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Effective Tensor Sketching via Sparsification
Dong Xia and Ming Yuan

Abstract— In this article, we investigate effective sketching
schemes via sparsification for high dimensional multilinear arrays
or tensors. More specifically, we propose a novel tensor sparsifi-
cation algorithm that retains a subset of the entries of a tensor
in a judicious way, and prove that it can attain a given level of
approximation accuracy in terms of tensor spectral norm with a
much smaller sample complexity when compared with existing
approaches. In particular, we show that for a kth order d×· · ·×d
cubic tensor of stable rank rs, the sample size requirement for
achieving a relative error ε is, up to a logarithmic factor, of the
order r1/2

s dk/2/ε when ε is relatively large, and rsd/ε2 and
essentially optimal when ε is sufficiently small. It is especially
noteworthy that the sample size requirement for achieving a high
accuracy is of an order independent of k. To further demonstrate
the utility of our techniques, we also study how higher order
singular value decomposition (HOSVD) of large tensors can be
efficiently approximated via sparsification.

Index Terms— Sketching, singular value decompostion (SVD),
sparsification, tensor.

I. INTRODUCTION

MASSIVE datasets are being generated everyday across
diverse fields and can often be formatted into matrices

or higher order tensors. For example, in biomedical research,
huge data matrices and tensors arise in gene expression
analysis [1], protein-to-protein interaction [2], and MRI image
analysis [3]. They also occur frequently in statistical physics
[4], [5], video processing [6], [7], and analyzing large graphs
and social networks [8]–[10], to name a few. As the size
of these data matrices or tensors grows, it becomes costly
and sometimes prohibitively expensive to store, communicate
or manipulate them. This naturally brings about the task of
“sketching”: approximate the original data matrices or tensors
with a more manageable amount of sketches.

In the case of data matrices, numerous sketching approaches
have been proposed in recent years. See [11] for a recent
review. A popular idea behind many of these approaches is
sparsification – creating a sparse matrix by zeroing out some
entries of the original data matrix. Sparse sketching of a large
data matrix not only reduces space complexity but also allows
for efficient computations. See, e.g., [12]–[17], among others.
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The main purpose of this article is to investigate to what
extent sparsification can be used to effectively sketch higher
order tensors. There have been some recent attempts along
this direction. In particular, our work is inspired by [18] who
showed that for a kth order cubic tensor A ∈ R

d×···×d , there is
a randomized sparsification scheme that yields another tensor
Ã of same dimension but with

nnz(Ã) = Õp

�
dk/2sr(A)

ε2

�
, as d → ∞, (1)

such that
�Ã − A� ≤ ε�A�.

Here, nnz(·) stands for the number of nonzero entries of a
tensor, sr(A) = �A�2

F/�A�2 is the so-called stable rank [16],
[18] of a tensor A, � · � is the usual tensor spectral norm, and
Õ(·) means O(·), up to a certain polynomial of logarithmic
factor. Note that the stable rank of a tensor can be viewed
as a more stable alternative to the normal concept of ranks,
as the name suggests. In particular, if a tensor is orthogonally
decomposable, then its stable rank is always upper bounded
by its rank and could be much smaller. In general, it can
always be upper bounded by the multiplication of its smaller
Tucker ranks. Similar results have also been obtained by [19]
in the case when k = 3. On the one hand, the sample size
requirement given by (1) is satisfying because it is essentially
optimal in the matrix case, that is k = 2. See, e.g., [16]. On the
other hand, the exponential dependence on k suggests a large
amount of entries still need to be retained to yield a good
approximation. Our goal is to investigate if this aspect could
be improved.

In particular, we propose a novel tensor sparsification algo-
rithm that randomly retain entries from A in a judicious way
to yield a tensor �ASPA such that

��ASPA − A� ≤ ε�A�,
and

nnz(�ASPA) = Õp

�
max

�
d · sr(A)

ε2 ,
dk/2 · sr(A)1/2

ε

��
.

(2)

Here, to fix ideas, we focus on the case of cubic tensors
although our results deal with more general rectangular tensors
as well. This sample size requirement significantly improves
those earlier ones. Especially if a high accuracy approximation
is sought, that is ε ≤ sr(A) · d−k/2+1, then our sparsi-
fication algorithm can achieve relative approximation error
ε in terms of tensor spectral norm by retaining as few as
Õp(d ·sr(A) ·ε−2) entries of A. In addition, for approximation
with lower precision, namely ε > sr(A) ·d−k/2+1, the number
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of nonzero entries we keep is also substantially smaller than
earlier proposals in that it depends on ε−1 linearly rather than
quadratically, and on the stable rank sr(A) only through its
square root.

Similar to other sparsification algorithms, we treat different
entries according to their magnitude: large entries are always
kept, and moderate ones are sampled proportion to their square
values. The key difference between our approach and the
existing ones is in the treatment of small entries. Instead of
zeroing them out as, for example, [18], we sample them in
a uniform fashion, which proves to be essential for obtaining
good approximation with tighter number of nonzero entries.
This modification is motivated by the concentration behavior
of randomly sampled tensors recently observed by [20]–[22].

To demonstrate the effectiveness of our tensor sketching
schemes, we show how they can be used for efficient approx-
imation of the leading singular spaces from higher order
singular value decomposition (HOSVD). Let U j ∈ R

d×r be
the top r left singular vectors of the flattening of A along
its j th mode. We show that it is possible to construct an
approximation �U j obeying

��U j�U�
j − U j U�

j � ≤ ε,

if we retain

Õp

�
max

�
rd

ε2 ,
rdk/2

ε

��
carefully chosen entries. As before, we note that for high
accuracy approximations, the sample complexity is essentially
independent of the order of the tensor. Although our primary
focus is on higher order tensors, as a byproduct, our results
indicate that our sparsification scheme improves the sample
complexity of earlier approaches for approximating the singu-
lar vectors of highly rectangular matrix.

The rest of the paper is organized as follows. We first
discuss the new tensor sparsification algorithm in Section II.
In Section III we consider the application to HOSVD. All
proofs are relegated to Section IV.

II. TENSOR SPARSIFICATION

Sketches of a tensor A ∈ R
d1×...×dk are its approximations,

and we consider measuring their quality in terms of relative
spectral norm. Recall that the spectral norm of a tensor B ∈
R

d1×...×dk is defined as

�B� = sup
u j ∈R

d j ,�u j ��2 ≤1

�B, u1 ⊗ . . . ⊗ uk
 .

We seek an approximation �A of A such that

��A − A� ≤ ε�A�,
for a prespecified accuracy ε ∈ (0, 1). The error measure
in terms of tensor spectral norm is common and especially
ensures the approximation is suitable for downstream compu-
tation of low rank approximations.

The idea of sparsification is to systematically zero out
entries of A and scale the remaining entries to yield a
good approximation to it. We focus here on sparsification
strategies that are carried out in an entry-by-entry fashion.

Our approach can be characterized as keeping large entries,
sampling moderate entries according to their magnitudes, and
sampling uniformly small entries. The key is determining how
to classify entries into these categories so that the number of
nonzero entries retained are as small as possible. Details are
presented in Algorithm 1.

In particular, we keep all entries whose absolute value is
greater than n−1/2�A�F, sample uniformly all entries whose
absolute value is smaller than (d1 · · · dk)

−1/2�A�F, and sample
proportional to their squared values entries whose absolute
value is in-between. Here n is a sampling parameter. Note that
E[nnz(�ASPA)] ≤ 2n. And it is not hard to see, by Chernoff
bound, that nnz(�ASPA) = Op(n). In other words, n represents
essentially the targeted sampling budget.

We note that our sparsification algorithm is similar to the
one proposed earlier by [18]. But the two schemes also
have several key differences. The main difference lies in the
treatment of “small” entries. Reference [18] suggests to zero
them out, while ours sample them in a uniform fashion.
This is largely motivated by the concentration behavior of
randomly sampled tensors observed earlier. In particular, it can
be shown that a uniformly sampled tensor concentrates much
sharply around its mean if its entries are sufficiently small [20].
Therefore, instead of discarding small entries, we could derive
a good estimate of them by sampling uniformly. Another subtle
difference between the two algorithm is in the criteria for
“small” entries. Our criterion for “small” entries is that their
absolute values are smaller than (d1 · · · dk)

−1/2�A�F, whereas
[18] treats only cubic tenors, that is d1 = d2 = · · · = dk =: d ,
and small entries of their scheme are those smaller than
n−1/2d−k/4�A�F logk/2 d .

We now present the performance bounds for our sparsifica-
tion algorithm.

Theorem 1: Let A ∈ R
d1×...×dk and �ASPA be the output from

Algorithm 1 with sampling budget n. There exists an absolute
constant C > 0 such that if for any α ≥ 4 log(k log dmax) and
ε ∈ (0, 1), if

n ≥ C max

�
α4k8 dmax · sr(A)

ε2 log2 dmax

, α2 k5 (d1 · · · dk · sr(A))1/2

ε
logk+4 dmax

�
,

then, with probability at least 1 − d−α
max,

��ASPA − A� ≤ ε�A�,
where dmax = max{d1, . . . , dk}.

In the light of Theorem 1, we can achieve relative error ε
in terms of tensor spectral norm with a sparse tensor such that

nnz(�ASPA) =
⎧⎨⎩Õ


ε−2dmax · sr(A)

�
, if ε ≤ dmax·sr(A)1/2

(d1...dk)1/2

Õ


ε−1(d1 . . . dk · sr(A))1/2

�
, otherwise

This significant improves earlier work by [19] and [18]. It is
worth noting that for small ε, or high accuracy approximation,
the number of nonzero entries of �ASPA is of the order ε−2dmax ·
sr(A). This, in particular, is known to be optimal in the matrix
(k = 2) case [16]. On the other hand, for lower accuracy
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Algorithm 1 Tensor Sparsification

Input: A ∈ R
d1×...×dk , sampling budget n ∈ [1, d1 · · · dk].

2: Output: �ASPA ∈ R
d1×...×dk .

for i1 ∈ [d1], i2 ∈ [d2], . . . , ik ∈ [dk] do
4: if |A(i1, . . . , ik)| ≥ �A�F/n1/2, then�A(i1, . . . , ik) = A(i1, . . . , ik).
6: end if

if |A(i1, . . . , ik)|/�A�F ∈



1
(d1···dk)1/2 , 1

n1/2

�
, then

�A(i1, . . . , ik) =
�

A(i1,...,ik )
P(i1,...,ik ) , with probability P(i1, . . . , ik) := n A2(i1,...,ik )

�A�2
F

0, with probability 1 − P(i1, . . . , ik).

8: end if
if |A(i1, . . . , ik)| ≤ �A�F/(d1 . . . dk)

1/2, then
10: �A(i1, . . . , ik) =

�
A(i1,...,ik )
P(i1,...,ik ) , with probability P(i1, . . . , ik) := n

d1d2···dk

0, with probability 1 − P(i1, . . . , ik)

end if
12: end for

Output: �ASPA = �A.

⎫⎬⎭ Large
Entries⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
Moderate

Entries

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
Small

Entries

Fig. 1. Sparsity or sparsity ratio of the proposed sparse approximation to a
cubic tensor versus its accuracy.

approximation, the dependence of nnz(�ASPA) on ε−1 is linear
rather than quadratic as existing sparsification schemes.

To better appreciate the bounds given in Theorem 1, it is
instructive to consider cubic tensors, that is d1 = · · · =
dk = d , and the case when sr(A) = O(1) and ε = d−α

for some α > 0. Theorem 1 indicates that nnz(�ASPA) =
Õ(dmin{k,max{1+2α,k/2+α}}). Note that a kth order cubic ten-
sor has dk entries so that the sparsity ratio of �ASPA is
d−k ·nnz(�ASPA) = Õ(dmin{0,max{1+2α−k,α−k/2}}). In particular,
Figure 1 plots the exponent of such sparisity bounds versus
the exponent of accuracy α for k = 2, 3, 4 and 5.

The main technical tool for proving Theorem 1 is the
following concentration inequality for random tensors which
might be of independent interest.

Theorem 2: Let A ∈ R
d1×...×dk and P ∈ [0, 1]d1×...×dk be

two fixed tensors, � ∈ {0, 1}d1×...×dk be a random tensor such
that E�(i1, . . . , ik) = P(i1, . . . , ik). Define a random tensor

�A ∈ R
d1×...×dk by

�A(i1, . . . , ik) = A(i1, . . . , ik)�(i1, . . . , ik)/P(i1, . . . , ik).

Then, there exist absolute constants C1, C2, C3 > 0 such that
for any α > 0, with probability at least 1 − 3d−α

max,

��A − A� ≤ C1


� k�
j=1

d j
�1/2 + αk log dmax

�
α2,∞(A, P)

+ C2αk3 logk+2(dmax)
√

να∞(A, P),

where

ν = C3α max
�
β(P), k log dmax

�
,

β(P) = max
j=1,...,k

max
i1,...,i j−1,i j+1,...,ik

d j�
i j =1

P(i1, . . . , ik),

α∞(A, P) = max
i j ∈[d j ], j=1,...,k

|A(i1, . . . , ik)|
P(i1, . . . , ik)

,

and

α2,∞(A, P) = max
i j ∈[d j ], j=1,...,k

�
A2(i1, . . . , ik)

P(i1, . . . , ik)

�1/2

.

Here we follow the convention that 0/0 = 0.

III. EFFECTIVE COMPUTATION OF HOSVD
VIA SPARSIFICATION

To further illustrate the merits of the sketching schemes
introduced earlier, we now consider a specific application to
HOSVD, a popular technique for analyzing high dimensional
tensor data. See, e.g., [23], [24] and references therein.
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For a k-th order tensor A ∈ R
d1×...×dk , let M j = M j (A) ∈

R
d j ×d− j be its j -th matricization where 1 ≤ j ≤ k, that is,

M j (A)



i j ,

k�
s=1,s 
= j

(is − 1)

 k�

s �=s+1,s � 
= j

ds �
�

+ 1
�

=A(i1, . . . , ik), ∀i j ∈ [d j ], 1 ≤ j ≤ k.

Here d− j = (d1 · · · dk)/d j . Denote by U
(r j )

j the collection of

the top r j left singular vectors of M j . Clearly, U
(r j )

j is com-
putable via the standard matrix singular value decomposition
on M j whose computation complexity is O(d j d1d2 . . . dk), see
[25]. Efficient computation of singular value decomposition
for large matrices is an actively researched topic in numerical
algebra and computational science. See [14], [15], [26]–[29],
among numerous others.

A general idea is to first obtain an approximation of M j ,
say �M j ∈ R

d j×d− j , that is amenable for fast computation of

singular value decomposition; and then approximate U
(r j )

j by
the top left singular vectors of �M j . In particular, sparsification
is a powerful tool for fast computation of singular vectors. See,
e.g., [11], [14].

Denote by � j = �M j − M j and by �U(r j )

j the leading r j

left singular vectors of �M j . By Davis-Kahan Theorem [30],
we get ���U(r j )

j

��U(r j )

j

�� − U
(r j )

j

�
U

(r j )

j

���� ≤ 2�� j�
ḡr j (M j )

(3)

where σk(·) denotes the k-th singular value, and

ḡr j (M j ) = σr j (M j ) − σr j +1(M j ),

is the r j -th eigengap. In particular, we can consider applying
this strategy by taking �M j = M j (�ASPA). The following result
characterizes its performance.

Theorem 3: Let U
(r j )

j and �U(r j )

j be the top r j left singular
vectors of M j (A) and M j (�ASPA) respectively. Then there
exists an absolute constant C > 0 such that for any t > 0,���U(r j )

j

��U(r j )

j

�� − U
(r j )

j

�
U

(r j )

j

����
≤C

�M j �F

ḡr j (M j )

��
d1 . . . dk(t + k log dmax)

nd j

+ (d1 . . . dk)
1/2(t + k log dmax)

n

�
,

with probability at least 1 − e−t .
By Theorem 3, in the case when �M j �F/ḡr j (M j ) =

O(
√

r j ), we can ensure���U(r j )

j

��U(r j )

j

�� − U
(r j )

j

�
U

(r j )

j

���� ≤ ε

by taking

n ≥ C · max

�
r j d1 . . . dk

d jε2 ,
(r j d1 . . . dk)

1/2

ε

�
log dmax. (4)

A critical fact that is neglected by this approach is that we
are interested in approximating the left singular vectors of a
potentially very “fat” matrix because d− j is generally much

larger than d j . As such, this type of approach turns out to be
suboptimal for our purpose.

Alternatively, we adopt a new spectral method similar
in spirit to a recent proposal from [22]. More specifically,
we shall approximate U

(r j )

j by the leading eigenvectors of an
approximation of M j M�

j instead. In particular, we can run
Algorithm 1 twice to obtain two independent sparsifications
of A, denoted by �ASPA

1 and �ASPA
2 , and then proceed to

approximate M j M�
j by M j (�ASPA

1 )M j (�ASPA
2 )�. Details are

presented in Algorithm 2.

Algorithm 2 Computing HOSVD via Tensor Sparsification

Input: A ∈ R
d1×...×dk , sampling budget n ≥ 1.

2: Output: the r j leading left singular vectors �U(r j )

j as an
estimate of HOSVD of M j (A).

Run Algorithm 1 on A with sampling budget n. Denote the
output by �ASPA

1 .
4: Run Algorithm 1 on A with sampling budget n. Denote the

output by �ASPA
2 .

Compute �U(r j )
j as the r j leading left singular vectors of

M j (�ASPA
1 )M j (�ASPA

2 )�.

6: Output �U(r j )
j .

The following theorem provides the performance bound for
approximate the singular space U

(r j )

j s.

Theorem 4: Denote by U
(r j )

j the r j leading left singular

vectors of M j (A). Let �U(r j )
j be the output from Algorithm 2.

There exists an absolute constant C > 0 such that for any
α ≥ 1 and ε ∈ (0, 1), if

n ≥ Cα

�
k2d j log dmax

ε2

�A�2
Fσ 2

max(M j )

ḡ2
r j

(M j M�
j )

+ k(d1 . . . dk)
1/2 log dmax

ε

�A�2
F

ḡr j (M j M�
j )

�
,

then ���U(r j )

j

��U(r j )

j

�� − U
(r j )

j

�
U

(r j )

j

���� ≤ ε,

with probability at least 1 − d−α
max.

From Theorem 4, if �A�2
F/ḡr j (M j M�

j ) = O(r j ) and
�A�2

Fσ 2
max(M j )/ḡ2

r j
(M j M�

j ) = O(r j ), then the required sam-
ple complexity for sparsification is

Õp

�
k2r j d j log dmax

ε2 + kr j (d1 . . . dk)
1/2 log dmax

ε

�
.

It is worth noting that, even though our main focus is on higher
order tensors, in the case of matrices (k = 2) this sample com-
plexity compares favorable with other sparsification techniques
that have been developed for computing singular vectors. For
example, consider computing the top r left singular vectors of
a d1 × d2 (d1 ≤ d2) matrix. The approach from [14] needs to
sample

Õp


rd1d2
2

ε2 · maxi, j |A(i, j)|2
�A�2

F

�
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entries; the technique of [31] requires

Õp


rd2

ε2

�
entries. These are to be compared with Algorithm 2 which
needs

Õp


rd1

ε2 + r(d1d2)
1/2

ε

�
sampled entries, which could be much smaller than the previ-
ous two when d1 � d2.

To further illustrate the practical merits of our sparsifica-
tion schemes in computing HOSVD, we conducted a small
numerical experiment comparing our algorithm with a couple
of notable alternatives developed earlier by [14] and [18]
respectively. More specifically, we generated a tensor A ∈
R

d×d×d as follows:

A =
5�

i=1

(ai ⊗ bi ⊗ ci ) + Z (5)

where ai , bi , ci ∼ N (0, Id ), and Z has independent centered
Gaussian entries. To introduce heterogeneity among the
entries, we set Z(i1, i2, i3) ∼ N

�
0, 1/ log((i1 −1)d2 +(i2 −1)

d + i3 + 1)
�

for all i1, i2, i3 ∈ [d]. We considered in particular
d = 100 or 200. In each simulatin run, we applied the three
sparsification algorithms to approximately compute the top-r
left singular vectors of M1(A). We report the averaged loss,
��U�U� − UU��F, based on 20 simulation runs versus the
sparsity ratio, nnz(�A)/d3, for the three algorithms in Figure 2.
Here U and �U denote the top-r left singular vectors of the
M1(A) and its sparse approximations respectively.

It is clear from Figure 2 that our algorithms yields much
sparser approximations at the same level of accuracy as the
algorithms from [14] and [18] in this instance. It is also
noteworthy that such advantage becomes clearer as the size
of tensors increases which makes our algorithm more suitable
for large scale applications.

IV. PROOFS

We now present the proofs to our main results.

A. Proof of Theorem 1

Theorem 1 follows immediately from the concentration
bound for ��ASPA − A� below.

Lemma 1: Let A ∈ R
d1×...×dk and �ASPA be the output from

Algorithm 1 with sampling budget n. Then there exist absolute
constants C1, C2 > 0 such that, for any α ≥ 4 log(k log dmax),
the following bound holds with probability at least 1 − d−α

max:

��ASPA − A� ≤ C1α
2k4 log(dmax)

�
�A�2

Fdmax

n

+ C2α
2k5 logk+4(dmax)

(d1 . . . dk)
1/2�A�F

n
.

Proof of Lemma 1: Given A, we define the disjoint sub-
sets of [d1] × . . . × [dk]
	1 = �(i1, . . . , ik) : |A(i1, . . . , ik)| ≤ �A�F/(d1 . . . dk)

1/2�,
	2 =

�
(i1, . . . , ik) : |A(i1, . . . , ik)|

�A�F
∈

 1√

d1 . . . dk
,

1

n1/2

��
,

Fig. 2. “XY alg", “AM alg" and “NDT alg" correspond to Algorithm 2, and
the algorithms from [14] and [18] respectively.

and

	3 = �(i1, . . . , ik) : |A(i1, . . . , ik)| ≥ �A�F/n1/2�.
Note that 	1,	2,	3 are non-random subsets for given A.
Then,

��ASPA − A� ≤ ��ASPA
	1

− A	1�+��ASPA
	2

− A	2�
+��ASPA

	3
− A	3�.

By definition of �ASPA in Algorithm 1, we have ��ASPA
	3

−
A	3� = 0 so that it suffices to bound ��ASPA

	1
− A	1� and

��ASPA
	2

− A	2�.
Step 1: upper bound of ��ASPA

	1
− A	1�. In order to apply

Theorem 2, we introduce auxiliary tensors B and �B such that
B	1 = A	1 and B

	
†
1

= 0, where 	†
1 denotes the complement

of 	1. Define a tensor P ∈ [0, 1]d1×...×dk such that

P(i1, . . . , ik) =
�

n
d1...dk

, if (i1, . . . , ik) ∈ 	1

0, otherwise.

Then, random tensor �B is defined as

�B(i1, . . . , ik) =
�

B(i1,...,ik )
P(i1,...,ik ) , with prob. P(i1, . . . , ik)

0, with prob. 1 − P(i1, . . . , ik),
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where we followed the convention 0/0 = 0. Clearly, �B − B
has the same distribution as �ASPA

	1
−A	1 . To apply Theorem 2,

we observe that

ν = C3t max

�
ndmax

d1 . . . dk
, k log dmax

�
and

α∞(B, P) = max
i1,...,ik

|B(i1, . . . , ik)|
P(i1, . . . , ik)

= max
i1,...,ik

d1 . . . dk

n
|B(i1, . . . , ik)| ≤ (d1 . . . dk)

1/2

n
�A�F

and

α2,∞(B, P) = max
i1,...,ik

|B(i1, . . . , ik)|√
P(i1, . . . , ik)

= max
i1,...,ik

(d1 . . . dk)
1/2|B(i1, . . . , ik)|

n1/2 ≤ �A�F

n1/2 .

By Theorem 2, with probability at least 1 − d−t
max,

��ASPA
	1

− A	1� = ��B − B�
≤ C1tk3

�
dmax

n
�A�F + C2tk4 logk+3(dmax)

(d1 . . . dk )1/2�A�F

n
.

Step 2: upper bound of ��ASPA
	2

−A	2�. Bounding ��ASPA
	2

−A	2�
is more involved. For s = 1, 2, . . . , �log(d1 . . . dk/n)�, define

	2,s =
�
(i1, . . . , ik) : |A(i1, . . . , ik)|2 ∈

��A�2
F

n
2−s ,

�A�2
F

n
2−s+1

��
.

Clearly,

	2 =
�log(d1...dk/n)��

s=1

	2,s,

so that

��ASPA
	2

− A	2� ≤
�log(d1...dk/n)��

s=1

���ASPA
	2,s

− A	2,s

��.
We now apply Theorem 2 to bound each term on the righthand
side. We follow the same strategy as before and define
auxiliary tensors �Bs and Bs such that

�
Bs
�
	2,s

= A	2,s and�
Bs
�
	†

2,s
= 0. The probability tensor Ps is defined as

Ps(i1, . . . , ik) =
�

n A2(i1,...,ik )

�A�2
F

, if (i1, . . . , ik) ∈ 	2,s

0, otherwise.

The random tensor �Bs is defined as

�Bs(i1, . . . , ik) =
�

Bs(i1,...,ik )
Ps(i1,...,ik ) , with prob. Ps(i1, . . . , ik)

0, with prob. 1 − Ps(i1, . . . , ik).

Clearly, �ASPA
	2,s

− A	2,s has the same distribution as �Bs − Bs .
To apply Theorem 2, observe that

α2,∞(Bs , Ps) = max
(i1,...,ik )∈	2,s

�
B2

s (i1, . . . , ik)

Ps(i1, . . . , ik)

= max
(i1,...,ik )∈	2,s

�
A2(i1, . . . , ik)

P(i1, . . . , ik)
=
�

�A�2
F

n
.

Since

ν =C1t max

�
max
j∈[k] max

i1,...,i j−1,i j+1,...,ik

�
i j :(i1,...,i j )∈	2,s

P(i1, . . . , ik),

k log dmax

�
,

we obtain
√

να∞(Bs , Ps)

≤ C1t1/2k1/2 log1/2(dmax) max
(i1,...,ik )∈	2,s

|A(i1, . . . , ik)|
P(i1, . . . , ik)

+ C2t1/2
�

max
j∈[k] max

i1,...,i j−1,i j+1,...,ik

� �
i j :(i1,...,ik )∈	2,s

P(i1, . . . , ik)

�

· max
(i1,...,ik )∈	2,s

|A(i1, . . . , ik)|
P(i1, . . . , ik)

.

By definition of 	2,s , we have

max(i1,...,ik )∈	2,s P(i1, . . . , ik)

min(i1,...,ik )∈	2,s P(i1, . . . , ik)
≤ 2.

Therefore,�
max
j∈[k] max

i1,...,i j−1,i j+1,...,ik

� �
i j :(i1,...,ik )∈	2,s

P(i1, . . . , ik)

�

· max
(i1,...,ik )∈	2,s

|A(i1, . . . , ik)|
P(i1, . . . , ik)

≤ �2dmax max
(i1,...,ik )∈	2,s

|A(i1, . . . , ik)|√
P(i1, . . . , ik)

.

By the fact P(i1, . . . , ik) = n A2(i1,...,ik )

�A�2
F

and |A(i1, . . . , ik)| ≥
�A�F/(d1 . . . dk)

1/2, we get
√

να∞(Bs , Ps)

≤C1k1/2t1/2 log1/2(dmax) max
(i1,...,ik )∈	2,s

�A�2
F

n|A(i1, . . . , ik)|

+ C2t1/2d1/2
max

�
�A�2

F

n

≤ C1k1/2t1/2 log1/2(dmax)
(d1 . . . dk)

1/2�A�F

n

+ C2t1/2

�
�A�2

Fdmax

n
.

By Theorem 2, with probability at least 1 − d−t
max,

��ASPA
	2,s

−A	2,s � ≤ C1t2k3

�
�A�2

Fdmax

n

+ C2 t2k4 logk+3(dmax)
(d1 . . . dk)

1/2�A�F

n
.

By taking a uniform bound for all s =
1, 2, . . . , �log(d1 . . . dk/n)�, we conclude that with probability
at least 1 − k log(dmax)d−t

max,

��ASPA
	2

−A	2� ≤ C1t2k4 log(dmax)

�
�A�2

Fdmax

n

+ C2 t2k5 logk+4(dmax)
(d1 . . . dk)

1/2�A�F

n
.
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Final step: finalize the proof of Lemma 1. Put the above bounds
together, we end up with, for any t > 1,

��ASPA−A� ≤ C1t2k4 log(dmax)

�
�A�2

Fdmax

n

+ C2 t2k5 logk+4(dmax)
(d1 . . . dk)

1/2�A�F

n

which holds with probability at least 1−�1+k log dmax
�
d−t

max =
1 − d−t+log(k log dmax)

max .

B. Proof of Theorem 2

We begin with symmetrization [20] and obtain for any
t > 0,

P



��A − A� ≥t

�
≤ 4P



�ε ��A� ≥ 2t

�
+ 4 exp


 −t2/2

α2
2,∞(A, P) + tα∞(A, P)/3

�
where ε ∈ R

d1×...×dk is a random tensor with i.i.d.
Rademacher entries, and

α∞(A, P) = max
i j ∈[d j ], j=1,...,k

A(i1, . . . , ik)

P(i1, . . . , ik)

and

α2,∞(A, P) = max
i j ∈[d j ], j∈[k]

�
A2(i1, . . . , ik)

P(i1, . . . , ik)

�1/2

.

The � operator stands for entrywse multiplication, that is�
ε � �A�(i1, . . . , ik) = ε(i1, . . . , ik)�A(i1, . . . , ik).

By definition, the operator norm �ε ��A� is given by

�ε ��A� = sup
u j ∈R

d j ,�u j ��2 ≤1,1≤ j≤k

�
ε ��A, u1 ⊗ . . . ⊗ uk

�
.

We begin with the discretization of �2-norm balls. For each
j = 1, . . . , k, define

Bm j ,d j = �0,±1,±2−1/2, · · · ,±2−m j /2�d j �
u ∈ R

d j : �u��2 ≤ 1
�

where m j = 2
��log2 d j� + 3

�
. Define the “digitalization"

operator Ds which zeros out the entries of A whose absolute
value is not 2−s/2. Then,

Ds(A) =
�

i1,...,ik

1
�!!�A, ei1 ⊗ . . . ⊗ eik 


!! = 2−s/2�
· A(i1, . . . , ik)ei1 ⊗ . . . ⊗ eik

where we denote by ei j the canonical basis vectors in R
d j .

Clearly, for all u j ∈ Bm j ,d j ,�
u1 ⊗ . . . ⊗ uk, ε ��A� = m1+...+mk�

s=1

�
Ds
�
u1 ⊗ . . . ⊗ uk

�
, ε ��A�.

For a subset T ⊂ [d1] × . . . × [dk], the aspect ratio μT is
defined by

μT := max
�=1,...,k

max
i j : j∈[k]\� Card

��
i� : (i1, . . . , ik) ∈ T

��
.

Define the sampling locations

	 = �(i1, . . . , ik) : �(i1, . . . , ik) = 1
�

and the associated sampling operator

P	(A) =
�

i1,...,ik

1
�
(i1, . . . , ik)∈	

�
A(i1, . . . , ik)ei1 ⊗ . . . ⊗ eik .

We shall now make use of the following version of the
Chernoff bound:

Lemma 2: Let X1, . . . , Xn be independent binary random
variables such that P(X j = 1) = p j ∈ [0, 1], j = 1, . . . , n.
Then, for any t ≥ 0,

P

� n�
j=1

�
X j − p j

� ≥ 2t

"##$ n�
j=1

p j (1 − p j )

�
≤ e−t2

.

Lemma 2 is fairly standard and we include its proof in the
Appendix for completeness.

By Lemma 2, there exists an absolute constant C > 0 such
that for all α ≥ 1,

P



μ	 ≥ Cα max

%
β(P), k log dmax

&�
≤ d−α

max

where

β(P) = max
j=1,...,k

max
i1,...,i j−1,i j+1,...,ik

d j�
i j =1

P(i1, . . . , ik)

and dmax := max1≤ j≤k d j . Denote the above event by E1 with
P(E1) ≥ 1 − d−α

max. The rest of our analysis is conditioned on
event E1. Observe that�

u1⊗ . . . ⊗ uk, ε ��A�
=

m1+...+mk�
s=1

�
P	

�
Ds(u1 ⊗ . . . ⊗ uk)

�
, ε ��A�.

For u j ∈ Bm j ,d j , let Ab j = �i j : !!u j (i j )
!! = 2−b j /2

�
for

j = 1, . . . , k. Then, we write

Ds(u1 ⊗ . . . ⊗ uk)

=
�

(b1,...,bk):b1+...+bk=s

PAb1 ×...×Abk
Ds
�
u1 ⊗ . . . ⊗ uk

�
.

By definition of μ	, on event E1, there exist Ãb1 ⊂
Ab1, . . . , Ãbk ⊂ Abk such that�

Ab1 × . . . × Abk

� ∩ 	 = �Ãb1 ⊗ . . . ⊗ Ãbk

� ∩ 	

and

Card2(Ãb j ) ≤ μ	

k�
j=1

Card(Ãb j ), j = 1, 2, . . . , k.

We conclude with�
Ds(u1 ⊗ . . . ⊗ uk), ε ��A�
=

m1+...+mk�
s=1

�
b1+...+bs=s

�
PÃb1×...×Ãbk

Ds(u1 ⊗ . . . ⊗ uk),

ε ��A�.
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Given 	, we define the balanced version of digitalization
operator�Ds(u1 ⊗ . . . ⊗ uk)

=
�

(b1,...,bk):b1+...+bk=s

PÃb1×...×Ãbk
Ds
�
u1 ⊗ . . . ⊗ uk

�
where Ã j are defined as above. Then, P	Ds(u1 ⊗ . . . uk) =
P	�Ds(u1 ⊗ . . . uk). Given 	, define

B	,m
 :=
% �

0≤s≤m


�Ds(u1 ⊗ . . . uk)

+
�

m
<s≤m


Ds(u1 ⊗ . . . ⊗ uk) : u j ∈ Bm j ,d j , j = 1, . . . , k
&

for any 0 < m
 ≤ m
 ≤ 'k
j=1 m j . Conditioned on

E1, we shall focus on {	 : μ	 ≤ ν} where ν =
Cα max

�
β(P), k log dmax

�
. Denote B


ν,m

= (μ	≤ν B


	,m

.

Following an identical argument as that in [20], we get��ε ��A�� ≤ 2k max
Y∈B


ν,m


�Y, ε ��A
.

The entropy number of B

ν,m


plays an essential role in
bounding maxY∈B


ν,m

�Y, X
. Observe that B


ν,m

⊂ Bm1,d1 ×

. . . × Bdk ,mk and

Card
�
Bm j ,d j

� ≤ m j�
k=0

�
d j

2k ∧ d j

�
22k∧d j

≤
m j�

k=0

exp


(2k ∧ d j )

�
log 2 + 1 + (log d j/2k)+

��
≤ exp



d j

∞�
�=1

2−�
�

log 2 + 1 + log(2�)
��

≤ exp
�
21d j/4

�
,

which implies that

log Card


B


ν,m


�
≤ 21

4

�
d1 + . . . + dk

�
.

See [20] for more details. More precise characterizations of
Card(B


ν,m

) can also be derived. For any 0 ≤ q ≤ s ≤ m
,

define

Dν,s,q = �Ds(Y) : Y ∈ B

ν,m


, �Ds(Y)�2
�2

≤ 2q−s�.
Lemma 3: Let ν ≥ 1. For all 0 ≤ q ≤ s ≤ m
, the following

bound holds

log Card(Dν,s,q)≤qsk log 2 + 2k2sk
√

ν2q L
�√

ν2q , dmaxsk/2�
where L(x, y) = max

�
1, log(ey/x)

�
.

We write

�ε ��A� ≤ 2k max
Y∈B


ν,m


�
Y, ε ��A�

=2k max
Y∈B


ν,m


� �
0≤s≤m


�
Ds
�
Y
�
, ε ��A�+�S
(Y), ε��A��

where S
(Y) = 's>m

Ds(Y). The actual value of m
 is to

be determined later.

Step 1: upper bound of
!!�Ds(Y), ε ��A�!!. Recall the definition

of Dν,s,q and that

2−s ≤ �Ds(Y)�2
�2

≤ 1,

we can write

Ds(Y) ∈
s�

q=1

�
Dν,s,q \ Dν,s,q−1

�
.

Then

max
Y∈B


ν,m


�
Ds(Y), ε ��A�= max

1≤q≤s
max

Ys,q∈Dν,s,q\Dν,s,q−1

�
Ys,q, ε ��A�.

Observe that�
Ys,q, ε ��A�
=

�
i j ∈[d j ], j=1,...,k

�(i1, . . . , ik)

P(i1 . . . ik)
ε(i1, . . . , ik)A(i1, . . . , ik)

Ys,q(i1, . . . , ik)

where � is a binary random tensor and ε is a Rademacher
random tensor. Both of them have i.i.d. entries. By definition of
Ys,q and Dν,s,q , we have maxi1,...,ik |Ys,q(i1, . . . , ik)| ≤ 2−s/2.
Moreover,

Var
��

Ys,q, ε ��A��
=

�
i j ∈[d j ], j=1,...,k

A2(i1, . . . , ik)

P(i1, . . . , ik)
Y 2

s,q(i1, . . . , ik).

Since �Ys,q�2
F ≤ 2q−s , we obtain

Var
��

Ys,q, ε ��A�� ≤ max
i j ∈[d j ], j∈[k]

A2(i1, . . . , ik)

P(i1, . . . , ik)
�Ys,q�2

F

≤ 2q−s max
i j ∈[d j ], j∈[k]

A2(i1, . . . , ik)

P(i1, . . . , ik)
.

Recall the definition of α∞(A, P) and α2,∞(A, P). By Bern-
stein inequality for sum of bounded random variables, there
exist absolute constants C0, C1, C2 > 0 such that

P


!!�Ys,q, ε ��A�!! ≥ t
�

≤ exp

�
− C0t2

C12q−sα2
2,∞(A, P) + C22−s/2tα∞(A, P)

�
for any t > 0. By the union bound and Lemma 3, we get

P



max

Ys,q∈Dν,s,q

!!�Ys,q, ε ��A�!! ≥ t
�

≤ Card
�
Dν,s,q

�
· exp

�
− C0t2

C12q−sα2
2,∞(A, P) + C22−s/2tα∞(A, P)

�

≤ exp

�
21
� k�

j=1

d j
�
/4 − C0t2

C12q−sα2
2,∞(A, P)

�

+ exp

�
qsk log 2 + 2k2sk

√
ν2q L
�√

ν2q , dmaxsk/2�
− C02s/2t2

C2tα∞(A, P)

�
.

Recall that
0 ≤ q ≤ s ≤ m
 � k log dmax
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and
L
�√

ν2q , dmaxsk/2� � k

2
log dmax.

For large enough constants C3, C4 > 0, by choosing t > 0
such that

t ≥ C32(q−s)/2

 k�

j=1

d j

�1/2
α2,∞(A, P)

+ C4k3 logk+1 dmax
√

ν2q−sα∞(A, P),

we get for any 0 ≤ q ≤ s ≤ m
,

P



max

Ys,q∈Dν,s,q

!!�Ys,q, ε ��A�!! ≥ t
�

≤exp

�
− C0t2

C12q−sα2
2,∞(A, P)

�
+ exp

�
− C02s/2t

C2α∞(A, P)

�
.

By making the above bound uniform over all pairs 0 ≤ q ≤
s ≤ m
, we obtain

P



max

Y∈B

ν,m


!!! �
0≤s≤m


�
Ds(Y), ε ��A�!!! ≥ (m
 + 1)t

�
≤
�

m
 + 1

2

�
exp

�
− C0t2

C1α
2
2,∞(A, P)

�
+
�

m
 + 1

2

�
exp

�
− C0t

C2α∞(A, P)

�
.

Step 2: upper bound of maxY∈B

ν,m


!!�S
(Y), ε � �A�!!. For
notation simplicity, we write S
 in short for S
(Y). We apply
Bernstein inequality to�

S
, ε ��A�
=
�

i j ∈[d j ], j=1,...,k

�(i1,. . . ,ik)

P(i1,. . . ,ik)
ε(i1,. . . ,ik)A(i1,. . . ,ik)S
(i1,. . . ,ik).

Clearly,
!!S
(i1, . . . , ik)

!! ≤ 2−m
/2. Meanwhile,

Var
��

S
, ε ��A�� = �
i j ∈[d j ], j=1,...,k

A2(i1, . . . , ik)

P(i1, . . . , ik)
S2

 (i1, . . . , ik).

Following an identical approach as previously, we show that

Var
��

S
, ε ��A�� ≤ α2
2,∞(A, P).

By Bernstein inequality and the union bound

P



max

Y∈B

ν,m


!!�S
(Y), ε ��A�!! ≥ t
�

≤ Card
�
B


ν,m


�
exp

�
− C0t2

C1α2
2,∞(A, P)+C22−m
/2tα∞(A, P)

�

≤ exp

�
21

k�
j=1

d j/4 − C0t2

C1α
2
2,∞(A, P)

�

+ exp

�
21

k�
j=1

d j/4 − C02m
/2t

C2α∞(A, P)

�
for some absolute constants C0, C1, C2 > 0. For large enough
constants C3, C4 > 0, by choosing t such that

t ≥C3


 k�
j=1

d j

�1/2
α2,∞(A, P) + C4


 k�
j=1

d j

�
2−m
/2α∞(A, P),

we obtain

P



max

Y∈B

ν,m


!!�S
(Y),ε��A�!!≥ t
�

≤ exp

�
− C0t2

C1α
2
2,∞(A, P)

�
+ exp

�
− C02m
/2t

C2α∞(A, P)

�
.

Step 3: finalize the proof of Theorem 2. Combining above
bounds, we conclude that if for large enough constants
C3, C4, C5 > 0 such that

t ≥C3


 k�
j=1

d j

�1/2
α2,∞(A, P)+C4k3logk+1(dmax)

√
να∞(A,P)

+ C5


 k�
j=1

d j

�
2−m
/2α∞(A, P).

Thus

P



�ε ��A� ≥ (m
 + 2)t

�
≤
��

m
 + 1

2

�
+ 1

�
exp

�
− C0t2

C1α
2
2(A, P)

�
+
��

m
 + 1

2

�
+ 1

�
exp

�
− C0t

C2α∞(A, P)

�
.

Recall that ν = C1α max
�
β(P), k log dmax

�
and m
 ≤'k

j=1 2


�log2 d j� + 3

�
. By choosing m
 large enough such

that 2−m
/2

'k

j=1 d j

�
≤ √

ν, we conclude that for any γ > 0
such that

t ≥C3

�
 k�
j=1

d j

�1/2 + γ k log dmax

�
α2,∞(A, P)

+ C4γ k3 logk+2(dmax)
√

να∞(A, P).

It follows immediately, by adjusting the constant C3, that

P



��A − A� ≥ t

�
≤ 2d−γ

max.

C. Proof of Theorem 3

It suffices to prove the upper bound of ��M j − M j � where
M j = M j (A) and �M j = M j (�ASPA). Without loss of
generality, let j = 1. Recall the notation d−1 = d2 . . . dk .
By denoting Ei1(i2...ik ) ∈ R

d1×d−1 the canonical basis matrices
of R

d1×d−1 that is Ei1(i2...ik ) has exactly value 1 on the
(i1, i2 . . . ik) position and all 0’s elsewhere. Then,�M j − M j =

�
i j ∈[d j ],1≤ j≤k
 A(i1, . . . , ik)�(i1, . . . , ik)

P(i1, . . . , ik)
− A(i1, . . . , ik)

�
Ei1(i2...ik )

where P
�
�(i1, . . . , ik) = 1

� = P(i1, . . . , ik). We shall
apply the matrix Bernstein inequality to bound the sum of
random matrices for �M j − M j . Denote the locations of small
entries by

	1 :=�(i1, . . . , ik) : �A(i1, . . . , ik)�≤�A�F/(d1 . . . dk)
1/2�

⊂ [d1] × . . . × [dk]
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moderate entries by

	2 := �(i1, . . . , ik) : �A(i1, . . . , ik)�/�A�F ∈�
1/(d1 . . . dk)

1/2, 1/n1/2�� ⊂ [d1] × . . . × [dk]
and large entries by

	3 := �(i1, . . . , ik) : �A(i1, . . . , ik)� ≥ �A�F/n1/2�
⊂ [d1] × . . . × [dk].

Recall that P(i1, . . . , ik) = 1 for (i1, . . . , ik) ∈ 	3. Then, for
any (i1, . . . , ik) ∈ 	1 ∪ 	2, we have���
 A(i1, . . . , ik)�(i1, . . . , ik)

P(i1, . . . , ik)
− A(i1, . . . , ik)

�
Ei1(i2...ik )

���
≤ max

i j ∈[d j ],1≤ j≤k

!!!! A(i1, . . . , ik)

P(i1, . . . , ik)

!!!!.
Moreover,��� �

i j ∈[d j ],1≤ j≤k

E


 A(i1, . . . , ik)�(i1, . . . , ik)

P(i1, . . . , ik)
− A(i1, . . . , ik)

�2

· Ei1(i2...ik )E�
i1(i2 ...ik )

���
≤ max

1≤i1≤d1

�
i j ∈[d j ],2≤ j≤k

A2(i1, . . . , ik)
�
1 − P(i1, . . . , ik)

�
P(i1, . . . , ik)

≤ max
1≤i1≤d1

�
i j ∈[d j ], j≥2,(i1,...,ik )∈	1∪	2

A2(i1, . . . , ik)

P(i1, . . . , ik)
.

Similarly,��� �
i j ∈[d j ],1≤ j≤k

E


 A(i1, . . . , ik)�(i1, . . . , ik)

P(i1, . . . , ik)
− A(i1, . . . , ik)

�2
· E�

i1(i2...ik )Ei1(i2...ik )

���
≤ max

i j ∈[d j ],2≤ j≤k

d1�
i1=1

A2(i1, . . . , ik)
�
1 − P(i1, . . . , ik)

�
P(i1, . . . , ik)

≤ max
i j ∈[d j ],2≤ j≤k

�
i1∈[d1],(i1,...,ik )∈	1∪	2

A2(i1, . . . , ik)

P(i1, . . . , ik)
.

Observe that if (i1, . . . , ik) ∈ 	1, then!!! A(i1, . . . , ik)

P(i1, . . . , ik)

!!!= (d1 . . . dk)

n
|A(i1, . . . , ik)|≤ (d1 . . . dk)1/2

n
�A�F

and

A2(i1, . . . , ik)

P(i1, . . . , ik)
= (d1 . . . dk)A2(i1, . . . , ik)

n
≤ �A�2

F

n
.

Similarly, if (i1, . . . , ik) ∈ 	2, then!!! A(i1, . . . , ik)

P(i1, . . . , ik)

!!! = �A�2
F

n|A(i1, . . . , ik)| ≤ (d1 . . . dk)
1/2

n
�A�F

and
A2(i1, . . . , ik)

P(i1, . . . , ik)
= �A�2

F

n
.

By matrix Bernstein inequality [32], for any t ≥ 0, with
probability at least 1 − e−t that

���M j − M j
�� ≤ 2�A�F

��
d2d3 . . . dk(t + k log dmax)

n

+ (d1 . . . dk)
1/2(t + k log dmax)

n

�
.

Since �M j = M j +
��M j −M j

�
, the claim follows directly from

Davis-Kahan Thoerem as in (3).

D. Proof of Theorem 4

Theorem 4 is an immediate consequence of the following
concentration bound.

Lemma 4: Let U
(r j )

j be the r j leading left singular vectors

of M j (A), and �U(r j )

j be the output from Algorithm 2. There
exist absolute constants C1, C2 > 0 such that if

n ≥ C1(d1 . . . dk)
1/2(t + k log dmax),

then for any t ≥ 0, the following bound holds with probability
at least 1 − e−t :���U(r j )

j

��U(r j )

j

�� − U
(r j )

j

�
U

(r j )

j

����
≤C2

�A�F

ḡr j (M j M�
j )

�
σmax(M j )

�
d j (t + k log dmax)

n

+ �A�F
(d1 . . . dk)

1/2(t + k log dmax)

n

�
.

Proof of Lemma 4: With out loss of generality,
we assume j = 1 without loss of generality. In this
case, �M(1)

j = M j (�ASPA
1 ), �M(2)

j = M j (�ASPA
2 ) ∈ R

d1×(d2...dk).
Observe that

�M(1)
j

��M(2)
j

�� = M j M�
j + ��M(1)

j − M j
�
M�

j

+ M j
��M(2)

j − M j
�� + ��M(1)

j − M j
���M(2)

j − M j
��

.

Step 1: upper bound of
����M(1)

j −M j
���M(2)

j −M j
����. Denote

by Z1 = �M(1)
j − M j . By Theorem 3, there exists an event E1

with P(E1) ≥ 1 − e−t such that on event E1,

�Z1� ≤ C�A�F

��
d2d3 . . . dk(t + k log dmax)

n

+ (d1 . . . dk)
1/2(t + k log dmax)

n

�
.

Denote by �Z1�2,∞ the maximal column �2 norm.,
i.e., �Z1�2,∞ = max j∈[d2...dk]

��Z1e j
��

�2
. Clearly, there exists
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an absolute constant C1 > 0 such that

�Z1�2,∞

≤C1

�
max

i j ∈[d j ],2≤ j≤k

"##$ �
i1∈[d1]:(i1,...,ik )∈	1∪	2

A2(i1, . . . , ik)

P(i1, . . . , ik)

·�t + k log dmax

+ max
(i1,...,ik )∈	1∪	2

!!!! A(i1, . . . , ik)

P(i1, . . . , ik)

!!!!(t + k log dmax)

�

≤C1�A�F

��
d1(t + k log dmax)

n

+ (d1 . . . dk)
1/2(t + k log dmax)

n

�
,

which holds with probability at least 1−e−t . Denote the above
event by E3. We shall proceed conditional on E1∩E2∩E3. Write

Z1
��M(2)

j − M j
�� =

�
i j ∈[d j ],1≤ j≤k


 A(i1, . . . , ik)�(i1, . . . , ik)

P(i1, . . . , ik)

−A(i1, . . . , ik)
�

Z1E�
i1(i2...ik )

which is again a sum of random matrices. Clear, for any
(i1, . . . , ik) ∈ 	1 ∪ 	2,���
 A(i1, . . . , ik)�(i1, . . . , ik)

P(i1, . . . , ik)
− A(i1, . . . , ik)

�
Z1E�

i1(i2 ...ik )

���
≤ max

(i1,...,ik )∈	1∪	2

!!! A(i1, . . . , ik)

P(i1, . . . , ik)

!!!�Z1�2,∞

≤ (d1 . . . dk)
1/2

n
�A�F�Z1�2,∞.

Moreover,���� �
i j ∈[d j ],1≤ j≤k

E


 A(i1, . . . , ik)�(i1, . . . , ik)

P(i1, . . . , ik)
− A(i1, . . . , ik)

�2

· Z1E�
i1(i2...ik )Ei1(i2...ik )Z�

1

����
≤ max

i j ∈[d j ],2≤ j≤k
�Z1�2

�
i1∈[d1]:(i1,...,ik )∈	1∪	2

A2(i1, . . . , ik)

P(i1, . . . , ik)

≤ d1�A�2
F

n
�Z1�2.

Similarly,���� �
i j ∈[d j ],1≤ j≤k

E


 A(i1, . . . , ik)�(i1, . . . , ik)

P(i1, . . . , ik)
− A(i1, . . . , ik)

�2

Ei1(i2...ik )Z�
1 Z1E�

i1(i2 ...ik )

����

≤ max
(i1,...,ik )∈	1∪	2

A2(i1, . . . , ik)

P(i1, . . . , ik)
�Z1�2

F

≤ d1�A�2
F

n
�Z1�2.

By matrix Bernstein inequality, the following bound holds with
probability at least 1 − e−t ,����M(1)

j − M j
���M(2)

j − M j
����

≤C�A�F

��
d1(t + k log dmax)

n
�Z1�

+ (d1 . . . dk)
1/2(t + k log dmax)

n
�Z1�2,∞

�
.

Denote the above event by E4. On event E1 ∩ E2 ∩ E3 ∩ E4, if

n ≥ C1(d1d2 . . . dk)
1/2(t + k log dmax),

then����M(1)
j − M j

���M(2)
j − M j

����
≤ C2�A�2

F

�
(d1 . . . dk)

1/2(t + k log dmax)

n

+ d1/2
1 (d1 . . . dk)

1/2(t + k log dmax)
3/2

n3/2

�

≤ C2�A�2
F
(d1 . . . dk)

1/2(t + k log dmax)

n
.

Step 2: upper bound of
��M j
��M(2)

j − M j
����. We write

M j
��M(2)

j − M j
�� =

�
i j ∈[d j ],1≤ j≤k

�
A(i1, . . . , ik)�(i1, . . . , ik)

P(i1, . . . , ik)

− A(i1, . . . , ik)

�
M j E�

i1(i2...ik ).

The proof follows identically as above. Indeed, for any
(i1, . . . , ik) ∈ 	1 ∪ 	2,����� A(i1, . . . , ik)�(i1, . . . , ik)

P(i1, . . . , ik)
− A(i1, . . . , ik)

�

· M j E�
i1(i2...ik )

����
≤ max

(i1,...,ik )∈	1∪	2

!!! A(i1, . . . , ik)

P(i1, . . . , ik)

!!!
· max

i j ∈[d j ],2≤ j≤k

� �
i1:(i1,...,ik )∈	1∪	2

A2(i1, . . . , ik)

≤ (d1 . . . dk)
1/2

n


d1

n

�1/2�A�2
F.
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Moreover,���� �
i j ∈[d j ],1≤ j≤k

E

�
A(i1, . . . , ik)�(i1, . . . , ik)

P(i1, . . . , ik)
− A(i1, . . . , ik)

�2

· M j E�
i1(i2...ik )Ei1(i2...ik )M�

j

����
≤ max

i j ∈[d j ],2≤ j≤k

�
i1:(i1,...,ik )∈	1∪	2

A2(i1, . . . , ik)

P(i1, . . . , ik)
�M j �2

≤d1

n
�A�2

Fσ 2
max(M j ).

Similarly,���� �
i j ∈[d j ],1≤ j≤k

E

�
A(i1, . . . , ik)�(i1, . . . , ik)

P(i1, . . . , ik)
− A(i1, . . . , ik)

�2

· Ei1(i2...ik )M
�
j M j E�

i1(i2...ik )

����
≤
�

max
i j ∈[d j ],2≤ j≤k

�
i1:(i1,...,ik )∈	1∪	2

A2(i1, . . . , ik)

�

·
�

max
i1∈[d1]

�
i j ∈[d j ],2≤ j≤k:(i1,...,ik )∈	1∪	2

A2(i1, . . . , ik)

P(i1, . . . , ik)

�

≤d1d2 . . . dk

n2 �A�4
F.

By matrix Bernstein inequality [32], if n ≥
C1(d1 . . . dk)

1/2(t + k log dmax), then with probability at
least 1 − e−t such that��M j

��M(2)
j − M j

����
≤ C2�A�F

�
σmax(M j )

�
d1(t + k log dmax)

n

+ �A�F
(d1 . . . dk)

1/2(t + k log dmax)

n

�
.

Denote this event by E5. Clearly, an identical bound holds
for
����M(1)

j − M j
�
M�

j

�� with the same probability. Denote this
event by E6.
Final step: finalize the proof of Theorem 4. On event E1 ∩E2 ∩
E3 ∩E4 ∩E5 ∩E6, if n ≥ C1(d1 . . . dk)

1/2(t + k log dmax), there
exists an absolute constant C2 > 0 such that���M(1)

j

��M(2)
j

��−M j M�
j

��
≤C2�A�F

�
σmax(M j )

�
d1(t + k log dmax)

n

+ �A�F
(d1 . . . dk)

1/2(t + k log dmax)

n

�
,

which concludes the proof by adjusting the constant C2 and
applying Davis-Kahan Theorem.

APPENDIX

A. Proof of Lemma 2

Clearly, for any t and λ > 0,

P


 n�
j=1

(X j − p j ) ≥ t
�

=P



exp
%
λ

n�
j=1

(X j − p j )
&

≥ exp
�
λt
��

≤e−λt
E exp
%
λ

n�
j=1

(X j − p j )
&

≤e−λt
n�

j=1

Eeλ(X j−p j )

≤e−λt
n�

j=1

�
p j e

λ(1−p j ) + (1 − p j )e
−λp j
�
.

Note that ex ≤ 1 + x + x2 for any x ∈ [−1, 1]. Then,

p j e
λ(1−p j ) +(1− p j )e

−λp j ≤ 1+λ2 p j (1− p j ) ≤ eλ2 p j (1−p j ).

Therefore, we obtain

P


 n�
j=1

(X j − p j ) ≥ t
�

≤e−λt
n�

j=1

eλ2 p j (1−p j )

= exp
%

− λt + λ2
n�

j=1

p j (1 − p j )
&
.

By choosing λ = t/2
'n

j=1 p j (1 − p j ), we end up with

P


 n�
j=1

(X j − p j ) ≥ t
�

≤ exp
%

− t2/4
n�

j=1

p j (1 − p j )
&
.

The proof is closed after choosing t = 2s
)'n

j=1 p j (1 − p j )

for s ≥ 0.

B. Proof of Lemma 3

The proof follows from the same argument as that for
Lemma 12 of [20]. More specifically, denote the aspect ratio
for a block A1 × . . . Ak ⊂ [d1] × . . . × [dk],

h(A1× . . . × Ak)

= min
%
ν : |A j |2 ≤ ν

k�
j=1

|A j |, j = 1, 2, . . . , k
&
.

We bound the entropy of a single block. Let

D
(block)
ν,� =

%
sgn(u1(a1)) . . . sgn(uk(ak))1

�
(a1, . . . , ak)

∈ A1 × . . . × Ak
� :

h(A1 × . . . Ak) ≤ ν,

k�
j=1

|A j | = �
&
.
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By definition, we obtain

max
�|A1|2, . . . , |Ak |2

� ≤ ν|A1||A2| . . . |Ak| ≤ ν�.

By dividing D
(block)
ν,� into subsets according to (�1, . . . , �k) =

(|A1|, . . . , |Ak |), we find

!!D(block)
ν,�

!! ≤ �
�1...�k=�,max j � j≤

√
ν�

2�1+...+�k

�
d1

�1

�
. . .

�
dk

�k

�
.

By the Stirling formula, for j = 1, 2, . . . , k,

�
d j

� j

�
≤ d

� j
j

(� j !) ≤

d j

� j

�� j
e� j

1�
2π� j

,

then

log
��

2π� j 2� j

�
d j

� j

�*
≤� j L(� j , 2dmax)≤

√
ν�L(

√
ν�, 2dmax)

where L(x, y) := max{1, log(ey/x)}. Let � = +m
j=1 p

v j
j with

distinct prime factors p j . Since (v j + 1)v j /(2 p
v j/2
j ) is upper

bounded by 2.66 for p j = 2, by 1.16 for p j = 3 and by 1 for
p j ≥ 5, we get

!!�(�1, . . . , �k) :�1 . . . �k = �
�!! = m�

j=1

�
v j + 1

k − 1

�

≤
m�

j=1

�
v j + 1

2

�k/2

≤(2.66 × 1.16)k/2(
√

�)k/2

≤
k�

j=1

�
2
�

2π� j
�k/2

, ∀
k�

j=1

� j = �.

Therefore,

!!D(block)
ν,�

!!
≤

exp



k
√

ν�L(
√

ν�, 2dmax)
�

+k
j=1

�
2π� j

k�
j=1

�
2
�

2π� j
�k/2

,

∀(�1 . . . �k) = �

≤2k2/2(2π)k(k−2)/4�(k−2)/4 exp



k
√

ν�L(
√

ν�, 2dmax)
�

≤2k2/2(2π)k(k−2)/4 exp



2k
√

ν�L(
√

ν�, 2dmax)
�
.

Due to the constraint b1 + b2 + . . . + bk = s in defining
B


ν,m

, for any Y ∈ B


ν,m

, Ds(Y) is composed of at most

i
 := �s+k−1
k−1

�
blocks. Since the sum of the sizes of the blocks

is bounded by 2q , we obtain

!!Dν,s,q
!! ≤ �

�1+...+�i
 ≤2q

i
�
i=1

!!D(block)
ν,�i

!!
≤

�
�1+...+�i
 ≤2q

(2π)i
k(k−2)/42i
k2/2

· exp



2k
i
�

i=1

�
ν�i L(
�

ν�i , 2dmax)
�

≤ 2i
k2/2(2q)i
 (2π)i
k(k−2)/4

· max
�1+...+�i
 ≤2q

exp


2k

i
�
i=1

�
ν�i L(
�

ν�i , 2dmax)
�
.

As shown in [20],
'i


i=1
√

�i L(
√

ν�i , 2dmax) ≤√
i
2q
�
L(

√
ν2q , 2dmax) + log(

√
i
)
�
, we obtain

log
!!Dν,s,q

!! ≤ i
 log(2q) + i
k(k − 2)/2 + i
k2/2

+2k
√

i
ν2q L
�√

ν2q , 2dmax
√

i

�
.

Since i
 = �s+k−1
k−1

� ≤ sk , it follows that

log
!!Dν,s,q

!! ≤ qsk log 2 + 2k2sk
√

ν2q L
�√

ν2q , dmaxsk/2�.
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