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ABSTRACT
Machine learning (ML) models have achieved widespread adoption
in the last few years. Generating concise and accurate explana-
tions often increases user trust and understanding of the model
prediction. Usually, the implementations of popular explanation
algorithms are highly optimized for a single prediction. In practice,
explanations often have to be generated in a batch for multiple
predictions at a time. To the best of our knowledge, there has been
no work for efficiently generating explanations for more than one
prediction. While one could use multiple machines to generate ex-
planations in parallel, this approach is sub-optimal as it does not
leverage higher-level optimizations that are available in a batch
setting. We propose a principled and lightweight approach for iden-
tifying redundant computations and several effective heuristics for
dramatically speeding up explanation generation. Our techniques
are general and could be applied to a wide variety of perturbation
based explanation algorithms. We demonstrate this over a diverse
set of algorithms including, LIME, Anchor, and SHAP. Our empiri-
cal experiments show that our methods impose very little overhead
and require minimal modification to the explanation algorithms.
They achieve significant speedup over baseline approaches that
generate explanations in a sequential manner.

CCS CONCEPTS
•Computingmethodologies→Machine learning; • Informa-
tion systems → Query optimization.

KEYWORDS
explanations; multi-query optimization; machine learning; LIME;
Anchor; SHAP
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1 INTRODUCTION
The widespread use of ML models has necessitated the develop-
ment of algorithms for explaining their predictions. Explanations
increase user trust and understanding of the model with diverse ap-
plications including model transparency [11, 12, 21], debugging [9],
accountability [33], auditing [11, 29], fairness [6], explanation sum-
marization [9, 24] and others [7, 25]. An increasing number of
countries espouse a “right to explanation” [11]. However, current
algorithms are optimized for explaining individual predictions. In
applications such as responsible AI [6, 33] or explanations summa-
rization [9, 24], explaining data cleaning [5, 9, 35] there is a need
to generate explanations for multiple predictions in a batch set-
ting. Generating explanations often cannot be done in real-time (in
milliseconds). For example, generating a single explanation using
LIME takes 17, 15, 6, 6 and 5 seconds respectively for the 5 datasets
evaluated in the paper. So, an organization might pre-compute all
the explanations in a batch setting and retrieve them as needed.

Sequentially processing one explanation at a time could take too
much time. An alternate approach of using a cluster and paralleliz-
ing the explanation generation would give results faster but could
waste precious computing resources. Given the rapidly increasing
carbon footprint of ML algorithms [31], and the widespread de-
ployment of explanation algorithms, there is a pressing need for
smarter algorithms for this critical problem.

We propose a principled and scalable framework, Shahin,1 for
generating explanations for multiple predictions. There are a num-
ber of redundant computations that could be avoided by leveraging
techniques such as materialization and reuse. Our techniques were
inspired by Multi-Query Optimization (MQO) [28, 32]. Given a
query workload, MQO seeks to identify common sub-expressions
across queries, so that the reevaluation cost could be minimized. In
our paper, we focus on perturbation based explanation algorithms.
We describe a general set of heuristics and discuss how these ideas

1A subspecies of Peregrine Falcon, the fastest bird in the world
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could be instantiated for popular perturbation based explanation al-
gorithms (LIME, Anchor and SHAP) requiring minimal changes and
very low overhead. These techniques are widely used for explaining
tabular data and have been incorporated into the ML offerings of
Google [12], AzureML [21], and others [14]. Our proposed approach
achieves significant speedup without compromising the explanation

quality. In short, we adapt the techniques pioneered by the database
community to solve a practical problem in data science.

Opportunities for Optimization. Intuitively, algorithms such as
LIME [26] and Anchor [27] work by perturbing the data, applying
the blackbox classifier on the perturbations, and using the resulting
predictions to generate explanations. We trained a Random Forest
classifier on the widely used Census-Income dataset [37], and used
LIME andAnchor to explain a single instance. Invoking the classifier
on the perturbations accounted for 88% of the execution time for
LIME and 92% for Anchor. Our key insight is that it is possible to
avoid the classifier invocation by reusing perturbation generated for
explaining one tuple. For example, if two tuples 𝑡𝑖 and 𝑡 𝑗 have some
overlap, one could generate perturbations that could be used for the
explanations of both of them. Naive optimization techniques such as
persisting all the perturbations or greedily choosing perturbations
are not viable and provide only minor improvements. We perform
a lightweight preprocessing of the dataset and use the collected
statistics to generate perturbations smartly. We identify a number
of such optimization opportunities and propose effective heuristics
for speeding up the explanations.

Summary of Contributions.

• We identify an important problem of generating explanations
for multiple predictions over tabular data.

• We analyze popular explanation algorithms, identify multi-
ple redundant computations and develop scalable algorithms
inspired by database techniques.

• We conduct extensive experiments that show that Shahin
achieves significant speedups with very little overhead.

2 PRELIMINARIES

In this section, we formally define the problem of generating expla-
nations for multiple predictions.

2.1 Problem Statement

We are given a batch of tuples 𝐵 = {𝑡1, 𝑡2, . . . , 𝑡𝑛}, a classifier C
and an explainer E. Let 𝑦𝑖 = C(𝑡𝑖 ) be the prediction for tuple 𝑡𝑖
and 𝑒𝑖 = E(𝑡𝑖 , C) be the corresponding explanation. Our goal is
to generate explanations for the predictions of all the tuples in 𝐵.
The explanations could be in the form of a rule “IF 𝐴𝑖 = 𝑢 then
class=Positive”. Alternatively, it could be in the form of weights
associated with each attribute such that attributes vital for the
prediction getting a higher value. We shall describe the different
type of explanations in Section 3.

Explanations for Multiple Predictions (EMP) Problem:
Given a batch of tuples 𝐵, classifier C and explainer E, effi-
ciently generate explanations for each of tuples 𝑡𝑖 such that
the cumulative cost of computing explanations is minimized.

A straightforward approach would assign more resources by run-
ning the explanation algorithms in parallel on many machines.

Instead, we propose a more promising and simpler approach in-
spired by multi-query optimization [28, 32] that achieves speed up
by avoiding redundant computations by materializing them. As
we shall show in our experiments, our approach outperforms the
parallelization strategy even for small batches.

Batch and Streaming Variants. In the batch variant, we are pro-
vided with a batch of individual predictions that must be explained.
In a number of data science applications, the set of tuples on which
the predictions need to be made and explained is available be-
forehand. Emerging scenarios in responsible AI and explanation
summarization work by generating explanation for each tuple in
the test set and post-processing the generated explanations. This
allows a number of optimization opportunities by performing a
lightweight pre-processing to identify the redundant computations.
These could then be pre-computed and materialized for later use.
The other is the streaming scenario where the predictions arrive
one at a time and we need to compute explanations for them im-

mediately. We do not have the luxury of pre-hoc identifying the
redundant computations and might also have additional constraints
on resource consumption.We need to identify promising candidates
for redundant computations in a principled manner. Our proposed
approaches are generic enough to handle both the scenarios. Fig-
ure 1 illustrates the key components of our proposed approach.

Figure 1: Illustration of our proposed approach.

3 EXPLAINING MULTIPLE PREDICTIONS
FOR LIME, ANCHOR AND SHAP

We focus on three perturbation based algorithms – LIME [26],
Anchor [27], and KernelSHAP [20]. Internally, they use diverse
techniques and are exemplars in showing the generality of our
approach. We provide the necessary background and focus on the
optimizations that provide the most bang for the buck, easy to
implement, and are generalizable to other explanation algorithms.

Key Idea. Each of the perturbation algorithms follows the same
template. Given an input tuple 𝑡𝑖 , they generate multiple pertur-
bations 𝑃𝑖 , and post-process the perturbations and their classifier
predictions to generate explanations. We could also abstract the
perturbation scheme. Given a tuple 𝑡𝑖 , each of the explainers gen-
erate a perturbed sample by ‘freezing’ a subset of 𝑡𝑖 ’s attributes
and then replacing the rest of the values randomly according to a
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perturbation scheme. For example, LIME uses the frequency distri-
bution of an attribute𝐴𝑘 when replacing the attribute𝐴𝑘 of 𝑡𝑖 with
the most frequent value having a higher likelihood of being filled.

Suppose that two tuples 𝑡𝑖 and 𝑡 𝑗 have an overlap in attribute
values. It is possible that the explanation algorithm could choose
to freeze this overlap and fill the remaining attribute values. Hence,
one could generate a common perturbation and reuse them for
both 𝑡𝑖 and 𝑡 𝑗 . We could extend this intuition further. Given a
batch of tuples 𝐷 , frequent itemsets (by definition) are subsets of
attribute values that co-occur in multiple tuples. This increases the
likelihood that the explanation algorithm would choose to freeze
these itemsets and generate perturbations around them. Hence,
they are also promising candidates to cache so that they could be
used for explaining multiple tuples.

Shahin takes a uniform random sample of the batch and applies
a traditional frequent itemset algorithm. Each frequent itemset 𝑓
is of the form {𝐴𝑖 = 𝑢,𝐴 𝑗 = 𝑣, . . .} where 𝐴𝑖 , 𝐴 𝑗 , . . . are arbitrary
features and 𝑢, 𝑣, . . . , are the corresponding values of those features
that are frequent in the batch. The sample size is heuristically
chosen as max(1000, 1% of batch).

3.1 LIME for EMP Problem

LIME Primer. Local interpretable model-agnostic explanations
(LIME) [26] is a seminal work that trains an interpretable surro-
gate model to approximate the blackbox classifier C and generate
explanations. The explanation of LIME corresponds to a small set
of attributes with relative weights. For a two class classification
problem, attributes that contribute to positive class will have posi-
tive weights. We can obtain an ordering of the importance of the
attributes to the prediction by sorting based on the weights. LIME
consists of four key operations: (1) perturbing 𝑡𝑖 to obtain samples 𝑆 ;
(2) running blackbox classifier C on 𝑆 ; (3) training an interpretable
model𝐶𝑖𝑛𝑡 on 𝑆 that acts as a surrogate for C; (4) generating expla-
nations for 𝑡𝑖 by analyzing 𝐶𝑖𝑛𝑡 . Profiling on LIME shows that the
steps (1) and (2) account for more than 95% of total execution time.

Adapting LIME for EMP. One can simultaneously minimize the
cost of both steps (1) and (2). First, let us dig deeper into how the
perturbations are done for tabular data. For categorical attributes,
LIME perturbs them by sampling values according to the data distri-
bution from the training dataset. By default, it discretizes numerical
data and treats it as categorical. Alternatively, it can perturb a nu-
merical feature by sampling from a unit Normal distribution and
performing inverse operation of mean-centering and scaling [26].
Shahin relies on two key insights. First, the perturbations are per-
formed for each feature independently and based on a distribution
that is fixed for each tuple. For example, consider two arbitrary
tuples 𝑡𝑖 and 𝑡 𝑗 . During perturbation, the probability that a feature
𝐴𝑖 will be set the value 𝑢, for both 𝑡𝑖 and 𝑡 𝑗 , is exactly same as the
proportion of 𝑢 in the training dataset. Second, given two arbitrary
perturbations made by LIME, we must prefer those that could be
reused for multiple tuples.

We compute the frequent itemsets 𝐹 and for each 𝑓 ∈ 𝐹 , we com-
pute 𝜏 perturbations. For example, if 𝑓 = (𝐴𝑖 = 𝑢,𝐴 𝑗 = 𝑣), then we
create 𝜏 perturbations such that all of them have (𝐴𝑖 = 𝑢,𝐴 𝑗 = 𝑣)
while the values for other features are obtained using LIME’s pertur-
bation techniques. The parameter 𝜏 is set automatically by Shahin

based on the resource constraints. The classifier is invoked on each
of the perturbations and its output is stored. Given a new tuple 𝑡𝑖
for explanation, we check if 𝑡𝑖 contains any of the frequent itemsets.
If so, we pool the 𝜏 perturbations corresponding to those itemsets.
For the remaining perturbations, we follow the same procedure
as LIME. The reused perturbations and their labels result in sav-
ings in terms of both classifier invocations and needless creation of
perturbations. The pseudocode can be found in Algorithm 1.

Algorithm 1 LIME for EMP Problem
1: Input: A batch 𝐵, blackbox classifier C, number of samples 𝑁
2: Compute frequent itemsets 𝐹 over 𝐵
3: Generate 𝜏 perturbations ∀𝑓 ∈ 𝐹
4: Invoke C on all perturbations and store the output in 𝑃
5: for each tuple 𝑡𝑖 ∈ 𝐵 do
6: 𝑆 = retrieve reusable samples and labels from 𝑃

7: 𝑆 ′ = Obtain 𝑁 − |𝑆 | perturbations, invoke C on them
8: 𝑆 = 𝑆 ∪ 𝑆 ′
9: Compute proximity between 𝑡𝑖 and each 𝑠 ∈ 𝑆
10: Train interpretable model𝑀 using 𝑆
11: Generate explanations for 𝑡𝑖 using𝑀
12: return explanations for 𝐵

3.2 Anchor for EMP Problem

Anchor Primer. Anchor [27] is another popular perturbation
based explantion algorithm that outputs easy to understand rules
of the form IF𝐴𝑖 = 𝑢 AND 𝐴 𝑗 = 𝑣 THEN class=1. For each rule, An-
chor also provides two metrics – precision and coverage. Precision
is the proportion of tuples in which the rule holds. Coverage is the
fraction of tuples on which the predicates of the rule holds. Given
a tuple 𝑡𝑖 and a desired threshold on precision, Anchor provides a
rule with high coverage whose precision exceeds the bound. An-
chor consists of three key steps: (1) Generating candidate rules; (2)
Estimating their precision; (3) Identify 𝐾 best candidates with high
precision and coverage and repeating from step 1 till the precision
constraints are satisfied.

Adapting Anchor for EMP. Similar to LIME, Anchor provides
multiple opportunities for optimization. The key bottleneck in An-
chor is the estimation of precision of a candidate rule. For example,
let IF 𝐴𝑖 = 𝑢 THEN class=1 be such a rule. A naive approach would
be to generate various samples where 𝐴𝑖 = 𝑢 and the other at-
tributes are obtained by using training data distribution. For each
of the sample data points, we invoke the classifier and report the
proportion in which class=1 occurs. Since classifier invocation is
very expensive, Anchor uses a sophisticated multi-armed-bandits
to minimize the number of such calls.

We begin by identifying the frequent itemsets 𝐹 . For each 𝑓 ∈ 𝐹 ,
we estimate the precision of rules. If the precision of a rule contain-
ing 𝑓 as its predicate is higher than the user provided threshold,
then the rule could be used as an Anchor for all tuples containing
𝑓 . Since 𝑓 was a frequent itemset, it is likely to have a high cov-
erage. The second optimization is to bootstrap the computation
of precision for candidate rules containing a superset of frequent
itemsets. Let 𝐴𝑖 = 𝑢 be a frequent itemset. Then the process of
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estimating its precision requires the generation of various sam-
ple data points and the invocation of classifier on it. Consider a
rule IF 𝐴𝑖 = 𝑢 AND 𝐴 𝑗 = 𝑣 THEN class=1. Instead of estimating
the precision from scratch, we can scan the samples generated for
𝐴𝑖 = 𝑢, find the subset that also contains 𝐴 𝑗 = 𝑣 . By computing the
proportion of those that have class=1, we can obtain a preliminary
estimate that could be refined as needed. Finally, the coverage of
the rules are fixed for each candidate rule. Hence, we materialize
the coverage of all the candidate rules so that they are not recom-
puted again and again. Given multiple candidate rules satisfying
the requirements, we pick the rule with least number of predicates.
Algorithm 2 describes coarse-grained pseudocode.

Algorithm 2 Anchor for EMP Problem
1: Input: A batch 𝐵, blackbox classifier C
2: Compute frequent itemsets 𝐹 over 𝐵
3: Generate candidate rules 𝑅 using 𝐹 and estimate precision
4: for each tuple 𝑡𝑖 ∈ 𝐵 do
5: 𝑅′ = {}
6: loop
7: Generate candidate rules by appending new predicates

from 𝑡𝑖 to 𝑅′
8: if precision of any candidate rule 𝑟 ∈ 𝑅′ satisfies precision

constraints then
9: Use 𝑟 as Anchor
10: else
11: Bootstrap precision for the candidate rules 𝑅′ from ma-

terialized samples
12: Add current precision estimates of rules to 𝑅
13: Find best candidate rules 𝑅′′ ⊆ 𝑅′

14: Update precision of rules 𝑅′′
15: return explanations for 𝐵

3.3 KernelSHAP for EMP Problem

Shapley Values. Given a tuple 𝑡𝑖 , SHAP [20] is a family of algo-
rithms that use Shapley values for allocating contribution/impor-
tance of each feature value 𝐴 𝑗 = 𝑣 in 𝑡𝑖 . Intuitively, Shapley values
computes the marginal contribution for each feature over all possi-
ble subsets of features. Computing the exact Shapley value requires
exponential time. Hence, the values are computed approximately
through sampling [34]. Feature importances computed via Shapley
values have a number of appealing theoretical properties.

KernelSHAP Primer. KernelSHAP can estimate the feature im-
portances of any blackbox functions. It consists of four major steps:
(1) Generate multiple random feature subsets, estimate their weight
through SHAP kernel and convert each feature subset to a random
perturbations through sampling from the training data distribution;
(2) Apply blackbox classifier on the random data perturbations; (3)
Build a weighted linear and interpretable model; (4) Compute the
Shapley values for each feature.

Adapting KernelSHAP for EMP. First, we obtain the frequent
itemsets 𝐹 and generate 𝜏 random perturbations. Suppose the fea-
ture subset is 𝐴𝑖 = 𝑢,𝐴 𝑗 = 𝑣 . Then for each of the 𝜏 perturbations,
we set their𝐴𝑖 to 𝑢 and𝐴 𝑗 to 𝑣 . The other attribute values are filled

by sampling according to their data distribution. We invoke the
classifier on each of these random data perturbations and store the
predictions. KernelSHAP computes 𝑀 random data perturbations
before feeding them to an interpretable model. Given a tuple 𝑡𝑖 for
explanation, we identify if it contains any feature subset that is
frequent. If so, then we can reuse all random perturbations and
their labels. For the remaining budget, we randomly chose a feature
subset and check if it is a superset of any other frequent itemset.
If so, we can again reuse those data perturbations. For example, if
𝐴𝑖 = 𝑢 is frequent but 𝐴𝑖 = 𝑢,𝐴 𝑗 = 𝑣 is not, we can still scan the
random data perturbations of𝐴𝑖 = 𝑢 for those that also have𝐴 𝑗 = 𝑣 .
Another key optimization is to choose random feature subsets in
proportion to the weight provided by SHAP kernel defined as [20].

𝜋 (𝑚, 𝑠) = 𝑚 − 1(𝑚
𝑠

)
× 𝑠 × (𝑚 − 𝑠)

(1)

Here𝑚 is the maximum size of the feature subset while 𝑠 is the
size of current feature subset. We can see that when 𝑠 is small or
𝑠 ∼𝑚, the value 𝜋 (𝑚, 𝑠) is large. In other words, generating feature
subsets that are either very small (1 or 2) or very large (as large as
𝑚 or𝑚−1) is preferable to feature subsets of intermediate size such
as 𝑚/2. This optimization has been previously observed in [22].
Algorithm 3 puts together all these ideas.

Algorithm 3 KernelSHAP for EMP Problem
1: Input: A batch 𝐵, blackbox classifier C, number of samples 𝑁
2: Compute frequent itemsets 𝐹 over 𝐵
3: Generate 𝜏 random data perturbations ∀𝑓 ∈ 𝐹
4: Invoke C on all perturbations and store the output in 𝑃
5: for each tuple 𝑡𝑖 ∈ 𝐵 do
6: 𝑆 = 𝑆 ′ = {}
7: if 𝑡𝑖 contains any frequent itemset then
8: 𝑆 = 𝑆∪ retrieve the perturbations and their labels from 𝑃

9: while |𝑆 | + |𝑆 ′ | < 𝑁 do
10: Pick feature subset size according to Equation 1
11: Pick a random subset 𝑠
12: if 𝑠 is a superset of any frequent itemset then
13: 𝑆 ′ = 𝑆 ′∪ any relevant perturbations from 𝑃

14: Invoke C on perturbations from 𝑆 ′

15: 𝑆 = 𝑆 ∪ 𝑆 ′
16: Compute weight of each 𝑠 ∈ 𝑆 using SHAP kernel
17: Train an interpretable model𝑀
18: Generate explanations for 𝑡𝑖 using𝑀
19: return explanations for 𝐵

3.4 Optimization Principles used by Shahin
The ideas behind Shahin are generic and could be used to speedup
other perturbation based explanation algorithms over tabular data.

Materialization and Reuse of Perturbations. The key insight
is to identify the expensive computations that are repeated and ma-
terialize the intermediate results. For example, invoking blackbox
classifiers is often the biggest bottleneck accounting for 88% of the
execution time for LIME and 92% for Anchor for Census-Income
dataset. However, it is often unlikely that random perturbations of
two tuples would have produced a common sample whose classifier

Research Data Science & Engineering Track Paper  SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2238



invocation could be minimized. We need to engineer opportuni-
ties for reuse. By preferentially selecting perturbations (such as by
leveraging frequent itemsets) that could be reused, we achieved
tremendous speedups.

Caching Other Invariant Results. The precision and coverage
of a rule are invariant and do not change for different tuples. Even
if they are inexpensive, it is sub-optimal to repeatedly calculate
them. One can design a cache to store these invariant results for
reuse. In some cases such as coverage, it is often clear that it is an
invariant. In other cases, such as precision in Anchor, the parameter
is often derived/estimated using a complex approach like multi-
armed bandit which makes the invariance non-obvious. Similarly,
other notions of invariance might exist and one could achieve good
speedup by pre-computing them.

3.5 Streaming Variant of Shahin
Shahin could also be invoked in a streaming setting where indi-
vidual predictions arrive one at a time and explanations have to
be generated for them. Shahin uses a simple adaptation to retro-
fit the ideas developed for the batch setting for application in the
streaming setting. Shahin is given amemory budget that constrains
the amount of auxiliary information that could be saved such as
frequent itemsets and perturbations.

Let us consider the LIME explanation algorithm. At the begin-
ning, the tuples arrive one at a time and we do not have sufficient
information to identify which of them are frequent itemsets. For
the first tuple 𝑡1, we generate and store all the perturbations along
with their labels to a repository 𝑃 . Clearly, there is no saving yet.
For the second tuple to be explained 𝑡2, we check if we can reuse
any of the perturbations of 𝑡1. If so, we reuse the perturbations
as appropriate. If not, we generate perturbations of 𝑡2, invoke the
classifier and store these perturbations with labels to 𝑃 . We also
store the set of tuples that are being explained {𝑡1, 𝑡2, . . . , }.

We repeat this process until either: (a) 𝑃 exceeds the memory
budget or (b) number of tuples exceed a certain threshold (automat-
ically chosen by Shahin such as 100). When the former happens,
we kick out perturbations based on the LRU (least recently used)
policy. At the limit, this approach implicitly ensures that perturba-
tions containing frequent itemsets will not be kicked out. When the
latter (b) happens, we run a frequent itemset mining algorithm and
also store the negative border of the frequent itemsets. An itemset
{𝐴𝑖 = 𝑢,𝐴 𝑗 = 𝑣} is in the negative border if it is not frequent but
all of its immediate subsets i.e. {𝐴𝑖 = 𝑢} and {𝐴 𝑗 = 𝑣} are frequent.

Let 𝐹 be the set of frequent itemsets and their negative border.
For each item 𝑓 ∈ 𝐹 , we compute the frequency of 𝑓 in the set of
tuples. Once this is done, we purge the tuples as they no longer are
needed. Due to the way in which 𝐹 is constructed, the perturbation
repository 𝑃 already consists of perturbations containing itemsets
from 𝐹 . If not, we purge that perturbation and use the obtained
savings to generate perturbations of 𝑓 ∈ 𝐹 .

When new set of tuples arrive, we update the frequency of item-
sets in 𝐹 and reuse perturbations as appropriate from 𝑃 . We also
persist the next set of tuples so that the frequent itemsets can be
recomputed. Any frequent itemset 𝑓 ∈ 𝐹 that becomes infrequent
is kicked out along its perturbations from 𝑃 . We can see that this
intuitive approach computes useful perturbations while keeping

fresh by periodically recomputing the frequent itemsets. This prop-
erty makes the algorithm dynamic and responsive to changes in
the input stream.

3.6 Discussion

Handling Numeric Data. Both LIME and Anchor discretize nu-
meric data (such as by quartile discretization) before generating
perturbations. Shahin computes the frequent itemset over the dis-
cretized data. Of course, if discretization is not done the opportunity
for identifying redundant computation decreases.

Anchor Explanation Quality. Both of the optimizations used by
Shahin to speed up Anchor are exact and do not affect explanation
quality. First, Shahin caches invariant results (such as precision
and coverage) of a candidate rule and avoids recomputing it. Second,
Shahin reuses perturbations to accelerate the precision computa-
tion of a candidate rule. For e.g. the precision of a rule 𝑅1 such as
“IF 𝐴𝑖 = 𝑢 and 𝐴 𝑗 = 𝑣 THEN class=1” is obtained by generating
various perturbations where 𝐴𝑖 = 𝑢 and 𝐴 𝑗 = 𝑣 , invoking classifier
and finding the fraction for which class=1. We can see that one
could reuse the perturbation of 𝑅1 for candidate rules 𝑅2 (“IF𝐴𝑖 = 𝑢
THEN class=1”) and 𝑅3 (“IF 𝐴 𝑗 = 𝑣 THEN class=1”). Furthermore,
the reverse is also possible. We can reuse any of the perturbations of
𝑅2 and 𝑅3 that matches the predicate of 𝑅1 to compute the precision
of 𝑅1. Once again, this optimization is exact.

LIME/KernelSHAP Explanation Quality. Both LIME and Ker-
nelSHAP generate a perturbation of tuple 𝑡𝑖 as follows. First, they
fix the value of a random subset of attributes (say that of 𝐴1, 𝐴2).
For each of the other attribute (𝐴 𝑗 ∈ {𝐴3, 𝐴4, . . .}), they choose a
value from Domain(𝐴 𝑗 ) according to frequency distribution. This
perturbation is passed to a classifier for getting the label. Then
the whole process is repeated to get another perturbation. Shahin
pre-generates perturbations for frequent itemsets. If tuple 𝑡𝑖 has a
frequent itemset 𝑓 , one could reuse the pre-computed perturbations
of 𝑓 as and when LIME or KernelSHAP picks the set of attributes
𝑓 . We can see that this on-demand reuse of cached perturbations
does not introduce any approximation.

4 EXPERIMENTS

Goals. Our goals for the evaluation are threefold: (a) how does
the optimizations proposed by Shahin compare against baseline
approaches such as using a cluster of machines? (b) can the batch
and streaming variants of Shahin achieve significant speedups for
datasets with diverse characteristics? (c) what is the computational
and space overhead imposed by Shahin?

4.1 Experimental Setup

Hardware and Platform. All our experiments were performed
on a quad-core 2.2 GHz machine with 16 GB of RAM. Shahin and
the various explanation algorithms are all implemented in Python.
We compared Shahin against the author provided implementations
of LIME, Anchor and SHAP.

Datasets. We conduct experiments over five diverse benchmark
datasets. The Census-Income dataset [37] consists of 42 demo-
graphic and employment related variables and predicts whether
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Dataset #Tuples #CatA #NumA #MaxDC LIME (s) Anchor (s) SHAP (s)

Census-Income (KDD) 299285 27 15 18 15.67, 1.84, 5.59 1.67, 0.19, 0.59 0.95, 0.12, 0.33
Recidivism 9549 14 5 20 5.62, 0.624, 1.872 8.4 , 0.95, 3.11 1.62, 0.21, 0.46
lendingclub 42536 26 24 837 17.5, 1.7, 5.48 2.9, 0.28, 0.85 1.1, 0.15, 0.4
KDD Cup 1999 4000000 13 27 490 6.1, 0.51, 1.6 7.8, 0.64, 2.05 1.27, 0.15, 0.33
Covertype 581012 44 10 7 6.04, 0.55, 1.68 19, 1.69, 5.27 1.56, 0.19, 0.43

Table 1: Dataset Characteristics and Performance of Shahin. #CatA, #NumA are the number of categorical and numerical

attributes. #MaxDC is largest domain cardinality of the categorical attribute. The last three columns display the average time

taken in seconds for explaining a single tuple (for a batch of 1000) for the sequential baseline, Shahin-Batch and Shahin-
Streaming variants of LIME, Anchor and SHAP respectively.
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Figure 2: Comparison of Speedups achieved by Shahin and Baseline Algorithms
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Figure 3: Speedup Ratio of Shahin-Batch for LIME, Anchor and SHAP for diverse datasets.
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Figure 4: Speedup Ratio of Shahin-Streaming for LIME, Anchor and SHAP for diverse datasets.
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the person makes $50𝐾 annually. The recidivism dataset is used to
predict recidivism for individuals released from prison [30]. The
lending club dataset predicts whether a loan will result in default
or late payment. These three datasets have been used in prior ex-
planation work such as [27]. KDDCup 1999 dataset seeks to build a
network intrusion detector by predicting whether a connection is
normal or abnormal [8]. The CoverType dataset fromUCI repository
tries to predict forest cover type from cartographic variables [8].
Each of these datasets are diverse in number of total, categorical
and numerical attributes. The categorical attributes also have a
wide spectrum in terms of domain cardinality. The details about
these datasets are provided in Table 1. We partition the dataset into
1/3 and 2/3. We used the former for training the ML model and used
the latter for prediction and explanation. These datasets exhibit
diversity along key dimensions that influence the performance of
explanation algorithms such as the number of categorical / numeri-
cal attributes and the frequency distribution of domain values for
the categorical attributes.

Explanation Algorithms.We focus on three representative per-
turbation based algorithms – LIME, Anchor and SHAP as they use
different algorithmic techniques and produce very different expla-
nations. Our implementation of Shahin was based on Microsoft’s
InterpretML library [25]. Due to space limits, we conduct our exper-
iments on random forest classifier. Since Shahin achieves speedup
by minimizing the number of classifier invocations, this does not
materially affect the conclusions. We used the default hyperparam-
eters for the explanation algorithms (such as 𝜖 = 0.1, 𝛿 = 0.05 for
Anchor). The default value of 𝜏 was set to 100.

Baseline Algorithms. We consider two baseline approaches. The
first approach generates explanations sequentially one prediction
at a time. Specifically, we consider a distributed variant where the
explanation generation is equally spread across 1, 4 or 8 machines
dubbed as Dist-1, Dist-4 and Dist-8 respectively. Given a batch
of 10000 predictions to explain, Dist-8 will split them into 1250
predictions and spread them to 8 machines. The second baseline
is Greedy. Given a memory budget, this approach stores all the
perturbations until the budget is exhausted. When generating expla-
nation, it reuses existing perturbations and their labels if possible.
Otherwise, it generates new explanations and uses the LRU (least
recently used) policy to replace unused perturbation. By default,
we assumed that the space budget is 10x the size of the batch.

Batch Sizes.We evaluate both the batch and streaming variants of
Shahin using the same set of tuples processed. We vary the batch
size from 10 to 50K tuples. The order in which the tuples are pro-
cessed is the same for all the algorithms. In the batch scenario, this
denotes the set of tuples for which explanations has to be generated.
In the streaming scenario, Shahin receives an explanation request
one at a time. We randomly generated 10 different permutations
and report the average results.

Performance Measures. We measure our proposed algorithms
through two keymetrics – speedup ratio and overhead. The speedup
ratio is defined as the ratio of time taken by the sequential approach
to the time taken by Shahin. The running time of both baselines
and Shahin varies based on various factors such as the number
of categorical attributes, their domain cardinality, classifier used

and so on. However, these variations are removed when using
speedup ratio allowing us to quantify the speedup achieved by
Shahin’s optimizations. While Shahin does use multiprocessing,
we disable it to show that our superior performance comes from
algorithmic improvements that minimize the number of classifier
invocations. For the distributed version of the baseline (say Dist-8),
we report the average time taken by the 8 machines as the runtime.
By default, Shahin runs only on a single core of a single machine.
The computational overhead measures the percentage of time taken
by Shahin for housekeeping purposes such as computing frequent
itemsets and retrieving relevant perturbations. The space overhead
quantifies the space used for caching the intermediate results.

4.2 Experimental Results

Comparison against Baseline Approaches. First, we measure
the speedup achieved by Shahin against the distributed and greedy
baselines for explaining the predictions of a random forest classi-
fier trained over the Census-Income dataset for a batch of tuples
whose size is varied from 10 to 50K. Figure 2 shows that Shahin
achieves the best speedup ratio regardless of the explanation al-
gorithm used. We found similar trends for other datasets. We also
report the average time taken in seconds for explaining a single
tuple (for a batch of 1000) for the sequential baseline, Shahin-Batch
and Shahin-Streaming variants of LIME, Anchor and SHAP respec-
tively in Table 1. Even though Shahin ran on a single machine, it
outperforms Dist-8 for batch sizes of 1000 and higher. For LIME
explainer, Shahin achieves a speedup of 10.8 for a batch size of
1000 which increases to 20.8 for a batch size of 50K. The disparity in
performance increases as the batch size is increased with Shahin
being 2.6x faster than Dist-8 for a batch size of 50K. Larger batches
allow Shahin to make informed decisions about the redundant
computations through frequent itemsets.

The other baseline Greedy achieves substantial speedup for
small batches that decreases for larger batches. This decrease is
due to the algorithm’s sub-optimal decisions regarding which per-
turbations to persist and which to remove. Blindly persisting all
perturbations is not an effective strategy. In contrast, Shahin takes a
holistic approach and produces consistent and significant speedups.

Performance of Shahin-Batch. Figure 3 shows the speedup for
three explainers (LIME, Anchor and SHAP) for all the datasets. Re-
gardless of the dataset, Shahin can speedup explanation generation
by more than 20x for LIME and Anchor. The corresponding value
for SHAP is around 18. Since invoking blackbox classifier accounts
for more than 90% of the time taken, we can infer that speedup is
primarily achieved by minimizing the number of calls to the clas-
sifier by intelligently materializing and reusing the perturbations.
Similar to Figure 2, the speedup ratio increases with the batch size.
Larger batch sizes allow Shahin to identify promising intermediate
results to cache based on frequent itemsets.

Performance of Shahin-Streaming. Figure 4 shows the perfor-
mance of Shahin in a streaming setting. Overall, the trends largely
mirror those from the batch scenario. One can see that the speedups
achieved in the batch setting dwarves that from the streaming
setting. This is not surprising due to the ability of Shahin to pre-
process the data and carefully chose the perturbations tomaterialize.
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While the streaming based approach has a slower start obtaining
only 25% of the speedup of that of batch setting, it improves to more
than 60% for larger batches. Of course, one could achieve higher
speedups through smarter frequent itemset computation.

Shahin Overhead. We evaluate the overhead of Shahin for LIME
explainer for random forest over Census-Income dataset. Shahin
mines the frequent itemsets, computes the perturbations and in-
vokes the classifiers on the perturbations. For each tuple in the
batch, it retrieves the relevant perturbations. The computation of
frequent itemsets is done on a uniform random sample of size 1% of
the batch size or 1000 whichever is larger). The small size ensures
that this step is not very expensive. The computation of perturba-
tions and classifier invocation gets amortized overall. Retrieving
relevant perturbations is also a lightweight operation. Figure 5
shows that the percentage overhead imposed by Shahin is as little
as 3% and 2% for batch size of 10K and 50K respectively.

We next study the impact of varying the resource budget for
Shahin for random forest classifier for different explanation al-
gorithms. We vary the number of perturbations stored for each
frequent itemset between 1 to 1000. Figure 6 shows the result. Even
storing 10 perturbations provides a 5x speedup for LIME. Inter-
estingly, storing beyond 100 perturbations per frequent itemset
does not provide any additional benefit. This is due to the fact that
each tuple usually contains a handful of frequent itemsets. Hence,
the number of perturbations generated by the traditional LIME ex-
plainer that contains them is also limited. Figure 7 demonstrates the
results of speedup achieved when we vary the cache size between
16 MB to 1024 MB. The results are similar to that of Figure 6. Not
surprisingly, smaller cache sizes results in lower speedup ratios.
Increasing the cache size does not have a linear relationship with
speedup ratio. For both LIME and Anchor, the performance peaks at
around 128 MB and then plateaus for larger caches. This shows that
there is a diminishing utility for storing perturbations of frequent
itemsets. As the frequency of an itemset decreases, the number
of tuples that could benefit from caching those perturbations also
decreases. We found similar trends for other datasets.

ExplanationQuality.The optimizations of Shahin such as caching
are exact and does not affect the explanation quality. We empirically
measure the fidelity of explanations generated by the sequential
approach along two metrics: feature importance values and rank.
For LIME and SHAP, we can represent the contribution of each
feature as a real-valued number. We measure the Euclidean distance
between the explanation generated by original LIME/SHAP and the
Shahin variants. Using the importance values, we can compute a
ranked list of features. We use Kendall-𝜏 to measure the rank corre-
lation between the ranking produced by original LIME/SHAP and
Shahin variant. Given a batch of tuples, we compute the Kendall-𝜏
for each of the tuple in the batch and compute its average.

Shahin achieves the same ranking of features for all three expla-
nation algorithms. For Anchor and SHAP, the explanation gener-
ated by Shahin is identical to the one generated by the sequential
baseline. For both of these algorithms, Shahin achieves the speedup
through caching the redundant and invariant computations such
as classifier invocations. Clearly, such a caching based approach
will produce identical explanations. For LIME, we found that the
maximum deviation in explanation values to be as small as 0.1.

This discrepancy was due to a subtle reason. LIME relies on Ridge
regression for estimating the feature importance weights that are
computed internally using a randomized algorithm – stochastic
average gradient descent solver. Since Shahin invokes the random
number generator less than the baseline (due to caching), it results
in a minor discrepancy. However, the magnitude of the discrepancy
is comparable to the deviation between two explanations generated
by LIME for two different random seeds.

5 RELATED WORK

Explanations of ML Models. ML explanation has applications
in model debugging, detecting bias, ensuring operational safety,
among others [7, 25]. In the last few years, there has been a groundswell
of work for explaining and/or interpreting ML models sometimes
with different motivations [19, 29]. Explaining complex models
is often very challenging [1, 10, 13]. Hence, a number of recent
research focus instead on generating explanations for individual
predictions. Some local explanation algorithms explain the model
introducing interpretable surrogate models in the local neighbor-
hood of an individual prediction such as LIME [26] or Anchor [27].
Some popular explanation techniques provide explanations in the
form of computing the contribution of individual features (such as
SHAP [20]). These algorithms are incorporated intoML platforms of
the industry sector including Google [12] and AzureML [21] among
others. Robustness of the existing explanation methods are studied
in [2]. Recently, there has been a number of work on generating
explanations for database and data curation settings [5, 9, 35, 36].

SpeedingupML throughDatabaseTechniques.There has been
prior work speeding up ML algorithms using database techniques.
Some have used the concept of Materialization and reuse to speedup
the ML model construction [4, 15]. Similarly, other database tech-
niques like pipelining and operator pushdown are used to speedup
ML tasks [17]. Query optimization techniques have been used to
speedup random forest inference [3] and video queries [16, 18]. A
recent work [23] used Multi query optimization [28, 32] techniques
to speedup the individual explanations of a CNN based model.

6 CONCLUSION
We introduced a practical data science problem – efficiently gen-
erating explanations for a batch of predictions. Given the increas-
ing popularity of explanation algorithms and their adoption in
academia and industry, there is a pressing need to develop scal-
able algorithms. Our proposal, Shahin, introduces a number of
optimizations for the ML context in order to identify redundant
computations and achieves significant speedups over baselines.
There are a number of interesting next steps such as extending
these techniques for non-tabular data and other major classes of
explanation algorithms. While the proposed optimizations are ex-
act, it is possible that one could achieve substantial speedup by
allowing certain approximation in the explanations generated.
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