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Effective Tensor Sketching via Sparsification

Dong Xia and Ming Yuan

Abstract—In this article, we investigate effective sketching
schemes via sparsification for high dimensional multilinear arrays
or tensors. More specifically, we propose a novel tensor sparsifi-
cation algorithm that retains a subset of the entries of a tensor
in a judicious way, and prove that it can attain a given level of
approximation accuracy in terms of tensor spectral norm with a
much smaller sample complexity when compared with existing
approaches. In particular, we show that for a kth order dx - - -xd
cubic tensor of stable rank rg, the sample size requirement for
achievinlg a relative error ¢ is, up to a logarithmic factor, of the
order rS/ 2dk/ 2 /e when ¢ is relatively large, and rsd/(-:2 and
essentially optimal when ¢ is sufficiently small. It is especially
noteworthy that the sample size requirement for achieving a high
accuracy is of an order independent of k. To further demonstrate
the utility of our techniques, we also study how higher order
singular value decomposition (HOSVD) of large tensors can be
efficiently approximated via sparsification.

Index Terms— Sketching, singular value decompostion (SVD),
sparsification, tensor.

I. INTRODUCTION

ASSIVE datasets are being generated everyday across

diverse fields and can often be formatted into matrices
or higher order tensors. For example, in biomedical research,
huge data matrices and tensors arise in gene expression
analysis [1], protein-to-protein interaction [2], and MRI image
analysis [3]. They also occur frequently in statistical physics
[4], [5], video processing [6], [7], and analyzing large graphs
and social networks [8]-[10], to name a few. As the size
of these data matrices or tensors grows, it becomes costly
and sometimes prohibitively expensive to store, communicate
or manipulate them. This naturally brings about the task of
“sketching”: approximate the original data matrices or tensors
with a more manageable amount of sketches.

In the case of data matrices, numerous sketching approaches
have been proposed in recent years. See [11] for a recent
review. A popular idea behind many of these approaches is
sparsification — creating a sparse matrix by zeroing out some
entries of the original data matrix. Sparse sketching of a large
data matrix not only reduces space complexity but also allows
for efficient computations. See, e.g., [12]-[17], among others.
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The main purpose of this article is to investigate to what
extent sparsification can be used to effectively sketch higher
order tensors. There have been some recent attempts along
this direction. In particular, our work is inspired by [18] who
showed that for a kth order cubic tensor A € R¥**4 there is
a randomized sparsification scheme that yields another tensor
A of same dimension but with

N N k/2 A
nnz(A) = 0, (d#;()
&

such that

), as d — oo, (1)

IA —All < ¢|A].

Here, nnz(-) stands for the number of nonzero entries of a
tensor, sr(A) = ||A||%/||A||2 is the so-called stable rank [16],
[18] of a tensor A, | - || is the usual tensor spectral norm, and
O(-) means O(-), up to a certain polynomial of logarithmic
factor. Note that the stable rank of a tensor can be viewed
as a more stable alternative to the normal concept of ranks,
as the name suggests. In particular, if a tensor is orthogonally
decomposable, then its stable rank is always upper bounded
by its rank and could be much smaller. In general, it can
always be upper bounded by the multiplication of its smaller
Tucker ranks. Similar results have also been obtained by [19]
in the case when k = 3. On the one hand, the sample size
requirement given by (1) is satisfying because it is essentially
optimal in the matrix case, that is k = 2. See, e.g., [16]. On the
other hand, the exponential dependence on k suggests a large
amount of entries still need to be retained to yield a good
approximation. Our goal is to investigate if this aspect could
be improved.

In particular, we propose a novel tensor sparsification algo-
rithm that randomly retain entries from A in a judicious way
to yield a tensor ASPA guch that

JASPA — Al < g|All,

and

g2

) k2 1/2
nnZ(XSPA) = ép (max [ d-sr(A) d sgr(A) ]) .

2)

Here, to fix ideas, we focus on the case of cubic tensors
although our results deal with more general rectangular tensors
as well. This sample size requirement significantly improves
those earlier ones. Especially if a high accuracy approximation
is sought, that is ¢ < sr(A) - d=*/2+1 then our sparsi-
fication algorithm can achieve relative approximation error
¢ in terms of tensor spectral norm by retaining as few as
Op (d-sr(A)-&72) entries of A. In addition, for approximation
with lower precision, namely ¢ > sr(A)-d %/, the number
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of nonzero entries we keep is also substantially smaller than
earlier proposals in that it depends on ¢! linearly rather than
quadratically, and on the stable rank sr(A) only through its
square root.

Similar to other sparsification algorithms, we treat different
entries according to their magnitude: large entries are always
kept, and moderate ones are sampled proportion to their square
values. The key difference between our approach and the
existing ones is in the treatment of small entries. Instead of
zeroing them out as, for example, [18], we sample them in
a uniform fashion, which proves to be essential for obtaining
good approximation with tighter number of nonzero entries.
This modification is motivated by the concentration behavior
of randomly sampled tensors recently observed by [20]-[22].

To demonstrate the effectiveness of our tensor sketching
schemes, we show how they can be used for efficient approx-
imation of the leading singular spaces from higher order
singular value decomposition (HOSVD). Let U; € RI*" be
the top r left singular vectors of the flattening of A along
its jth mode. We show that it is possible to construct an
approximation U j obeying

I0;0] —U;U] || <e,

~ rd rdk/?
O | max Rl

carefully chosen entries. As before, we note that for high
accuracy approximations, the sample complexity is essentially
independent of the order of the tensor. Although our primary
focus is on higher order tensors, as a byproduct, our results
indicate that our sparsification scheme improves the sample
complexity of earlier approaches for approximating the singu-
lar vectors of highly rectangular matrix.

The rest of the paper is organized as follows. We first
discuss the new tensor sparsification algorithm in Section II.
In Section III we consider the application to HOSVD. All
proofs are relegated to Section IV.

if we retain

II. TENSOR SPARSIFICATION

Sketches of a tensor A € R91*~*4 are its approximations,
and we consider measuring their quality in terms of relative
spectral norm. Recall that the spectral norm of a tensor B €
R91>-*dk ig defined as

IBIl = sup B,u®...Q0u).

“jERdja”“jHQSl
We seek an approximation A of A such that
A —All < ellAll,

for a prespecified accuracy ¢ € (0,1). The error measure
in terms of tensor spectral norm is common and especially
ensures the approximation is suitable for downstream compu-
tation of low rank approximations.

The idea of sparsification is to systematically zero out
entries of A and scale the remaining entries to yield a
good approximation to it. We focus here on sparsification
strategies that are carried out in an entry-by-entry fashion.
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Our approach can be characterized as keeping large entries,
sampling moderate entries according to their magnitudes, and
sampling uniformly small entries. The key is determining how
to classify entries into these categories so that the number of
nonzero entries retained are as small as possible. Details are
presented in Algorithm 1.

In particular, we keep all entries whose absolute value is
greater than n~'/2||A||r, sample uniformly all entries whose
absolute value is smaller than (d; - - - dx)~/2||A||f, and sample
proportional to their squared values entries whose absolute
value is in-between. Here n is a sampling parameter. Note that
E[nnz(ASPA)] < 2n. And it is not hard to see, by Chernoff
bound, that nnz(KSPA) = Op(n). In other words, n represents
essentially the targeted sampling budget.

We note that our sparsification algorithm is similar to the
one proposed earlier by [18]. But the two schemes also
have several key differences. The main difference lies in the
treatment of “small” entries. Reference [18] suggests to zero
them out, while ours sample them in a uniform fashion.
This is largely motivated by the concentration behavior of
randomly sampled tensors observed earlier. In particular, it can
be shown that a uniformly sampled tensor concentrates much
sharply around its mean if its entries are sufficiently small [20].
Therefore, instead of discarding small entries, we could derive
a good estimate of them by sampling uniformly. Another subtle
difference between the two algorithm is in the criteria for
“small” entries. Our criterion for “small” entries is that their
absolute values are smaller than (d; - - - dx)~'/?||A||r, whereas
[18] treats only cubic tenors, thatis dj = dy = --- =dy =: d,
and small entries of their scheme are those smaller than
n=12d=%/* | A|plogt/? d.

We now present the performance bounds for our sparsifica-
tion algorithm.

Theorem 1: Let A € R9%--xdk and ASPA pe the output from
Algorithm 1 with sampling budget n. There exists an absolute
constant C > 0 such that if for any o > 4log(k log dmax) and
e € (0,1, if
g dmax - ST(A)

g2

2
,a2 &5 (dy---dy - Sr(A))l/ lookt4 4

g max [ »
&

n > C max Ia4k log? dinax

then, with probability at least 1 — d_%

max?

|ASPA — Al < g|All,

where dyax = max{dy, ..., d}.

In the light of Theorem 1, we can achieve relative error ¢
in terms of tensor spectral norm with a sparse tensor such that
S o . dimax-st(A 1/2
O (6 2dmax - sr(A)), if & < D) 2

nnz(ASPA) =
0(8_1(d1 coody - Sr(A))l/z), otherwise

This significant improves earlier work by [19] and [18]. It is
worth noting that for small ¢, or high accuracy approximation,
the number of nonzero entries of ASPA is of the order e 2 dmax-
sr(A). This, in particular, is known to be optimal in the matrix
(k = 2) case [16]. On the other hand, for lower accuracy
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Algorithm 1 Tensor Sparsification

Input: A € R4k sampling budget n € [1,d; - - - di].
2: Output: ASPA ¢ R ... xdy

for iy € [di],ip € [d>], ..., i € [d] do
4 if JAGL, ..., i0)] = [|Allg/n'/?, then

. . . . Large
A(ll9"'5lk):A(l19"'9lk)' Et.g
6: end if ntries
. ) . 1 1
if [AG1, . i1/ IAlE € (Gt 7). then
. . 2. .
A » 41?,8'1%, with probability P(iy, ..., i) := 1A~ 0uit) &h'ﬁ"lk Moderate
Iy.eo.ylf) = v F .
0, with probability 1 — P(iy, ..., ). Entries
8: end if
if [AG1, ..., < IAllg/(di...di)"/%, then
10:
A1 eesik) . . . N n Small
e e with probability P(iy, ..., i) := Td i !
@1y k) . .. . . Entries
0, with probability 1 — P(iy, ..., i)
end if
12: end for
Output: ASPA = A,
A dy X...xdy
Sparsity Sparsity Ratio A e R by
| == k=2’ ’ = -~ . . . . . . .
k=3 F A, ..o ik) =A@, - i) AT, . i) /P>, .. 0g).
k=5 ¥ .
- 7 ,// i Then, there exist absolute constants Cy, Cp, C3 > 0 such that
_ iy § - for any a > 0, with probability at least 1 — 3d_ %,
’é o i 2 £ 1/2
5 g = IA— Al <C ((Zd,-) 24 aklogdmax)agjoo(A, P)
~ = /"— ]:1
= ,."I + CZOCk3 logk+2(dmax)«/;aoo (A,P),
- T T T T T L‘N.’ L ;/ T T T T Where
0.0 0.5 1.0 1.5 20 0.0 0.5 1.0 1.5 20
« « v = C3a max {B(P), k10g dimax },
Fig. 1. Sparsity or sparsity ratio of the proposed sparse approximation to a dj
cubic tensor versus its accuracy. ,B(P) — max max Z P(i1, ..., i)
j=1,....k il:~-~,i_j—1’i_j+1:~-~’ikl._zl
approximation, the dependence of nnz(ASP2) on &~ is linear | A/ (i) il
rather than quadratic as existing sparsification schemes. do(A,P) =  max PG S
To better appreciate the bounds given in Theorem 1, it is ijeldlj=lok Pi1, ... i)
instructive to consider cubic tensors, that is d| = --- = and
dr = d, and the case when sr(A) = O(l) and ¢ = d7¢
for some o > 0. Theorem 1 indicates that nnz(ASPA) = A, . i)\
5 ¢ ymin{k,max {14+2a,k/2+a}} - a2,00(A, P) = max - -
o ’ ’ ). Note that a kth order cubic ten- ’ ijeldil,j=1,...k \ P(i1,...,10k)

sor has d* entries so that the sparsity ratio of ASPA g
d* 'nnZ(KSPA) — é(dmin{o,max{1+2a7k,a7k/2}})' In particular,
Figure 1 plots the exponent of such sparisity bounds versus
the exponent of accuracy o for k = 2,3,4 and 5.

The main technical tool for proving Theorem 1 is the
following concentration inequality for random tensors which
might be of independent interest.

Theorem 2: Let A € R4k and P € [0, 1]97+ > be
two fixed tensors, A € {0, 1}41%*% be a random tensor such
that EA(iy,...,ix) = P(iy,...,i). Define a random tensor

Here we follow the convention that 0/0 = 0.

III. EFFECTIVE COMPUTATION OF HOSVD
VIA SPARSIFICATION

To further illustrate the merits of the sketching schemes
introduced earlier, we now consider a specific application to
HOSVD, a popular technique for analyzing high dimensional
tensor data. See, e.g., [23], [24] and references therein.
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For a k-th order tensor A € R/ let M; = M;(A) €
R%i*4-j be its j-th matricization where 1 < j < k, that is,

k k
M (i > G-n( T de)+1)
s=1,5#] s'=s+1,5'#]
=A(y,...,i), Vijeldjl,1<j<k.

Here d_; = (d; - - -dx)/d;. Denote by Uﬁ.rj)

the top r; left singular vectors of M;. Clearly, U;rj ) is com-
putable via the standard matrix singular value decomposition
on M; whose computation complexity is O(djdid> . . . dk), see
[25]. Efficient computation of singular value decomposition
for large matrices is an actively researched topic in numerical
algebra and computational science. See [14], [15], [26]-[29],
among numerous others.

A general idea is to first obtain an approximation of M;,
say M € R%*4-j that is amenable for fast computatlon of

the collection of

singular value decomposition; and then approximate U i) by
the top left singular vectors of M In particular, spars1ﬁcat10n
is a powerful tool for fast computatlon of singular vectors. See,
e.g., [11], [14].

Denote by A; = li\/lj’\— M; and by U;rj)
left singular vectors of M;. By Davis-Kahan Theorem [30],
we get

the leading r;

) N T 201A |
— "t < 2
J ( / ) = gr;(M;)

where oy (-) denotes the k-th singular value, and
gr_,‘ (Mj) = 0y (Mj) — Orj+1 (Mj)a

is the r;-th eigengap. In particular, we can consider applying
this strategy by taking M; = M ; (ASPA). The following result
characterizes its performance

Theorem 3: Let U and U;rj ) be the top r; left singular
vectors of M ;(A) and M (ASPA) respectively. Then there
exists an absolute constant C > 0 such that for any 7 > 0,

07 (@) -0 (07)7

jol @)’ 3)

—c Ml (\/ 1 di(t + k10g dmax)
T e M) nd,
L ddn'Pa +k10gdmax))
n b

with probability at least 1 — e~
By Theorem 3, in the case when [[M;|r/gr;(M;) =
O(ﬁ), we can ensure
) g T ) (pNT
”Uj( j) Ujj(Ujj)Hfg

by taking

idy...d idy ...
nEC'maxIrj ! 3 k,(rj !
dje

. logdmax. (4)

dk>1/2]

A critical fact that is neglected by this approach is that we
are interested in approximating the left singular vectors of a
potentially very “fat” matrix because d_; is generally much
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larger than d;. As such, this type of approach turns out to be
suboptimal for our purpose.

Alternatively, we adopt a new spectral method similar
in spirit to a recent proposal from [22]. More specifically,
we shall approximate U g by the leading eigenvectors of an
approximation of M;M ; instead. In particular, we can run
Algorithm 1 twice to obtain two independent sparsifications
of A, denoted by ASPA and ASPA, and then proceed to
approximate M;M by M ASPHYM;(ASPA)T. Details are
presented in Algonthm 2.

Algorithm 2 Computing HOSVD via Tensor Sparsification

Input: A € RY>*dk sampling budget n > 1.
2: Output: the r; leading left singular vectors U(r‘j ) as an
estimate of HOSVD of M (A).
Run Algorithm 1 on A with sampling budget n. Denote the
output by K?PA.
4: Run Algorithm 1 on A with sampling budget . Denote the
output by KgPA.
Compute U(,rj ) as the r ; leading left singular vectors of
Mj (KSPA)MJ_ (K%PA)T.

i)

6: Output U i !

The following theorem prov1des the performance bound for
approximate the singular space U

Theorem 4: Denote by U

vectors of M (A). Let U( ) be the output from Algorithm 2.
There exists an absolute constant C > 0 such that for any
o>1ande € (0,1),if

. (kzd 10g dinax [A1202,, (M)

the r; leading left singular

&2 g; (M;M))
+k(ch...dk>1/2logdm A% )
& g’rj(MjM;!—) ,
then
”U(r/)( (’/)) U;’j)(U;r.i))TH <e,

with probability at least 1 — dmg‘x
From Theorem 4, if ||A||F/gr,(M MT) = O(rj) and

||A||}2:amaX(M )/g, (M; MT) = 0(rj), then the required sam-
ple complexity for spars1ﬁcatlon is

5 kzrjdj logdmax ~ krj(dy .. .di)"?1og dmax
Op + .

g2 €

It is worth noting that, even though our main focus is on higher
order tensors, in the case of matrices (k = 2) this sample com-
plexity compares favorable with other sparsification techniques
that have been developed for computing singular vectors. For
example, consider computing the top r left singular vectors of
a dy x dy (di < dp) matrix. The approach from [14] needs to
sample

5 (rdldg max; j |A(i,j)|2)
P\ INE
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entries; the technique of [31] requires

~ (rdy
%(7)
P\ 2
entries. These are to be compared with Algorithm 2 which
needs J (i)
~ (T r
OP( Ly 182) )

sampled entries, which could be much smaller than the previ-
ous two when d; < da.

To further illustrate the practical merits of our sparsifica-
tion schemes in computing HOSVD, we conducted a small
numerical experiment comparing our algorithm with a couple
of notable alternatives developed earlier by [14] and [18]
respectively. More specifically, we generated a tensor A €
R4xd%d a5 follows:

5
A= @ @b +Z 5)
i=1
where a;, b;, ¢; ~ N(0,1;), and Z has independent centered
Gaussian entries. To introduce heterogeneity among the
entries, we set Z(i1, i, i3) ~ N(0, 1/1log((i1 — Dd>+ (i — 1)
d+iz+ 1)) for all iy, iz, i3 € [d]. We considered in particular
d = 100 or 200. In each simulatin run, we applied the three
sparsification algorithms to approximately compute the top-r
left singular vectors of M(A). We report the averaged loss,
|IUUT — UUT ||, based on 20 simulation runs versus the
sparsity ratio, nnz(X) /d3, for the three algorithms in Figure 2.
Here U and U denote the top-r left singular vectors of the
M (A) and its sparse approximations respectively.

It is clear from Figure 2 that our algorithms yields much
sparser approximations at the same level of accuracy as the
algorithms from [14] and [18] in this instance. It is also
noteworthy that such advantage becomes clearer as the size
of tensors increases which makes our algorithm more suitable
for large scale applications.

IV. PROOFS

We now present the proofs to our main results.

A. Proof of Theorem 1

Theorem 1 follows immediately from the concentration
bound for |[ASPA — A|| below.

Lemma 1: Let A € R9*-xdk and ASPA be the output from
Algorithm 1 with sampling budget . Then there exist absolute
constants Cy, Co > 0 such that, for any o > 4log(k 1og dmax),

the following bound holds with probability at least 1 — d%:
~ Allzd
RSP — Al = Crok Tog(dipae)y| T
n

di...d)'" %A

Proof of Lemma 1: Given A, we define the disjoint sub-

sets of [di] x ... x [d]
Qi ={G1,....ix) : 1AGL, ..., 00| < AR/ ... dk) "%},
. o AGL - i) 1 1
Qy = : —_
: I(”’ 0 =g < (G )

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 2, FEBRUARY 2021

HOSVD via Sparsification

1.4
——AM alg
-o--XY alg
1.2F NDT alg |1
= 11 )
=
S
| 0.8+ 1
.
=)
2 0.6f 1
0.4+ -
)
0.2 : : :
0.01 0.02 0.03 0.04
Sparsity ratio
(a) d =100
HOSVD via Sparsmcatlon
——AM alg
L -o-- XY alg
14r s &I:‘*M NDT alg
1.3} \ \/\j .
\
=10l h i
= \
SERN °, |
| ¥
= T LN |
< 09+¢ e 1
Y
0.8+ \& i
0.7+ ey i
0.6 : . . ;
1 2 3 4 5
Sparsity ratio %1073
(b) d =200
Fig. 2. “XY alg", “AM alg" and “NDT alg" correspond to Algorithm 2, and

the algorithms from [14] and [18] respectively.

and
Q3 = {1, ... ix) A1, ..., i) = IAllgp/n"/?).

Note that Q, Qp, Q3 are non-random subsets for given A.
Then,

IASPA — Al < AF — Ag, [+IAZA — Ag, |
HIAZA — Ag; .
By definition of ASPA i Algorithm 1, we have ||ASPA —
Ag,ll = O so that it suffices to bound ||ASPA Agq, |l and

IAZA — Ag, |-

Step 1: upper bound of ||ASPA Agq,|l. In order to apply
Theorem 2, we introduce auxﬂlary tensors B and B such that
Bg, =Aq, and B o = 0, where Q denotes the complement

of Q] Define a tensor P < [0, 1]le Xdi guch that

P(il,“.,ik): m if(il,...,ik)egl
0, otherwise.

Then, random tensor B is defined as

E(i], iy = | P with prob. P(iy, ..., i)
0, with prob. 1 — P(iy, ..., i),

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 15,2021 at 19:18:20 UTC from IEEE Xplore. Restrictions apply.
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where we followed the convention 0/0 = 0. Clearly, B-B
has the same distribution as A%}:A —Ag,. To apply Theorem 2,
we observe that

Ndmax
v = C3t ma ,klogd
3 X[d1 i gmax]
and
B(y,...,i
tou (B, P) = | (1.1, ,l.k)|
ityeic P(i1,...,0k)
di...dv . - dy ...d)"?
= max |B(i1,...,i)| < —————I|AlF
[N n n
and
B(y,...,i
2,00(B,P) = max ~oub Il
ityensik N/ P(i1y ..., 0k)
= @@ PIBGL i) AR
i nl/2 = 2
By Theorem 2, with probability at least 1 — d [,
IASA — Ag,| =B - B
/2 A
< 1tk I gy ot 1oght () ) TIATE,

n n

Step 2: upper bound 0f||KSS£A —Aq,||. Bounding ||K§)ZA—AQ2 I
is more involved. For s = 1,2, ..., [log(d; ...dx/n)], define

All3 Al2
Q5= {(n, AL i e [wzﬂ,wr”l)}.
n n

Clearly,
[og(dy...dx/n)]
Q) = Qo

s=1

so that
[og(dy...dx/n)]

2

s=1

IA

1A% — Aayl [AZ): - Ac, [

We now apply Theorem 2 to bound each term on the righthand
side. We follow the same strategy as before and define
auxiliary tensors By and By such that (By) a,, = Ag,, and

(Bs)gt = 0. The probability tensor Py is defined as
2,8

nA2(iL,.Li) e g .
Bl i (i, ..., i) € Q
Py(it,....i) =1 Al Grr-eosit) € Qs

0, otherwise.
The random tensor ﬁs is defined as
~ . M, with prob. Ps(iy, ..., i)
By(it, ..., i) = | B .

0, with prob. 1 — Ps(iy, ..., ).

Clearly, /A\g;A — AQZJ has the same distribution as ]~3s — B;.

s

To apply Theorem 2, observe that

B2(iy,...,i
aZ,OO(BS’ Py) = max M
(i1semsin) € | Psit, ..., 10k)

A2y, .0 (AR
=  max - = = .
(i1, ir)eQ P(ll, ...,lk) n

1361
Since
v =C1t max{ max max z PGy, ..., i),
JELRY itseestjmtljtsensik .
1j:(i1,..,0j)€Q0
klogdmax],
we obtain
\/;aoo(Bs, Py)
A(ir,...,10
< O log () max VAU ]
(i1,nit) € P(i1, ..., k)

+ Cztl/z(max max

JEKY it sl jm 15041,k

ZP(il,...,ik))

ij:(il,...,ik)EQQ’s
[AGT, ..., i)l
. max - —.
(i1,it) € P(i1, ..., k)
By definition of €, ¢, we have
max,,..ie.,, PU1,...,ik) .
min(il,...,ik)eﬂz’x P(ll 5o e lk) -

Therefore,

max o omax
JELKTi1,eisijm 150 15eenslk

>

ij:(il ..... iK)EQ s

P(il,...,ik))

A1, ..., k)]
. ma B 7
(ilauwik)EQZ,s P(llﬂ ceey lk)
[AG1, ..., i)l
</2d max = ——tt R
=T e P, -, 00
2 . .
By the fact P(iy, ..., i) = W and |A(i1, . .
F
IAllE/(d) ... dQ)"?, we get

\/;aoo(Bs, Py)

<C1k?1210g! /% (d max
=+l & ( maX) (il,...,ik)EQQ’s n|A(11, ..

i) =

2
A&
i)l

2
IAllE

+ Cot' a2

(di...d)" *||Alg
n

=< Clkl/ztl/2 logl/z(dmax)

[ A% dmax
C,pl/?2 [ ZIETmax
+ (2 "

By Theorem 2, with probability at least 1 — d !

max>

2
A —Aq,, Il < C1ik %
(di-..d)' | Allr
" .
By taking a wuniform bound for all s =
1,2,...,[log(d; ...dy/n)], we conclude that with probability
at least 1 — k log(dmax)dy}

ax’

A IAlIEd
IASA—Ag, | < Ci2%k* 1og(dmax)\/$

(di...d)" ?|AlF

+ C 2k 1ng+3 (dmax)

+ Cy 12K 10 (dinax)
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Final step: finalize the proof of Lemma 1. Put the above bounds
together, we end up with, for any ¢ > 1,

- Al2d,
IASPA=All < €177k Tog(dmax)y I N max
n

(dr...d) *I|Ar
n

+ C ol Ing+4 (dmax)

which holds with probability at least 1 — (14 10g dmax ) dpyiy =

—t+log(k logd,
+
g( g max)' D

B. Proof of Theorem 2

We begin with symmetrization [20] and obtain for any
t >0,

P(IA - Al 21) = 4P(le 0 AJ = 2¢)

—12)2
+4exp< 5 )
az,oo(A9 P) + taOO(A9 P)/3
where & € R4*-xde ig a random tensor with ii.d.

Rademacher entries, and

A(ir,...,i0
0o(A,P) = max M
ijeld;lj=Ll...k P(i1,...,1ik)
and
A2y, .0\ Y2
t,00(A,P) = max (M) .
ijeldjl,jelkl \ P(i1, ..., i)

The ® operator stands for entrywse multiplication, that is
(6 @A), - six) = &1, -, iDAGL, - -, ig).
By definition, the operator norm ||e ® Al is given by

||e®K||: sup (e@K,u1®...®uk>.

weRY ujlle, <1,1<j<k
We begin with the discretization of {>-norm balls. For each
j=1,...,k, define
B,.a, = {0, £1, 2712 :|:2*m.i/2}d-f
(N {ueRY :uf, < 1}

where mj = 2([log,d;] + 3). Define the “digitalization"
operator Dy which zeros out the entries of A whose absolute
value is not 275/2, Then,

DA = > 1f|[(Ae; ®...@¢)| =272}
i ik

Al . ik)e ... e

where we denote by e;; the canonical basis vectors in R,
Clearly, for all u; € By, 4;,

miy+...+my R
Z (Ds(u1®...®uk),e®A>.
s=1

For a subset 7 C [di] x ...

defined by

(u1®...®uk,e®K)=

X [di], the aspect ratio w7 is

Ur = fgllﬁik ij:IjIéE[l]){(]\g Card({ig 2@y, ..., 0p) € T})

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 2, FEBRUARY 2021

Define the sampling locations
Q={G,....ix) : A1,

and the associated sampling operator

Pa@A) =>" 1(G1.....i) €Q)A(i1, ... in)e;, ® ... D €.
)

..,ik):1}

We shall now make use of the following version of the
Chernoff bound:

Lemma 2: Let X1, ..., X, be independent binary random
variables such that P(X; = 1) = p; € [0,1],j = 1,...,n.
Then, for any 7 > 0,

n

P(Z(Xj —pj) =2

j=1

Lemma 2 is fairly standard and we include its proof in the
Appendix for completeness.

By Lemma 2, there exists an absolute constant C > 0 such
that for all & > 1,

IP’(,UQ > Co max {,[)’(P),klogdmax}) <d, %

where
dj
S(P)= ma max P(iy, ..., i)
J=lonk A1tk iZ—:
J—
and diax = maxi< ;< d;. Denote the above event by £; with
P(&1) = 1 —d% . The rest of our analysis is conditioned on

event &£1. Observe that

(u1®...®uk,e®X)
mi+...+my N
= Z (PQ(DS(U1®...®Uk)),€OA).

s=1
For uj € By;.q;, let Abj = {ij : |uj(ij)| = Z_bf/z} for

j=1,...,k. Then, we write

Ds(ul ®®uk)

- >

(b1,...,bg):b1+...+br=s

PA;,I X..x Ay, D; (ul ®...0 llk).

By definition of uq, on event &, there exist Ap, C
Apys ooy Ap, C Ap, such that

(Apy X ... x Ap)NQ = (A, ®... 0 Ap) N Q

and

k
Card*(Ay)) < po [ | Card(Ap), j=1,2,....k
j=1
We conclude with

(Ds(ul ®...®uk),€OK)

mi+...+myp

=2 2

s=1 bi+...4+bs=s
XO) A).

(Pv‘ib, ... x Ap, Di(u; ®...Quy),
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Given Q, we define the balanced version of digitalization
operator

l~)s(u1 Q... u)

-3

(b1,....,bg):b1+... b =s

PAI;I x...x Ay, D, (ul ®...8 uk)

whge f{j are defined as above. Then, PoD;(u; ® ... u;) =
PaDs(u; ® ... ug). Given Q, define

Ba,m, = { Z ﬁs(ul ®...u)
0<s<my

+ Z Ds(u1®...®uk):ujE‘ij,dj,jzl,...,k}

My <8 <m*

for any 0 < m, < m* < 21;21 m . Conditioned on
&1, we shall focus on {Q uo < v} where v =
Co max {,B(P), klog dmax}. Denote B*

*
’ i : v, UﬂQSV Q,my*
Following an identical argument as that in [20], we get

||€®X|| 52" max (Y,EQK).
YeBy

VM

The entropy number of B, —plays an essential role in
bounding maxyew; , (Y, X). Observe that B}, C By, a4, ¥
. X By m, and

d; kng.
Card(%mj,dj) < kl}) (zk /\de)22 Adj

<[[exw ((2" nd;)(log2 +1+ (10gdj/2k)+))
k=0

o0
< exp (dj Zfo(logZ +1+ 10g(2€))>
=1
< exp (21dj 4),

which implies that

21
logCard(%:jm*) < I(dl + ..+ dk).

See [20] for more details. More precise characterizations of
Card(%*gjm*) can also be derived. For any 0 < g < 5 < m,,
define

Disg = {DS(Y) ;Y e BF

VM

,IDs(Y)[17, <297},

Lemma 3: Letv > 1. Forall 0 < g <s < m,, the following
bound holds

log Card(®, 5,4) < qsk log2 + 2k2skVV24L(v V24, dmaxsk/z)

where L(x, y) = max {1, log(ey/x)}.
We write

le ®A| < ZkYmax (Y,e ©A)

v, Mk

ok Z (Dy(Y), & © A)+(S.(Y), EGK))

max (
YE%;”"* 0<s<my

where S,(Y) = me*
be determined later.

D;(Y). The actual value of m, is to

1363

Step 1: upper bound of ‘(Ds (Y), e @K)‘ Recall the definition
of Dy 5 4 and that

27 < IDs(YV)IZ, < 1,

we can write

N
Di(Y) € | (Dvs.q \ Duosg—1).
q:l
Then

max (DS (Y),e ® K): max max (Ys,q, XO) X)
YeBy 15‘]53Ys,q Egu,s,q\gv,s,q—l

V1%

Observe that

(Ysjq,e‘@&
Ay, ..oy ik) . o .
= Z ﬁg(ll,...,lk)A(ll,...,lk)
ijeld;l,j=1,...k Lotk
Ys,q(i1»~-~,ik)

where A is a binary random tensor and & is a Rademacher
random tensor. Both of them have i.i.d. entries. By definition of

Y, , and D, ; 4, we have max;,__; |Ys q(i1, ..., ix)| <2752,
Moreover,
Var((YS,q, e K))
A%(iy, ...,
S S UCEEELO PR
. - P(iy,...,ix) ™1
le[dj],jZl,...,k
Since ||Yy,q I3 <2975, we obtain
~ A%(ir, ..., ik) )
Var((Yy,q,€ @A) < max ————————[ Y4l
((Yeq ) ijeld;).jelk) PGy, ... i) @ 1F
A%y, ..., i
<297 max M
ijeldjljelkl P(iy, ..., ik)

Recall the definition of ax (A, P) and a2 (A, P). By Bern-
stein inequality for sum of bounded random variables, there
exist absolute constants Cp, C1, C» > 0 such that

S(RIEVEY)

“e ( Cot2 )
wl -
=TT 022 (A P) + G2 e (AL P)

for any ¢ > 0. By the union bound and Lemma 3, we get

P(,
. ( Col‘2 )
. X —
P\7 20l (A P) + 02 Pra (A, P)

< exp (21(Zk:d»)/4— Cot® )
- ! C129-%a3 (A, P)

max
s,qegv,s,q

(Yogoe ©A) 2 1) = Card(D1.1)

j=1
+exp (qs" log 2 + 2k2s* Vv2 L(V129, dipaxs*/?)
C025/2t2

Recall that
0<gq=<s=<myS klogdmnax
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and
k
L(\/ V24, dmaxsk/z) < 3 log dimax.-

For large enough constants C3, C4 > 0, by choosing t > 0
such that

k
172
r> c32<‘H>/2(§ dj) 2,00 (A, P)
j=1

+ C4k3 10g ! dinax /127 S ao (A, P),

we get for any 0 < g < s < m,,

]P’( max }(Ys’q,e'@K)]zt)

Y0059

Cot? Co2*/%t
<exp| — 3 +exp\— ——F=5 |-
C1297%a3 o (A, P) Cro0(A, P)

By making the above bound uniform over all pairs 0 < g <
s < my, we obtain
p(_ max | D,(Y),e © A)| = D)
YESB*X Z ( 5(Y),e O ) > (my + 1)

Vamx (<5 <m,

< exp| — —5———=
2 C103 (A, P)

n my+1 ox _ Cot
2 P\7 Caa,?y )

Step 2: upper bound of maxyesp; . |(S*(Y),e ©) K)| For
notation simplicity, we write S, in short for S, (Y). We apply
Bernstein inequality to

(Sv. & @K)
A(,. .. i) . . . . . .
- P(.i.;g(ll""9lk)A(ll""’lk)S*(ll,""lk)'
iield) =1,k otk
Clearly, |S,(i1, ..., ix)| <27/ Meanwhile,
o Az(il)"'7ik) . .

Var (S, e 0A) = > oMy,

R i o (S Y 73

l_/E[d_/],]—l,...,k

Following an identical approach as previously, we show that
Var ((S*, &0 K)) < a%,oo(A, P).
By Bernstein inequality and the union bound

IP(Yma*x (5.(Y),e © &) = 1)

v, mx

< Card(EB* )exp(— C0t2 )
- o C103 oo (A, P)+C22 7 210100 (A, P)

k 2
Cot
< exp (21Zdj/4— 27)
o ClaZ,oo(A’ P)

k
Co2m+/2¢
20> a4 0L
e ( 2 Gam)

for some absolute constants Co, C1, C» > 0. For large enough
constants C3, C4 > 0, by choosing ¢ such that

k k
1>Cs (Z d,-)1 Pt (A P) + C4 (Z d j)z—m*/zaoo (A.P).
j=I j=1
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we obtain

]P)(Yénga*x |(S*(Y),€®K)| zt) < exp (_

VM

Cot2
C1a5 o (A, P))
C()2m*/2t
e ( ~ Crun(A, P))'

Step 3: finalize the proof of Theorem 2. Combining above
bounds, we conclude that if for large enough constants
C3, C4, C5 > 0 such that

k
1/2
12 C3( D" d)) c2,00(A, PYHCok10g ™ (s Wil A, P)
j=I

k
+Cs ( > dj)2*M*/2aoo(A, P).
j=1
Thus
P(lle @ All > (n. +2)1)

<(( Tk _1)+1)6Xp(—C7 [t)
2 Cl(lz(A, P)
2 Czaoo(A,P)

Recall that v = Cja max {,B(P), klog dmax} and m, <
21;21 2([]0g2 dijl+ 3). By choosing m, large enough such

that 27"+/2 ( Zl;:l dj) < /v, we conclude that for any y > 0
such that

k 12
1265((20d;) " + rklogdma ) o2.co (A, P)
j=1

+ Cay k¥ 10g 4 (dmax) vV otoo (A, P).
It follows immediately, by adjusting the constant C3, that

P(IA - Al = 1) < 2diks.

C. Proof of Theorem 3

It suffices to prove the upper bound of ||l\7[ i — M; || where
M; = M;(A) and IVIJ- = Mj(KSPA). Without loss of
generality, let j = 1. Recall the notation d_; = d>...dy.
By denoting E;, (;,..;;) € R41>%d-1 the canonical basis matrices
of RI1%d-1 that is Ei (i,..i;) has exactly value 1 on the
(i1, 12 ...ix) position and all O’s elsewhere. Then,

M, -M;= >
ijeldjl1<j<k
Y (AT 75 ViY (AT 73 .
Al i0) B
( P(l] o lk) (ll lk) i1 (i...0x)

where P(A(i1,...,ix) = 1) = P(i,...,ix). We shall
apply the matrix Bernstein inequality to bound the sum of
random matrices for M ;7 —M;. Denote the locations of small
entries by

Q= {1, ..., i) : 1AGL, .., i) < IAllR/(d . .. di)'?}
Cldi] x ... x [dx]
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moderate entries by

Q) = {(i],...,ik):
(1/(d1..

and large entries by

Q3 = {(i],...,ik):

[AGL - i)/ Al €

)2 1)} Cldi] x . ox [di]

L)l > [Allg/n'/?}
C [di] x ... x [dg].

IAGL, ...

Recall that P(iy,...,i;) =1 for (i1, ..., ix) € Q3. Then, for

any (if,...,ix) € Q1 UQy, we have
Ay, .., )AL, ... ik)
— A, i )E o
H( P(il, ...,ik) (1 k) i1 (i...0x)
Ay, ...,1
- max (1.1, l.k) .
ijeldil,1<j<k| P(iy, ..., k)
Moreover,
Ay, ..., i )AL, .. 0 . 0\ 2
> g 4l P(.”‘) 4l ; ) —AG1, - i)
eld ek iy, 0k
-
-Ej (i2~--ik)Ei1 (iz...ix)
A%Gy, .. i) (1 = PGy, ...,
< max Z ( 1 Pk?( ( 1 k))
I<iy=<d, eld s <k Gy osix)
< max z Az(il""aik)
1SS e eigeuny T )
Similarly,
A(ir, ..., i) AL, ..., . Y
> 5(40 P(.”‘) 4l ; W i)
ield 1)<k I1,...,1k
T
’ Eil(ig...ik)Eil (i2...ix)
d . . . .
- max ZlAz(ll,...,lk)(l—P(l],...,lk))
T ijeldjl2s )<k P(ir, ..., ik)
< max Z Az(il""’ik)
ije[dj],2§j§ki1€[dl]j(il ..... )€U, Py, ..., i)
Observe that if (i1, ..., i) € Qi, then
Ay, ..., i) . . (dy )12
= A, ..., < A
P(i],...,ik)‘ DA, il = IAllF
and
Ao i) (dr e d) AP i) (A
P(i1,...,ik) n -~ n
Similarly, if (i, ..., i) € Q2, then
Al TAlE_@d'?
P(iy, ..., i) nlAG, ..., i) ~
and
A2, i) IAIR
P(i,...,ik) n o
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By matrix Bernstein inequality [32], for any # > 0, with
probability at least 1 — e~ that

_ dods ..
IM; —M; || < 2||A||F(\/ 20

L@ )Y+ klOgdmax))
n

di (t + klog dmax)
n

Since 1VI]- =M, + (IVI] —Mj), the claim follows directly from
Davis-Kahan Thoerem as in (3).

D. Proof of Theorem 4

Theorem 4 is an immediate consequence of the following
concentration boun(%.
ri . .
Lemma 4: Let U’ be the r; leading left singular vectors

of M;(A), and ﬁ;rj ) be the output from Algorithm 2. There
exist absolute constants Cy, Co» > 0 such that if

n>Cid ... .d)" >t + klogdmax),

then for any ¢ > 0, the following bound holds with probability
at least 1 —e™":

”U(’/ ("(r/)) U;rj)(U(»r‘j))T ”

J

Allp d;(t + klogd,
<oy Al (amax(M,-) \/ i g dmn)
grj(Mij) n

+ IAllF

(dr .. odk)l/z(t + klogdmax))
. .

Proof of Lemma 4: With out loss of generality,
we assume j = 1 without loss of generality. In this
case, M{V = M;A$P), MP = M;ASP) € RA* (o),
Observe that

MOMP) =MM] + (MY —M;)M]

= T, G = T
+M;(MP - M;) "+ (M - M) (M - M)
Step 1: upper bound of || (M(l) Mj) (IVIE.Z) - Mj)T || Denote

by Z; = M( ) — M;. By Theorem 3, there exists an event &
with P(&;) z 1 — e” such that on event &,

dods .. .dy(t + klogd
71 = clate (1 F Kloe dna)
n
N (dy...d)" % (t + klog dmax)
. .
Denote by |[Zill2,00 the maximal column ¢ norm.,

ie., [|Z1]l2,00 = MaXe[d,..dy] HZlej Hfz' Clearly, there exists

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 15,2021 at 19:18:20 UTC from IEEE Xplore. Restrictions apply.



1366

an absolute constant C; > 0 such that

1Z1 112,00

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 2, FEBRUARY 2021

<Cy max Z
ijeldjl,2<j<k

ireldil:(ir,....0ik) €21 UQ2

-/t + klogdmax

A(i, ..., k)
+ max —
(i1 ysit) €U | P(i1, .. ., 0f)
di(t + klogd,
<C ||A||F(\/ 1t + nOg max)

N di...d)"V*( —i—klogdmax))
n b

which holds with probability at least 1 —e~". Denote the above

A2y, ..
P(, .

(t + klog dmax))

A%@y, ... i)
< omax AW,
(i1,...,0k)EQIUQY P(l] ey lk)
di A3
F 2
. < 1Zy]”.
5 ik)
5 1k)

By matrix Bernstein inequality, the following bound holds with
probability at least 1 — ™’

)

[ — ) (MP —m;) "

di(t + klogd
sannF(/ o oedn) g

di...d)"* @+ klogd
+( 1 ) (n 2 max) ||Z1||2,oo)~

Denote the above event by &;. On event £ NE N E3 N &y, if

n > Cy(dids...dQ)""*(t + klog dmax),

event by £3. We shall proceed conditional on £5NENE3. Write

Z] (Miz) - MJ)T =

yik)

ijeld;1<j<k

—A(, ..., ik))ZlEI(iz...ik)

A(ir, ..., i) A, ...
Z ( P(iy,.

k)

- M;)(MP — M)

(dl cee dk)l/z(t + k log dmax)

n

< C2||A||12:(

which is again a sum of random matrices. Clear, for any

(i1, ...,0x) € Q1 UQy,
H(A(llaalk)A(llaalk)
Py, ..., ik)

Alin, - ix)
= omax Sz o o
(i1 yesit) €U | P (i1, ..., 0)
dr...d)"?
< TIIAIIFIID 112,00-

Moreover,

' Z E(A(il,';(’ijlj)A(il’""ik)—A(il,

i
ijeld;],1<)j<k > 1K)

T T
’ ZlEil(ig...ik)Eil (init) Ly

A% (i
2 5
=, a2l > P
Ehthans ks ireld]:@iy,...,ig ) €Q1UQ I
dilAIZ
< —7E 1z~
n
Similarly,

i
ijeld;11=j <k > 1K)

Ei\(y..inZ] Z1E]

i1 (i..ig)

—A(il,...,ik))ZlE

i1(i...ix)

Ay, ..., i) AL, .., .
3 E( (i1 p(i:]j) (i1 lk)—A(ll,..

2
d!*(dy ...d)" 2t + klog dmax )2
+ n3/2

2 (dl cee dk)l/z(t + klog dmax)
F .
n

= G| A

Step 2: upper bound of HMJ (1(715.2) - Mj)T || We write

—~ T Ay, ..., i) Ay, ..., 0k)
MM -M)) = > (

l,E[d/],lfjfk P(l19"'7lk)
. 2 T
.,zk)) — A1, ..., ik))MjEil(izmik).
The proof follows identically as above. Indeed, for any
(1. osik) € Q1 UQy,
Ay, i) AL, - - - i) . .
i —A(i1, ...,
» 1k) H( P(iy, ..., i) i &
-5 0k)
-
"ME; G..in)
A1, ..., k)
< max —
(i1, ir)eQ1UQ) P(l] s ey lk)
3\ . 2(; ;
~i0) .. S R

i1:(i1,...,0k ) EQIUQY

di...d)"?* jdiy1/2
g G L

n
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Moreover,
AGy, ..., i)AG, ..., 0 :
]E, (ll, ).lk) (ll.’ )lk) _ A(il, .«n,ik)
P(iy ir)
ijeldj) 1<) <k
-
"ME; i, inEirG
A%y, ..
< om0y AW
lje[dj]’ZSJSkil:(il ik ) €Q1U P(ll’.“’ )
d
f;”A“Fo-max(M )
Similarly,
Al i) A G, °
Z E( i1, P('lk) (ll') i) —A(il,...,ik))
el e <k i1y ..., 1k
Ei .. lk)M M; En(lz k)

< max
ijeld;l,2<j<k

2

i1:(iy 5.0k ) €Q1UQ)

>

€ld;],.2<j<k:(i,...,

A1, ..., ik))

A%y, ..., ik))

. max B .
(ile[dl]i_ PGy, ..., i)
J

d]dz

ir)eQ1UQ)

||A||F

By matrix Bernstein inequality [32], if n
Cildy...d)"*t + klogdmax), then with probability
least 1 — e™! such that

M, (M — M) |

di(t +klogd
= C2||A||F(O'max(Mj)\/ 1( ) 2 dmax)

21V

+ IAllF

(dr .. -dk)l/z(t + klog dmax))
" .

Denote this event by &. Clearly, an identical bound holds
for H (1\715.‘) -M j)MjT H with the same probability. Denote this
event by &.

Final step: finalize the proof of Theorem 4. On event £NE N
E3NELNESNEs, if n > Ci(dy ...dy)"/*(t +klogdmax), there
exists an absolute constant C» > 0 such that

N SONT
MO M) MM |
di(t 4+ klogd
scznAnF(amax(M,-)\/ 07 T )

dy...d)"*(t + klogdmax))
n b

+ IAllF

which concludes the proof by adjusting the constant C> and
applying Davis-Kahan Theorem. O
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APPENDIX

A. Proof of Lemma 2

Clearly, for any 1 and 2 > 0,
P(é(xj —p)=1)
=P(exp |/ Z(X = pi)} = exp{u1})
< Eexp] Z}(X,- )]
p

n
<e*/1t H Ee/l(x_ifpj)

J=1
n

<e "I (pje’ "7 + (1 = pj)e 7).
j=1

Note that ¢* < 1 + x + x?2 for any x € [—1, 1]. Then,

p;i P (1= pje i < 1+2%p;(1—pj) < oA pil=p))

Therefore, we obtain

n n
P(Z(Xj - pj) = t) <e M Heizl’f“*l’f)
Jj=1 j=1

n
:exp{ —lt—i—lzij(l — pj)}.
j=1
By choosing 1 =1/2 21}21 pj(1 — p;), we end up with

n

P(Z(Xj - pj) = t) < exp{ —t2/4zn:19j(1 - Pj)}'

=1 j=1

The proof is closed after choosing ¢ = 25\/2’}=1 pi(l—pj)
for s > 0.

B. Proof of Lemma 3

The proof follows from the same argument as that for
Lemma 12 of [20]. More specifically, denote the aspect ratio

for a block A1 x ... Ax C [d1] x ... x [dk],
h(ApX ... x Ag)
—mln{ <vH|A|J—12...,k}.

We bound the entropy of a single block. Let

@S?i,mk) = {sgn(ul(al)) e sgn(uk(ak))l{(al, Lo, ag)

EAlx...xAk}:

k
h(A, x...Ak)fv,H|Aj|:€}.

J=l1
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By definition, we obtain is bounded by 29, we obtain

Z f[ | D (bi]ock)
v,

Crdo Al <24 i=1

max (|A11%, ..., [A?) < vIAl|Aa]. .. |Ak] < ve. 1Dy.5.q

By dividing Daﬂoek) into subsets according to (¢1,...,{) =
(A1, .., [Ak]), we find = 2

[|+m+[’_*§2(1
D00 < 3 - (‘;1) (‘;k).
1 k

1...0k=L,max; {;</vl

(zn)i*k(k—Z)/42i*k2/2

i*
- exp <2k Z NAZAYACVAUSR Q«dmax))
i=1

By the Stirling formula, for j =1,2,...,k, < 2i*k2/2(24)i* (27r)i*k(k_2)/4

£
dj) A diNG g ]
< < e’ s .
( ;" ( ) /zn_gj i n}ra}>i< exp(Zk \/vf L(,/uf,,zdmax))

then As shown in [20], " Jz‘i LG, 2dma) <
Vi*24 (L(\/v2‘1 , 2dmax) + log(\/i_*)), we obtain

1og[,/—zne,zf( )]q,uz,,zdmax)w TL(/0, 2mar) log [Dy.s.q| < i*10g(29) + i*k(k — 2)/2 + i*%/2
2k 729 L(Vv29, 2dmaxV/i*).

sk it follows that

where L(x, y) := max{1,log(ey/x)}. Let { = H] 1pj' with e
. ) ) Since i* = (S+j ) <
distinct prime factors p;. Since (v; + 1)v;/(2 p ) is upper k

bounded by 2.66 for p; =2, by 1.16 for p; = { and by 1 for log |@v,s,q| < gs*log 2 + 2k>s* /24 L(/v24, dmaxskﬂ).
pj =5, we get
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