
111

Learning Graph Neural Networks with Positive and
Unlabeled Nodes

MAN WU, Florida Atlantic University, USA
SHIRUI PAN,Monash University, Australia

LAN DU,Monash University, Australia

XINGQUAN ZHU, Florida Atlantic University, USA

Graph neural networks (GNNs) are important tools for transductive learning tasks, such as node classification

in graphs, due to their expressive power in capturing complex interdependency between nodes. To enable

graph neural network learning, existing works typically assume that labeled nodes, from two or multiple

classes, are provided, so that a discriminative classifier can be learned from the labeled data. In reality, this

assumption might be too restrictive for applications, as users may only provide labels of interest in a single

class for a small number of nodes. In addition, most GNN models only aggregate information from short

distances (e.g., 1-hop neighbors) in each round, and fail to capture long distance relationship in graphs. In

this paper, we propose a novel graph neural network framework, long-short distance aggregation networks

(LSDAN), to overcome these limitations. By generating multiple graphs at different distance levels, based on the

adjacencymatrix, we develop a long-short distance attentionmodel to model these graphs. The direct neighbors

are captured via a short-distance attention mechanism, and neighbors with long distance are captured by

a long distance attention mechanism. Two novel risk estimators are further employed to aggregate long-

short-distance networks, for PU learning and the loss is back-propagated for model learning. Experimental

results on real-world datasets demonstrate the effectiveness of our algorithm.

CCS Concepts: • Information systems→ Social networks.

Additional Key Words and Phrases: Positive unlabeled graph learning, Graph neural networks, Attention

ACM Reference Format:
Man Wu, Shirui Pan, Lan Du, and Xingquan Zhu. 2021. Learning Graph Neural Networks with Positive and

Unlabeled Nodes. J. ACM 37, 4, Article 111 (August 2021), 25 pages. https://doi.org/10.1145/3450316

1 INTRODUCTION
With the rapid development of networking platforms and data intensive applications, graphs

are becoming convenient and fundamental tools to model the complex inter-dependence among

big scale data. As a result, networks (or graphs) are being widely used in many applications,

including citation networks [15], social media networks [29], webpage networks [3], protein-

protein interaction networks [7] and so forth. Graph data, however, is inherently sparse and highly

complex, making it difficult to carry out graph analytic tasks. For example, graph node classification

attempts to categorize nodes in a network into a number of groups, where the essential challenge

is the integration of both the graph structure and the node content information.

Authors’ addresses: ManWu, Florida Atlantic University, USA, mwu2019@fau.edu; Shirui Pan, Monash University, Australia,

shirui.pan@monash.edu; Lan Du, Monash University, Australia, lan.du@monash.edu; Xingquan Zhu, Florida Atlantic

University, USA, xzhu3@fau.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0004-5411/2021/8-ART111 $15.00

https://doi.org/10.1145/3450316

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2021.

https://doi.org/10.1145/3450316
https://doi.org/10.1145/3450316

111:2 Wu et al.

Fig. 1. A conceptual view of short and long distance relationship. Family members are considered short
distance relationships and society members are considered long distance relationships.

In order to capture node content and graph structure, many approaches have been proposed

recently to embed both structure and node content information of graphs into a compact and

low dimensional space for a new representation learning. These existing methods can be roughly

categorized into two groups: (1) two-step graph embedding based classification algorithms, and (2)

end-to-end graph convolutional neural nets methods.

For two-step graph embedding methods, graph embedding based algorithms first embed nodes

in a given graph into vector representation by preserving both structure, node content, and other

side information. Then a classical supervised learning algorithm, such as support vector machine,

is built from the vector data for classification. Graph embedding algorithms are often learned in

an unsupervised manner. They either capture the walk-based similarity between nodes, such as

DeepWalk [27], LINE [33], node2vec [9], or apply autoencoder-based models to reconstruct the

graph structure information, such as DNGR [2] and SDNE [36]. While being relatively simple, one

limitation of these models is that they separate the embedding and the classification task into two

steps. As a result, the learned node features may not have best representation for the succeeding

classifiers to learn an effective discriminitive model for the node classification task.

On the other hand, graph neural network approaches, such as graph convolutional networks

(GCNs) [15], employ an end-to-end framework to overcome the limitation of two-step approaches

and have achieved impressive performances in the node classification task. The essential idea of

GCNs is to generate a convolutional layer to exploit the irregular graph structure information

and utilize a classification loss function to assist an attributed graph accomplish the classification

task. The graph convolution operation is described as a filtering process aggregating features from

neighboring nodes, i.e.,

ℎ
(l+1)
𝑖

= ℎ
(l)
𝑖
+ Aggregate(ℎ 𝑗) 𝑗 ∈Γ𝑖 , (1)

here, ℎ
(l+1)
𝑖

and ℎ
(l)
𝑖

are latent feature representations of the node 𝑣𝑖 at the l + 1 and l-th layer,

respectively, and Aggregate(·) is an operation that assorts information from neighbor nodes (Γ𝑖)
of vertex 𝑣𝑖 .

After obtaining the new information, GCN applies a neural network to learn a new representation

via 𝑜
(l+1)
𝑖

=𝑊ℎ
(l+1)
𝑖

through a learnable weight matrix𝑊 . More specifically, GCN and GraphSage

[10] define the Aggregate(·) as the average, 𝑖 .𝑒 ., Ave(ℎ 𝑗) 𝑗 ∈Γ(𝑖) , or summarization of neighboring

feature information that equally considers the significance of each neighbor in the learning process.

The recent proposed graph attention network (GAT) aims to learn the weights of different neighbors

for aggregating information [34].

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2021.

Learning Graph Neural Networks with Positive and Unlabeled Nodes 111:3

Supervised learning

Positive & Negative data are
available for training

Positive, Negative & Unlabeled
data are available for training

Semi-supervised learning Positive Unlabeled learning

Positive & Unlabeled data
are available for training

: positive data : negative data : unlabeled data

Fig. 2. An example of supervised learning, semi-supervised learning, and positive unlabeled learning. Super-
vised learning and semi-supervised have two or more types (classes) of labeled instances, whereas positive
unlabeled learning only has one type of labeled instances (i.e. positive samples).

1.1 Motivation
Although commonly used, one of the key limitations of graph neural networks (including GAT

[34]) is that they rely on direct (1-hop) neighbor nodes to learn weight information. As a result,

long distance relationship is largely ignored in the representation learning process [38].

In practice, long distance relationship is vitally significant. For example, in social networks, an

individual is influenced by her/his neighborhood relations at different distance levels, ranging

from short distance relationships (e.g. families, friends), to long distance relationships (e.g. society,
nation states). An example of long distance relationship is illustrated in Figure 1. Since every

single relationship is generally sparse and biased, long distance relationship should be additionally

considered for graph learning to obtain a comprehensive representation of each node collaboratively.

In addition to the long-short distance relationships, another limitation of existing graph neural

networks is that they require users to label data from two or more classes to help facilitate the

classification task. This is because that most existing graph neural networks, such as GCN and

GAT, are supervised learning or semi-supervised learning approaches, where training samples

should include labeled positive and negative samples for binary classification tasks or more types of

labeled samples for multi-class classification tasks. Such requirement inevitably imposes significant

labeling costs, and in some cases, users may only provide labels of interest for a small number of

nodes in one specific class. For example, when surfing the Internet, which is an enormous graph,

users may only bookmark pages interesting to them and ignore rest of pages. As a result, only

positive samples (i.e. bookmarked pages) are labeled and all other pages are unlabeled.

The above observations show a positive unlabeled learning problem setting to recommend

pages or news of interest to users. An example of the positive unlabeled learning, compared to

supervised learning and semi-supervised learning, is illustrated in Figure 2. As graphs are becoming

increasingly popular in applications, many methods are replying on graph neural networks and

graph attention mechanisms for learning and analysis. Although positive and unlabeled learning

have been previously studied for generic data [20] and graphs [37], this problem has not been

addressed and explored by existing graph neural networks.

Motivated by the above observation, our research intends to leverage long-short distance re-

lationships and design new graph neural network approaches for positive and unlabeled graph

learning.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2021.

111:4 Wu et al.

1.2 Challenges and Contribution
In this paper, we explore the positive unlabeled graph neural network learning, in which only

partial positive nodes are labeled. Considering the extensive usage of graph neural networks as

learning frameworks in previous study[10, 15], we summarize following two main challenges:

• Challenge 1: How to capture graph structure information from long-distance neighbors?

Typically, existing graph neural networks only utilize short-distance information in a single

layer.

• Challenge 2: How to design an end to end framework for positive unlabeled graph learning?

Existing graph neural networks all require labeled nodes from two or more classes to learn a

model.

In order to address the above challenges, we propose a novel long-short distance aggregation

network (LSDAN) for positive unlabeled (PU) graph learning. For Challenge 1, we first generate
multiple graphs in different hops based on the adjacency matrix, then develop a long-short distance

attention model for these graphs. The long-short distance attention model employs a short-distance

attentionmechanism to capture the importance of each neighbor node to a target node, and utilizes a

long-distance attention approach to model the weights of the different graph with different neighbor

nodes for representation learning. For Challenge 2, we employ two novel risk estimators for positive
unlabeled learning and the expected loss is back-propagated for model learning. Experimental

results on three real datasets validate the design and effectiveness of our approach. Our contributions

can be summarized below:

• We first study positive unlabeled graph learning for network node classification task (i.e.
network transductive learning), and present a new deep learning model LSDAN as a solution.

• We propose a novel attention network for graph data, which captures node significance in

both short-distance and long-distance graphs, to model the long-short distance neighboring

information in a single layer.

• Experiments on benchmark graph datasets demonstrate that our graph neural network

approach outperforms the baseline methods.

The remainder of the paper is structured as follows. Section 2 reviews the related work. Section

3 provides the problem statement. Section 4 presents the proposed algorithm, long-short distance

aggregation networks, for PU graph learning. Section 5 illustrates the experimental study, and we

conclude this paper in Section 7.

2 RELATEDWORK
This work is closely related to graph neural networks, positive unlabeled learning and PU learning

for graph data, which are briefly reviewed below.

2.1 Graph Neural Networks
Network node representation aims to map nodes with higher proximities in a network closer to

each other in the low-dimensional latent space, which is based on network topology structure

only or with side information. For topology structure only embedding methods, most of existing

works focused on preserving network structures and properties in embedding vectors [27] [33] [9].

LINE [33] and SDNE [36] seek to preserve the first-order and second-order proximities between

nodes based on the first-order and second-order neighbors. DeepWalk [27] employs the random

walk sampling strategy to generate the neighborhood of each node. Then, some deep learning

approaches [2, 32] have been employed to learn more similar feature representations for nodes

which can more easily reach each other within𝐾 steps. Aside from topology structure only methods,

many approaches are proposed to incorporate side information such as node features [25] [44] [50].

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2021.

Learning Graph Neural Networks with Positive and Unlabeled Nodes 111:5

Recently, graph neural networks, which are designed to use deep learning architectures on graph-

structured data, have drawn significant attention from the research community. Many solutions are

proposed to generalize well-established neural network models that work on regular grid structure

to deal with graphs with arbitrary structures [24, 35, 41]. Bruna et al. [1] generalized the convolution

operation in the Fourier domain by computing the eigendecomposition of the graph Laplacian.

Then, a parameterization of the spectral filters with smooth coefficients was proposed to make them

spatially localized [13]. Duvenaud et al. [6] also considered in the form of spectral analysis, and these

networks allowed end-to-end learning of prediction pipelines whose inputs were graphs of arbitrary

size and shape. Defferrard et al. [5] proposed to approximate the filters by means of a Chebyshev

expansion of the graph Laplacian. Finally, Kipf and Welling [15] simplified the previous method

by restricting the filters to operate in a 1-hop neighborhood around each node, which can render

the extension of CNN to irregular graphs to learn local and stationary features on graphs. Li et al.

[21] studied feature learning techniques for graph-structured inputs, they modified Graph Neural

Networks [30] to use gated recurrent units and modern optimization techniques and then extended

to output sequences. Recently, Hamilton et al. [11] introduced GraphSAGE, a general inductive

framework that leverages node feature information to efficiently generate node embeddings for

previously unseen data. Li et al. [19] proposed a generalized and flexible graph CNN taking data

of arbitrary graph structure as input. In that way, a task-driven adaptive graph was learned for

each graph data while training. You et al. [46] proposed Graph Convolutional Policy Network

(GCPN), a general graph convolutional network based model for goal-directed graph generation

through reinforcement learning. With the widespread application of attention mechanisms, the

development of graph attention network methods in graphs has also been promoted. Velickovic

et al. [34] introduced the attention mechanism to graph neural network through specifying different

weights to different nodes in a neighborhood. Zhang et al. [49] proposed Gated Attention Networks

(GaAN), for learning on graphs. Unlike the traditional multi-head attention mechanism, which

equally consumed all attention heads, GaAN used a convolutional sub-network to control each

attention head’s importance. Graph neural networks has also been used for cross domain text

classification [40] or purely unsupervised cross network node classification [39]. Xu et al. [43]

study the expressiveness of graph neural networks in terms of their ability to distinguish any

two graphs and introduce Graph Isomorphism Network, which is proved to be as powerful as

the Weisfeiler-Lehman test for graph isomorphism. You et al. [47] release GraphGym, a powerful

platform for exploring different GNN designs and tasks. Chen et al. [4] propose an end-to-end

graph learning framework, namely Iterative Deep Graph Learning (IDGL), for jointly and iteratively

learning graph structure and graph embedding.

In a recent graph U-Nets design, a gPool [8] procedure is proposed to select top-𝑘 nodes to form

an induced sub-graph for the next input layer. Although their up-pooling process is efficient, gPool

might lose the completeness of the graph structure information, because it only selects top-𝑘 nodes,

and result in isolated sub-graphs, which hampers the message passing process in subsequent layers.

In order to model long-distance relationships, GTNs [48] consider all possible meta-paths within

a length limit. Instead of using pooling approaches, we develop a long-short distance attention

mechanism to model these graphs by generating multiple graphs at different distances based on

the adjacency matrix. The long-short distance attention mechanism serves similar purposes as

GTNs [48], but without compromise the graph completeness.

All existing graph neural networks require users to label data from two or more classes to

facilitate the classification task. To solve this issue, this work aims to propose a novel long-short

distance aggregation network (LSDAN) for positive unlabeled (PU) learning from graphs.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2021.

111:6 Wu et al.

2.2 Positive Unlabeled Learning
Positive unlabeled (PU) learning learns a binary classifier model from positive (𝑃) and unlabelled

(𝑈) data. Existing PU methods can be divided into two categories based on how unlabeled data

𝑈 data are handled. The first category is referred as the two-step strategy, which first identifies

possible negative (𝑁) data in 𝑈 , and then performs the ordinary supervised (PN) learning from

both positive and reliable negative examples [20]. The second category is referred to as a direct

learning method, and regards𝑈 data as 𝑁 data with smaller weights, which learns classification

models from the 𝑃 and 𝑈 data directly such as One-class SVM [31], Biased-SVM [22]. However,

the former heavily relies on the heuristics in identifying 𝑁 data, and the latter heavily relies on

different choices of the weights of𝑈 data, which is computationally expensive to tune.

To deal with this issue, some unbiased PU learning methods [18, 23, 28] are proposed. The main

solution is to adopt some novel risk estimators to avoid the bias for PU classification. Specifically,

In Niu and Sugiyama [23]’s work, an unbiased risk estimator is proposed to avoid the intrinsic

bias for unbiased PU learning. Recently, a non-negative risk estimator [18] is proposed for PU

learning, and it is more robust against overfitting when getting minimized, and thus some flexible

models can be used given a limited number of 𝑃 (positive) data. The methods in [18, 23] employ

different estimators for positive and unlabeled data, but they mainly focus on the non-graph data or

non-relational data. Different from the earlier papers, we focus on the positive unlabeled problem

on graph data, by taking both node features and relationships between them into consideration.

Moreover, although the methods in [18, 23] tried to tackle the positive unlabeled learning problem,

they are limited to feature extraction but cannot be employed for graph feature learning. In our paper,

we mainly focus on the graph data and model the long-short distance neighboring information for

each node to obtain node features. Through a novel attention network, our method captures node

significance in both short-distance and long-distance graphs, which further enhance the feature

learning and positive unlabeled graph learning.

2.3 PU Learning for Graph Data
A handful of works have studied PU Learning for graph data, but under different problem settings.

Zhao et al. [51] proposed an integrated approach to select discriminative features for graph classifi-

cation based upon positive and unlabeled graphs. Wu et al. [37] proposed a learning framework for

classifying a bag of multiple graphs. They assume each object is represented as a bag of graphs

and only partial of bags are positively labeled. So their task is to predict the class label for a whole

graph or a bag of graphs.

Our problem setting and learning framework are fundamentally different from these works

in three aspects: 1) Existing PU learning for graph data deal with a graph dataset consisting of

many graphs, and the task is to predict the class label for a whole graph or a bag of graphs (i.e.
inductive graph learning). Our goal is to deal with a single large graph and classify nodes in the

given graph (i.e. transductive graph learning); 2) Existing PU learning on graph are all shallow and

biased models, our algorithm, in comparison, is an unbiased and deep neural network model; and 3)

In order to achieve PU learning for graph node classification, we propose to combine graph feature

learning into the classification task, using specifically designed objective function.

3 PROBLEM STATEMENT
Graph: A graph is represented as 𝐺 = (𝑉 , 𝐸, 𝑋,𝑌), where 𝑉 = {𝑣𝑖 }𝑖=1, · · · ,𝑁 is a vertex set

representing nodes in a graph, and 𝑒𝑖, 𝑗 = (𝑣𝑖 , 𝑣 𝑗) ∈ 𝐸 is an edge indicating relationships between

nodes. The topological structure of graph𝐺 can be represented by an adjacency matrix 𝐴, where

𝐴𝑖, 𝑗 = 1 if (𝑣𝑖 , 𝑣 𝑗) ∈ 𝐸; otherwise 𝐴𝑖, 𝑗 = 0. x𝑖 ∈ 𝑋 indicates content features associated with each

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2021.

Learning Graph Neural Networks with Positive and Unlabeled Nodes 111:7

Table 1. Summary of Notations and Symbols.

Notations Descriptions

𝐺 = (𝑉 , 𝐸, 𝑋,𝑌) An attributed graph

𝑉 , 𝐸 Node set and edge set of 𝐺

𝑃,𝑈 Labeled and unlabled node set of 𝐺

𝑛, |𝑉 | = 𝑛 Number of nodes in 𝐺

𝐴 ∈ R𝑛×𝑛, 𝐴𝑘 ∈ R𝑛×𝑛 Adjacency matrix (𝐴) and length-𝑘 walk matrix (𝐴𝑘) of 𝐺

𝑋 ∈ R𝑛×𝑚 Feature matrix of 𝐺

x𝑖 ∈ R𝑚 Feature vector of node 𝑣𝑖 . Each node has𝑚 dimensional features

𝑦𝑖 ∈ R{1,𝑢 } Label of node 𝑣𝑖 . A node is either positive (1) or unlabeled (u).

𝑌 ∈ R𝑛×2 Label matrix of 𝐺

𝜅 the maximum hops for long-short distance aggregation

𝜎 (·) a non-linear activation function

W(1) ∈ R𝑑×𝑚 A shared weight matrix for short-distance feature aggregation

learning

𝛼𝑖, 𝑗 Weight value of the neighbor 𝑣 𝑗 for node 𝑣𝑖
𝑎𝑠𝑡 (·) Short-distance attention function

H ∈ R𝑛×𝑑 Short-distance attention feature embedding results

O ∈ R𝑛×𝑚 Long-short distance attention feature embedding results

𝑡𝑖, 𝑗 Attention coefficient between 𝑣𝑖 and 𝑣 𝑗
T ∈ R𝑛×𝑛 Attention coefficient matrix consisting of 𝑡𝑖, 𝑗

𝐵𝑘 ∈ R𝑛×𝑛 𝑘−hop adjacency matrix derived from 𝐴𝑘

W(2) ∈ R𝑑×𝑚 A shared weight matrix for long-short distance feature attention

learning

𝑎𝑙𝑠 (·) Long-short distance attention function

𝑐𝑖 the attention coefficient computed by long-short distance attention

function 𝑎𝑙𝑠
𝑅(𝑓) the expected loss/risk

𝑅+𝑝 (𝑓) the expected loss/risk for positive class

𝑅−𝑛 (𝑓) the expected loss/risk for negtive class

𝑅𝑝𝑛 (𝑓) the empirical loss/risk in traditional binary classification

𝑅+𝑝 (𝑓) the empirical loss/risk for positive class with loss L(𝑓 (𝑜𝑝
𝑖
), 1)

𝑅−𝑝 (𝑓) the empirical loss/risk for positive class with loss L(𝑓 (𝑜𝑝
𝑖
), 0)

𝑅−𝑛 (𝑓) the empirical loss/risk for negtive class

𝑅𝑝𝑢 (𝑓) the empirical loss/risk for positive and unlabeled learning

𝑅−𝑢 (𝑓) the empirical loss/risk for unlabelled class

node 𝑣𝑖 . 𝑦𝑖 ∈ 𝑌 = {+1, 0} is the ground-truth class label for each node, where “1” denotes positive

class, and “0” denotes negative class (not positive). If a node 𝑣𝑖 is of interest to a user, then 𝑦𝑖 = 1,

or 𝑦𝑖 = 0 otherwise. It is worth noting that although the ground-truth label of each node is binary

(1 or 0), only a small portion of positive nodes are labeled in PU graph learning, so the labeled set

only has positive samples.

Positive Unlabeled Graph Learning (PUGL): . Assume 𝑉 = 𝑃
⋃
𝑈 , where 𝑃 are the labeled

nodes (∀𝑣𝑖 ∈ 𝑃 , 𝑦𝑖 = 1) and 𝑈 are unlabeled nodes. Given a graph 𝐺 = (𝑉 , 𝐸, 𝑋,𝑌), Positive
Unlabeled Graph Learning (PUGL) aims to learn a binary classifier model, 𝑓 : (𝐴,𝑋 ; 𝑃) ↦→ 𝑌 , to

predict the class labels for unlabeled nodes 𝑈 . In this paper, we propose the first deep learning

model for PUGL.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2021.

111:8 Wu et al.

Fig. 3. The overall architecture of the proposed long-short distance aggregation network (LSDAN) model.
LSDAN uses higher-order network topology structures and node content (𝑋) to progressively learn a long-
short distance attention model, whose outputs are integrated into a learning objective function to achieve
optimized PU graph learning outcomes. Here, LSDAN uses higher order adjacency matrices to capture long
distance relationship w.r.t. a target node.

For ease of understanding, Table 1 summarizes major symbols and notations used in the paper.

4 LONG-SHORT DISTANCE AGGREGATION NETWORKS FOR PU GRAPH
LEARNING

In this section, we present our proposed LSDAN algorithm for PU Graph learning. Our learning

objectives are to (1) capture the long-short distance relationship between nodes, and (2) enable PU

learning on a graph. We will first present our long-short distance attention network which exploits

both short-distance and long-distance attention for long-short distance relationship modeling. Then

we present two risk estimators for PU learning. Our framework, as shown in Figure 3, mainly

consists of three components:

• Short-Distance Attention. For the input 𝑋 and an adjacent matrix 𝐴, a short-distance self

attention mechanism is applied to learn a representation for each node.

• Long-short Distance Attention. Given an input graph 𝐺 , we will first generate multi-hop

graph representation based on adjacent matrix 𝐴1, 𝐴2, · · · , 𝐴𝜅 . The matrix 𝐴𝑘 captures the

neighbors in the 𝑘-th hop of the graph 𝐺 . We develop a long-distance attention approach to

automatically determine the weights of different graphs 𝐴1, 𝐴2, · · · , 𝐴𝜅 .
• Positive Unlabeled Learning. Based on our long-short distance attention model, we de-

velop a deep architecture for learning the graph representation of each node. Then the

unbiased risk estimator and the non-negative risk estimator are used to estimate the classifi-

cation loss, respectively. The loss is further back-propagated to the learning progress in an

end to end learning framework.

4.1 Short-Distance vs. Long-Distance
Definition 4.1. Short-Distance: Short-distance is defined as the distance from direct (1-hop)

neighbor nodes to a target node.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2021.

Learning Graph Neural Networks with Positive and Unlabeled Nodes 111:9

The (normalized) adjacency matrix A characterizes the first-order proximity to model the direct

relationship (1-hop) between vertices.

Definition 4.2. Long-Distance: Long-distance is defined as the distances of 𝑘-hop neighbors

(𝑘 > 1) to a target node.

In order to capture long-distance relation for each node, we propose to consider 𝑘-distance

(with varying 𝑘 ∈ [1, 𝜅]) relational information from the network for graph learning. Given an

input graph 𝐺 , we will first generate multi-hop graph representation based on adjacent matrix

𝐴1, 𝐴2, · · · , 𝐴𝜅 . The matrix 𝐴𝑘 captures the neighbors in the 𝑘-th hop of the graph𝐺 , as shown in

Figure 4. Therefore, the 𝑘-distance relationship can be captured by:

𝐴𝑘 = 𝐴 · 𝐴 · · ·𝐴︸ ︷︷ ︸
𝑘

, (2)

where 𝐴𝑘𝑖,𝑗 refers to the 𝑘-hop link relation between node 𝑣𝑖 and 𝑣 𝑗 . In other words, if 𝐴𝑘𝑖,𝑗 ≠ 0, it

means that node 𝑣𝑖 and 𝑣 𝑗 have a 𝑘-hop relation, or zero otherwise.

Fig. 4. A conceptual view of long-shot distance attention mechanism. Short-distance corresponds to the
1-hop neighbors which is captured by the adjacency matrix A. Long-distance is defined as the distances from
𝑘-hop neighbors (𝑘 > 1) to a target node.

4.2 Long-short Distance Attention
In this subsection, we propose to differentiate and combine short-distance attention and long-

distance attention to learn network feature representation PU learning.

4.2.1 Short-Distance Attention. Given the input 𝑋 ∈ R𝑛×𝑚 denoting content matrix for all 𝑛 nodes

where each node has𝑚 dimension feature, and an adjacent matrix 𝐴 ∈ R𝑛×𝑛 , a short-distance self
attention mechanism is applied to learn a representation for each node, which aims to capture the

node features of the whole graph with short distance by aggregating feature values within each

node’s neighborhood. Specifically, the input is a set of node features, 𝑋 = {x1, x2, ..., xN}, xi ∈ Rm
denotes feature vector for node 𝑣𝑖 where𝑚 denotes the number of input features of each node. The

output of the short-distance attention is a new set of node features, H ∈ R𝑛×𝑑 = {h1, h2, ..., hn},
where hi ∈ Rd and 𝑑 denotes the number of embedding features of each node.

hi = g ©«
∑
j
𝛼i,jAi,jW(1)xj

ª®¬ , (3)

where g is a non-linear activation function, 𝐴𝑖, 𝑗 serves as a mask to only aggregate node 𝑉𝑖 ’s

direct neighbors (short-distance neighbors) for feature learning. 𝛼𝑖, 𝑗 is weight value capturing the

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2021.

111:10 Wu et al.

importance of neighbor 𝑣 𝑗 for node 𝑣𝑖 . To automatically learn the parameter 𝛼𝑖, 𝑗 , a short-distance

self-attention mechanism is developed.

To compute 𝛼𝑖, 𝑗 , a shared linear transformation is applied to each node through multiply a shared

weight matrix𝑊 ∈ R𝑑×𝑚 in the initial step. Then an attention coefficient 𝑡𝑖, 𝑗 is computed by an

attention function 𝑎𝑡𝑡 (·):
𝑡𝑖, 𝑗 = 𝑎𝑡𝑡 (𝑊 (1)x𝑖 ,𝑊 (1)x𝑗), (4)

which measures the importance of vertex 𝑗 to vertex 𝑖 . In the most general formulation, the model

allows every node to attend on every other node, dropping all structural information. We inject the

graph structure into the mechanism by performing masked attention, masking out all other nodes

except direct neighbors based on the adjacency matrix 𝐴.

Furthermore, in order to make coefficients comparable among vertices, a softmax function is

utilized to normalize attention coefficients:

𝛼𝑖, 𝑗 = softmax𝑗

(
𝑡𝑖, 𝑗

)
=

𝑒𝑥𝑝
(
𝑡𝑖, 𝑗

)∑
𝚥 𝐴𝑖,𝚥𝑒𝑥𝑝

(
𝑡𝑖,𝚥

) , (5)

In the experiment, the attention mechanism 𝑎𝑡𝑡 is instantiated with a dot product (parametrized by

a weight vector r ∈ R2𝑑) and a LeakyReLU [42] nonlinearity. Fully expanded out, the normalized

attention coefficients can be expressed as:

𝛼𝑖, 𝑗 =

𝑒𝑥𝑝

(
LeakyReLU

(
r𝑇

[
𝑊 (1)xi ⊕𝑊 (1)xj

]))
∑
𝚥 𝐴𝑖,𝚥𝑒𝑥𝑝

(
LeakyReLU

(
r𝑇

[
𝑊 (1)xi ⊕𝑊 (1)xk

])) , (6)

where 𝑎 ⊕ 𝑏 denotes the concatenation operation of vector 𝑎 and 𝑏.

Fig. 5. The mechanism of the long-distance attention, which takes 𝑋 and 𝐴𝑘 as inputs, and computes the
importance of nodes via Eq. (4) to produce the attention coefficient 𝑇 and get a matrix 𝐵𝑘 by masking out all
the other nodes except neighbors based on the 𝐴𝑘 . After that, it will produce a new set of node features 𝐻𝑘 .

4.2.2 Long-Distance Attention. To capture long-distance relation between nodes, we need to

aggregate embedding from different range of neighborhoods to produce a unified representation.

Because neighbors from different distances contribute differently to learning the representation,

we propose a Long-Distance Attention scheme to capture the significance of each 𝑘-hop distance

graph neighbors.

Specially, for each 𝐴𝑘 , 𝑘 ∈ {1, · · · , 𝜅}, we will perform the self attention to learn the embedding

𝐻𝑘 for each node (as shown in Figure 5). In order to obtain 𝑘-hop neighborhood for each node, we

define a matrix 𝐵𝑘 to capture whether two nodes (𝑣𝑖 and 𝑣 𝑗 are 𝑘-hop neighbors).

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2021.

Learning Graph Neural Networks with Positive and Unlabeled Nodes 111:11

𝐵𝑘𝑖,𝑗 =

{
1 if 𝐴𝑘𝑖,𝑗 ≠ 0

0 Otherwise.
(7)

By using 𝐵𝑘 to mask out other nodes except 𝑘-hop neighbors, we can learn 𝑘-hop neighbor

aggregated feature embedding as follows.

hki = g ©«
∑
j
𝛼i,jBki,jW

(1)xj
ª®¬ , (8)

We then use the original input𝑋 = {x1, x2, ..., xn}, xi ∈ Rm as the key of the attention mechanism,

and perform attention on each graph output 𝐻𝑘 = {hk1, hk2, ..., hkN}, hki ∈ Rd, an attention coefficient

𝑐𝑘𝑖 is computed by an attention function 𝑎𝑙𝑠 (): R𝑑 × R𝑑 → R:
𝑐𝑘𝑖 = 𝑎𝑙𝑠 (hki ,𝑊 (2)xi), (9)

where𝑊 (2)
is a shared weight matrix for long-short feature attention learning, characterizing the

consistency between short-distance and long-distance aggregated features (𝑊 (2)
also enforces the

input xki of node 𝑖 to have the same dimension as the 𝑘−hop embedding features hki). In this paper,

we denote 𝑎𝑙𝑠 () as a dot-product attention function. After that, we further normalize the weight 𝑐𝑘𝑖
with a softmax layer.

𝑐𝑘𝑖 =

𝑒𝑥𝑝

(
𝑐𝑘
𝑖

)
∑𝐾
𝑘=1

𝑒𝑥𝑝

(
𝑐𝑘
𝑖

) . (10)

After implementing the attention, final embedding output O ∈ R𝑛×𝑑 = {o1, · · · , on} , oi ∈ R𝑑 :

oi =
𝜅∑
𝑘=1

𝑐𝑘𝑖 h
k
i . (11)

4.3 Deep Long-short Distance Aggregation Networks
The short-distance attention and long-distance attention components are integrated into a unified

layer, Long-short Distance Aggregation Network Layer (LSDAN), which serves as a building block

to construct a deep architecture for node classification in a single network, as shown in Figure 6.

The LSDAN layers are stacked in the following way:

• The input𝑈 𝑙+1 to the (𝑙 + 1)th layer is the sum of the output𝑂𝑙 and the input𝑈 𝑙 from layer 𝑙 :

𝑈 𝑙+1 = 𝑈 𝑙 +𝑂𝑙 . (12)

• A residual connection [12] around two sub-layers and themulti-graph information𝐴1, 𝐴2, · · · , 𝐴𝜅
are used in different layers. The residual connection method provides the input without any

transformation to the output of the (𝑙 + 1)th layer, which makes the (𝑙 + 1)th layer learn

something new about the network.

• At the first layer of the network (𝑙 = 1), let𝑈 1 = 𝑋 , we will not use the residual connection

(i.e. 𝑈 2 = 𝑂1
), because we need to first map a high-dimensional node representation to a

low-dimensional representation.

• At the last layer of the network (𝑙 = L), we do not use the residual connection, and map the

embedding of nodes to the 2-dimensional representation for PU classification.

By this way, we can build arbitrary deep long-short distance aggregation networks to effectively

learn graph representation, by leveraging the long-short distance neighboring information.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2021.

111:12 Wu et al.

Fig. 6. The architecture of multiple layers of the proposed model.

4.4 Positive and Unlabeled Graph Learning
After integrating the structure and content information via a deep long-short distance aggregation

network, we will obtain the new representation 𝑂𝐿 = {o𝐿
1
, · · · , o𝐿

𝑁
}, o𝐿𝑖 ∈ R2 in the final layer.

One key question has arisen as how can we perform positive unlabelled learning from this new
representation?

We first formulate the traditional binary classification problem as a risk minimization problem,

and then employ two effective positive unlabeled learning methods to approximate the risk for

PUGL. An unbiased risk estimator and a non-negative risk estimator are used to approximate the

risk for PU learning, respectively. By minimizing the risk, our model is learned in an end-to-end

manner.

4.4.1 Traditional Binary Classification. Given a set of the obtained representations𝑂𝐿 = {o𝐿
1
, · · · , o𝐿

𝑁
},

o𝐿𝑖 ∈ R2 where oi is new feature representation of node 𝑖 . In the traditional binary classification,

we need to learn a model 𝑓 : O → Y, to classify each node oi into the predefined categories

Y = {+1, 0}, which is the ground-truth label of the node (1 denotes positive samples, 0 denotes

negative samples).

Let L : R × {+1, 0} → R be a loss function, then L(𝑦 ′, 𝑦) measures the predicting loss for an

output 𝑦 ′ when the ground truth is 𝑦. Let 𝑓 be a mapping function, and 𝑓 (𝑜) maps the input 𝑜 in

the range (0,1). The traditional binary classification problem is formulated as a risk minimization

problem:

𝑅(𝑓) = E [L(𝑓 (𝑂), 𝑌)] = 𝜋𝑝𝑅+𝑝 (𝑓) + 𝜋𝑛𝑅−𝑛 (𝑓), (13)

where 𝑅+𝑝 (𝑓) = E𝑝 [L(𝑓 (𝑂), +1)] and 𝑅−𝑛 (𝑓) = E𝑝 [L(𝑓 (𝑂), 0)] are the expected loss for positive

and negative samples. Here, we denote 𝜋𝑝 = 𝑝 (𝑌 = +1) be the class-prior probability, 𝜋𝑛 = 𝑝 (𝑌 =

0) = 1 − 𝜋𝑝 . 𝜋𝑝 is assumed to known throughout the paper, and it can be estimated from positive

data [14].

Therefore, for traditional binary classification problem i.e., positive and negative learning (PN

Learning), we can minimize an approximated 𝑅(𝑓) by,
𝑅𝑝𝑛 (𝑓) = 𝜋𝑝𝑅+𝑝 (𝑓) + 𝜋𝑛𝑅−𝑛 (𝑓), (14)

where 𝑅+𝑝 (𝑓) = (1/𝑛𝑝)
∑𝑛𝑝

𝑖=1
L(𝑓 (o𝑝

𝑖
), +1) and 𝑅−𝑛 (𝑓) = (1/𝑛𝑛)

∑𝑛𝑛
𝑖=1
L(𝑓 (𝑜𝑛𝑖), 0). Here, 𝑛𝑝 and 𝑛𝑛

denote the number of positive/neagtive samples, respectively.

4.4.2 Unbiased Risk Estimator for PU Learning. For positive unlabeled (PU) learning, however,

negative training data is unavailable. As a result, we need to estimate 𝑅−𝑛 (𝑓) via Eq. (14). Here,
we use a novel unbiased risk estimator to approximate 𝑅−𝑛 (𝑓) [28]. Specifically, the expected loss

𝑅−𝑛 (𝑓) of negative samples can be obtain by the expected loss 𝑅−𝑝 (𝑓) of positive samples and the

expected loss 𝑅−𝑢 (𝑓) of unlabeled samples, and is defined as

𝜋𝑛𝑅
−
𝑛 (𝑓) = −𝜋𝑝𝑅−𝑝 (𝑓) + 𝑅−𝑢 (𝑓), (15)

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2021.

Learning Graph Neural Networks with Positive and Unlabeled Nodes 111:13

where 𝑅−𝑝 (𝑓) = (1/𝑛𝑝)
∑𝑛𝑝

𝑖=1
L(𝑓 (𝑜𝑝

𝑖
), 0), and 𝑅−𝑢 (𝑓) = (1/𝑛𝑢)

∑𝑛𝑢
𝑖=1
L(𝑓 (𝑜𝑢𝑖), 0). Here, 𝑛𝑝 and 𝑛𝑢

denote the number of positive/unlabeled samples, respectively.

Therefore, for positive unlabeled (PU) learning, the risk 𝑅(𝑓) can be approximated by,

𝑅𝑝𝑢 (𝑓) = 𝜋𝑝𝑅+𝑝 (𝑓) − 𝜋𝑝𝑅−𝑝 (𝑓) + 𝑅−𝑢 (𝑓) . (16)

4.4.3 Non-negative Risk Estimator for PU Learning. Although the unbiased risk estimator can

efficiently solve the positive unlabeled learning problem. However, Eq. (16) may cause the risk

value get negative, because there’s a negative sign in front of 𝑅−𝑝 (𝑓). The 𝑅−𝑝 (𝑓) refers to the sample

in the positive sample set which is predicted to get the expected risk value with the negative label

through the model, that is: if the prediction is the negative sample, loss is 0; if the prediction is not

the negative sample, loss is positive. This will cause overfitting problem for PU Learning. Motivated

by Kiryo et al. [17], we employ a non-negative risk estimator 𝑅𝑝𝑢 (𝑓), given as follows,

𝑅𝑝𝑢 (𝑓) = 𝜋𝑝𝑅+𝑝 (𝑓) +max

{
0, 𝑅−𝑢 (𝑓) − 𝜋𝑝𝑅−𝑝 (𝑓)

}
. (17)

In our paper, we will minimize the unbiased empirical risk and non-negative empirical risk,

respectively. Specifically, let 𝑓 be a mapping function, and we use a Sigmoid activation function

𝑓 (𝑜) = 1

1+𝑒𝑥𝑝 (−𝑜) to map the input o, which can be learned by our graph neural network module in

Eq. (11), to the range (0,1). The Logistic Loss is used in the paper, and the loss function L(𝑦 ′𝑖 , 𝑦𝑖) of
each sample is defined as:

L(𝑦′𝑖 , 𝑦𝑖) = −
[
𝑦i ∗ 𝑙𝑜𝑔(𝑦′i) + (1 − 𝑦i) ∗ 𝑙𝑜𝑔(1 − 𝑦

′
i
)
]
, (18)

where 𝑦 ′𝑖 and 𝑦𝑖 are the model predict score and the ground-truth for each sample. The expected

loss/risk can be computed by the unbiased empirical risk and non-negative empirical risk via

Eq. (16) and Eq. (17), respectively.

4.5 Algorithm Description
Our algorithm is illustrated in Algorithm 1. Given a graph 𝐺 = (𝑉 , 𝐸, 𝑋,𝑌), the goal of Positive
Unlabeled Graph Learning (PUGL) is to learn the node representations and learn a binary classifier

model, 𝑓 : (𝐴,𝑋 ; 𝑃) ↦→ 𝑌 , to predict class labels for unlabeled nodes in𝑈 .

The algorithm first obtains adjacency matrix𝐴 and its power matrices𝐴𝑘 from𝐺 by Eq. (2) (Step

1). After that, it uses labelled node set 𝑃 and unlabelled node set𝑈 to calculate class-prior probability
𝜋𝑝 from𝐺 (Steps 2-4). Next, the algorithm carry out long-short distance aggregation to effectively

learn node representations by leveraging the long-short distance neighboring information. The final

output of node representations are denoted by 𝑂𝐿 (Steps 5-18). Finally, the algorithm formulates

a binary classification task as a risk minimization problem, and employs two effective positive

unlabeled learning methods to approximate the risk for PUGL. An unbiased risk estimator and

a non-negative risk estimator are used to approximate the risk for PU learning, respectively. By

minimizing the risk, the loss can be further back-propagated in our proposed model to guide the

representation learning to achieve better PU graph learning results (Steps 19-23).

4.6 Time Complexity Analysis
Given a graph 𝐺 = (𝑉 , 𝐸, 𝑋,𝑌), the proposed Long-short Distance Aggregation Network Layer

(LSDAN) consists of two parts: 𝜅 short-distance attentions, and long-short distance attention, where

𝜅 denotes the number of hops. It is worth noting that the calculation of the matrix 𝐴𝑘 can be

done in advance, and there is no need to recalculate the matrix 𝐴𝑘 during the training process.

The calculation of 𝐴𝑘 requires 𝑂 (|𝑉 |3) time complexity. The time complexity for computing each

short-distance attention is 𝑂 (|𝑉 |𝑚𝑑 + |𝐸 |𝑑), where |𝑉 | and |𝐸 | are the numbers of nodes and edges

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2021.

111:14 Wu et al.

Algorithm 1 LSDAN for Positive Unlabeled Graph Learning

Require:
(1) Graph: 𝐺 = (𝑉 , 𝐸, 𝑋,𝑌)
(2) Maximum hops for long-short distance aggregation: 𝜅

(3) Maximum graph neural network layers: 𝐿

Ensure:
A binary classifier model, 𝑓 : (𝐴,𝑋 ; 𝑃) ↦→ 𝑌 .

1: {𝐴, · · · , 𝐴𝜅 } ← Obtain adjacency matrix 𝐴 and its power matrices 𝐴𝑘 from 𝐺

2: 𝑃 ← {𝑣𝑖 |𝑣𝑖 ∈ 𝑉 ,𝑦𝑖 = 1}. Labelled node set.

3: 𝑈 ← {𝑉 \𝑃}. Unlabelled node set.

4: {𝜋𝑝 } ← calculate class-prior probability from 𝐺 .

5: while not convergence do
6: for graph neural network layer 𝑙=1 to 𝐿 do
7: if first layer 𝑙 == 1 then
8: V1 ← 𝑋

9: else if last layer 𝑙 == 𝐿 then
10: V𝐿 ← O𝐿−1

11: else
12: V𝑙 ← V𝑙−1 + O𝑙−1
13: end if
14: for each hop distance 𝑘=1 to 𝜅 do
15: H𝑙,𝑘 ← Learn embedding for each 𝐴𝑘 by Eq. (3)

16: end for
17: O𝑙 ← Learn the new output representation based on the 𝐻 𝑙 by Eq. (11)

18: end for
19: if Unbiased Positive Learning then
20: [𝑊 (1) ,𝑊 (2)] ← Back-propagate loss gradient using unbiased empirical risk Eq. (16) and

Eq. (18)

21: else if Non-negative Positive Learning then
22: [𝑊 (1) ,𝑊 (2)] ← Back-propagate loss gradient using non-negative empirical risk Eq. (17)

and Eq. (18)

23: end if
24: end while

in the graph, respectively, and𝑚 and 𝑑 denote the dimensions of the input feature and output

feature of a single layer, respectively. The time complexity of long-short distance attention is𝑂 (𝑚𝑑).
Therefore, the overall time complexity of the proposed Long-short Distance Aggregation Network

Layer (LSDAN) is 𝑂 (𝜅 |𝑉 |3 + 𝜅 |𝑉 |𝑚𝑑 + 𝜅 |𝐸 |𝑑 +𝑚𝑑).
In real-world networks, the number of nodes |𝑉 | and the number of edges |𝐸 | are much larger

than feature dimension𝑚, embedding size 𝑑 , and the the maximum hops for long-short distance

aggregation 𝜅 , where𝑉 and 𝐸 are more than thousands, and𝑚, 𝑑 , and 𝜅 are in hundreds maximum.

In addition, we know that |𝐸 | < |𝑉 |2. Therefore, LSDAN’s complexity is asymptotically bounded

by 𝑂 (𝜅 |𝑉 |3).

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2021.

Learning Graph Neural Networks with Positive and Unlabeled Nodes 111:15

5 EXPERIMENTS
In this section, we conduct experiments to evaluate our model against state-of-the-art algorithms

on three real-world datasets. Furthermore, we also provide detailed experimental analysis to show

more insights of our model.

5.1 Experiment Setting
Datasets We employ three widely used citation network datasets (Cora, Citeseer, DBLP) for node

classification [26, 45]. The details of the experimental datasets are displayed in Table 2. The Cora

dataset contains 2708 nodes, 5429 edges with 7 classes and 1433 features. The Citeseer dataset

contains 3312 nodes, 4732 edges with 6 classes and 3703 features. The DBLP dataset contains 5818

nodes, 3633 edges with 4 classes and 1587 features. As these datasets have multiple classes, we

select the class with the relatively large number of samples as P (positive) class, and all the other

classes are regarded as N (negative) class. Specifically, for the Cora, Citeseer, and DBLP datasets,

we select the class with the label is 3, 2, and 1, respectively, as P (positive) class and the remaining

classes as N (negative) class. After selecting the positive class, we convert the original classification

problems of each dataset into binary classification tasks.

Table 2. Statistics of three datasets.

Dataset Node Edges Classes Features

Cora 2708 5429 7 1433

Citeseer 3312 4732 6 3703

DBLP 5818 3633 4 1587

Baselines To the best of our knowledge, there is no existing study on positive unlabeled graph

neural network learning. To make a fair comparison and evaluate the effectiveness of our design,

we select the following baselines with necessary adaption.

We first compare our model with the classical PU learning methods, which focus on the one-step

strategy and two-step strategy.

• OC-SVM: OC-SVM [31] (One-class SVM algorithm) is a classical machine learning algorithm

based on support vector machine. It only uses positive examples from the node content to

build a binary classifier. In our experiments, we use node features as the input of One-class

SVM.

• LINE_OC-SVM:We first use an unsupervised network embedding method (LINE [33]) to

learn node representation. After that, the learned features are used as the input of One-class

SVM.

• GAE_OC-SVM:We use an unsupervised graph embedding method (Graph Auto-Encoders,

GAE [16]) to learn node representation by using both the adjacency matrix of nodes and the

features of nodes. After that, the learned features are used as the input of One-class SVM.

• Roc-SVM: Roc-SVM [20] uses two step strategies to build a classifier from the node content,

and combines the Rocchio method and the SVM technique for PU learning algorithm. In our

experiments, we use the features of nodes as the input of Roc-SVM.

• LINE_Roc-SVM: We use an unsupervised network embedding method (LINE [33]) to learn

node representation by only using the adjacency matrix of nodes. After that, the learned

features are used as the input of Roc-SVM.

• GAE_Roc-SVM: We use an unsupervised graph embedding method (Graph Auto-Encoders,

GAE [16]) to learn node representation by using both the adjacency matrix of nodes and the

features of nodes. After that, the learned features are used as the input of Roc-SVM.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2021.

111:16 Wu et al.

In addition the above baseline, we also compare our algorithm with different deep learning

models. Note that we have integrated the unbiased risk estimator and non-negative risk estimator
into the following models for PU learning.

• FC: Full-connected network only applies node features to a multiple layer perceptron (MLP)

to learn node representation without using the adjacency matrix of nodes.

• FS: Full-connected self-attention network uses the node features with a self-attention network
to obtain the representation without the adjacency matrix of nodes.

• GCN: GCN uses the graph convolutional network [15] to integrate structure and content

information of nodes to learn node representation using the adjacency matrix of nodes.

• GAT: GAT uses the graph attention nets [34] to exploit structure and content information of

nodes to obtain node representation using the adjacency matrix of nodes. Note that, in the

experiments, we only utilize one attention head.

• GATH: GATH uses the graph attention nets [34] to exploit structure and content information

of nodes to obtain node representation using the adjacency matrix of nodes. In addition,

multi-head attention is further utilized to stabilize the learning process and encapsulate

detailed information about the neighborhood.

Our method:

• LSDAN_UPU: LSDAN_UPU employs a long-short distance aggregation network to exploit

structure and content information of nodes to obtain the final graph representation, and the

unbiased risk estimator is utilized for PU learning.

• LSDAN_NNPU: LSDAN_NNPU employs a long-short distance aggregation network to

exploit structure and content information of nodes to obtain the graph representation, and

the non-negative risk estimator is utilized for PU learning.

Experimental Setup For fairness of comparison, we randomly split each PN dataset into positive

and unlabeled set. Following Kiryo et al. [17], we sample 𝑁𝑃𝑁 (the total number of positive nodes)

nodes from 𝑁 as negative class. Then we select 𝑝 ∗ 𝑁𝑃𝑁 nodes from 𝑃 as the training set, the rest

positive nodes and negative nodes are used as the unlabeled set (𝑝 is the percentage of training

(positive) nodes). We conduct 10 trials of randomly splitting, and report the average F1 score as
final experimental results.

All models were implemented in TensorFlow with the Adam optimizer with a learning rate of

1𝑒−4 for 500 steps. For parameter setting, we set the embedding dimension of nodes to 64 for all

methods. We choose 2 layers for GCN-PU and GAT-PU, where the first GCN/GAT layer contains

64 hidden units, and the second layer contains 2 hidden units for classification. For the proposed

LSDAN, the number hops 𝜅 is set to 4. The number of heads for the multi-head attention mechanism

for GATH is set as 8.

5.2 Experimental Results
The results of our evaluation experiments are presented in Table 3, 4, and Table 5, Table 6, Table 7,

and Table 8, Table 9, Table 10, and Table 11. From these results, we have the following observations:

(1) In most cases, OC-SVM and Roc-SVM are inferior to other methods. This is because the tradi-

tional shallow learning methods do not capture the underlying graph structure information.

Besides, we can also find that on the DBLP data set (in Table 6, 7, and 8), when the value

of %p is small, the performance of OC-SVM may be higher than that of GCN_NNPU. This

may be because it is difficult for the model to learn good representation features for all nodes

when there are rather few positive samples.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2021.

Learning Graph Neural Networks with Positive and Unlabeled Nodes 111:17

Table 3. F1 scores on the Citeseer network using classical positive unlabeled learning methods. Average F1
score and standard deviation are reported for 10 random seeds.

%p OC-SVM LINE_OC-SVM GAE_OC-SVM Roc-SVM LINE_Roc-SVM GAE_Roc-SVM

%0.01 0.023±0.004 0.041±0.011 0.517±0.099 0.018±0.005 0.177±0.036 0.393±0.019
%0.02 0.038±0.011 0.196±0.028 0.614±0.028 0.057±0.007 0.314±0.024 0.464±0.015
%0.03 0.054±0.015 0.304±0.028 0.631±0.024 0.079±0.007 0.381±0.039 0.485±0.020
%0.04 0.090±0.009 0.361±0.024 0.646±0.013 0.115±0.009 0.424±0.026 0.493±0.019
%0.05 0.089±0.017 0.430±0.024 0.658±0.011 0.146±0.016 0.446±0.027 0.500±0.017

Table 4. F1 scores on the Citeseer network using unbiased risk estimator for PU learning. Average F1 score
and standard deviation are reported for 10 random seeds. The best results are reported in boldface.

%p FC_UPU FS_UPU GCN_UPU GAT_UPU GATH_UPU LSDAN_UPU

%0.01 0.515±0.112 0.456±0.141 0.337±0.166 0.531±0.083 0.564±0.086 0.647±0.073
%0.02 0.522±0.109 0.553±0.051 0.411±0.139 0.578±0.067 0.606±0.070 0.697±0.067
%0.03 0.533±0.094 0.578±0.026 0.496±0.084 0.582±0.038 0.614±0.042 0.710±0.054
%0.04 0.560±0.060 0.629±0.017 0.540±0.061 0.645±0.017 0.668±0.024 0.717±0.051
%0.05 0.588±0.042 0.681±0.010 0.590±0.055 0.696±0.019 0.711±0.016 0.738±0.036

Table 5. F1 scores on the Citeseer network using non-negative risk estimator for PU learning. Average F1
score and standard deviation are reported for 10 random seeds. The best results reported in boldface.

%p FC_NNPU FS_NNPU GCN_NNPU GAT_NNPU GATH_NNPU LSDAN_NNPU

%0.01 0.684±0.013 0.682±0.007 0.433±0.258 0.775±0.030 0.777±0.029 0.786±0.043
%0.02 0.626±0.054 0.695±0.008 0.564±0.300 0.775±0.024 0.779±0.022 0.804±0.028
%0.03 0.710±0.016 0.705±0.009 0.623±0.259 0.796±0.017 0.803±0.015 0.813±0.014
%0.04 0.734±0.013 0.725±0.009 0.721±0.199 0.814±0.015 0.815±0.009 0.828±0.009
%0.05 0.743±0.015 0.745±0.008 0.812±0.011 0.830±0.011 0.832±0.008 0.840±0.007

Table 6. F1 scores on the DBLP network using classical positive unlabeled learning methods. Average F1 score
and standard deviation are reported for 10 random seeds.

%p OC-SVM LINE_OC-SVM GAE_OC-SVM Roc-SVM LINE_Roc-SVM GAE_Roc-SVM

%0.01 0.445±0.029 0.349±0.035 0.576±0.033 0.056±0.012 0.355±0.017 0.515±0.037
%0.02 0.543±0.009 0.471±0.023 0.624±0.017 0.144±0.026 0.463±0.029 0.567±0.038
%0.03 0.580±0.004 0.519±0.018 0.637±0.012 0.234±0.019 0.499±0.022 0.597±0.025
%0.04 0.601±0.006 0.547±0.012 0.643±0.008 0.314±0.037 0.524±0.027 0.613±0.013
%0.05 0.611±0.006 0.567±0.015 0.643±0.007 0.371±0.037 0.545±0.023 0.616±0.017

(2) Both GAE_OC-SVM and GAE_Roc-SVM outperform OC-SVM and LINE_OC-SVM, Roc-

SVM and LINE_Roc-SVM, respectively. This shows the effectiveness of unsupervised graph

embedding by using both the adjacency matrix of nodes and the features of node.

(3) GAT_UPU and GAT_NNPU outperform FC_UPU, FS_UPU, and FC_NNPU, FS_NNPU, respec-

tively. This confirms that it is useful to take node relationships into consideration for node

representation learning. Furthermore, GATH_UPU and GATH_NNPU outperform GAT_UPU

and GAT_NNPU, which shows the effectiveness of introducing the multi-head attention.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2021.

111:18 Wu et al.

Table 7. F1 scores on the DBLP network using unbiased risk estimator for PU learning. Average F1 score and
standard deviation are reported for 10 random seeds. The best results are reported in boldface.

%p FC_UPU FS_UPU GCN_UPU GAT_UPU GATH_UPU LSDAN_UPU

%0.01 0.510±0.108 0.523±0.060 0.398±0.134 0.547±0.033 0.582±0.050 0.687±0.056
%0.02 0.526±0.075 0.612±0.022 0.501±0.096 0.655±0.035 0.690±0.031 0.709±0.067
%0.03 0.572±0.042 0.645±0.012 0.573±0.072 0.729±0.023 0.734±0.018 0.740±0.049
%0.04 0.610±0.029 0.671±0.010 0.633±0.054 0.749±0.021 0.753±0.015 0.757±0.035
%0.05 0.646±0.020 0.693±0.010 0.669±0.052 0.771±0.013 0.771±0.012 0.777±0.033

Table 8. F1 scores on the DBLP network using non-negative risk estimator for PU learning. Average F1 score
and standard deviation are reported for 10 random seeds. The best results are reported in boldface.

%p FC_NNPU FS_NNPU GCN_NNPU GAT_NNPU GATH_NNPU LSDAN_NNPU

%0.01 0.650±0.032 0.677±0.007 0.419±0.128 0.767±0.019 0.775±0.018 0.808±0.012
%0.02 0.521±0.092 0.695±0.023 0.599±0.050 0.807±0.017 0.808±0.014 0.833±0.015
%0.03 0.710±0.011 0.715±0.007 0.685±0.032 0.824±0.008 0.825±0.009 0.824±0.008
%0.04 0.597±0.046 0.725±0.011 0.734±0.026 0.836±0.009 0.838±0.009 0.849±0.010
%0.05 0.741±0.009 0.746±0.009 0.760±0.024 0.845±0.009 0.845±0.008 0.857±0.010

Table 9. F1 scores on the Cora network using classical positive unlabeled learning methods. Average F1 score
and standard deviation are reported for 10 random seeds.

%p OC-SVM LINE_OC-SVM GAE_OC-SVM Roc-SVM LINE_Roc-SVM GAE_Roc-SVM

%0.01 0.111±0.213 0.101±0.016 0.618±0.046 0.039±0.008 0.229±0.042 0.447±0.040
%0.02 0.263±0.004 0.260±0.031 0.698±0.027 0.073±0.010 0.348±0.032 0.497±0.029
%0.03 0.293±0.010 0.367±0.025 0.700±0.019 0.128±0.013 0.411±0.029 0.504±0.015
%0.04 0.324±0.014 0.433±0.032 0.701±0.018 0.169±0.017 0.443±0.030 0.502±0.017
%0.05 0.358±0.015 0.482±0.026 0.708±0.014 0.218±0.018 0.465±0.017 0.516±0.022

Table 10. F1 scores on the Cora network with the unbiased risk estimator for PU learning. Average F1 score
and standard deviation are reported for 10 random seeds. The best results are reported in boldface.

%p FC_UPU FS_UPU GCN_UPU GAT_UPU GATH_UPU LSDAN_UPU

%0.01 0.524±0.098 0.503±0.115 0.454±0.079 0.563±0.080 0.597±0.086 0.746±0.073
%0.02 0.531±0.091 0.567±0.056 0.579±0.059 0.693±0.055 0.720±0.055 0.796±0.050
%0.03 0.561±0.053 0.623±0.024 0.650±0.035 0.771±0.022 0.790±0.017 0.824±0.017
%0.04 0.586±0.036 0.661±0.019 0.686±0.034 0.808±0.020 0.821±0.016 0.836±0.018
%0.05 0.614±0.026 0.686±0.015 0.721±0.021 0.829±0.016 0.838±0.010 0.843±0.013

(4) The proposed LSDAN_UPU and LSDAN_NNPU outperform GAT_UPU and GAT_NNPU

which only capture short-distance neighboring information. The results show the effec-

tiveness of our algorithm in exploiting multi-hop neighbors to capture long-short distance
relationship in graph learning. Meanwhile, our model shows superior performance in positive

unlabeled learning problem.

(5) The results also show that the proposed LSDAN_UPU and LSDAN_NNPU consistently

outperform all the other baselines on all three datasets with different training ratios. It

demonstrates that long-short distance aggregation network together with the unbiased and

non-negative risk estimators (UPU and NNPU) can better capture data distribution and

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2021.

Learning Graph Neural Networks with Positive and Unlabeled Nodes 111:19

Table 11. F1 scores on the Cora network with the non-negative risk estimator for PU learning. Average F1
score and standard deviation are reported for 10 random seeds. The best results are highlighted in boldface.

%p FC_NNPU FS_NNPU GCN_NNPU GAT_NNPU GATH_NNPU LSDAN_NNPU

%0.01 0.542±0.086 0.673±0.008 0.610±0.248 0.772±0.026 0.782±0.013 0.825±0.016
%0.02 0.593±0.039 0.683±0.008 0.771±0.078 0.817±0.024 0.826±0.022 0.841±0.020
%0.03 0.641±0.033 0.697±0.010 0.819±0.041 0.842±0.016 0.848±0.016 0.850±0.013
%0.04 0.666±0.028 0.713±0.010 0.842±0.018 0.859±0.015 0.859±0.010 0.860±0.013
%0.05 0.691±0.025 0.725±0.008 0.850±0.012 0.866±0.008 0.866±0.007 0.867±0.009

the underlying relationship among data by integrating the feature information and graph

information into a unified framework.

5.3 Analysis of Different Components
As our proposed model contains two key components: the long-short distance aggregation network

(LSDAN) and the positive unlabeled (PU) learning component. In this section, we compare variants

of the proposed model with respect to the following aspects to demonstrate the effectiveness of the

long-short distance aggregation network and the positive unlabeled (PU) learning component.

The following LSDAN variants are designed for comparison.

• LSDAN¬𝑝: A variant of LSDAN with the positive unlabeled (PU) loss being removed, and

only using the cross entropy loss.

• LSDAN_UPU¬𝑙 : A variant of LSDAN_UPU with the long-short distance aggregation network

being removed, and only using the short-distance aggregation layer.

• LSDAN_NNPU¬𝑙 : A variant of LSDAN_NNPU with the long-short distance aggregation

network being removed, and only using the short-distance aggregation layer.

The ablation study results are shown in Table 12, Table 13 and Table 14.

Table 12. F1 score comparisions between LSDAN variants on the Citeseer network.

%p LSDAN¬𝑝 LSDAN_UPU¬𝑙 LSDAN_UPU LSDAN_NNPU¬𝑙 LSDAN_NNPU

%0.01 0.362 0.531 0.647 0.775 0.786
%0.02 0.373 0.578 0.697 0.775 0.804
%0.03 0.385 0.582 0.710 0.796 0.813
%0.04 0.396 0.645 0.717 0.814 0.828
%0.05 0.409 0.696 0.738 0.830 0.840

Table 13. F1 score comparisions between LSDAN variants on the DBLP network.

%p LSDAN¬𝑝 LSDAN_UPU¬𝑙 LSDAN_UPU LSDAN_NNPU¬𝑙 LSDAN_NNPU

%0.01 0.431 0.547 0.687 0.767 0.808
%0.02 0.437 0.655 0.709 0.807 0.833
%0.03 0.441 0.729 0.740 0.824 0.824
%0.04 0.461 0.749 0.757 0.836 0.849
%0.05 0.472 0.771 0.777 0.845 0.857

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2021.

111:20 Wu et al.

(a) Citeseer network

(b) Cora network

(c) DBLP network

Fig. 7. F1 scores and attention weight values by using a single 𝐴𝑘 only (%𝑝 = 0.02 and 𝐿 = 2).

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2021.

Learning Graph Neural Networks with Positive and Unlabeled Nodes 111:21

(a) Embedding dimension 𝑑

(b) Distances at 𝑘-hops

(c) Layers 𝐿

Fig. 8. Parameter analysis with respect to embedding dimension 𝑑 , distance at 𝑘-hops, and layers 𝐿.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2021.

111:22 Wu et al.

Table 14. F1 score comparisions between LSDAN variants on the Cora network.

%p LSDAN¬𝑝 LSDAN_UPU¬𝑙 LSDAN_UPU LSDAN_NNPU¬𝑙 LSDAN_NNPU

%0.01 0.337 0.563 0.746 0.772 0.825
%0.02 0.349 0.693 0.796 0.817 0.841
%0.03 0.372 0.771 0.824 0.842 0.850
%0.04 0.394 0.808 0.836 0.859 0.860
%0.05 0.415 0.829 0.843 0.866 0.867

5.3.1 Impact of the PU loss. We compare LSDAN¬𝑝 with LSDAN_UPU and LSDAN_NNPU to

investigate the effectiveness of the positive unlabeled risk estimators employed in our paper. From

the result, we find that both LSDAN_UPU and LSDAN_NNPU perform better than LSDAN¬𝑝 ,
which confirms the superiority of the risk estimators for positive unlabeled learning problem.

5.3.2 Impact of long-short distance aggregation network. For fair comparisons, in the actual op-

eration, we only employ one attention head for GAT_UPU and GAT_NNPU. In other words,

LSDAN_UPU¬𝑙 are the same as GAT_UPU, and LSDAN_NNPU¬𝑙 are the same as GAT_NNPU.

Therefor, the results of LSDAN_UPU¬𝑙 are the the same as that of GAT_UPU, and same for

LSDAN_NNPU¬𝑙 vs. GAT_NNPU. In order to verify the effectiveness of the long-short distance

aggregation network, we compare LSDAN_UPU with LSDAN_UPU¬𝑙 , and LSDAN_NNPU with

LSDAN_NNPU¬𝑙 . From Table 12, Table 13 and Table 14, we can easily observe that LSDAN_UPU and

LSDAN_NNPU perform significantly better than LSDAN_UPU¬𝑙 and LSDAN_NNPU¬𝑙 . This con-
firms that the usage of long-short distance aggregation network can learn a superior representation

for nodes in graphs.

5.4 Analysis of the Learned Long-Distance Attention
We further study the learned attentions to understand why our long-distance attention mechanism
helps improve the performance. Specifically, we examine which graph (𝐴𝑘) attracts more attentions

for the classification task. We report F1 score using 𝐴𝑘 only and its attention weight value learned

by our LSDAN algorithm. For simplicity, we only report the results on LSDAN_NNPU which are

presented in Figure 7.

The results show that the performance of the single graph (𝐴𝑘) and the long-distance attention

value positively correlate. For instance, on the Citeseer dataset, 𝐴2
receives more weight as its

predictive power is stronger. The results validate that our approach allows different nodes to focus

on the different hops based on the adjacency matrix, to achieve better performance.

5.5 Parameter Analysis
Embedding Dimensions 𝑑:We vary 𝑑 with %𝑝 = 0.02, 𝐿 = 2 and report the results on the three

datasets in Fig. 8(a). We can find that F1 scores show a clear increase from 8 to 64 on the Cora

and DBLP, while it decreases slightly in the 32nd dimension in the Citeseer. When the number of

embedding dimensions continuously increases, the performance starts to remain stable. This is

intuitive as more embedding dimensions can encode more useful information from data.

Distance at 𝜅-Hops :We also report F1 scores over different choices of 𝜅 with %𝑝 = 0.02 and

𝐿 = 2 on the three datasets in Fig. 8(b). It can be seen from Fig. 8(b) that when 𝑘=4, satisfactory

results have been achieved on different data sets. This confirms that the long distance relation

is really important to better capture graph structure information, and multiple graphs can learn

complementary local information. Simultaneously, when 𝑘 is greater than 4, as 𝑘 gets bigger

and bigger, the result becomes worse, possible because some redundant information interfere

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2021.

Learning Graph Neural Networks with Positive and Unlabeled Nodes 111:23

the learning, and the learned 𝑘-hop relational information becomes less informative for node

representation learning.

Number of layers 𝐿: Fig. 8(c) shows the influence of the number of layers on performance on

three datasets. Here, we set 𝜅 = 4, and %𝑝 = 0.02. For the datasets considered here, best results are

obtained with a 2- or 3-layer model. We can see that the setting 𝐿 = 2 has a significant improvement

over the setting 𝐿 = 1 on three datasets. We observe that the performance will slightly decrease for

models deeper than 6 layers, this may overfit as the number of parameters increases with model

depth.

6 DISCUSSION
PU learning is traditionally applied to data with independent and identical distributions (i.e. non-
relational data). Some earlier works have extended it to graph (relational data) databases. For

example, [51] proposed an integrated approach to select discriminative features for graph clas-

sification based upon positive and unlabeled graphs. [37] proposed a learning framework for

classifying a bag of multiple graphs. Therefore, there are existing work which apply PU learning to

graphs/networks, but under different learning settings.

In our problem settings, although nodes are not independent, we can assume that labels are

independently provided for selected nodes (which will be marked as labeled nodes). In other words,

when setting a set of nodes to be labeled, a random approach is used to select a small porting of

nodes being labeled. In fact, all existing works in node classification (transductive graph learning)

employ this setting. Once the labels are provided, graph neural networks here are employed to

learn the new representation for each node. After each node is represented into a vector space,

this task is similar to general PU learning, and then the risk estimators can be employed for PU

learning.

One novelty of our approach is that we integrate the feature learning by GNNs and risk estima-

tion into a unified and end-to-end framework. As demonstrated in our algorithm, this approach

performs very well in the benchmark datasets.

In this paper, we are following common protocols in the research to set up the PU learning for

graphs, with a small portion of randomly selected nodes being labeled. However, some nodes may

have a higher chance being labeled, due to their linkages or connections. This is, indeed, determined

by the applications and network structures. It will be a very interesting direction for future work

to investigate further.

7 CONCLUSION
In this paper, we propose a novel long-short distance aggregation network (LSDAN) for positive

unlabeled graph learning. We argue that existing algorithms largely overlook the long-distance
relationship, and only exploit 1-hop neighbors to aggregate information to learn feature representa-

tion for nodes. In order to leverage long-distance relation between nodes, we propose a long-short

distance aggregation network to jointly exploit the short-distance and long-short attention from

different range of neighborhood to learn feature for each node. In addition, two novel risk estima-

tors are proposed for positive unlabeled graph learning. Experiments and comparisons on three

benchmark graph datasets demonstrate the effectiveness of our algorithm.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2021.

111:24 Wu et al.

ACKNOWLEDGMENTS
This research is supported by the U.S. National Science Foundation (NSF) through Grant Nos.

IIS-1763452, CNS-1828181, and IIS-2027339.

REFERENCES
[1] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann Lecun. 2014. Spectral Networks and Locally Connected

Networks on Graphs. In Proc. of ICLR.
[2] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2016. Deep neural networks for learning graph representations. In Proc. of

AAAI. 1145–1152.
[3] Meihao Chen, Zhuoru Lin, and Kyunghyun Cho. 2017. Graph Convolutional Networks for Classification with a

Structured Label Space. In arXiv preprint arXiv:1804.08049.
[4] Yu Chen, Lingfei Wu, and Mohammed Zaki. 2020. Iterative Deep Graph Learning for Graph Neural Networks: Better

and Robust Node Embeddings. Advances in Neural Information Processing Systems 33 (2020).
[5] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolutional neural networks on graphs with

fast localized spectral filtering. In Proc. of NIPS. 3844–3852.
[6] David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli, Timothy Hirzel, Alán

Aspuru-Guzik, and Ryan P. Adams. 2015. Convolutional Networks on Graphs for Learning Molecular Fingerprints. In

Proc. of NIPS. 2224–2232.
[7] Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. 2017. Protein interface prediction using graph convolutional

networks. In Proc. of NIPS. 6530–6539.
[8] Hongyang Gao and Shuiwang Ji. 2019. Graph u-nets. arXiv preprint arXiv:1905.05178 (2019).
[9] Aditya Grover and Jure Leskovec. 2016. Node2vec: Scalable feature learning for networks. In Proc. of SIGKDD. ACM,

855–864.

[10] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation learning on large graphs. In Proc. fo
NIPS. 1024–1034.

[11] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Representation Learning on Large Graphs. In

Proc. of NIPS. 1024–1034.
[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In Proc.

of CVPR. 770–778.
[13] Mikael Henaff, Joan Bruna, and Yann Lecun. 2015. Deep Convolutional Networks on Graph-Structured Data. In arXiv

preprint arXiv:1506.05163.
[14] Shantanu Jain, Martha White, and Predrag Radivojac. 2016. Estimating the class prior and posterior from noisy

positives and unlabeled data. In Proc. of NIPS. 2693–2701.
[15] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph convolutional networks. arXiv

preprint arXiv:1609.02907 (2016).

[16] Thomas N Kipf and Max Welling. 2016. Variational Graph Auto-Encoders. NIPS Workshop on Bayesian Deep Learning
(2016).

[17] Ryuichi Kiryo, Gang Niu, Marthinus C du Plessis, and Masashi Sugiyama. 2017. Positive-unlabeled learning with

non-negative risk estimator. In Proc. of NIPS. 1675–1685.
[18] Ryuichi Kiryo, Gang Niu, Marthinus C. Du Plessis, and Masashi Sugiyama. 2017. Positive-Unlabeled Learning with

Non-Negative Risk Estimator. In Proc. of NIPS. 1674–1684.
[19] Ruoyu Li, Sheng Wang, Feiyun Zhu, and Junzhou Huang. 2018. Adaptive Graph Convolutional Neural Networks. In

Proc. of AAAI. 3546–3553.
[20] Xiaoli Li and Bing Liu. 2003. Learning to classify texts using positive and unlabeled data. In Proc. of IJCAI. 587–592.
[21] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. 2016. Gated Graph Sequence Neural Networks. In

Proc. of ICLR.
[22] Bing Liu, Yang Dai, Xiaoli Li, Wee Sun Lee, and Philip S Yu. 2003. Building Text Classifiers Using Positive and Unlabeled

Examples. In Proc. of ICDM. 179.

[23] Gang Niu and Masashi Sugiyama. 2015. Convex formulation for learning from positive and unlabeled data. In Proc. of
ICML. 1386–1394.

[24] Shirui Pan, Ruiqi Hu, Sai-fu Fung, Guodong Long, Jing Jiang, and Chengqi Zhang. 2020. Learning graph embedding

with adversarial training methods. IEEE Transactions on Cybernetics 50, 6 (2020), 2475–2487.
[25] Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, and Chengqi Zhang. 2018. Adversarially regularized graph

autoencoder for graph embedding. arXiv preprint arXiv:1802.04407 (2018).

[26] Shirui Pan, Jia Wu, Xingquan Zhu, Chengqi Zhang, and Yang Wang. 2016. Tri-party deep network representation. In

Proc. of IJCAI. 1895–1901.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2021.

Learning Graph Neural Networks with Positive and Unlabeled Nodes 111:25

[27] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning of social representations. In Proc. of
SIGKDD. ACM, 701–710.

[28] M. C. Du Plessis, Gang Niu, and Masashi Sugiyama. 2014. Analysis of Learning from Positive and Unlabeled Data. In

Proc. of NIPS. 703–711.
[29] Afshin Rahimi, Trevor Cohn, and Timothy Baldwin. 2018. Semi-supervised User Geolocation via Graph Convolutional

Networks. In Proc. of ACL. 2009–2019.
[30] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. 2009. The Graph

Neural Network Model. IEEE Trans. Neural Networks 20, 1 (2009), 61–80.
[31] Bernhard Schölkopf, John C. Platt, John Shawe-Taylor, Alex J. Smola, and Robert C. Williamson. 2014. Estimating the

Support of a High-Dimensional Distribution. Neural Computation 13, 7 (2014), 1443–1471.

[32] Xiao Shen and Fu-Lai Chung. 2017. Deep network embedding with aggregated proximity preserving. In Proceedings of
the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017. ACM, 40–43.

[33] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. 2015. LINE: Large-scale Information

Network Embedding. In Proc. of WWW. 1067–1077.

[34] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. 2017. Graph

attention networks. arXiv preprint arXiv:1710.10903 (2017).
[35] Chun Wang, Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, and Chengqi Zhang. 2019. Attributed Graph Clustering:

A Deep Attentional Embedding Approach. In Proc. of IJCAI. 3670–3676.
[36] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural deep network embedding. In Proc. of SIGKDD. ACM,

1225–1234.

[37] Jia Wu, Shirui Pan, Xingquan Zhu, Chengqi Zhang, and Xindong Wu. 2017. Positive and Unlabeled Multi-Graph

Learning. IEEE Trans. Cybernetics 47, 4 (2017), 818–829.
[38] Man Wu, Shirui Pan, Lan Du, Ivo W. Tsang, Xingquan Zhu, and Bo Du. 2019. Long-short Distance Aggregation

Networks for Positive Unlabeled Graph Learning. In Proc. of ACM CIKM International Conference.
[39] Man Wu, Shirui Pan, Chuan Zhou, Xiaojun Chang, and Xingquan Zhu. 2020. Unsupervised Domain Adaptive Graph

Convolutional Networks. In Proceedings of The Web Conference 2020. 1457–1467.
[40] Man Wu, Shirui Pan, Xingquan Zhu, Chuan Zhou, and Lei Pan. 2019. Domain-adversarial graph neural networks for

text classification. In 2019 IEEE International Conference on Data Mining (ICDM). IEEE, 648–657.
[41] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. 2020. A comprehensive

survey on graph neural networks. IEEE Transactions on Neural Networks and Learning Systems (2020).
[42] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. 2015. Empirical evaluation of rectified activations in convolutional

network. arXiv preprint arXiv:1505.00853 (2015).
[43] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful are graph neural networks? arXiv

preprint arXiv:1810.00826 (2018).
[44] Linchuan Xu, XiaokaiWei, Jiannong Cao, and Philip S Yu. 2018. On exploring semantic meanings of links for embedding

social networks. In Proceedings of the 2018 World Wide Web Conference. International World Wide Web Conferences

Steering Committee, 479–488.

[45] Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Y Chang. 2015. Network representation learning

with rich text information.. In Proc. of IJCAI. 2111–2117.
[46] Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay S. Pande, and Jure Leskovec. 2018. Graph Convolutional Policy Network

for Goal-Directed Molecular Graph Generation. In Proc. of NIPS. 6412–6422.
[47] Jiaxuan You, Zhitao Ying, and Jure Leskovec. 2020. Design space for graph neural networks. Advances in Neural

Information Processing Systems 33 (2020).
[48] Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. 2019. Graph transformer networks.

In Advances in Neural Information Processing Systems. 11983–11993.
[49] Jiani Zhang, Xingjian Shi, Junyuan Xie, Hao Ma, Irwin King, and Dit-Yan Yeung. 2018. GaAN: Gated Attention

Networks for Learning on Large and Spatiotemporal Graphs. In Proc. of UAI. 339–349.
[50] Zhen Zhang, Hongxia Yang, Jiajun Bu, Sheng Zhou, Pinggang Yu, Jianwei Zhang, Martin Ester, and Can Wang. 2018.

ANRL: Attributed Network Representation Learning via Deep Neural Networks.. In Proc. of IJCAI, Vol. 18. 3155–3161.
[51] Yuchen Zhao, Xiangnan Kong, and Philip S Yu. 2012. Positive and Unlabeled Learning for Graph Classification. In Proc.

of ICDM. 962–971.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2021.

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Challenges and Contribution

	2 Related work
	2.1 Graph Neural Networks
	2.2 Positive Unlabeled Learning
	2.3 PU Learning for Graph Data

	3 Problem Statement
	4 Long-short Distance Aggregation Networks for PU Graph Learning
	4.1 Short-Distance vs. Long-Distance
	4.2 Long-short Distance Attention
	4.3 Deep Long-short Distance Aggregation Networks
	4.4 Positive and Unlabeled Graph Learning
	4.5 Algorithm Description
	4.6 Time Complexity Analysis

	5 Experiments
	5.1 Experiment Setting
	5.2 Experimental Results
	5.3 Analysis of Different Components
	5.4 Analysis of the Learned Long-Distance Attention
	5.5 Parameter Analysis

	6 Discussion
	7 Conclusion
	Acknowledgments
	References

