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In this article, we develop methods for estimating a low rank tensor from
noisy observations on a subset of its entries to achieve both statistical and
computational efficiencies. There have been a lot of recent interests in this
problem of noisy tensor completion. Much of the attention has been focused
on the fundamental computational challenges often associated with problems
involving higher order tensors, yet very little is known about their statisti-
cal performance. To fill in this void, in this article, we characterize the fun-
damental statistical limits of noisy tensor completion by establishing mini-
max optimal rates of convergence for estimating a kth order low rank ten-
sor under the general £, (1 < p < 2) norm which suggest significant room
for improvement over the existing approaches. Furthermore, we propose a
polynomial-time computable estimating procedure based upon power itera-
tion and a second-order spectral initialization that achieves the optimal rates
of convergence. Our method is fairly easy to implement and numerical ex-
periments are presented to further demonstrate the practical merits of our
estimator.

1. Introduction. Let T € R%* % be a kth order tensor, or multilinear array. In the
noisy tensor completion problem, we are interested in recovering T from observations of a
subset of its entries. More specifically, our sample consists of n independent copies {(Y;, w;) :
1 <i < n} of arandom pair (Y, w) obeying

(1.1) Y =T () +&,

where w is uniformly sampled from [d{] X --- X [dix] where [d] = {1, 2,...,d}, and inde-
pendent of the measurement error £ that is assumed to be a centered sub-Gaussian random
variable. Of particular interest here is the high dimensional settings where the sample size n
may be much smaller than the ambient dimension d - - - di. In this case, it may not be possible
to estimate an arbitrary kth order tensor well but it is possible to do so if we focus on tensors
that resides in a manifold of lower dimension in R% >4 A fairly general and practically
appropriate example is the class of tensors of low rank. Problems of this type arise naturally
in a wide range of applications including imaging and computer vision (e.g., [19, 21, 31]),
signal processing (e.g., [17, 20, 23, 25]), latent variable modeling (e.g., [1, 6, 8, 30]), to name
a few. Although many statistical methods and algorithms have been proposed for these prob-
lems, very little is known about their theoretical properties and to what extent they work and
may not work.

An exception is the special case of matrices, that is, kK = 2, for which low rank completion
from noisy entries is well understood; see, for example, [5, 13, 14, 16, 24] and references
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therein. In particular, as shown by [16], an estimator based on nuclear norm regularization,
denoted by TXLT, converges to T at the rate of

ITRLT — 1), ( \/ r(di v dy)log(dy v dz))
1.2 ——==0 T Vv ,
12 (d1dr)'72 p{(ITlese v ) "
where a V b = max{a, b}, and || - || ¢, (p = 1) denotes the vectorized £, norm. Note that the

dimension of the manifold of rank » matrices is of the order r(d; + d»), the aforementioned
convergence rate is therefore expected to be optimal, up to the logarithmic factor. Indeed a
rigorous argument was given by [16] to show that it is optimal, up to the logarithmic factor, in
the minimax sense. In contrast to the matrix case, our understanding of higher order tensors
(k = 3) is fairly limited. The main goal of the current work is to fill in this void by establishing
minimax lower bounds for estimating T, and developing computationally efficient methods
that attain the optimal statistical performance.

Treatment of higher order tensors poses several fundamental challenges. On the one hand,
many of the basic tools and properties for matrices, particularly those pertaining to low rank
approximation, are no longer valid for higher order tensors. For example, many of the afore-
mentioned estimating procedures developed for matrices are based on singular value decom-
positions (SVD) whose generalization to tensors, however, is rather delicate. A particularly
popular generalization of SVD to tensors is the so-called higher order singular value decom-
position (HOSVD). The (truncated) HOSVD to tensors, generally, do not deliver a good (far
from being the best) low rank approximation. Additionally, unlike SVD, HOSVD is bitterly
statistically unreliable due to the noise accumulation from the larger dimensions. As shown
in Proposition 1, the naive HOSVD requires a significantly large sample size for noisy tensor
completion. As a result, although many of these approaches have been extended to higher
order tensors in recent years, their theoretical properties remain largely unclear. And recent
studies on a related problem, namely nuclear norm minimization for exact tensor completion
without noise, point to many fundamental differences between matrices and higher order ten-
sors despite their superficial similarities; see, for example, [32, 33]. On the other hand, as
pointed out by [11], most computational problems related to higher order tensors, including
the simple task of evaluating tensor spectral and nuclear norms, are typically NP-hard. Conse-
quently, convex relaxation approaches by nuclear norm regularizations, while being attractive
for matrices, are computationally intractable for tensors. This dictates that it is essential to
take computational efficiency into account in devising statistically optimal estimating proce-
dures for T. We note that the classical one-step MLE can easily achieve statistically optimal
convergence rates, which is, however, computationally infeasible in general. The real diffi-
culty in noisy tensor completion is to gain statistical optimality and computational efficiency
simultaneously.

Because of these difficulties, results for higher order noisy tensor completion comparable
to (1.2) are scarce. The strongest result to date is due to [4]. They focused on the case of third
order tensors, that is k = 3, and proved that, under suitable conditions which we shall discuss
in details later on, there is a polynomial-time computable estimator, denoted by TBM, guch
that

(13) ||TBM _T”Z] _ Op(”T”*(dmindglax)l/“lng(dmax) ”E”E] ”E”Eoo)’

didyds N didrds Jn
where dyin =d| Ady Ad3, dmax = d1 V da vV d3, || - ||« stands for the tensor nuclear norm, and

& is ad] x dy x d3 random tensor whose entries are independent copies of &. More recently,
the authors of [22] considered approximating a general kth order d x --- x d cubic tensor in
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the absence of noise, that is, & = 0, and proposed a spectral method that yield an estimator
T™S obeying

IT|l¢,r'/3d*/ 0 log? (a)
nl/3 ’

(14) 14 - 1), = 0,

under more restrictive assumptions, where r is the rank of T. Clearly, the bounds (1.3) and
(1.4) are statistically suboptimal in view of the degrees of freedom. However, it remains
unknown to what extent these bounds can be improved, especially if we take computational
efficiency into account. The present article addresses this question specifically, and provides
a definitive answer.

In particular, we investigate the minimax optimal estimates for a low rank tensor under the
general £, (1 < p < 2) loss. We propose a computational efficient procedure based on low
rank projection of an unbiased estimate of T, and show that, if T is well conditioned, then the
estimation error of the resulting estimate, denoted by T, satisfies

1 . 1/p rdmax 102 (dmax)
(1.5) ( ||T—T||£) =op((||T||em vog)\/M),
dy---dy 14

n

provided that
(1.6)  n>C@r*V2d; - d)' P 102" (dimax) + 75 dinax 1022 2 (dinay))»

for a suitable constant C > 0. Here, diax = d; Vv - -+ V di as before. The above result contin-
ues to hold if r represents the maximum multilinear rank of T. Note that under the typical
incoherent assumptions for T, || T|[« > [|T|¢, < (di ---dk)l/2||T||gOo as we shall discuss in
further details later. Therefore, T converges to T at a much faster rate than both TBM and
TMS . Furthermore, we show that the rates given by (1.5) are indeed minimax optimal, up to
the logarithmic factor, over all incoherent tensors of low multilinear rank.

Our estimator also has its practical appeal when compared with earlier proposals. In gen-
eral, computing the best low rank approximation to a large tensor is rather difficult; see, for
example, [10] and [11]. The root cause of the problem is the highly nonconvex nature of the
underlying optimization problem. As a result, there could be exponentially many local op-
tima (see, e.g., [2, 3]). To address this challenge, we devise a strategy that first narrows down
the search area for the best low rank approximation using a novel spectral method and then
applies power iteration to identify a local optimum within the search area. The high level idea
of combining spectral method and power iterations to yield improved estimate is similar in
spirit to the classical one-step MLE. Existing polynomial-time computable estimators such as
TBM often involve solving huge semidefinite programs which are known not to scale well for
large problems. In contrast, our approach is not only polynomial-time computable but also
very easy to implement.

It is worth pointing out that, in order to achieve the minimax optimal rate of convergence
given by (1.5), a sample size requirement (1.6) is imposed. This differs from the matrix case
and appears to be inherent to tensor related problems. More specifically, it was argued in [4]
that, if there is no polynomial-time algorithm for refuting random 3-SAT of d variables with
d>/?~€ clauses for any € > 0, then any polynomial-time computable estimator of a d x d x d
tensor T is inconsistent whenever n = O (d*/>~). This suggests that the sample size require-
ment of the form (1.6) is likely necessary for any polynomial-time computable estimator
because thus far, indeed there is no polynomial-time algorithm for refuting random 3-SAT
of d variables with o(d>/?) clauses in spite of decades of pursuit. These observations from
[4] point to a fundamental difference between matrix and tensor completions with respect to
the statistical and computational gaps in sample size requirements. In matrix completion, the
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sample size n = O(d) is sufficient and necessary for both the statistical consistency and com-
putational efficiency. There is no gap in sample size requirements between the statistical and
computational aspects. Intriguingly, such a gap exists in higher order tensor completion. In-
deed, a sample size n = O (d) suffices to guarantee the statistically consistent recovery (e.g.,
MLE) of a d x d x d tensor. In contrary, a sample size n = O (d>/?) is necessary to devise
computationally tractable estimators to reconstruct the tensor consistently.

Our work here is also related to a fast growing literature on exact low rank tensor comple-
tion where we observe the entries without noise, that is £ =0 in (1.1), and aim to recover T
perfectly; see, for example, [12, 28, 32, 33] and references therein. The two types of prob-
lems, albeit connected, have many fundamental differences which manifest prominently in
their respective treatment. On the one hand, the noisy completion considered here is techni-
cally more involved because of the presence of measurement error £. In fact, much of our
analysis is devoted to carefully control the adverse effect of £. On the other hand, our interest
in the noisy case is in seeking a good estimate or approximation of T, which is to be contrast
with the noiseless case where the goal is for exact recovery and, therefore, more difficult
to achieve. As we shall demonstrate later, this distinction allows for simpler algorithms and
sharper analysis in the noisy setting.

The rest of the paper is organized as follows. We first describe the proposed estimation
method in Section 2. Some useful spectral bounds are given in Section 3 which we shall use
to establish theoretical properties for our estimator in Section 4. Numerical experiments are
presented in Section 5 to complement our theoretical results. Proofs of the main results are
presented in Section 6.

2. Methodology. We are interested in estimating a tensor T € R4 *% based on ob-
servations {(Y;, w;) : 1 <i < n} that follow

Yi=T(w)+&, i=1,...,n,

assuming that T is of low rank. To this end, we first review some basic notions and facts about
tensors.

2.1. Background and notation. Recall that the mode-j fibers of a kth order tensor A €
R %%k are the d ; dimensional vectors

{AGr, . it djgt, i) sl € ldi], ik € [di}

that is, vectors obtained by fixing all but the jth indices of A. Let M ;(A) be the mode-j
flattening of A so that M j(A)isad; x (dy ---dj_1dj4 - - - dy) matrix whose column vectors
are the mode-; fiber of A. For example, for third order tensor A € R%*%x43  define the
matrix M (A) € R4 *(@%) by the entries

Mi(A) (i1, (ia — Dd3 +i3) = A(i1, i2,i3), Vi1 € [d1],i2 € [da], i3 € [d3].

Denote by r;(A) the rank of M (A). The tuple (r1(A), ..., r(A)) is often referred to the
multilinear ranks of A. Denote by

rmax(A) :=max{ri(A), ..., r¢(A)}.

Another common notion of tensor rank is the so-called canonical polyadic (CP) rank.
Recall that a rank-one tensor can be expressed as

A=u; ® - Quy,
for some u; € RY . Here, the ® stands for the outer product so that

1 ® - Qui)it, ..., ik) =u1(i1) - -+ - ur(ix).
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The CP rank, or sometimes rank for short, of a tensor A, denoted by R(A), is defined as the
smallest number of rank-one tensors needed to sum up to A. It is common in the literature
to refer to a tensor as low rank if its CP rank is small. It is clear that rp.x(A) < R(A) <
r1(A) -+ -1 (A)/rmax (A) so that a tensor of low CP rank necessarily has small multilinear
ranks. We shall focus on tensors with low multilinear ranks in the rest of the paper because
of this connection between the two notions of tensor ranks.

Suppose that we know a priori that T is of low rank. A natural starting point for estimating
T is the least squares estimate:

1< 5
i (Vi — Aw;
in){ﬂ = Alw) }

_ 2() — =
_Aeo(rl m{ ZA(a),) ZYA(a),]

..... =
where

Or,....r):=1{A € RAXXdi . (A) < r}

is the collection of kth order tensors whose multilinear ranks are upper bounded by ry, ..., ¢,
respectively. Note that similarly defined least squares estimator for tensors with small CP
rank may not be well defined (see, e.g., [10]). Noting that w;s are uniformly sampled from
[d1] x - - - [dx], we shall replace the first term on the right-hand side simply by its population
counterpart ||A||%2, leading to

min r)!(dl -d0) "' IAlZ, - ZYA(wl}
k

2
Yie,, — .
A€O(r..... rk){ l; i fz}
Here, e, is a tensor whose entries are zero except that its wth entry is one. In other words, we
can estimate T by the best multilinear ranks-(ry, ..., r¢) approximation of
(2.1) T = Z Yie,.

i=1

A similar approach can also be applied to more general sampling schemes, and was first
introduced by [16] in the matrix setting. However, there is a major challenge when doing so
for higher order tensors: computing low rank approximations to a higher order (k > 3) tensor
is NP-hard in general (see, e.g., [11]). This makes it practically less meaningful to study
the properties of the exact projection of Tt onto ©(ry, ..., rx). To overcome this hurdle,
we adapted the power iteration as a way to compute an “approximate” projection. We shall
show in later sections that, even though it may not produce the true projection, running the
algorithm for a sufficiently large but finite number of iterations is guaranteed to yield an
estimate that attains the minimax optimal rate of convergence.

2.2. Estimation via power iterations. Recall that we are interested in solving
2.2 min Tinit _ A |2
22) Ae&)(rl,...,rk){” 2.}

The objective function is smooth so that many smooth optimization algorithms might be
employed. In particular, we shall consider using power iterations, one of the most common
methods for low rank approximation; see, for example, [15].
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Algorithm 1 Power Iterations

Input: Tinit, Uj(-o) for j =1,2,...,k, and parameter iterp,x.
2: Output: T.

Set counter iter = 0.
4: while iter < iterp,x do

Setiter =iter + 1 and j =0.
6: while j < k do
Setj=j+1L

8: Set U](-lter) to be the first r; left singular vectors of

init (iter) (iter—1)
Mj(Tlm Xji<j Uj’ X jrs Uj’ ).

end while
10: end while

Return T = Tinit xk

(iter) (iter)\ T
kU@ e)T

For a tensor A € R4**d denote by U ;j the left singular vectors of M ;(A). Then we
can find a tensor C € R"1(A)xx7t(A) gych that

A=CX1U1TX2---X/<U];|—.

Here, the marginal multiplication x ; between a tensor A and a matrix B of conformable
dimension results in a tensor whose entries are defined as

(A BYGt, o ijtsijoijts ey i) = DA,y ijots i ijats oo ik) B ).
i,
J

In particular, it can be derived that, if A is the solution to (2.2), then
mpinit |k
C = T Xj=l U 5
and U; is a d; x r; matrix whose columns are the leading singular vectors of
Apinit
M(T X jraej Ujr).

This naturally leads to Algorithm 1 which updates C and U in an iterative fashion.

The power iteration as described above is guaranteed to converge for any given initial value
U](.O)s. But it is only guaranteed to converge to a local optimum of (2.2); see, for example,
[26] and references therein for further discussion about the convergence of power method.

2.3. Spectral initialization. Because of the highly nonconvex nature of the space of low
rank tensors, the local convergence of Algorithm 1 may not ensure that it yields a good
estimate. For example, as shown by [3], there could be exponentially many (in ds) local
optima and vast majority of these local optima are far from the best low rank approximation.
See also [2]. An observation key to our development is that if we start from an initial value not
too far from the global optimum, then a local optimum reached by these locally convergent
algorithms may be as good an estimator as the global optimum. In fact, as we shall show
later, if we start from an appropriate initial value, then even running Algorithm 1 for a finite
number of iteration could yield a high quality estimate of T.

It turns out, however, that the construction of an initial value for U;s that are both close
to the truth, that is, the leading left singular vectors of M ;(T), and polynomial-time com-
putable is a fairly challenging task. An obvious choice is to start with higher order singular
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Algorithm 2 Compute Estimate of T from {(¥;, w;) : 1 <i <n}
Input: Ollservations {(Yi, w;) : 1 <i <n}, threshold A, and parameter iteryx.
2: Output: T.
Compute Tt as given by (2.1).
4: Initialize Ujs:
forjzl,...l/c\do
6: Compute N as given by (2.3).

Compute the eigenvectors, denoted by UJ(.O), of N j with eigenvalue greater than A2,
8: end for o _
Run Algorithm 1 with inputs T™, U;O)s and iterpyax to get T.
10: Return T.

value decomposition (HOSVD; see, e.g., [9]), and initialize U; as the left singular vectors of
M, (TiMt), Tt is clear that how close such an initialization is to the truth is determined by the
drfference M (Tinity M ;(T). This approach, however, neglects the fact that we are only
interested in the left srngular vectors of a potentially very “fat” (d; < (d; - - -dj)/d;) matrix.
As a result, it can be shown that an unnecessarily large amount of samples are needed to
ensure that such an initialization is sufficiently “close” to the truth.

To overcome this difficulty, we adopt a second-order spectral method developed by [28].
Note that the column vectors of left singular vectors of M ;(T) are also the leading eigenvec-
tors of

N; = M;(TM;(TD)".
Therefore, we could consider estimating the eigenvectors of N; instead. Specifically, we first
estimate N; by the following U -statistic:

2.3) N, = Y YiYeMj(ew)M;(en,) "

We then initialize U; as the collection of eigenvectors of N with eigenvalues greater than
a threshold A to be specrﬁed later. We shall show later that N concentrates around N; bet-
ter than M ; (Tm“) around M ;(T) and, therefore, allows for better initialization of U s. In
summary, our estimating procedure can be described by Algorithm 2.

‘We now turn our attention to the theoretical properties of the proposed estimating proce-
dure, and show that with appropriately chosen threshold A, we can ensure that the estimate
produced by Algorithm 2 is minimax optimal under suitable conditions. Before proceeding,
we need a couple of probabilistic bounds regarding the quality of Tinit and N; j» respectively.

3. Preliminary bounds. It is clear that the success of our estimating procedure hinges
upon how close Tinit is to T, and N; j to N;j. We shall begin by establishing spectral bounds
on them, which might also be of 1ndependent interest.

3.1. Bounding the spectral norm of Tint — T, We first consider bounding the spectral
norm of T — T. Write, for two tensors A, B € R xdk

A.B)= > = AW@Bw)
weld]xx[dy]
as their inner product. The spectral norm of a tensor A is given by

1Al = max (A ur ® - Qug).

d.
ui RV tfluilley s llulle, <1



NOISY TENSOR COMPLETION 83

The following theorem provides a probabilistic bound on the spectral norm of the differ-
ence T'™' — T.

THEOREM 1. Assume that & is sub-Gaussian in that there exits a o > 0 such that for all
seR,
E(exp{s&}) < exp(szogz/Z).
There exists a numerical constant C > 0 such that, for any a > 1,

”Tinit _ TH

[kdmaxdy -+ di kdy ---d
§Ckk+3a(||T||goo\/a§)max{ max@l ok 2 k}logk”dmax,
n n

with probability at least 1 —d_~

max*

In the matrix case, that is, k = 2, the bound given by Theorem 1 is essentially the same
as those from [16]. More importantly, Theorem 1 also highlights a key difference between
matrices (k = 2) and higher order tensors (k > 3). To fix ideas, consider, for example, the
case when [|T|¢,, 0 < (d; .-dy)~ /2. Theorem 1 implies that

Py kdmax k(dy -+ di)'/?
3.1) y|Tm“—TH=0,,<max{J s @ . . }polylog(dmax)),

where polylog(-) is a certain polynomial of the logarithmic function.

REMARK 1. The nature of the two terms on the right-hand side of (3.1) is similar to the
classical Bernstein inequality and they are optimal up to k£ and polylog(dmax). Indeed, by the
definition of || - ||, we immediately have (since the tensor operator norm is lower bounded by
the magnitude of any entry and the £;-norm of any fiber)

Apinit Ainit . . .o .
[T —T| > maX{jrg?,gij{g%J!(T TGty ovijmts ity oo 004y
(3.2) J#J

Finit _ '
et [T = T @)

Clearly, the expectations of the first and second term on the right-hand side of (3.2) are lower
bounded by /dmax/n and (dy - - - di) 172 /n, respectively.

In the matrix case, the first term on the right-hand side of (3.1) is indeed the dominating
term, the very reason why the best low rank approximation of T is a good estimate of T.
For higher order tensors, however, the two different rates of convergence emerge depending
on the sample size. The first term is the leading term only if

-1
n> dmax(dl coedp).
Yet, for smaller sample sizes, the second term dominates so that

(dl T dk) 172 p01y10g (dmax) )
n

T -1 = 0,,(

In particular, Tt is consistent in terms of spectral norm if
n>> max{dmax, (dy--- dk)l/z} - polylog(dmax)-

In a way, this is why we need the sample size requirement such as (1.6). It is in place to
ensure that T™" is an consistent estimate of T in the sense of tensor spectral norm.
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3.2. Bounding the spectral norm of N j —N;. Now consider bounding IN i —Njl. To
this end, write
Amin(A) = min{omin(Mi(A)), ..., Omin(Mi(A))}
and
Amax(A) = max{omax(M1(A)), ..., omax (Mk(A))},

where omin (-) and omax (+) denote the smallest and largest nonzero singular values of a matrix.
Then the condition number of A is defined as

AmaX(A)
K(A) = Ai
min(A)
Recall that
N; == M;(THIM;(T)"
and
N di - -d)?
Ry o= DT SNy M e M (e, T
nin—1) | =,

It was proved in [28] that when k = 3 and oz =0, N j 1s a good estimate of N;. Our next
result shows that this is also true for more general situations.
THEOREM 2. There exist absolute constants C1, Co > 0 such that, for any o > 1, if
n > Cra(Vdi -~ di10g dmax + dmax 10g” dimax).
then, with probability at least 1 —d_ 2 ,
IN; =N

akd;d, - - di1og dmax

< Cz((dg + 1Tl o) [ M (T) H\/

(kdy - - - di)3*log’ d
+ @A (ITIZ, + 02102 dima) g b (1 4 [ /(s ---dk))).

n

Let U; and U ;j be the top-r; left singular vectors of N; and N j» respectively. Applying
Wedin’s sin ® theorem [27], Theorem 2 immediately implies that

|0;0] —u;U]|

IM; (D) \/akdjdl---dklogdmax

< Ca(oe + ||T||€oo)62 AM(T))
j

. n
min

g3 I + 02108 dma) (i - di ¥ log? dinax (14 d; )
o .
T o M) n

min

In other words, U ;s are consistent estimates of Ujs if

~ “*min

n> A2 (T) max{x(T)z(nTuem v 02) dmands - - - di 10g dma.

d?
(||T||gOo V og logdmax)z(dl . 'dk)3/2 10g3 (dmax) (1 + di - 'J' dk)}‘
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In particular, to fix ideas, if we look at the case whend| = - -- = dy =: d and T is well behaved
in that k (T) and A pin(T) ™! are bounded from above, then this bound can be simplified as

n 2 (ITlles, V 0¢)>d>*/? - polylog(d).
This is to be contrasted with the naive HOSVD for which we have the following.

PROPOSITION 1. Let U; and ﬁjHOSVD be the top r; singular vectors of M ;(T) and

M (Tinity, respectively. Then there exists a universal constant C > 0 such that, for any o > 1,
the following bound holds with probability at least 1 — d_ 2 :

GNP @ON)T — vy,

(IT]l¢o Vv 0%)
= Omin(M(T))
dy---di\akdy ---dilog(dmax) akdy---dilog(dmax)
X max dj v 7 . , " .
J

By Proposition 1, in the case of well-conditioned cubic tensors, to ensure that
are consistent, we need a sample size

UJHOSVD S

n 2 max{(AZL (DT, v oe)d logd, AZ2 (D) (ITlle., Vv or)*d* ogd),

min

which is much more stringent than that for U i

4. Performance bounds for T. We are now in position to study the performance of our
estimate T, as the output from Algorithm 2. Our risk bound can be characterized by the
incoherence of T which we shall first describe. Coherence of a tensor can be defined through
the singular space of its flattening. Let U be a d x r matrix with orthonormal columns. Its
coherence is given by as

(U)—d U117
=5 25, e

where U;. is the ith row vector of U. Now for a tensor A € R4* %4 guch that M j(A) =
Ui VJ-T is its thinned singular value decomposition, we can define its coherence by

w(A) =max{u(U), ..., w(Up)}.
Coherence of a tensor can also be measured by its spikiness:

A) e (dy oo gy 2 1A s
PO =i g,

The spikiness of a tensor is closely related to its coherence.

PROPOSITION 2.  For any A € RI>~>dk,

BA) <r*(A)---r AU A).
Conversely,

1L(A) < BA(A)KE(A).
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4.1. General risk bound. We first provide a general risk bound for T when the sample
size is sufficiently large.

THEOREM 3. Assume that § is sub-Gaussian in that there exits a og > 0 such that for all
s €R,

E(exp(s§}) < exp(s’07 /2).

There exist constants Cy, Co, C3, C4 > 0 depending on k only such that for any fixed « > 1
andy > Cy, if

nz Coalc MBIV dnax log dinax.
then with probability at least 1 — d %,
IT—T]e,

@ anp = Cave e (ITles, v oe) 10g" dmax

1y [d (o)
o N N

i di)l?
rmax(T)(k l)/Z?)’

forall 1 < p <2 where T is the output from Algorithm 2 with itermax > C4log dmax, and

N
A=y (| Tl Vv 0g) logh T2 dimax X (K(T)rmax(T)(k 2)/2\/?

di - -d)34 di--d
( 1 12k) +rmax(T)(k_2)/2 ! k)-
nl/ n

We emphasize that Theorem 3 applies to any estimate produced by power iteration after
an O (logdmax) number of iterations. In other words, it applies beyond the best low rank
approximation to Tinit. We can further simplify the risk bound in Theorem 3 when the rank
rmax (T) is not too big. More specifically, we have the following.

COROLLARY 1. Under the assumptions of Theorem 3, if, in addition,

n = rnac (D21 ---d)'? and e (D) rinax (D) 2dimax < (d1 - dp) /2,
then with probability at least 1 — d_ 5,
||T ~Tle,
(dy---dl/r ~

forall 1 < p <2, and some constant C > 0 depending on k only.

(d, “‘dk)l/4

< CY2a M ([Tlle, v 0 im0

102572 dinax

To gain further insights into the risk bound in Theorem 3, it is instructive to consider the
case of cubic tensors, that is, dj = - - - = dy =: d. By Theorem 3, we have

d*P|T —T),,
< C(T)(ITleo, V 0¢) logkt2 d

_ d dk/4 k2
X (K(T)rmaX(T)(k 1)/2\/;+rmax(T)l /2 1/2 + ma x(T)(k b2z __ " )
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This rate of convergence improves those obtained earlier by [4] and [22] even though their
results are obtained under more restrictive conditions. Indeed, we shall now show that, if the
tensor T is well conditioned, much sharper performance bounds can be established for our
estimate.

4.2. Minimax optimality. The following result shows that when the sample size is suffi-
ciently large, power iterations starting with a good initial value indeed produces an estimate
with the optimal rate of convergence, within a finite number of iterations.

THEOREM 4. Let & be sub-Gaussian in that there exits a oz > 0 such that for all s € R,
E(exp{s§}) < exp(s’o/2).

There are constants C1, Cy, Cz > 0 depending on k only such that the following holds. Let T
be the output from Algorithm 1 with the number of iterations

itermax > C} log dmaXa

and initial value such that

1
O (7 ONT _ Ty = 1
4.1) 1??§k||Uj (Uj ) U,U; | < 5
For any fixed a > 1, if

n > Cymax{e?rma (T A2 (D) (1Tl ey, V 0¢ ) dimax (d - - - di) 1082 dina,

a(B(MK(T)** D ax 108 (dimax)

4.2)
rimax (MDA (T (I Tl oo, V 0¢)ds - - - dic 1025 dinay,

a(T?AZ2 (T (ITlley, V 05) (dmax V Fmax (DX dy - - - di 10g dimax

then, with probability at least 1 — d_%

max?

T-T «(Tdimax V Fmax (T)¥) 10g(dimax
l ”(ip < C3(IT]le, vag)\/a(rma (T dmax V rmax(T)*) 10g(dma )’
(dy---d)/p n

foralll <p<2.

As an immediate consequence of Theorems 2 and 4, we have the following.

COROLLARY 2. Suppose that & is sub-Gaussian as in Theorem 4. There exist constants
C1,Cy, C3,Cyq > 0 depending on k only such that the following holds for any o > 1 and
y > Cy. Assume that

itermax > C210g dmax.,
and

dmaxdl T dk

h =y (Tl v 0¢) 108" dinax X (x(T)rmax<T)<"—2>/2 !

(dy -+~ dp)*/*

_ dl Ce dk
75—+ rma (D 2>/2—).
n n
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If
n> Ciy? T (T))?* Vg, logd,
> C3y? max{a(B(T)x(T)) max 10€ dinax.
@ (T V rnax (M ) AZZ (T (I T e, V 05 ) dimaxds - - - di 102K dinas,
(D (ITlle, V 0e)*(d) - - di)>* 10g* ) dinas.
@ 1 (M D2 AL (DY (1T, v 02)di - - di 10g% T dipay )

min

P A2

min

then, with probability at least 1 — d_%

max’

T-T k
T, _ v i) \/a(rmaxmdmax V imax(T)) 10g dina
(dy---dp)V/p n
forall1 <p <2,
It is instructive to consider the case when dy = --- =dy =d, and (||T|¢, V 0r) =

O (I T|l¢,(d - - - di)~'/?), then Corollary 2 implies that

(rmax(T)d V Fmax (T)k) log(d) )
P ,

d7*2|T -1, = 0((||T||em v Ug)\/
given that
13> Fmax (M *V2(dy - - dp) V2 polylog(d).
polylog

In particular, when k£ = 2, this matches the optimal bounds for noisy matrix completion; see,
for example, [13, 16] anq\ references therein. Indeed, as Theorem 5 shows that the rate of
convergence achieved by T is indeed minimax optimal up to the logarithmic factor.

REMARK 2. Compared with noisy matrix completion ([16]) (e.g., k = 2), Corollary 2
imposes additional sample size requirements w.r.t. to the tensor spikiness. On the statistical
aspect, the root cause is from the two rates (3.1) in the upper bound of ||Tinit — TJ|. When
k = 2, the dominating term in (3.1) already characterizes the statistically optimal rate of noisy
matrix completion. Consequently (as the proof of Theorem 3), the optimal rate is achievable if
k =2 even when the spectral estimates are completely noninformative. However, for higher
order tensors (k > 3), the dominating term in (3.1) is generally suboptimal. To guarantee
statistically optimal rates when k > 3, nontrivial spectral estimates are necessary which, in
turn, imposes sample size requirement w.r.t. to tensor spikiness as in Theorem 2.

Let Pt denote the joint distribution of {(Y;, w;) :i =1, ..., n} with
Yi =T (i) +&, & ~N(O, 052).
Denote by
©(ro, Bo) := A € Ry (A) < 103 B(A) < o}

THEOREM 5. Let Bo > 2. Then there exist absolute constants Cy, C> > 0 such that for
any M > 0,

T-T | rodmax V &
inf sup PT{%ZCI(M/\%) M}Zcz,
T Te®(r0.B0):(| Tl ea, <M (di---di)l/p n

for all 1 < p <2, where the infimum T is taken over all the estimators based on {(Y;, wp) :
1 <i<n}
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4.3. Random tensor model. To better appreciate the above risk bounds, we now consider
a more specific random tensor model previously studied by [22]. Let T be a symmetric tensor
with rank r such that

,
T=Ywo - ou.
i=1

where u;s are independent and identically distributed sub-Gaussian random vector in R? with
mean 0 and E(u; ® u;) = 1. It is not hard to see that

[M; (D] =p .
See, for example, [22]. Here, =<, means < with high probability. Meanwhile, it is clear that

ITIZ, = Z(nu 2 42 > G un) =, rd*,

i=1 I<i<i'<r

so that
Omin (M (T) =, d*/2.
Therefore,
Amin <pd"? and  «(T) =<, 1

Moreover, we have || T|¢,, =<, rl/2 logk/ 2d. 1t otz = O(1), then Corollary 2 implies that, by

taking
dk+1 d3k/4 d*
A=y (,,(k—l)/2 /IS Vo e r(k_l)/z—) polylog(d),
n n n
we get
_k/p dr logzd
d™PIT=Tlle, = Op|\) ——
n
if

n > Cy*(dr*=1 4 r*=D/245/2) polylog(a),

for some absolute constant C > 0.

5. Numerical experiments. To complement our theoretical development, we present in
this section results from several sets of numerical experiments. We begin with simulated
third-order tensors where the underlying tensor T is generated from the following random
tensor model:

,
T=) Aux ® vk @ wy) € RV
k=1

withA =d3? and U = [ug;...;ur] € RAxr (also V, W) being randomly generated orthonor-
mal columns from the eigenspace of a standard Gaussian random matrix. It is well known that
IA(ur @ vk @ wi)lles, = 0(log3/ 2 d) with high probability under such construction. In addi-
tion to our proposed estimator, we shall also consider the following estimator:

~0)  Ainit
TO =T 5, Py x2 Py x3 Py,
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where U@ (VO WO resp.) denotes the spectral initialization from U-statistics in (2.3).
Note that the proposed estimator after the power iteration is given by

T(itermax) = Tinit X1 PU(itermax) X2 Pv(itermax) X3 Pw(itermax) s
where U (tetmax) (7 (itermax) - py (iterma) | yegp ) denote the refined estimation after iterpax = 10
power iterations. By including the estimator without power iteration, we can better appreciate
the quality of spectral initialization and the effect of power iteration.

To further appreciate the merits of our approach, we also included a HOSVD based esti-
mator:

THOSVD) _ pinit | Pgnosvp X2 Pynosvp X3 Pinosvp
as well as the estimate proposed by [22]. We note that even though [22] considered only the
noiseless case (0¢ = 0), their estimator can nonetheless be applied to the noisy situations.

In our simulations, we set the sample size n = rd* with various choices of « € [0, 3]
and each observed entry is perturbed with i.i.d. Gaussian noise & ~ N (0, 052). We set d =
50, 100, 7 =5 and o¢ = 0.2. For each d, r, n, all four estimates were evaluated based upon
30 random realizations and the average error in estimating T

e =T~ Tle/ITle,
and in estimating U
eU):=|00T —UUT|

are recorded. The results are summarized by Figures 1 and 2, where “Naive” represents
HOSVD based estimator; “MS” stands for the estimator from [22]; “U” corresponds to TO
and “U+Power” our proposed estimator. The plots clearly show that T(HOSVD) requires a
much larger sample size than the other estimates. It also suggests that TO is more accu-
rate than TMS. Moreover, it shows that power iterations significantly improves the spectral
estimation especially for larger d. Note that T™S can only be applied to n < d°.

Next, we apply our method to a simulated MRI brain image dataset to show the merits
of our methods for denoising. The dataset can be accessed from McGill University Neu-
rology Institute.! See [7] and [18] for further details. We selected “T1” modality, “Imm”
slice thickness, “1%” noise, “RF” 40% and obtained therefore a third-order tensor with size
217 x 181 x 181, where each slice represents a 217 x 181 brain image. The original tensor
has full rank and we project it to a tensor with multilinear ranks (20, 20, 20). In our simula-
tions, we sampled 5%, 10%, ..., 100% entries of T and added i.i.d. Gaussian noise on each
entries obeying distribution A/ (0, 052) where

o ( ITIIZ, )1/2
=V 217 x 181 x 181

with noise level y = 0.05,0.10,0.15..., 1.0. We applied our reconstruction scheme to each
simulated dataset and recorded the relative error (RE): e(T) = ||'T — T/||¢, /|| T||¢,. The results
are presented in Figure 3 and Figure 4. It again shows that our algorithm is quite stable to
noise.

1 http://brainweb.bic.mni.mcgill.ca/brainweb/
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Comparison of Spectral Estimation

0.9+ —fe— U:d=50
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(a) Comparison of spectral estimation between different approaches for d = 50,r = 5.

. . Comparison of Spectral Estimation

0.9 - —#— U:d=100 b
08} ' .
Naive:d=100
0.7 - B
= ——MS:d=100
> 0.6 g
= .
| 0.5F —8— U+Power:d=100 | |
=
s 0.4} 1
0.3+ q
0.2+ i
0.1 q
0 L L L L L L - T -
1.4 1.6 1.8 2 2.2 24 2.6 2.8 3

« such that n = rd®

(b) Comparison of spectral estimation between different approaches for d = 100, = 5.

FI1G. 1. Comparison of spectral estimation among four different approaches. Note that “MS” method of [22]
only applies to n < ds.

6. Proofs. In this section, we present the detailed proof of Theorem 1. The proofs of
Theorems 2-5 and additional lemmas are collected in the Supplementary Material. We shall
make use the Orlicz v, -norms (o > 1) of a random variable X defined as

X lly, :=inf{u > 0:Eexp(|X|*/u®) <2}.
With this notion, the assumption that & is sub-Gaussian amounts to assuming that [|& ||y, <
~+o00. A simple property of Orlicz norms that we shall use repeated without mentioning is the

following: there exists a numerical constant C > 0 such that for any random variables X and
Y, XYy, = CliXIly, 1Y lly, because

on eon( ) <pen(5)ew() <2 ()32
. exp| — expl =— Jexp| — exp| — expl| — |-
PUab ) =P 22 )P\ 202 ) = Pla e
6.1. Proof of Theorem 1. The main architect of the proof follows a strategy developed
by [32] for treating third-order tensors.
Symmetrization and thinning. Let {¢;}!_, denote i.i.d. Rademacher random variables inde-

pendent with {(Y;, e,,)}"_,. Define

dy---dp I
A= uZSiYiewi-
n
i=1
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_____Comparison of Tensor Recovery
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(a) Comparison of tensor recovery between different approaches for d = 50,7 = 5.

-
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(b) Comparison of tensor recovery between different approaches for d = 100, = 5.

F1G. 2. Comparison of tensor recovery among different approaches. Note that “MS” method of [22] only applies
ton < d3.

We begin with symmetrization (see, e.g., [32]) and obtain for any ¢ > 0,

di-dip &
Pl || —— Y; T| >t
<4P(||A|l = 2t)
—Cot?
+4exp< 5 3 0 >
Cidy---di(og +|ITllg, )/n + Cat(0g + | Tlles)dr - - - di/n

for some universal constants Cyp, C1, C> > 0 and where we used Bernstein inequality of the
sum of independent sub-Gaussian random variables. It suffices to prove the upper bound of
P(||A|| = 2t) for any ¢ > 0.

Define

By, =10, £1, 22712 2272 0 {u e RY < ully, < 1),
where m; =2[log,d;1, j =1, ..., k. As shown by [32],

1A = sup A1 ®--Qup) <28 sup (A,u1 @ Quy).

uille, <1,j=1,....k u; d:
I /”Zz_ J /G%m],dj
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Original 20% Sample with Noise level: 0.1 Output: RE=0.13

“\‘\.

35% Sample with Noise level: 0.8 Output: RE=0.11

50% Sample

FI1G. 3. Denoising of MRI brain image tensor. Each image is represents one slice of a tensor. The original
tensor has size 217 x 181 x 181 with multilinear ranks (20, 20, 20). The third column represents the output of our
algorithm with relative error (RE) measured as |T — T|l¢, /[ Tll¢,.

In fact, we can take the supreme over an even smaller set on the right-hand side.
To this end, let D, be the operator that zeroes out the entries of tensor A whose absolute
value is not 27%/2, that is,

D;(A) = Z 1{|<A, €a ®"‘®eak>{ :2—s/2}<A’ eq ® - ®eak>ea1 Q- ®eq,

aip,...,ay

where, with slight abuse on the notation, we denote by {¢,; : 1 < a; <d;} the canonical basis
vectors in R% for j = 1,..., k. An essential observation is that the aspect ratio of the set
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MRI datasets: Relative Error by Sample Ratio and Noise Level

0.6 -
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0.4 -

0.3

-y,
T,
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1 08 0.5
’ 06 04

0.2 1 .
Noise Level 0 Sample Ratio

FI1G. 4. Denoising of MRI brain image tensor. The dependence of relative error on the noise level and sample
ratio. We observe that our algorithm is very stable to noise level.

Q ={w; : 1 <i <n}is typically small. More specifically, write

Vo 1= Hae: (a1, ..., ax) € Q}.

max max
e=1,...kajeld;]:jelk]\¢
It follows from Chernoff bound that there exists a constant C > 0 such that for all « > 1,

nd
(6.2) vo < Ca max{ﬁ, klogdmax} =:v,

with probability at least 1 — d % ; see, for example, [33]. We shall now proceed conditional
on this event.
Obviously,
sup (A, ui®---Qug)=sup (A, Pour®- - Quy)),

u;e - d: u;e - d
J %mj,d] J %m],d]

where Pg, is the operator that zeroes all entries of a tensor outside 2. We shall now charac-
terize PoDs(u1 ® --- @ uy). For fixed uj € ‘ij,dj, j=1,... k, write Abj ={a:|uj(a) =
2_”1'/2}. As shown in [32], there exist sets As,bj C Abj such that

k
~ 2 ~
|As,b-| <vQ |As,b<| ,
j j

j=1
(Ap; X -+ X Ap) N Q= (Agp, X -+ X Ag ) N,

and
Dy(u; @ Quyp) :=PaDy(u; ® - @ ug)
- Z ,Pgs,b]xuxgs,bkl)s(”l Q- ®ug).
(b1, b):b1++b=s
Now define

?z,m* :={ Z f)s(’/‘l@"'@uk)

0<s<m,

+ Z Ds(M1®---®Mk)iujG‘ij,dj,j=1,---,k}

my<s<m*
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forany 0 <m, <m* = Z’J‘.Zl m j. Write

* *
%v,m*: U %Q,m*'

Vo =<v
Then
Il <2 max (Y, A).

It is not hard to see that [32]

21
log Card(B} ,, ) < Z(dl +dy+ -+ dp).

*

A refined characterization of the entropy of By,

0<g<s<m,,

is also needed. To this end, define for any

Dos,q = {Ds(Y): Y € B}

v,my

D, (Y, =247},

Following an identical argument to Lemma 12 of [32], we have (for readers’ convenience,
we include its proof in the Appendix [29] for completeness.)

LEMMA 1. Letv > 1. Forall 0 < g <s < m,, the following bound holds:
log Card(D, 5 4) < gs*10g2 4 2k2s* V29I L (V024 dipaxs*/?),

where L(x,y) = max{l, log(ey/x)}.

We are now in position to bound ||A||. Observe that

Al <2% max (Y, A)
YeB*

D, Mx

2 max ( ) (DS(Y),A)+(S*(Y),A)>,

v N)<s<m,

where S, (Y) =3 ;. ,,, Ds(Y) and m, is determined by
m, :=min{x : x > m* or 202 xky V2¥L(v/v2%, dmaxxk/z) >d + -+ di}.
Another simple fact is that m, < m* < k[log(dmax)]-

Step 1: Bounding |(Ds(Y), A)|. Forany Y € 5} we have 275 < | Dy (Y)||12: < 1 and thus

U, My

D, (Y) € Uf]zo Dy,s,q- Denote Yy = Dy (Y). It suffices to develop an upper bound for

n

max Y, A) =) (Ys.Z;),
. ST ;< o Zi)

dy---dy

for all 0 < g <s, where Z; := m

Ys € gv,s,q \gv,s,q—l,

ei(& + T (w;))ey,;, Vi € [n]. Observe that, for any fixed

(dy---di)?
I’lz I’l2

dy---dy dy---dy B
—— (I, + o)Vl < 2———(ITIZ,, +0¢)27 ™,

(di ---di)?

E(Ys, Z;)> <2 E(T, e4,)*(Ys, €0;)* +2 E&%(ey,, Yy)?

<2
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and

dy---dy dy---dg

H(Ys’ Zi)”lﬁz =< ‘

&j <ea)ia T)(Ys, ew,~>

+ H &i&i <ew,~,Ys>

1) )
<Cd1.“dk

(I Tlleo, +0e)275/2,

for some constant C > 0, implying that (Y;, Z;) has a sub-Gaussian tail. By the Bernstein
inequality for the sum of unbounded random variables,

p( . t)
—C()l2

Cidy ---di(of + |ITI7 2975 /n + Cat (0% + | Tlle, )1 - 'dk2_s/2/n)’

n

> (Y, Z;)

i=l

< exp(

for some universal constants Cyp, C1, C> > 0. An application of the union bound yields

)

—C0t2
X exp(C d d 29q—s —s5/2 )
1di - di(ITlle vV 0£)7297° /n + Cot (I Tl V 0)d1 - di275/% /n

n

> (Y. Zi)

i=1

P max
Y;€Dy,5.4\Dv,s,qg—1

< |Dys,ql

< (21(d +oetdy) Cor” )
expl — —
=P T Crdy - di (1Tl v 06)2245 /n

8 Cot
+ ex (10 Card(D,.4.4) — 27 )
pUoe v Co(I Tl v 0e)dy - di/n

Recall that m, < klog(dmax),
log Card(D . 5.) < (k108 dmax) ! + 2k% (k 108 dinax) /129 L(v/029, dinaxs*/?),
and
L(v/v24, dinaxs*/?) < k1og dinax.

By choosing

[kdmaxd; - - -d di-od
t>C1(IIT]len V 0¢) max{zw—“/2 2omaxBL TR 2572 (k log dinay) T K
(6.3) " "

- di 1og dmax }

n

di -
K (klog dma) /029022

we get

n

[P) max
Y5 €D0,5,0\Do,5,-1 ;

(YS’ Zl)

( )
>1) < exp Ty
Cidy - di(ITlle, vV 0£)72975 /1

Cot
—i—exp(—Zs/2 0 )
Co(IITll e V 08)dy -+ - di /1




NOISY TENSOR COMPLETION 97

By making the above bound uniform over all pairs 0 < g <s < m,, we obtain that

(Y;n%%x > Yz

ik |0<s<m, i=1

> (my + l)t)

(")) exe( X )
<1l- eXp\ — 2ng—
2 Cidy - di(ITlles, V 0£)22975 /n

- (m* + 2) exp(—Zs/2 Cof )
2 Co(IITll e V 02)dy -+ - di/n

Step 2: Bounding maxyess, | D" (S«(Y),Z;)|. Observe that

.« o . 2
ES.(Y), Z: <2 5, () e T, 4,
n

2

DY 2
A zd") EE(S.(Y), e,
n

d1
n

HS W) 5 ITIIZ,, +07)

_ dl"‘dk
< gt T(||T||§oo +07),

and
dy---dy

Ii8.¥). 21, < | 61 (Sun €0,) (T, €4)

1)
dy---dy

4 \ 6iE(S.(Y). €0,

)
dl .. ‘dk _
<C——2 Me/2 (1T oy, + 0%),

for some constant C > 0. Again, by the Bernstein inequality and the union bound,

e Dol

<exp(21(di +--- +dr)/4)

max Zs (Y), Z;)

YeBr

vk j—1

( )
X X — .
PUTCidr - da (T v 00)2/n + Cat (1T, v 0e)dy - di 22/
By choosing

12 C(I Tl v O's)rnax{z—“"*—‘)/2 Kdmaxd ---di. 2—m*/2w},
n n
we get
IP’( >Z)

< eXp(— COtz )

- Cidy - di 27" ([ Tlle, V 0g)*/n
Cot

C2(ITlley, V 02)d1 - - -dk2‘m*/2/n>'

max Zs (Y). Z;)

YeBy

+ exp(—
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Step 3: Putting them together. Combining above bounds, we conclude that if

kdmaxd - -~ d di-d
t > Ci(ITlles VU&)maX{\/@, (klogdmax)’(“%,

(K 10g dgn)* /o LA 1O8 s o Klman - }
n

n

then

my +2 Cot?
P(IA] < (m, + 2)t 21—2< >ex (_ )
( ) 2 P Cdr a1l v 02)2/n

(") el o)
-2 exp| — .
2 Co(ITlley v 02)dy -+ - dic/n

By the definition of m,, we have

22 < Vv K 1085 dins.
dmax

Therefore, with probability at least 1 — d_% for & > 1 (by adjusting the constant Cy),

max

1A < C1E*Ba (T, Vv or)

[kdmaxdy - --dy kdy---d,
xmax{ maxl k, ! k}logk+2dmax.
n n
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