with TLAESA for an oracle of 2.5 seconds.
5.6.3 Evaluation of k-NNG - Time. Finally, we take the k-NNG
(k = 5) problem using Urban dataset with 1.99M settings. These re-
sults indicate that by leveraging triangle inequality Tri Scheme out-
performs the baselines.

5.7 Varying Proximity Parameters

Proximity algorithms are sensitive to their parameters of choice.
Clustering algorithms like PAM and CLARANS are required to accept
the number of clusters ([) as a part of their inputs. Similarly, KNNG
needs the number of neighbours, k.
5.7.1 Clustering (varyingl) - Count, CPU overhead. Here we vary [
and compare the number of distance calls of Tri Scheme against
LAESA and TLAESA. Figure 8c presents the results of the PAM algo-
rithm. As the number of objects is fixed, increasing the number of
clusters results in more local minima for the PAM algorithm which
in turn makes the algorithm converge faster. Figure 8d presents the
results from the CLARANS algorithm which shows as the number of
clusters increases, the number of distance calls also increases.
Figure 9b and Figure 9c show the CPU overhead for PAM and
CLARANS algorithms respectively. As expected, when [increases,

152

we see an increase in the CPU overhead in response to the number
of additional upper and lower bound comparisons.

5.7.2 k-NNG (varying k)- Count and CPU overhead. We present
the results by varying k for KNNrp algorithm here. Figure 9a shows
that the number of distance estimations increases with increasing
k, as the algorithm needs to resolve more candidates to determine
the nearest neighbours. Figure 9d shows the same effect in CPU
overhead, as described in Section 5.7.1.

6 RELATED WORK

Our work mainly focuses on three key aspects. (1) The objects
are atomic (are not a collection of vectors) and defined in general
metric spaces. (2) The distance computation between pairs of objects
is expensive and a leading cost. (3) Designed solutions could be
integrated inside a variety of proximity problems and return exact
answers as that of the original algorithms.

The related work could be broadly classified into one of the three
kinds and our work fits the first one.

6.1 Metric Space Based

The state-of-the-art solution is proposed by Sasha and Wang [45]
that develops ADM to produce tightest upper and lower bounds of
distances that are then demonstrated to save up different querying
cost. However, the computational cost of ADM is O (n®), making it an
impractical choice for repeated invocation.

Landmark based algorithms store partial information of nodes
in an array form to answer nearest neighbour queries in metric
space. The representative algorithms are AESA, LAESA [36, 41],
TLAESA [35] and variants of TLAESA [21, 34] which extend the
idea of pivot based methods in various ways. In AESA, all pairwise
distances are precomputed and stored in a matrix. In LAESA, an
extension to AESA, a set of base prototypes are chosen and all
the pairwise distances between them and reminder of the objects
are stored. In TLAESA and its variants, in addition to selected
base prototypes, the algorithms maintain a tree data-structure to
expedite the nearest neighbor search.

Pivot based algorithms select a set of pivots to divide the space
into smaller sub-spaces, grouping similar objects. BKT [10], a pivot
based data structure, is designed for similarity search which re-
cursively builds a tree based on the distance to other objects. FQT,

Research Data Management Track Paper

Oracle Call Count
Time (s) - logscale

& » o o & > o
v v S K A 5 S P
RS ¥ 2 2 W RS 2 7

+
Number of Nearest Neighbours Chosen Number of Clusters Chosen

(a) [SF 130K][Oracle Count] Stabil- (b) [SF 130K][Time] Local CPU
of Tri Computation

ity of Tri Scheme to variance of /| Computation Impact
in KNNrp Scheme to variance of [in PAM

SIGMOD °21, June 20-25, 2021, Virtual Event, China

-
LAESA
TLAESA

09

28

Time (s) - logscale

Time (s) - logscale

¢ e

Number of Clusters Chosen

o N y N
& » & B & P

~
Number of Clusters Chosen

(c) [SF 130K][Time] Local CPU (d) [SF 130K][Time] Local CPU

Impact of Tri Computation Impact of Tri

Scheme to variance of / in CLARANS Scheme to variance of / in KNNrp

Figure 9: (a) Effects of varying /(k) on the number of distance calls for KNNrp (b,c,d) local CPU overhead on varying I(k) (dis-
connecting the problems of distance compute and CPU compute and reducing distance compute (]) at the expense of CPU

compute (T)) for PAM, CLARANS & KNNrp

FHQT [2], and FQA [11] are follow up works that offer improve-
ments to this. Vantage Point Tree(VPT) [47] index structure solves
the problem of nearest neighbor queries in general metric space.

Voronoi diagrams, commonly used in proximity queries in vec-
tor spaces, have inspired data structures in metric spaces, namely
GNAT [9] and M-tree [13]. GNAT [9] introduces an indexing struc-
ture for nearest neighbour queries in large metric spaces. M-Tree [13]
is a balanced tree indexing structure for metric space similarity
search and the k-NN problems. M-Tree, which works by partition-
ing the space, is built in a bottom-up manner, and has a fixed number
of objects in each node, giving rise to a balanced structure.

These aforementioned related works focus to reduce overall CPU
time and do not distinguish between distance computation cost and the
CPU time, unlike the focus of our research. Moreover, landmark based
require # landmarks as inputs, and these solutions are specifically
designed for the nearest neighbor search problems, thus, they do not
easily generalize to all proximity problems. Both ADM and landmark
based solutions are adapted to be used as baselines in Section 5.

6.2 Vector Space Based

Vector Space Based Methods use the coordinate information of
the objects to create data structures to answer a large spectrum
of distance queries, where distance may be based on Euclidean,
cosine similarity, general L, norms, and so on. Popular solutions
in low to moderate dimensional space include K-B-D-tree [40], kd-
tree [5], R-tree [19], R*-tree [4], SS-tree[46] or more recent X-tree [6],
UB-tree[3], SR-tree [25]. All these methods use the domain object
feature vectors to measure the distance between objects and create
a similarity index. These indexes are primarily built to answer the
similarity queries.

In high dimensions, to address the curse of dimensionality, var-
ious randomized and approximation techniques have been pro-
posed, including Locality Sensitive Hashing [18, 23] and Locality
Preserving Hashing [24, 49], both bucketing similar objects with
high probability, and Random Projections [30, 31], which projects
high dimensional objects to a low dimensional projection to enable
similarity search.

These approaches are specifically designed for vector space proxim-
ity problems, and do not adapt to general metric spaces, as objects in
general metric spaces do not have conveniently available co-ordinates

153

or features/dimensions - hence cannot be modelled as vectors. More-
over, the high dimensional approaches produce approximate answers,
whereas, our work focuses on returning exact answers for proximity
problems.

6.3 Metric space Transformed into Vector Space

Embedding Spaces commonly used in transforming the given set
of objects in metric space to a vector space is another common
approach. Metric Embedding [33, 44] and Multidimensional Scal-
ing [16] are some of the representative techniques in that space.
After transformation, these methods produce approximate distances
between objects, leading to approximate answers for the proximity
problems. In contrast, our focus is to return exact answers.

7 CONCLUSION AND DISCUSSIONS

In this work, we propose a suite of principled solutions that trade-off
between tightness of the produced bounds and computational time
to minimize distance computation cost for various proximity prob-
lems in general metric spaces. Our proposed algorithms range from
expensive linear inequality based exact bounds, to graph theoretic
approaches producing exact and approximate bounds. However, our
proposed techniques, when used inside the proximity algorithms
always return exact results. We compare our designed solutions
conceptually and empirically wrt a broad range of existing works
through comprehensive experimentation.

We believe that our proposed framework adapts to more sophis-
ticated optimization problems, related to graph partitioning, facility
allocation, traveling salesman problems, just to name a few. The
idea would be to substitute expensive distance comparison within
these algorithms by our proposed upper and lower bound compu-
tation techniques to see if that serves the purpose. We intend to
study these aspects in the future.

ACKNOWLEDGMENTS

The research of Gautam Das was supported in part by grants
#2008602, #1745925, and #1937143 from the National Science Foun-
dation. The work of Mohammadreza Esfandiari and Senjuti Basu
Roy are supported in parts by the National Science Foundation
grants #1942913, #2007935, #1814595, and by the Office of Naval
Research Grant No:N000141812838.

Research Data Management Track Paper

REFERENCES

(1]

8

=

(9]
[10]

(11

[12]

[20]

[21]

[22]

[23

[24

[25]

Irwin E Alber, Ziyou Xiong, Nancy Yeager, Morton Farber, and William M Pot-
tenger. 2001. Fast retrieval of multi-and hyperspectral images using relevance
feedback. In IGARSS 2001. Scanning the Present and Resolving the Future. Proceed-
ings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.
01CH37217), Vol. 3. IEEE, 1149-1151.

Ricardo Baeza-Yates, Walter Cunto, Udi Manber, and Sun Wu. 1994. Proximity
matching using fixed-queries trees. In Annual Symposium on Combinatorial
Pattern Matching. Springer, 198-212.

Rudolf Bayer. 1997. The universal B-tree for multidimensional indexing: General
concepts. In International Conference on Worldwide Computing and Its Applications.
Springer, 198-209.

Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger.
1990. The R*-tree: An efficient and robust access method for points and rectangles.
In Proceedings of the 1990 ACM SIGMOD international conference on Management
of data. 322-331.

Jon Louis Bentley. 1975. Multidimensional binary search trees used for associative
searching. Commun. ACM 18, 9 (1975), 509-517.

S Berchtold, D Keim, and HP Kriegel. 1996. The X-tree: An efficient and robust
access method for points and rectangles. In Proc. 1996 Int. Conf. Very Large Data
Bases. 28-39.

Andrew P Berman and Linda G Shapiro. 1998. Triangle-inequality-based prun-
ing algorithms with triangle tries. In Storage and Retrieval for Image and Video
Databases VII, Vol. 3656. International Society for Optics and Photonics, 356-365.
Andrew P Berman and Linda G Shapiro. 1999. A flexible image database system
for content-based retrieval. Computer Vision and Image Understanding 75, 1-2
(1999), 175-195.

Sergey Brin. 1995. Near neighbor search in large metric spaces. (1995).

Walter A. Burkhard and Robert M. Keller. 1973. Some approaches to best-match
file searching. Commun. ACM 16, 4 (1973), 230-236.

Edgar Chavez, José L Marroquin, and Gonzalo Navarro. 2001. Fixed queries array:
A fast and economical data structure for proximity searching. Multimedia Tools
and Applications 14, 2 (2001), 113-135.

S-S Cheung and Avideh Zakhor. 2005. Fast similarity search and clustering of
video sequences on the world-wide-web. IEEE Transactions on Multimedia 7, 3
(2005), 524-537.

Paolo Ciaccia, Marco Patella, and Pavel Zezula. 1997. M-tree: An E cient Access
Method for Similarity Search in Metric Spaces. In Proceedings of the 23rd VLDB
conference, Athens, Greece. Citeseer, 426-435.

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. 2009.
Introduction to algorithms. MIT press.

AFW Coulson, JF Collins, and A Lyall. 1987. Protein and nucleic acid sequence
database searching: a suitable case for parallel processing. Comput. J. 30, 5 (1987),
420-424.

Michael AA Cox and Trevor F Cox. 2008. Multidimensional scaling. In Handbook
of data visualization. Springer, 315-347.

Edsger W Dijkstra. 1959. A note on two problems in connexion with graphs.
Numerische mathematik 1, 1 (1959), 269-271.

Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. 1999. Similarity search in
high dimensions via hashing. In Vidb, Vol. 99. 518-529.

Antonin Guttman. 1984. R-trees: A dynamic index structure for spatial searching.
Vol. 14. ACM.

Steven Heilman. 2010. THE RADON AND FOURIER TRANSFORMS: THE MATH-
EMATICS OF X-RAYS AND CT-SCANS. (2010).

Selene Hernandez-Rodriguez, J Fco Martinez-Trinidad, and] Ariel Carrasco-
Ochoa. 2008. On the selection of base prototypes for laesa and tlaesa classifiers.
In 2008 19th International Conference on Pattern Recognition. IEEE, 1-4.

Daniel P Huttenlocher, Gregory A. Klanderman, and William J Rucklidge. 1993.
Comparing images using the Hausdorff distance. IEEE Transactions on pattern
analysis and machine intelligence 15, 9 (1993), 850-863.

Piotr Indyk and Rajeev Motwani. 1998. Approximate nearest neighbors: towards
removing the curse of dimensionality. In Proceedings of the thirtieth annual ACM
symposium on Theory of computing. 604-613.

Piotr Indyk, Rajeev Motwani, Prabhakar Raghavan, and Santosh Vempala. 1997.
Locality-preserving hashing in multidimensional spaces. In Proceedings of the
twenty-ninth annual ACM symposium on Theory of computing. 618-625.

Norio Katayama and Shin’ichi Satoh. 1997. The SR-tree: An index structure for
high-dimensional nearest neighbor queries. ACM Sigmod Record 26, 2 (1997),
369-380.

154

[26

[27

[28

[29

[30

[31

@
&,

[33

(34]

[35

(36]

@
=

[38

[39

[40]

[41

=
)

[43

[44

[45

[46

N
=

[48

[49]

[50]

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

Leonard Kaufman and Peter Rousseeuw. 1987. Clustering by means of medoids.
North-Holland.

Leonid G Khachiyan. 1996. Rounding of polytopes in the real number model of
computation. Mathematics of Operations Research 21, 2 (1996), 307-320.

Victor Klee and George J Minty. 1972. How good is the simplex algorithm.
Inequalities 3, 3 (1972), 159-175.

Joseph B Kruskal. 1956. On the shortest spanning subtree of a graph and the
traveling salesman problem. Proceedings of the American Mathematical society 7,
1 (1956), 48-50.

Ke Li and Jitendra Malik. 2016. Fast k-nearest neighbour search via dynamic
continuous indexing. In International conference on machine learning. PMLR,
671-679.

Ping Li, Trevor] Hastie, and Kenneth W Church. 2006. Very sparse random
projections. In Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining. 287-296.

Tian Liu, Weiyu Xu, Pascal Spincemaille, A Salman Avestimehr, and Yi Wang.
2012. Accuracy of the morphology enabled dipole inversion (MEDI) algorithm
for quantitative susceptibility mapping in MRI. IEEE transactions on medical
imaging 31, 3 (2012), 816-824.

Jiri Matousek. 2002. Lectures on discrete geometry. Graduate texts in mathematics,
Vol. 212. Springer.

Luisa Micé and Jose Oncina. 2014. Dynamic Insertions in TLAESA Fast NN
Search Algorithm. In 2014 22nd International Conference on Pattern Recognition.
IEEE, 3828-3833.

Luisa Mico, José Oncina, and Rafael C. Carrasco. 1996. A fast branch & bound
nearest neighbour classifier in metric spaces. Pattern Recognit. Lett. 17, 7 (1996),
731-739. https://doi.org/10.1016/0167-8655(96)00032-3

Maria Luisa Mic6, José Oncina, and Enrique Vidal. 1994. A new version of the
nearest-neighbour approximating and eliminating search algorithm (AESA) with
linear preprocessing time and memory requirements. Pattern Recognition Letters
15, 1 (1994), 9-17.

Gonzalo Navarro and Ricardo Baeza-Yates. 1997. Proximal nodes: A model
to query document databases by content and structure. ACM Transactions on
Information Systems (TOIS) 15, 4 (1997), 400-435.

Raymond T. Ng and Jiawei Han. 2002. CLARANS: A method for clustering objects
for spatial data mining. IEEE transactions on knowledge and data engineering 14,
5 (2002), 1003-1016.

Rodrigo Paredes, Edgar Chavez, Karina Figueroa, and Gonzalo Navarro. 2006.
Practical construction of k-nearest neighbor graphs in metric spaces. In WEA,
Vol. 6. Springer, 85-97.

John T Robinson. 1981. The KDB-tree: a search structure for large multidimen-
sional dynamic indexes. In Proceedings of the 1981 ACM SIGMOD international
conference on Management of data. 10-18.

Enrique Vidal Ruiz. 1986. An algorithm for finding nearest neighbours in (approx-
imately) constant average time. Pattern Recognition Letters 4, 3 (1986), 145-157.
Dennis Shasha and Tsong-Li Wang. 1990. New techniques for best-match retrieval.
ACM Transactions on Information Systems (TOIS) 8, 2 (1990), 140-158.

Larissa Stanberry, Rajesh Nandy, and Dietmar Cordes. 2003. Cluster analysis of
fMRI data using dendrogram sharpening. Human brain mapping 20, 4 (2003),
201-219.

Kevin Verbeek and Subhash Suri. 2016. Metric embedding, hyperbolic space,
and social networks. Comput. Geom. 59 (2016), 1-12. https://doi.org/10.1016/].
comgeo.2016.08.003

Jason Tsong-Li Wang and Dennis E Shasha. 1990. Query Processing for Distance
Metrics.. In VLDB, Vol. 90. 602-613.

David A White and Ramesh Jain. 1996. Similarity indexing with the SS-tree. In
Proceedings of the Twelfth International Conference on Data Engineering. IEEE,
516-523.

Peter N. Yianilos. 1993. Data Structures and Algorithms for Nearest Neigh-
bor Search in General Metric Spaces. In Proceedings of the Fourth Annual
ACM/SIGACT-SIAM Symposium on Discrete Algorithms, 25-27 January 1993,
Austin, Texas, USA, Vijaya Ramachandran (Ed.). ACM/SIAM, 311-321. http:
//dl.acm.org/citation.cfm?id=313559.313789

Changchuan Yin, Ying Chen, and Stephen S-T Yau. 2014. A measure of DNA
sequence similarity by Fourier Transform with applications on hierarchical clus-
tering. Journal of theoretical biology 359 (2014), 18-28.

Kang Zhao, Hongtao Lu, and Jincheng Mei. 2014. Locality preserving hashing.
In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 28.

Guus Zoutendijk. 1960. Methods of feasible directions: a study in linear and
non-linear programming. Elsevier.

https://doi.org/10.1016/0167-8655(96)00032-3
https://doi.org/10.1016/j.comgeo.2016.08.003
https://doi.org/10.1016/j.comgeo.2016.08.003
http://dl.acm.org/citation.cfm?id=313559.313789
http://dl.acm.org/citation.cfm?id=313559.313789

	Abstract
	1 Introduction
	1.1 Novelty, Motivation, and Applications
	1.2 Technical Contributions

	2 Distance Cost Minimization
	2.1 Working Principles of Proximity Algorithms
	2.2 Direct Feasibility Test

	3 Graph Theoretic Approach
	3.1 Data Model
	3.2 Problem Definitions

	4 Bound Computation Algorithms
	4.1 Exact Algorithms
	4.2 Approximate Algorithms

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Summary of Results
	5.3 Direct Feasibility Test (DFT)
	5.4 Tightness of Bounds and Running Time
	5.5 Tri Scheme for Distance Counts
	5.6 Tri Scheme for Running Time
	5.7 Varying Proximity Parameters

	6 Related Work
	6.1 Metric Space Based
	6.2 Vector Space Based
	6.3 Metric space Transformed into Vector Space

	7 Conclusion and Discussions
	Acknowledgments
	References

