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Abstract—Hospital readmission prediction is a study to learn models from historical medical data to predict probability of a patient
returning to hospital in a certain period, e.g. 30 or 90 days, after the discharge. The motivation is to help health providers deliver better
treatment and post-discharge strategies, lower the hospital readmission rate, and eventually reduce the medical costs. Due to inherent
complexity of diseases and healthcare ecosystems, modeling hospital readmission is facing many challenges. By now, a variety of
methods have been developed, but existing literature fails to deliver a complete picture to answer some fundamental questions, such
as what are the main challenges and solutions in modeling hospital readmission; what are typical features/models used for readmission
prediction; how to achieve meaningful and transparent predictions for decision making; and what are possible conflicts when deploying
predictive approaches for real-world usages. In this paper, we systematically review computational models for hospital readmission
prediction, and propose a taxonomy of challenges featuring four main categories: (1) data variety and complexity; (2) data imbalance,
locality and privacy; (3) model interpretability; and (4) model implementation. The review summarizes methods in each category, and
highlights technical solutions proposed to address the challenges. In addition, a review of datasets and resources available for hospital
readmission modeling also provides firsthand materials to support researchers and practitioners to design new approaches for effective
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and efficient hospital readmission prediction.
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1 INTRODUCTION

Ospital readmission is defined as a hospital visit of a

discharged patient being admitted again to the same
or a different medical institution within a specific period
of time, such as 30 days or 90 days, after the previous
visit. A revisit usually implies an incomplete or unsuccessful
treatment from the previous in-patient visit, therefore it is a
defined metrics of the US healthcare systems [1]. Reasons
behind hospital readmissions are complicated and various,
among which many are avoidable especially those related
to doctors, nurses, and healthcare system. For example,
patients discharged ahead of the schedule are more likely
to be readmitted [2]. Medication errors, like no proper
prescriptions for necessary medicines when a patient was
discharged, are also responsible for preventable readmis-
sions [3], [4]. In addition, socioeconomic factors, including
patients of both lower and higher socioeconomic status, are
tied to the readmission risk [5], and a disparity in hospital
readmission between ethnicity has also been observed [6], in
which the possibility that Medicare patients, being readmit-
ted to hospital after major surgeries, among Black patients
is 19% higher than White patients.

A succession of hospital revisits, in a short period, are
costly to patients and healthcare system [1]. Avoidable hos-
pital readmission not only incurs $41.3 billion annual cost
[7], it also places signature pressure to the medical resources
as well as the high working intensity of medical staff.

In order to mitigate the severity of high readmission
rates, the US federal government introduced a series of
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plans [111]. Combining payment and readmissions through
Hospital Readmissions Reduction Program (HRRP) is part
of the initiatives to reduce readmission rates [112].

Following the HRRP initiative, many researches have
been conducted to tackle the problem. One commonly used
approach is to apply predictive models, such as logistic
regression, to learn from historical data, and then predict the
readmission possibility of a patient after being discharged
from hospital [29]-[31]. Other advanced machine learning
methods, such as decision trees [72] and deep learning [100],
are also used for readmission prediction. Table 1 summa-
rizes commonly used predictive models in the field. In gen-
eral, eleven popular predictive model types are considered
such as clinical rule based method, case-based reasoning, re-
gression based method and deep learning methods. Among
all those methods, majority research uses regression based
methods (logistic regression), neural networks, and ensem-
ble methods including bagging, boosting, random forest and
gradient boosting. Due to complications of human diseases,
some models are developed based on specific disease types,
like heart failure [32], [94], [101], pneumonia [39], and organ
transplantation [113].

Indeed, many predictive models haven been proposed
and are reportedly effective under certain circumstances,
but they often do not perform well as expected when being
applied to new health records [114], [115]. Evidently, Medi-
care, under the HRRP plan, cut payments to 2,853 hospitals
in 2019. Among 3,129 general hospitals being evaluated
in the HRRP program, 83% of them received a penalty.
Partially, this is because that a hospital readmission is a
compounded outcome of many factors, and not all of them
can be modeled by using computational approaches. On
the other hand, most existing methods only focus on the
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TABLE 1: A summary of predictive models used for hospital readmission prediction.

Predictive Model Types

Methods & Papers

Strength

Weakness

Clinical rule based meth-
ods

LACE Index, HOSPITAL score, B Score [8]-
[27]

High transparency & interpretability

Low accuracy & limited discriminative
power

Case-based reasoning

k-NN classifiers [28]

High interpretability. Easy to maintain &
adapt to changes

Time-consuming with high-dimensional
medical data

Regression based meth-
ods

Logistic Regress [6], [8], [9], [11], [14], [16]-
[19], [22], [29]-[71]

Easy to interpret & efficient to train with
large patient records

Ineffective for modeling nonlinear rela-
tionships

Decision tree methods

Decision tree, Classification and regression
tree (CART) [9], [14], [50], [63], [67], [72]-
[75]

Transparency & Interpretability. Auto-
matic identifying important factors

Unstable & sensitive to data. Low accu-
racy

Bayesian methods

Naive bayes, Bayesian conditional proba-
bility [9], [51], [63], [72], [76], [77], [77]-[81]

Transparency &
knowledge

incorporate domain

Computationally expensive & low accu-
racy

Neural networks

multi-layer neural networks, RBF network
[15], [40], [63], [77], [79], [82]-[86]

High accuracy & effective for high dimen-
sional data

Low training efficiency. Poor trans-
parency & interpretability

Margin classifiers & ker-
nel machines

Support vector machines (SVM) [14], [16],
[18], [63], [87]-[93]

Model complex high-dimensional patient
records

Low interpretability for clinical decisions

Ensemble methods

Bagging, Boosting, Random forest, Gradi-
ent boosting [9], [14], [14], [18], [18], [32],
[67], [78], [87], [89], [90], [90], [92], [94]-[96]

Improve accuracy over single models

High computational costs & lack of trans-
parency due to combined decisions

Cost-sensitive classifica-
tion

Bayesian optimal decision [28], [97]

Tackle imbalanced class distributions &
consider medical costs in modeling

Time-consuming on enormous skewed
data

NLP methods

Topic models [98]

Work with unstructured data like dis-
charge summaries

Cannot handle structured data

Deep learning methods

CNN, LSTM, deep contextual embedding
[92], [97], [99]-[105]

High accuracy. Modeling complex rela-
tionships across multiple visits

Long training time for parameter tuning
& require large volumes of data

Clustering methods

Hierarchical clustering [106]-[110]

Do not require labels. Interpret data dis-

Ineffective for high dimensional data

tributions for large volume data

modeling and learning aspects of the problem, failing to ad-
dress the underlying challenges for readmission prediction.
A recent study [116] systematically reviews 41 readmission
prediction models (including 17 models for all patient risk
prediction and 24 models for patient specific populations).
Their investigations suggest that using Electronic Medical
Records (EMR) data have better predictive performance
than those using administrative data. However, technical
challenges and solutions of readmission prediction still re-
main unaddressed, and are largely unclear.

The above observations motivate our study to review
challenges and solutions for hospital readmission predic-
tion. In order to systematically address the challenges,
we proposes a taxonomy to categorize selected modeling
methods, and summarize how existing approaches handle
different challenges. In addition to the review of method-
ologies, we also outline public datasets available for model
building and evaluation. The survey provides a comprehen-
sive review for researchers and practitioners to understand
the state-of-the-art in the filed, as well as designing new
approaches to tackle hospital readmission prediction.

The rest of the paper is organized as follows. Sec. II
proposes a taxonomy of hospital readmission challenge.
Secs. III to VI outline each challenge as well as methods
used to tackle them, including algorithms, applications, and
performance. Public datasets are summarized in Sec. VII,
and we conclude the paper in Sec. VIIL

2 PROBLEM DEFINITION & TAXONOMY

2.1 Problem Definition

Formally, we use an m dimensional vector Xgaj’dj le rm
to denote a patient i and his/her j** hospital visit, where
[aj,d;] denote admission and discharge/disease time of
the j** visit, respectively. The m dimensional vector in-
cludes symptoms, treatment, medical notes, medications,
procedures, and a variety of electronic health record (EHR)
information of the patient, carried out during the j*" visit. A
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hospital readmission of a patient 7 is referred to a visit j, whose
admission time a; is within a certain window, typically 30
days or 90 days, following the discharge of the previous visit
dj_1,ie a; —d;j—1 < 30. Given a number of patients and
their visit records, hospital readmission prediction aims to
accurately predict the readmission probability of a patient
after being discharged from the current visit.

2.2 Taxonomy of Readmission Prediction Challenges

Accurate prediction of hospital readmission is a significant
challenge, mainly because health records and diseases are
inherently complex in nature. For example, not all med-
ical records are organized in feature format, and medical
treatments and procedures are complicated making feature
engineering a daunting task. Meanwhile, HIPPA (Health
Insurance Portability and Accountability Act) regulations
and policies also raise challenges for data usage and sharing.
In order to carry out systematic review of computational
models for hospital readmission prediction, we propose a
taxonomy in Fig. 1 to summarize main technical challenges
into two types and four categories: data challenges and
model challenges. Data challenges explain the nature of
readmission prediction and data related issues for model
learning. Model challenges, on the other hand, explain
model training, interpretation, and implementation issues.

2.2.1 Data Challenges

Data imbalance, locality and privacy represent the first data
challenge for hospital readmission prediction. Databases
used for hospital readmission prediction usually contain a
large number of patient visit records collected from health-
care providers across disease types, ages, as well as length of
in-patient treatment [117], [118]. Although patients” medical
records are gathered and presented in details, the class dis-
tributions are often imbalanced [89] meaning readmission
visits are much fewer than normal visits. Such large-scale
but imbalanced data is an obstacle for learning accurate
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Fig. 1: A taxonomy of challenges of computational methods for hospital readmission prediction.

predictive models [119]. In addition to the data imbalance,
the regional designation of hospitals adds additional com-
plexity to this issue. Demographics of the hospital served
regions often have great disparity across regions, where
the top two characteristics reflecting the difference are race
and average income of the residents. In other words, due
to regional restrictions, some hospitals may have majority
patients from certain ethnic groups, like Latino or Asian.
Such difference greatly prompts the locality of hospital, and
further complicates the data challenge. Medical information
collected from those hospitals is biased for readmission
research. Besides, the income gap between residents also
affects medical expenses [120], [121]. Low income cohort
may be vulnerable to medical services such as medical
insurance, implying that there may exit a higher possibility
that they are not willing to continue their medical treat-
ment after discharge, even their conditions do not improve.
This resistance to treatment makes the collected data lack
integrity, and impose challenges to predictive modeling.

Data variety and complexity is another challenge to
predict readmission. In order to train predictive models, it
is necessary to collect information/features to characterize
object of interest (such as patient, disease, hospitals, patient
visits efc.). Due to inherent complexity of the healthcare
systems, and dependency between readmission and other
items, such as diseases, comorbidities, preexisting condi-
tions, etc., a predictive model should consider a variety
of data objects for learning [101]. In addition to the data
variety, a hospital readmission is a compounded outcome
of many issues, including patient life styles, disease types,
hospital treatments efc., making accurate readmission pre-
diction a complex task. Accordingly, data resources and
learning may choose to focus on different medical con-
ditions, by using domain segmentation, such as disease-
specific prediction, gender-specific prediction ect..

2.2.2 Model Challenges

At the model level, transparency and conflicts must be
properly resolved before predictive models can be put into
real-world usages. Interpretability of a model refers to com-
prehension of model decision process for human under-
standing [122]. A model resembling to human perception
and decision logic, such as a decision rule or tree, is always
preferred in medical domains. From practical aspect, it is
also important to understand why some patients are pre-
dicted as high risk after being discharged from the hospital
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while others are not. Many models perform well on bench-
mark datasets, but their decision logistic is intransparent.
As a result, their performance may deteriorate after being
applied to new data, due to the blind decision process.

The second model challenge is to resolve conflicts be-
tween models and implementation, such as qualify of ser-
vices, cost reductions, patient emotion, etc.. The HRRP
initiative intends to encourage hospitals to reduce their
readmission rates [123]. It is expected that, as unnecessary
readmission being reduced, the net income of hospitals can
increase significantly [124]. However, the reduction of hos-
pital readmission does not directly imply better qualify of
services. A short-term cost reduction may result in a higher
cost in the long run, and jeopardy the HRRP objective.
Meanwhile, as more stakeholders are turning to predictive
models, patients data are being collected for sharing and
analysis [125], resulting in increasing privacy concerns [126].

3 DATA IMBALANCE, LOCALITY AND PRIVACY

Data imbalance and locality are two common biases in med-
ical data, which are known to impose significantly challenge
to predictive models [83].

3.1 Data Imbalance

Data imbalance refers to a phenomenon where datasets used
to train a predictive model have an biased class distribution.
In many cases, one type of samples (i.e. positive class)
are significantly less than other types of samples. This is
partially caused by the reality that disease samples are
only a small percentage of the whole population, and natu-
rally results in the class imbalance. Learning models with
imbalanced class distributions is a significant challenge,
because most algorithms are affected by frequency bias and
pay more attention to majority class samples [127]. Data
imbalance tends to force the classifier to classify all samples
as normal, in order to satisfy the defined objective function,
such as minimizing the classification errors [128]. Common
solutions are to rebalance samples in different classes, by
manipulating data populations (sampling approaches) or
classification outcomes (cost-sensitive learning).

3.1.1 Sampling Approaches

Sampling approaches change data distributions to balance
samples in different groups in order to tackle the data
imbalance challenge. Common sampling solutions are to
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either drop majority class samples, repeat samples from
minority class, or create synthetic samples for minority class.

*Random Sampling Approaches Random Oversam-
pling (ROS) and Undersampling (RUS) are the simplest
ways broadly used in numerous domains, such as hospital
readmission prediction and fraud detection. Fig. 2 describes
the sampling methods in which Fig. 2a represents the
original imbalanced data with blue dots as the prevalent
class and orange rectangular as the minority class. Random
undersampling, in Fig. 2b, involves randomly selecting
examples from the majority class and down sampling
them in the training dataset according to sampling strategy
defined as the ratio of the minority class to majority class.
Due to the loss of vast quantities of discarded data, a
loss in classification performance can be resulted from the
boundary ambiguity between the two classes. Random
oversampling, in Fig. 2c, duplicates minority samples to
form a balanced training set. Due to sample duplication,
ROS may lead to over-fitting in the training.

A research study [92] using Medical Information Mart
for Intensive Care III (MIMIC-III) database [129] shows that,
by using undersampling, their model achieves 0.642 AUC
score for ICU patient readmission. Another study [63] inves-
tigates RUS sampling and five supervised learning methods,
decision trees, naive bayes, logistic regression, neural net-
works, and support vector machines (SVM) for risk modal-
ity and hospital readmission prediction. The results show
that, overall, neural networks achieve best performance for
both risk modality and hospital readmission prediction. In
addition, using AdaBoost to change the weight of instances
for learning results in 3% and 6% improvement for readmis-
sion and mortality predictions, respectively.

sSynthetic Samples For RUS and ROS sampling, the
dropped/duplicated instances are part of the original train-
ing data, meaning that there is a potential risk that sampling
will introduce information loss or bias. Synthetic sample
generation, on the other hand, will generate new samples
similar (but not identical) to the training data. Two com-
mon approaches to generate synthetic samples are Syn-
thetic Minority Over-sampling Technique (SMOTE) [130]
and Random Over Sampling Examples (ROSE) [131]. As
shown in Figs. 2d and 2e, SMOTE is an improvement of
Random over sampling approach. A minority class sample
x is randomly selected, with its k£ nearest minority class
neighbors being determined. Then the synthetic instance
is created by choosing one of the k nearest neighbors b at
random and connecting x and b to form a line segment in
the feature space. The synthetic instances can be generated
as a convex combination of the instances x and b. ROSE,
on the other hand, generates synthetic samples using a
conditional density estimating the positive and negative
classes. A randomly selected minority sample is used as the
center of a created density function, and synthetic samples
are the ones generated from the estimated density functions.

Using SMOTE to generate synthetic instances to bal-
ance positive and negative samples for 30 day readmission
prediction has been studied [102] by using a UCI hospital
readmission dataset [132]. The experiments show excep-
tionally higher AUC values (0.974) than results from other
studies (normally around 0.7 AUC range). One possible
reason is that UCI readmission dataset has a relatively bal-
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anced sample distributions because 11.2% samples belong to
positive class (readmission), whereas in other dataset, such
as National Readmission Database [117], the positive ratio
is much smaller. By using different sampling approaches,
including RUS, ROS, and ROSE, a method [90] compar-
atively studies the three methods using UCI readmission
dataset [132], using different classifiers, such as SVM, ran-
dom forest, gradient boosting, and regression and partition
trees. The results show that ROSE is significantly worse
than other approaches (including original data without any
sampling). In addition, RUS and ROS have comparable per-
formance, and both frequently outperform models trained
from original imbalanced dataset.

*Random Class Balancing A new technique to tackle
data imbalance called Random Balance is proposed inspired
by the idea of randomly deciding class proportions [133]. In
this approach, Data sampled from training dataset is used
to train every member of the Random Balance ensemble
and the augmentation is completed with synthetic samples
created by SMOTE. The probabilities of selecting an instance
from minority class and majority class are presented in
Eq. (1 ), where N is the total samples with p positive
instances and n negative instances.

1 p+3 1 1
:7N—7—7'P =
N3 3 it =N

n+3 1
R
@

Although preprocessing techniques are usually used to
restore the balance of the class proportions to a given level,
Random Balance relies on completely random proportions.
The key step in this method is that both the size of majority
and minority classes is randomly set, followed by SMOTE
and Random Undersampling in order to increase or reduce
the size to match the ideal class size. This methods allevi-
ates the problem of deleting important examples by being
repeated multiple times. Despite its simplicity, this methods
outperforms other advanced ensemble methods.

Py (N

3.1.2 Cost-Sensitive Learning

Data imbalance challenge can also be mitigated through the
change of learning algorithms. The ultimate goal of machine
learning is to minimize/satisfy the loss function. If the loss
of misjudgment on minority samples is increased in the
loss function, the model can be adjusted to better identify
minority samples. Cost sensitive learning is one approach
to adjust the loss function of the learning algorithm to make
the model more sensitive to minority samples.

Cost-sensitive confusion matrix, in Table 2, is a common
way to adjust the loss function. Instead of treating all mis-
classification equally, the cost matrix differentiates costs as-
sociated to different types of mistakes. For example, in Table
2, v is defined as the cost of a single False Positive (FP) and
A is defined as the cost of a single False Negative (FN). In
order to support cost-sensitive readmission prediction, one
can either apply the cost matrix to the posterior probability
(classification outcomes) or the learning objective function
to minimize the misclassification costs.

sPosterior Probability Adjustment: In a research [28]
predicting 30-day readmission for patients with Chronic Ob-
structive Pulmonary Disease (COPD), the cost matrix is used
to adjust the posterior provability for prediction. Assuming
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Fig. 2: (a) A dataset with imbalanced class distributions; (b) random under sampling (RUS); (c) random oversampling
(ROS); (d)Synthetic Minority Over-sampling Technique (SMOTE); and (e) Random Over Sampling Examples (ROSE).

TABLE 2: Cost sensitive confusion matirx. A and p are
positive values denoting misclassification costs between two
groups (positive vs. negative).

Predicted positive | Predicted negative
Actual positive 0 A
Actual negative I 0

x denotes a patient (or a visit) and P(True|x) denotes the
posterior probability of a generic classifier classifying x as
being a readmission (True), the prediction of readmission is
based on the adjustment of posterior probability in Eq. (2)

where the threshold of classification is presented as iu'
o True, If P(Truelr)> i
= Iz
Prediction { False, Otherwise @)

By applying the above design to several generic classifica-
tion models, including Naive Bayes (NB), Random Forest
(RF), Support Vector Machines (SVM), k-Nearest Neighbors
(kNN), C4.5, Bagging with REPTree, and Boosting with De-
cision Stump, their experiments [28] show that cost-sensitive
classification is effective in minimizing costs and the cost
matrix is more desirable than commonly used AUC, when
evaluating hospital readmission systems.

*Learning Objective Function Adjustment: In order to
directly integrate the costs to the learning, a cost-sensitive
formulation [97] is used to train a multi-layer perceptron fed
by learnt features through convolutional neural networks
(CNN) and statistical features via feature embedding to
predict hospital readmission. To tackle the misclassification
problems of the minority class, the cost sensitive deep neural
network (CSDNN) consists of one input layer, one output
layer, and multiple hidden layers with fully-connected neu-
rons formulated using weight matrix W. A modified cross
entropy is set as the loss function shown in Eq. (3), where n
is the total number of patients, y; € {T, F'} denotes the label
of a patient z;, where True (1) means a readmission or False
(0) otherwise. P(y;|x;, W) denotes the posterior probability
of the i patient, and C(4;, y;) defines the classification cost
of z; with respect to the current prediction y;.

1 ) ) A
L=——3log[ > Plilxi W)C@iv)]+ 5 IWI3
=1

yi €{T,F}
3)

The above approach is validated on two real-world medical
datasets from Barnes-Jewish Hospital and the results prove
that their prediction of readmission performs significantly
better than several baselines with a much higher Area Under
the ROC Curve (0.70 AUC score) than baselines.
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3.1.3 Class-imbalance aware feature selection approach

A readmission prediction algorithm Joint Imbalanced Clas-
sification and Feature Selection (JICFS) is proposed to con-
struct the loss function and applied sample weight to handle
class-imbalance problem [134]. To be specific, this approach
solves the readmission prediction problem with imbalance
class by constructing an improved margin-based loss func-
tion, which involves two parameters o and v to reduce the
weight of loss assigned to easily classified samples.

N
min f(w) =) (anlog(1+ezp(—ynry(w”2n)))/7)+Aw])

weR™
)
In Eq. (4), the class-imbalance aware feature selection ap-
proach contains ¢, v and A three parameters from objective
function to obtain coefficient matrix w in order to realize
feature selection from class-imbalance data. The method
was compared with different class-imbalance learning al-
gorithms based on six real-world readmission datasets and
it always can achieve better performance on each dataset.

3.2 Data Locality and Privacy

While data imbalance is concerning the learning target (or
class labels), data locality, on the other hand, is associated
to the sample distributions (or independent variables). At
population level, data for readmission prediction might be
collected from a local/regional hospital, where the demo-
graphics of the patient body naturally introduce bias. At
individual level, when collecting data for each patient, the
hospital visits used to characterize the patient may also
introduce bias. At the ministration level, regularizations also
impose restriction for data sharing across hospitals, making
it difficult to learn good models from local data.

A study [64] considers two types of discharge sampling,
first time discharge vs. all discharges. In other words, the
research compares using a single discharge vs. using all
discharges of patient visits to represent each patient for
learning. Experiments show that using the first discharge
per patient underestimates the readmission rate, and may
result in misleading measures of model performance.

Common approaches to tackle data locality and privacy
are to employ ensemble learning or federated learning.
The former trains multiple models from local datasets and
combine them for prediction, whereas the latter trains one
model from multiple decentralized /localized datasets.
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3.2.1 Ensemble Learning

Ensemble learning combines multiple base models for pre-
diction. Typical approaches include bagging, boosting, and
stacking [135]. Bagging trains base models separately (often
in parallel), and then combines them using weighted (or
unweighted) majority voting. Boosting, on the other hand,
trains base models in a sequential and progressive manner,
so a later trained base model is improved based on an earlier
trained base model. Stacking is a meta learning approach,
which uses base classifiers to generate outputs, and then
retrains another model from the outputs for prediction.

In [103], a localized sampling approach is proposed
to allow sampling process to focus on instances difficult
to classify. By using localized sampling to generate bal-
anced datasets, this approach is validated using data col-
lected from several South Florida regional hospitals. A joint
ensemble-learning model [96] combines weight boosting
algorithm with stacking algorithm, and compares three ma-
jor baseline (1) the LACE index, (2) RandomForest-Lasso-
SMOTE, and (3) SMOTE (which uses SMOTE to replace
bagging for data samping) on national Hosptial Quality
Monitoring System (HQMS) database (including 651,816
records after data processing). The results show that LACE
(which is commonly hospital score systems) has the least
performance, confirming that machine learning is useful for
hospital readmission prediction. Meanwhile, bagging with
weight boosting and stacking shows clear benefits on high
dimensional medical data with imbalance class distributions
and imbalanced misclassification costs.

3.2.2 Federated Learning

Different from ensemble learning which focuses on combin-
ing models trained from local datasets, federated learning
tackles data locality challenge by allowing multiple data
holders to collaboratively train a model, and keep par-
ticipant data in private without exchanging raw data. A
research [93] proposes to use federated learning to build
a global model to predict hospitalizations due to heart
diseases using patient electronic health records (whether a
patient will be hospitalized within one or two years, prior to
the time of prediction). To tackle the problem, they formu-
late the problem as a sparse support Vector Machine (SVM)
learning problem, with the following objective function:

min Y fi(w,wo, x;) +0.57 [wlly + pwol, ()
=1

In Eq. (5), w € R? and wy € R are weight vectors (pa-
rameters) defining the classifier. f;(w, wg, ;) = max{0,1 —
¢(wTz; + wp)} defines a hinge loss for instance x;. 7 and
p are penalty coefficients enforce Ly norm and L; norm
constraints on the parameters. In federated learning setting,
multiple agents (or hospitals) each hold their own private
data, so z;,% = 1,---,n are not presented to any single
agent. The key is to use local data from each single agent,
to learn (w,wp), which optimizes the objective function in
Eq. (5). To solve their own (w,wy), based on local data,
all agents will combine learned solutions to create a global
(W, wp). In addition to the predictive model, their method
also find important factors/features associated to hospi-
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talizations, such as “Age” and “Admission due to Other
Circulatory System Diagnoses” etc.

Similarly, another research [107] studies federated learn-
ing for patient mortality and hospital stay time prediction,
using distributed electronic medical records. They propose
a distributed clustering to separate patients into clinically
meaningful communities (both communities and data are
local). Experiments show that this approach results in a
higher predictive accuracy and lower communication cost,
comparing to other federated learning methods.

4 DATA VARIETY AND COMPLEXITY

A hospital readmission is the outcome of numerous
compounding factors, involving patients, diseases, care
providers etc.. Collecting representative training data is an
important step for modeling. Therefore, the second major
data challenge for readmission prediction is to properly
characterize training samples and learning tasks.

4.1 Features for Data Variety Description

Patient records from electronic medical records (EMRs)
and administrative databases usually include various infor-
mation from basic personal demographics to professional
medical diagnosis [136]. In this section we summarize fea-
tures used to describe samples into three major categories:
singular features, hybrid features, and latent features. The
detailed feature types are listed in Table 3, including demo-
graphics, admission and discharge, clinical, hospital etc.

4.1.1 Singular Features

Singular features include the first five types of features listed
in Table 3. They are single factors, indicators, statistics or
textual information, used to describes patients, diseases,
medical procedures, hospitals etc.. Demographics is defined
as features including basic patient information such as age,
race, contact information in case emergency condition hap-
pens, insurance information indicating whether a patient
has insurance or not. Such demographics provides general
health information representing patients” health condition
at the time of the hospital visit.

After a patient is admitted to hospital, admission and
discharge information will record administrative features
related to the visit, such as the dates of admission/discharge
and whether the patient is admitted through emergent de-
partment and so on. Clinical information records patients’
symptoms and procedures for in-patient treatment. The
information of the hospitals to which patients are admitted
are summarized as hospital information, which includes
statistic features such as percent readmission within a time
period, hospital locations, and ownership.

Textual information is another type of singular fea-
tures consisting of literal summary like discharge summary,
physician notes. Such information is often stored in un-
structured format, and provide comprehensive information
not detailed in administrative and clinical features, which
are often stored in structured format (such as a table). For
most methods, they simply combine single features into one
feature set to train predictive models.

Singular features are ideal for training logistic regres-
sion classifiers because features are rather independent and
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TABLE 3: A summary of features used to describe patients, hospitals, hospital visits for readmission prediction.

Feature Types & Reference Feature Subtypes

Feature Information

Demographics features
[8]-[11], [13]-{22], [29]-{32], [34]-

Basic demographics information

Age, Gender, Race, Education, Marital status

Structured

Language, Income/Financially issues

Contact information

Family size/members, Zip code/address, Family doctor

[41], [431-62], [65], [66], [68]- Insurance information

Insurance provider, Mode of payment

[77], 791, [80], [82], [87]-[91],
[94], [95], [100], [101], [109], [113],
[137]-[144]

General health information

Medical conditions, Allergies, Current medications

Completed outpatient appointment rate, Nursing home needed

Social history

Smoking, Alcohol, Living situation, Employment

Admission and discharge information
[81-{22], [29]-[32], [34]-[47], [49]-[62], [65], [66],
[68]-{73], [75]-[77], [79], [80], [82], [87]-[91], [94],

Admission information

Admission date, First hospital visit, Elective

Number of admissions in a past time period, Cost-weight of
previous admission, Diagnosis of last admission

[95], [99]-[101], [109], [113], [137]-[144] Discharge information

Total charge, Discharge date

Transfer, Discharge disposition

Clinical information

[91-[11], [13], [14], [16]-[20], [22], [29]-[31], [33]- Payment code information

ICD-10codes, ICD-9 codes

APR-DRG codes, DRG codes

[38], [40]-[62], [65], [66], [68]-[80], [82], [87]-[91], In-hospital symptom

Vitals and Tab values

[94], [95], [95], [101], [101], [106], [109], [113],[ Rhythmic features

Mean 10 most active hours, Total sleep time, Sedentary time

[139]-[145] Medical images

Ultrasound exam

Hospital information Hospital statistics

[34], [53], [65], [71], [77], [87], [106]

Total number of admissions, Number of patients

Percent readmission within a time period (30 days etc.)

Hospital characteristics

Ownership of hospital, Rural/Urban

Textual information
[99], [101]

Discharge summary, Physician note, Date the note was initiated, Subject of the note, Prescription
medication, Date of the prescription update, Dose and strength of the drug

Hybrid information

[8]-[27], [70] Score

LACE, HOSPITAL score, Charlson comorbidity score, Elixhauser Comorbidity Index, Baltimore

Latent features: [40], [104]

Clinical nodes embedding features, Patient embedding features

v
v
v
4
X
v
X
v
4
4
v
v
v
4
v
X
v
4
4
X
v
v

easy to interpret. A research [50] uses conditional logistic
regression, combined with patient demographics, clinical
information and categorical data, for model development.
After correcting the data imbalance using undersampling,
the applicability of conditional logistic regression is tested
and compared with several standard classifiers, includ-
ing standard logistic regression, random forests, SVM and
stepwise logistic regression. The models are performed on
two different prediction variable sets, original variables
and selected ones, in order to achieve efficient readmission
management with identified features.

Another similar study [54] also employs demographics,
clinical data, and textual notes from administrative data
to predict 30-day hospital readmission for maintenance
hemodialysis patients. Data are collected from University
of North Carolina Hospital (2008 to 2013) and are recorded
as means and SDs for continuous variables whereas textual
variables are presented as frequencies and percentages. The
study trains models using univariate and multivariable bi-
nary logistic regressions which only consider variables with
a univariate P value <0.20. Results show that two multi-
variable logistic regression models outperform univarible
models with an AUC of 0.79 (95% CI, 0.73 to 0.85).

4.1.2 Hybrid Features

Apart from features representing single factors, hybrid fea-
tures have a long history being used in the medical field
to combine multiple factors to form a feature indicator for
prediction. LACE index [36], HOSPITAL score [13], Charl-
son comorbidity score [25], Elixhauser Comorbidity Index
[24] and Baltimore Score (B Score) [23], are the commonly
used hybrid features. In many predictive models, hybrid
features are further integrated as independent variables to
train classifiers for prediction.

*Charlson Comorbidity Index [25] was first proposed
in 1987 to classify prognostic comorbidity in longitudinal
study. In the original version, 19 types of comorbidities are
identified and assigned weights according to the adjusted

relative risk of one-year mortality. The final single comor-
bidity score is the sum of weights. ICD-9-CM codes are
assigned for categories of the Charlson Comorbidity Index
and the number of categories is reduced from 19 to 17 by
combining 'Leukemia” and "Lymphomas’ into “Any tumor’
[146]. Later on, a multi-step process [26] is conducted to
develop ICD-10 codes to define the index and Table 4 shows
the revised version of Charlson Comorbidity Index.

A research [31] combines Charlson Comorbidity Index
with patients demographics as indicators for readmission
risk prediction. A retrospective multiple regression analysis
of 958 non-pregnant adults is conducted based on the data
abstracted from hospital administrative sources and elec-
tronic medical records. After comparing with other models,
using AUC values for validation, the study concludes that
poly-pharmacy and higher Charlson score at admission can
predict readmission risk as good as or better than published
risk prediction models.

TABLE 4: Latest version of Charlson comorbidity index

Score Comorbidity
Previous myocardial infarction
1 Cerebrovascular disease

Peripheral vascular disease
Diabetes without complications
Congestive heart failure
Diabetes with end organ damage
2 Chronic pulmonary disease
Mild liver or renal disease
Any tumor (including lymphoma or leukemia)
Dementia; Connective tissue disease
HIV infection
Moderate or severe liver or renal disease
6 Metastatic solid tumor

*LACE Index In order to create an easy-to-use index to
quantify patients’ risk of readmission or death, after being
discharged from hospital, a secondary analysis of a multi-
centre prospective cohort study is performed based on 48
patient-level and admission-level variables [36]. Multivari-
able logistic regression, fractional polynomial function and
points system [147] are applied to derive and validate the
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LACE Index in Table 5 which is the sum of the scores from
four aspects: length of stay (L), acuity of the admission (A),
Comorbidity of the patient (measured with the Charlson
Comorbidity Index) (C) and emergency department visit in
the six months before admission to hospital (E). C'—statistic
with 95% confidence intervals is used to evaluate the ac-
curacy of the index. The results indicate that LACE Index
has moderate discrimination for early death or readmission,
therefore it can be used as a measurement to predict risk of
patient death and unexpected readmission.

The feasibility and strength of LACE index in predict-
ing 30-day hospital readmission is further studied using
anonymised patient data obtained from hospital informa-
tion system [8]. A positive correlation is observed by uni-
variate logistic regression meaning the increment of LACE
index score could greatly result in larger possibility of read-
mission than elective or day case readmissions (12.8%, 5.7%
and 1.8% respectively). In addition, the significance of LACE
index is also proved by multivariate logistic regression with
an AUC of 0.773 (95% CI 0.768 to 0.779) and R? of 0.180.

TABLE 5: LACE index

Attribute Value Points Attribute | Value Points

<1 0 1 1

1 1 2 2

2 2 c 3 3

L 3 3 >4 5
4-6 4 0 0

7-13 5 1 1

> 14 7 E 2 2

A Yes 3 3 3

C 0 0 >4 7

*HOSPITAL Score, as shown in Table 6, consists of seven
independent variables, including hemoglobin at discharge,
discharge from an oncology service, sodium level at dis-
charge, procedure during the index admission, index type of
admission, number of admissions during the last 12 months,
and length of stay. It is derived and validated as a model in
a dataset with a total of 12,383 patients discharged from the
medical services of the Brigham and Women’s Hospital [13].
The seven factors are determined by a series of models: A
multi-variable regression model, followed by a regression
coefficient-based scoring method and finally a backward
multi-variable logistic regression analysis. The internal vali-
dation confirms that HOSPITAL score has potential to easily
identify patients with a risk of readmission.

An international study validates the HOSPITAL score
based on 117,065 adult patients from 9 hospitals across 4
countries [10]. The score is verified in the logistic regres-
sion from three aspects: overall performance, discrimina-
tory power and calibration. Overall, the study confirms the
discriminatory power of the HOSPITAL score in predict-
ing avoidable readmission, with a C-statistic of 0.72 (95%
CI, 0.72-0.72) and its prediction of potentially readmission
matches the observed proportion with an excellent calibra-
tion (Pearson 2 test P=0.89).

sElixhauser Comorbidity Index Because hospital read-
mission is often tied to complication of disease comorbidity,
Elixhauser Comorbidity Index [24] was proposed in 1998
to measure comorbidities in large administrative inpatient
datasets. This comorbidity algorithm is developed and
tested on the data consisting of 1,779,167 adult patients from
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TABLE 6: HOSPITAL score

Attributes Score
Hemoglobin < 12g/ml or 120g/L at discharge
Discharge from an oncology service

Sodium < 135 mEql/L at discharge

Procedure performed during hospital stay (any ICD
coded procedure)

Index admission type: nonelective

# of hospital admission during the previous year

0

1-5

>5

Length of stay >5 days

o= N

_

NN o

438 acute care hospitals in California. Although original
Elixhauser Comorbidity index addresses some limitations
from previous measures, it requires 30 binary variables,
which limits its application. Later on, it is revised as a sin-
gle score for administrative data using backward stepwise
multivariate logistic regression [27].

By using Elixhauser Comorbidity index, combined with
age and gender date, a hierarchical logistic regression mod-
els [84] predicts 30-day readmission for patients with acute
myocardial infarction (AMI), congestive health failure (HF)
and pneumonia (PNA). The comparisons using four models,
including 1) the hierarchical logistic regression model; 2)
XGBoost model with binary ICD-9 codes; 3) a feed-forward
ANN model trained on dummy variable representation of
ICD-9 code; and 4) an ANN models trained based on latent
ICD-9 codes variables, show that the AUC for hierarchical
logistic regression is 0.68 (95% CI 0.678, 0.683) and it is
improved by the fourth model to 0.72 (95% CI 0.718, 0.722).

eBaltimore Score (B Score) Readmission risk-assessment
tools including LACE index, HOSPITAL score and Elix-
hauser Comorbidity index have been proven effective in
predicting patient readmission risk. However, they mainly
make predictions based on a portion of patients’ features
such as length of stay in hospitals and comorbidities. As a
result, they may not be able to consider a large number of
factors, and some important characteristics may be ignored.

Baltimore score (B score) is a learning based model using
thousands of health data variables [23]. The Baltimore score
(B score), invented by researchers from the University of
Maryland Medical System (UMMS), is an easily imple-
mented machine learning score to calculate standard read-
mission risk-assessment scores in real time to predict 30-
day unplanned readmissions. This model is individualized
for each of three University of Maryland Medical System
hospitals in different settings and 382 variables are drew for
the final model including demographics, lab test results, etc.,
from more than 8,000 possible data variables. The research
compares the B-score readmission risk level with the actual
readmission rates of the three hospitals and the predictions
derived from other plans. In the three hospitals, despite the
different settings, the overall B score is better than other
scores in identifying patients at risk of re-admission, and is
the most accurate among the highest-risk patients. The 10%
of patients with the highest risk of B score at discharge have
a 30.7% chance of unplanned readmission. Similarly, the 5%
of patients with the highest B scores at discharge have a
43.1% chance of being misdiagnosed again. The AUROC of
the B score is 0.72 (95% CI, 0.70-0.73) and it increases to 0.78
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(95% CI, 0.77-0.79) at discharge (all P < .001) compared with
the 0.63 (95% CI, 0.59-0.69) AUROC for HOSPITAL, 0.64
(95% CI, 0.61-0.68) for Maxim /RightCare, and 0.66 (95% CI,
0.62-0.69) for modified LACE score. As a result, the study
concludes that clinicians can use patient data to calculate
B Score and further reduce adverse events and improve
patient safety.

4.1.3 Embedding Features

Different from singular or hybrid features which measure
one or multiple characteristics of objects as one score for
evaluation, embedding features (also called latent features)
use a feature vector to represent each object. This provides a
much more comprehensive capability in describing different
types of objects, such as patient, hospitals, diseases etc., than
singular or hybrid features.

Patient X: Input-Vector For Current Stay

Complex Nominal Data

Primary Secondary Procedures  NormalLeb Highlab  LowLab
Diagnoses  Diagnoses Values  Values Values

Vi Embedding Features
Vi

;:’r Therapy
& Medication

Sex
g Age

(0 [ |

wewyedsq

Length of
Stay

Primary  Secondary

Diagnoses Diagnoses Ve
Vep VsD

Therapy

Vi Medication Length of

Sex Age " Stay

Readmission Risk

Fig. 3: Clinical object embedding based readmission risk
prediction framework [40]. Each categorical clinical object,
such as primary diagnose, is embedded as a feature vector.
Numerical features, such as, age, remain original form. All
features are fed into a regression framework to estimate
readmission risk.

*Clinical Object Embedding Clinical objects have a va-
riety of types, such as diseases, medical procedures, ab-
breviations, jargon from doctors, hospitals and other care
providers. After being admitted to hospital, medical infor-
mation like diagnoses and procedure codes are recorded
as individual features, resulting in a large feature space
ineffective for machine learning algorithms to train a model.
Alternatively, embedding features can downsize the feature
space and simplify the dependencies between input features
and target variables.

Instead of using clinical data as features, a latent em-
bedding based framework, as shown in Fig. 3, is proposed
to embed nominal clinical data for hospital readmission
prediction [40]. The framework uses latent embeddings of
the nominal parts of data, such as diagnosis and proce-
dure codes (ICD-10). An n X m matrix is organized using
clinical data where each of the n rows contains data of
a patient during his/her stay in the hospital and each of
the m columns denotes one feature. For numerical features,
such as age and length-of-stay, the feature are numerical
values. For categorical feature, such as diagnose code, one-
hot encoding is used to indicate whether a specific code
appears in the current visit (1), or not (0).

To calculate latent embeddings, a data covariance matrix,
in Eq. (6), is first calculated to find relationship between
features. In this equation, X € R"*™ is an n x m sparse
binary matrix standing for nominal data from the data
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matrix, px is the means vector and ox is the deviations,
and ® denotes the outer vector product.

XTX —m- (ux ® px)
(m—1)-ocx ®ox

XCov = (6)

Given covariance matrix Xc,y, latent embedding is
calculated by applying Singular Value Decomposition to
decompose X, in Eq. (7), where V € R"*¥ is a dense
matrix with n rows and k column, meaning each row of the
V' matrix represents a k dimensional dense feature vector.

XCov = VEQVT (7)

In order to tackle the large number of diagnose code in
medical domains, a “max-pooling” procedure is applied to
select the most responsive latent features from the latent
embeddings, so each type of diagnose, such as “Primary
Diagnose”, is denoted by a k-dimensional vector. The per-
formance comparison between latent logistic regression and
binary logistic regression indicates that latent embedding
improves the AUC score of readmission prediction from
0.779 to 0.790.

ePatient Embedding In addition to embedding each clin-
ical object, research also proposes to represent a patient’s
entire raw electronic health record (EHR) as a single vector
[104], or embed a single visit as a feature vector [85]. By
using data from the University of California San Francisco
(UCSF) from 2012 to 2016, and the University of Chicago
Medicine (UCM) from 2009 to 2016, a research [104] devel-
ops a single data structure representing the EHR dataset in
temporal order for each patient. All available data for each
patient, from the beginning of a patient’s record until the
point of prediction, form the patient’s personalized input to
the model to predict unplanned 30-day readmission. A deep
learning model is trained and compared with existing EHR
and achieves high accuracy for tasks in predicting 30-day
unplanned readmission (AUROC 0.75-0.76).

In order to learn efficient expression of medical concepts,
Med2Vec [85] is proposed to learn healthcare concept at
two levels: code-level and visit-level. When learning from
code-level information, Skip-gram algorithm is employed to
train a non-negative weight ReLU which guarantees sparse
code representation production and provides much more
convenience to interpret codes. A multi-layer perception
network is trained to exploit sequential information of visits
Vi, presented by a binary vector x;, and enables prediction
of past and future visits. The binary vector can be converted
into visit representation as shown in Eq. (8) where W is the
code weight matrix and b is the bias vector.

w; = ReLU(W_ x; + b,) (8)

A visit vector is generated by concatenating visit demo-
graphics d; with clinical feature vector in Eq. (9). As a result,
a patient is represented by concatenating corresponding
visit vectors. The performance of Med2Vec is evaluated
using data from Children’s Healthcare of Atlanta (CHOA),
and shows significant improvement in prediction accuracy.

v = ReLU(W,[u;,d;] + b, )
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4.2 Domain Segmentation for Data Complexity

A hospital readmission visit is tied to many factors, in-
cluding patients, diseases, care facilities, efc. As a result,
it is often ineffective to rely on a one-for-all predictive
model for accurate prediction. High readmission rates of
hospitals at certain geographical locations might be because
of (1) majority patients sharing similar demographics, (2)
hospitals mainly practicing certain diseases, or (3) policy
and management issues. To tackle such data complexity,
one effective way is to rely on domain segmentation to
segment readmission learning into multiple small tasks with
better data coherence. The purpose is to use patient cohort
with less variance (reduced data complexity) to train reliable
models. Because readmission rates share rather distinct pat-
terns with respect to different patient groups and diseases,
a common approach is to use disease, gender, or race and
ethnicity for segmentation.

4.2.1 Disease-Specific Prediction

Disease segmentation is the most common way to tackle
the data complexity for readmission prediction. Intuitively,
patients suffering from same/similar diseases are likely
sharing similar symptoms, treatments, and post-discharge
complications. Therefore, using disease to segment patient
visits will minimize the data discrepancy for better predic-
tion. Many models are proposed to predict readmission for
leading cause of death diseases such as hear failure [94],
stroke [71], COPD [28], AMI and pneumonia [84], etc.

In a research [94] to determine the risk of unplanned
cardiovascular readmission for patients with chronic heart
failure, a modified Cox’s proportional hazards model (tak-
ing into account the competing risk of death) is used to
develop a multivariate prediction model followed by boot-
strap methods to identify data factors for the final model.
Variables are chosen by a backward-deletion method with
a p-value threshold for retention. Based on patients infor-
mation selected from WHICH? trials (Which Heart Failure
Intervention is most Cost-effective & consumer friendly in
reducing Hospital care), the C-statistic of the final trained
model reaches 0.80.

4.2.2 Gender-Specific Prediction

Despite the effectiveness of hospital readmission rate control
policies and interventions targeted at the whole nation, a
gender difference with regard to the rate of 30-day hospital
readmissions has been pointed out and this observation
triggered a knowledge exploration about gender different
in readmission [148]. Compared with men, women are
reported to have a higher readmission risk after being
discharged [69], especially young women aged under 65
years old [144]. This indicates that policies and interventions
aimed at preventing readmissions may need to consider
both biological sex and gender in their designs and im-
plementations. A psychiatric administrative dataset with
women (n=33,353) and men (n=32,436) patients are used
to identify predictors of 30-day readmission. Multi-variable
logistic regression models with demographics, clinical in-
formation etc. are conducted and the results show female
patients have 0.2% higher risk than male patients to be
readmitted within 30 days and suggest that “Certain key
predictors of psychiatric readmission differ by sex” [68].
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4.2.3 Race and Ethnicity-Specific Prediction

Race and ethnicity are known factors of health disparity.
When it comes to the implementation of HRRP in ethnics, a
similar drop in the 30-day readmission rate of Myocardial
Infarction patients in both Black and non-Black patients
has been previously observed. Meanwhile, although the
race-specific 30-day readmission rate differs, research also
concerns that it might be attributed to patient-level factors
such as incoming, age. In other words, the implementa-
tion of HRRP has nothing to do with the improvement or
deterioration of racial differences in readmission rates and
mortality [149]. In a mixed-effects logistic regression cohort
study of 272,758 adults with diabetes, black patients are
at a much higher risk of unscheduled readmission to the
hospital within 30 days than other racial/ethnic groups with
a 12.2% among black patients, 10.2% for white individuals,
10.9% among Hispanic patients and 9.9% for Asians [70].
The higher hospital readmission risk is also confirmed by
a research based on 4,784 Blacks and 33,684 Whites with
stroke admissions in year 2000 using a truncated negative
binomial (TNB) model. The readmission risk among black
patients age 65-74 is 40% higher than white patients [71].

4.2.4 All-Cause Prediction

In contrast to the above domain specific approaches, many
predictive models still address the hospital readmission us-
ing an all-cause approach, which considers all disease types,
gender groups, races etc. For example, a study compare
different models used for readmission risk prediction of
hospitalized primary care patients [34]. The study includes
four classifiers including Walraven’s LACE index, LACE+
index, Donze’s HOSPITAL score and logistic regression
based classifiers, to predict 30-day readmission risk, using a
dataset at Mayo Clinic Department of Family Medicine. The
results show that logistic regression based classifiers yield
only moderate performance in predicting readmission with
a C-statistic of 0.666 compared with LACE (0.680), LACE+
(0.662) and HOSPITAL (0.675) [34].

5 MODEL INTERPRETABILITY

Model interpretability defines the degree to which the be-
havior of a model can be explained and understood by hu-
man perception. For medical applications, an interpretable
and transparent model is almost always preferred. Only
interpretable predictions allow care providers to understand
the decision patterns to support clinical actions. Therefore,
the first model level challenge is to design clinically in-
terpretable and practically usefulness models to provide
actionable insights to the decision makers.

In Fig. 4, we outline general relationships between model
interpretability vs. model accuracy of commonly-used ma-
chine learning algorithms. The z-axis denotes the model
interpretability and the y-axis denotes the prediction accu-
racy. In summary, models like decision trees, linear/logistic
regressions, case based reasoning etc. are relatively easy
to interpret, mainly because that the model itself outputs
parameters associated to some features or samples. For
example, a decision tree will specify features (and their
values) used to derive decision, and logistic regress will
specify the weight of features for prediction. Case based
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reasoning finds samples (or prototypes) similar to the query
instance to derive decision. As models are moving towards
relying on general computing machines (such as support
vector machines, neural networks, Bayesian networks) or
ensemble models, the interpretability will decrease, mainly
because that the models do not directly specify how fea-
tures/samples are used to form decisions.

O Deep learning model
High A O Random Forest
‘*O O Support Vector Machine
Ensemble Method .
MultiLayer O ..
Neural Networks T,
Bayesian Networks O

(O Gaussian Process Classification

Model Accuracy

KNN Classi fier O Case Based Reasoning
Linear/Logistic Regression
Decision Tree O.. O Decision Rule

Decision Stump Q.

O. O Lasso Model

=
]
B

Low High

Model Interpretability
Fig. 4: An inverse relationship between model interpretabil-
ity vs. model accuracy for common machine learning al-
gorithms. A model is the output of the referred classifiers
(or learning algorithms). In general, a model with a higher
accuracy tends to have a lower interpretability, whereas
models easier to interpreter tend to be less accurate.

5.1 Model Interpretability Enhancement
5.1.1 Simple Transparent Models

Simple transparent models are the ones with strong inter-
pretability, and the models can directly inform decision ac-
tions. Decision trees/rules and linear/logistic regressions, in
Fig. 4, are the ones falling into this category and frequently
being used in the medical domains.

In a recent study, researchers from MIT [67] propose
to build interpretable predictive models for inpatient flow
prediction, which predicts flow of hospitalized patients into
two major categories: flows out of the hospital, i.e., dis-
charges, and flows between units of the hospital. A collec-
tion of machine learning techniques, including linear mod-
els and decision trees, are applied to address four length
of stay-related tasks: same-day and next-day discharges,
and more-than-7 and more-than-14-day hospital stays. Their
study shows that the prediction accuracy and scalability
cannot be hindered by attentions on modeling and inter-
pretability. Instead, it brings more interpretable functions
and thus clinicians and care providers are more involved,
less data as well as computing resources is required.

5.1.2 Hybrid Transparent Models

Machine learning algorithms with high accuracy, such as
neural networks and support vector machines, often have
very little interpretability [33], imposing significant obsta-
cles for clinical decisions and model implementation across
health systems [116]. There is a trade-off between perfor-
mance and interpretability: complexity models are untrace-
able black boxes, while classic interpretable models are usu-
ally simplified with lower accuracy. This trade-off narrows
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the application of the latest machine learning models in
hospital readmission prediction area, which requires both
high predictive performance and an understanding of the
contribution of each attribute to the model results.

In order to deliver an interpretable system with higher
accuracy, hybrid transparent models combine different
types of predictive models to ensure high interpretability
and accuracy. A mixture of two types of classifiers, a Boosted
C5.0 tree and a support vector machines (SVM), is proposed
[88] for hospital readmission prediction. The main objective
is to take the advantage of high sensitivity of SVM pre-
diction, as well as the transparency of C5.0 tree model. In
their algorithm, two separated routines (optimizing SVM
and C5.0 independently, and optimizing mixed ensemble)
are carried out in order to determine optimal parameters
for SVM and C5.0. A unique feature of the mixed ensemble
is that the model delivers a hospital readmission prediction
with balanced accuracy and reasonable transparency.

5.2 Feature Interpretability Enhancement

To enhance model interpretability, another effective way is
to select/create effective features. By using a small set of
important features, the model can inform factors playing
important roles for readmission prediction.

5.2.1 Feature Selection

Feature selection selects or extracts significant variables
from a set of given features to explain model decisions. Such
approaches can ensure that the variables included in the
final model have clinical significance, can be identified and
understood, and can lead to new insights and hypotheses.
Most importantly, interpretable machine learning supports
clinicians and patients” decision-making by clearly indicat-
ing the nature and characteristics of the most important
variables for algorithms to make a prediction.

SHAP (Shapley Additive exPlanations) value [150] is a
feature selection based approach to predict personalized
patients during and after hospitalization. The interactions
between variables are examined by SHAP, followed by
Gradient Boosting Machine (GBM) being used to train
predictive models based on selected features. The most
significant features include primary diagnosis, length of
stay, and so on. The final predictive performance is: 30-
day readmission (AUC 0.76/BSL 0.11); LOS > 5 days (AUC
0.84/BSL 0.15); death within 48-72h (AUC 0.91/BSL 0.001).
Similarly, information-based (Gini indexing) and frequency-
based feature reduction methods are used to improve the
understandability of determining readmissions based on a
number of variables. Their research shows that prescription
drugs, diagnostics, and information about operations dur-
ing admission can help predict the admission rate [72].

5.2.2 Feature Learning

Feature learning intends to transform complex, redundant,
and high dimensional features into a new representation,
such as a dense feature vector, that can be effectively ex-
ploited in machine learning tasks. The strength of feature
learning is that it extracts useful features or representations
from raw data, and also learns the predictive task at the
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same time. Feature learning can be divided into two cat-
egories: supervised feature learning in which features are
learned with labeled input data and unsupervised feature
learning, which learns features from unlabeled input data.
For most feature learning methods, the output features
are dense vectors suitable for machine learning, but difficult
for human understanding. A recent study [105] proposes
to embed 971 features into 100 sparse dimensions through
a k-sparse auto-encoding using health data records from
Yale New Haven Health system. k-sparse auto-encoder is
a sparse embedding function which carries the most vital
information for each patient and considers the embedded
vectors as a concentration of the original features. Given a
dataset D = [X1,Xa, -+, X,] € R™*™ with n instances and
m original features, and each instance X; € R™ is denoted
by an m dimensional features, the classical autoencoder
objective function is defined as Eq. (10). ¢ denotes encoder
transition converting X; to a new k dimensional feature
space X; € R*, and 1 is the decoder transition converting
X; back to the original input space. (¢ o ¥)X; denotes the
composite function, encoding and decoding to X;.

¢:X—>)~( 1&:)~(—>X

. 1 n 2
argmin o > X = (60 9)Xill2
b \Y?IEE:lzl
Then a k-sparse activation constraint in Eq. (11) is used to
penalize the deviation between observed average activation
value of neurons pj, p from pre-defined average activation
value p;, 1, on all instances in D.

(10)

. 0 o 2
wgminY,  Imes(0. o —pio)l” )
Finally, a secondary constraint is applied to limit each
dimension of the sparse embedding to either 1 or 0. This
binarization forces the sparse embedding to carry the most
significant information for each patient.

. 1 n H =~
ar%xriun D] Zi:l thl(xi,h x (1 —=Xin))

Based on the above design, a hierarchical structure in
an interpretable framework is embedded with the sparse
vectors. The patient data distribution shows that sparse em-
bedding can make the hidden phenotype in the admission
cohort more prominent. Therefore, the method shows capa-
bility of maintaining the integrity of important information.

12)

5.3 Feature-Model Interpretability Enhancement

Medical data often have high dimensions, resulting in low
learning efficiency, high complexity models with poor inter-
pretability [33]. To enhance the interpretability, feature and
model combined enhancement approaches integrate feature
learning and model training together to learn features easy
to interpret and models with a better prediction accuracy.

5.3.1 Feature Regularization Models

Sparsity regularization is commonly used to regularize the
feature space by using different weight values for the pre-
dictive models to leverage feature weights for prediction.
sSparsity Regularization Sparsity regularization uses Ly
norm normalization to enforce the sparsity, so majority
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features have small weight values except that a few impor-
tant features have relatively large values. In the research
aiming to identify unplanned readmission risks in a high
dimensionality electronic health dataset, a tree-lasso logistic
regression [33] is proposed to integrate ICD-9-CM hierarchy
for pediatric hospital readmission. The learning objective is
to minimize a penalized likelihood defined in Eq. (13).
L£(O) =) (1 +exp(—yi(x] 0 + c))) + AP(0)

=1

(13)

In Eq. (13), € is the model parameter (weight values of
features), x; defines feature vector of a patient (such as ICD-
9-CM codes of each visit), and y; € {—1,1} is the label of
x;. cand A are predefined parameters. P(¢) defines the reg-
ularization term, and for Lasso regularization it is defined
as P(0) = Y7L, |0;] which encourages to select “sparse”
features. In reality, Lasso regularization still selects a rather
large number of features hard to interpret, so Tree-Lasso
regularization uses another regularization term defined in
Eq. (14). The key idea is to utilize the ICD-9-CM hierarchy of
diagnoses, which represents groups of diagnostic does. For
example, code between 001 and 139 represent infectious and
parasitic diseases, and 001 to 009 further represent intestinal
infectious diseases.

PO) => wilxg,ll (14)
gk

In Eq. (13), G}, defines the group of features selected by the
k'™ node in the hierarchy. || - || is the Ly norm, and w” is
the weight assigned to each node.

The above model was evaluated using 66,000 pediatric
hospital records, in terms of model interpretability and
selecting features on different hierarchical levels of dis-
ease classes. Comparing to traditional Lasso logistic, the
integration of ICD-9-CM hierarchy diseases provides better
model interpretability and AUC values (0.779) with less
information than traditional Lasso model.

Domain hierarchical structure of the diseases code (e.g.
ICD-9-CM hierarchy) is also used in another tree based
sparsity-inducing regularization [110] which exploits do-
main induced hierarchical structure for disease codes to
improve the comprehension of hospital readmission topic.
In their study, four regularizaition methods are compared
in respect to logistic regression model. Sparse Group Regu-
larizer (SGL) and Tree Structures Group Regularizer (TSGL)
outperform L; and Ly norm regularization. SGL assumes
the input features can be set into & groups while TSGL
applies the hierarchical structure presented on the features.
Also, the TSGL method is proved with better sparsity at
higher levels of the hierarchy.

¢ Attention Regularization Attention is a neural network
mechanism to assign weight values to features/instances,
by taking their correlation into consideration. An attention
based neural network model (MLP_attention) is proposed
to generate interpretable prediction results to determine the
contribution of each feature. The final input feature rep-
resentation is calculated by element-wise multiplication of
input feature vector X and the attention signal o generated
by a fully connected layer [86].

A two-level neural attention model [151] proposes to
consider hospital visits in a reverse time order so that recent
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clinical visits receive higher attention weights. The model,
validated on 14 million visits, delivers better accuracy and
interpretability compared to generic deep learning methods.
It can also detect influential past visits and significant clini-
cal variables within those visits (e.g. key diagnoses).

5.3.2 Feature Topic Models

Topic modeling is a machine learning approach that ex-
plores high level semantics from text documents. In a gen-
eral setting, a set of documents are used to find clusters
of words with similar semantics, which are interpreted as
topics. Intuitively, feature vectors representing patients” in-
hospital treatment can be very sparse and the relationships
between features with similar meanings are also ignored.
Topic modelling is one effective way to solve this challenge,
by assigning features to different topics. This will essentially
enhance the interpretability for both model and features,
because users can understand which features, such as ICD
codes, are tied to certain disease (topics).

Latent Semantic Analysis (LSA), Hierarchical Dirichlet
Process (HDP), and Latent Dirichlet Allocation (LDA) are
commonly used topic models, but they normally cannot
take label information into consideration to learn topics. In
a research to predict post-ICU mortality [81], labeled-LDA
(Latent Dirichlet Allocation) [152] is used to incorporate
domain knowledge into topic modeling, by using ICD-9-CM
codes as labels (domain knowledge). Given a dataset with D
documents and N unique words (w1, w2, - ,wn), a list of
binary topic presence/absence indicators A9 = (I, ..., 1)
are used to denote topic(s) the current document d is as-
sociated to. The learning of labeled-LDA [152] is to train a
generative model in Fig. 5. Unlike traditional LDA model
in which a multinomial mixture distribution §(® is drawn
over a K topics for each document d from a Dirichlet
prior & = (a1, ,ak), in Labeled-LDA, the multinomial
mixture distribution (%) is restricted only over topics that
equivalent to its labels A(® as shown in Fig. 5.

6O

(o @10
Za w df) .

D

O
O

Fig. 5: Labeled-LDA topic model. Colored nodes are ob-
servable variables, where w is a list of word indices (there
are N words in total), and A is a list of binary topic pres-
ence/absence indicators. « is the parameter of the Dirichlet
topic prior; ¢ is the labeling prior probability; 6 is the
mixture distribution over all topics; z, is the word-topic
assignments; [ is the multi-nomial topic distributions over
vocabulary; 7 is the parameters of the word prior.

Table 7 lists examples of ICD-9-CM codes, their defini-
tions along with the corresponding keywords learned from
Labeled-LDA. For example, “Anemia” topic includes words
“tablet”, “mg”, “blood”, “po”, etc. There are two advantages
of using the ICD-9-CM code as a label in Labeled-LDA.
First, the clinical notes from a given patient’s record only
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contribute to a subset of topics corresponding to that pa-
tient’s ICD-9-CM code assignment. Secondly, by combining
the ICD-9-CM code definition and the keywords of a given
theme, the interpretability of the theme can be realized.

TABLE 7: Examples of feature topic models using Labeled-
LDA to find keywords associated to ICD-9-CM codes. “Def-
inition” shows diseases, injuries, symptoms and conditions
defined by ICD-9-CM codes. “Keywords” are the words
learned to correspond to the ICD-9-CM.

ICD-9-CM | Definition Keywords
280-285 Anemia pt tablet mg blood po hct sig daily discharge
pm doctor namepattern md patient pain day
history gi admission hospital
420-429 Other forms of | pt mg patient hr chest resp left lasix gi po
heart disease stable pain gu neuro gtt bp bs day cv plan
270-279 Other metabolic | patient mg pt chest day left artery pain po
and immunity | stable coronary cabg status discharge history
disorders date post namepattern clip examination
317-319 Mental retarda- | pttube noted chest cc resp patient retardation
tion thick secretions care cont plan trach abd hr ct
neuro telemetry coarse

By using textual information, such as medical notes and
other structured data from MIMIC II database, the model
is validated to achieve transparent outcome prediction and
high AUC scores (0.835 and 0.829) for 30-days and 6-months
readmission prediction, respectively [81].

5.3.3 Feature Interaction Models

Using interactions between variables can interpret mod-
els by explaining factors playing important roles in the
decision. Accordingly, generalized additive models with
pairwise interactions (GA?Ms) is proposed using standard
Generalized additive models (GAMSs), which usually model
the dependent variable as a sum of univariate models [153].
Pairwise interactions is added into GAMs in order to im-
prove model accuracy and interpretability. Eq.(15) shows
how GA2Ms works: z; = (i1, ..., Tip) is the feature vector
with p features and y; is the target. ¢ is the link function,
for each item f;, E[f;] = 0. For GA®?Ms, it builds the best
GAM at first and then all possible pairs of interactions
in the residuals are detected and ranked. It is tested on
a readmission prediction for pneumonia case study and
GA?M models present an excellent readmission prediction
accuracy while at the meantime, the interpretability of the
decisions is improved. GA?Ms is proved to be useful in ac-
curately explaining the prediction decisions made by model
for each patient focusing on the most relevant terms for each
patient [154].

9(Ely]) = Bo + Z fi(xj) + Z fij(@i, ;)
J 7]

Using deep neural networks, INPREM [155] is recently
proposed to enhance deep learning interpretability for inter-
pretable and trustworthy healthcare prediction. To ensure
model interpretability, INPREM employs a CM € RT*IC1x!
matrix to characterize contributions of different factors,
where T denotes the number of hospital visits, |C| denotes
number of medical/procedure codes, and [ denotes the
number of classes. CM[i, j][k] captures the contribution of
the 7" medical event in the i*" visit, with respect to the class
k. By using deep neural networks to learn weight matrices

(15)
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w, € R9¥I and w, € R9%! where g is the dimension
of the embedding space. It also uses o € R*7 to capture
non-linear dependencies between visits, and uses 3 € R9*T
to encode non-linear dependencies between medical events
within each visit, INPREM calculates CM matrix using
Eq. (16), where ® denotes element-wise multiplication.

CMi, j) = W (ali]B[:,i] © W,[:, j]) (16)

6 MODEL IMPLEMENTATION CONFLICT

HRRP is evidently effective in encouraging hospitals, es-
pecially the ones with high readmission rates, to reduce
readmission rates [123]. Ideally, it is expected that the
program will motivate hospitals to improve treatments,
enforce discharge evaluation and follow-up procedures, and
eventually lead to medical cost reduction and improve the
patient satisfaction and qualify of services [156]. In reality,
however, the implementation of the models is challenged by
many conflicts, partially because predictive models create a
layer of separation between patients and care providers.

6.1 Quality Contradiction
6.1.1

Concerns about the HRRP program, as a healthcare service
quality measurement, have been rising due to the com-
plexity of the healthcare ecosystem. One one hand, for
many patients, even if they do receive high-quality care,
there still exists possibility the patients will return to the
hospital due to the nature of disease development. An
inverse relationship between a hospital’s readmission rate
and its mortality rate has been observed, and shows that
low-mortality hospitals tend to have higher readmission
rates [157]. On the other hand, prediction models usually
fail to include data elements that have perverse incentives
such as prior utilization. In order to determine whether the
healthcare expenses of patients with a 30-day readmission
differ from those without a 30-day readmission, a retro-
spective study is designed to measure the consequences.
After comparing the 12 month genuine costs of two groups
of patients: patients with a 30-day readmission vs. patients
without 30-day readmission, the study show that readmit-
ted patients are often “sicker” than non-admitted patients.
Therefore, using hospital readmission model for profiling
hospitals may “systematically underestimate performance
of hospitals with high rates of observed readmissions”, and
jeopardy the true “saving” to the healthcare system [158].

Another research [159] also concludes that certain pa-
tient groups, such as cardiac arrest, have high readmission
rates and inpatient costs. A two-part model, including a lo-
gistic model and a gamma regression model, is constructed
to determine adjusted costs and cost ratios based on a
cohort from GWTG-Resuscitation submitted by 523 acute-
care hospitals with a total number of 19,373 patients. The
overall amount of 30-day readmission is 2005 in which
cardiovascular disease contributes to 35.9% followed by
pulmonary disease (17.1%). For inpatient resource usages,
the mean cost of in-hospital cardiac arrest is $35,808 +
$38,230, much higher than the average cost $7,741 + $2,323
of the whole cohort.

Controversial Measurement
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6.1.2 Unintended Consequence

After the HRRP initiative, the readmission rate has shown
an annually downward trend. Yet, the true factors and
the consequence of this reduction have not been clearly
understood so far. One possible reason is that hospitals
choose to avoid readmissions by raising the threshold to
readjust patients recently discharged from the hospital.
A recent research [160] studies the HRRP policy on the
emergency (ER) visit, and observes that HRRP is associated
with a decreasing likelihood “that hospitals would readmit
recently discharged patients returning to the ED within 30
days of discharge”. Such observations raise concerns about
unintended consequence of the HRRP program, and its
potential long term impact to both hospitals and patients.

6.2 Cost Contradiction
6.2.1 Emotional Cost Implication

Being readmitted into hospital after a recent discharge is
a complicated experience for many patients. Researchers
find that patients often harbor different opinions towards
their own readmission from healthcare providers [161].
The research, from 178 interviews of readmitted patients
compared with the perspective of the admission provider,
concludes that 58% patients believe that system issues,
controlled by the discharge process, are the contributors
to their readmission. Meanwhile, patients concern that
their readmission could have been avoided if the system
were modified. In NSW Australia, in order to explore the
readmission experience of aged population, three elderly
patients discharged from a large tertiary referral hospital
are interviewed. Their feedback suggests that nurses are
more proactive in people-centered care of older patients to
alleviate the patient being left out and let down [162].

In order to study relationship between patient experi-
ence and predictive modeling of readmission, a research
[163] uses patient-level Hospital Consumer Assessment of
Healthcare Providers and Systems (HCHAPS) and Press
Ganey data to understand whether a patient being readmit-
ted is a driver of poor experience scores (reverse causation).
The study uses multivariable logistic regression to analyze
how HCHAPS and Press Ganey data 30-readmission status
are correlated. The results point out that “poor patient
experience may be due to being readmitted, rather than
being predictive of readmission”. In other words, predictive
models do not directly lead to poor patient experience [163].

6.2.2 Financial Cost Implication

Despite of the cost reduction motivation of the HRRP initia-
tive, the total costs to hospitals and patients are contracting.
At very minimum level, the implementation of predictive
models in hospitals, prior to the discharge of patients for
preventable readmission, is time consuming and expensive.
The long term accumulated costs can even be more pro-
found. A study using hierarchical regression analyses to
examine the cumulative costs of short-term readmissions af-
ter percutaneous coronary intervention (PCI) shows that 30
days of readmission and cumulative expenses are positively
correlated [164]. To reduce readmission, a study suggests
hospitals to consider providing better medication reconcili-
ation, giving instruction to both patients and their caregivers
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on the follow-up care and also implementing post-discharge
care coordination [116]. The post-discharge education and
follow-up intervention include complimentary home visit
within 48 hours after a patient is discharged to review the
education provided before discharge and a minimum of
four nursing telephone meetings. Despite of the fact that the
intervention [165] on a patient after discharge is effective in
reducing readmission rate, it imposes significant extra costs
to medical staff and healthcare systems.

A research [166] investigates 8 million Medicare benefi-
ciary hospitalizations from 2005 to 2015, and finds that the
implementation of the HRRP is associated with a significant
increase in 30-day postdischarge mortality among beneficia-
ries hospitalized for heart failure and pneumonia. In other
words, there is an association that 30-day readmission policy
may increase the mortality for patients beyond the 30 day
window. On the other hand, another study [167] shows
that transitional care interventions, such as home visits by
nurses, can reduce death rates and hospital readmissions by
more than 30%. As a result, they suggest that transitional
care services should become the standard of care for post-
discharge management of patients with heart failure.

6.3
6.3.1 Patient Willingness

Intervention Contradiction

The implementation of predictive models implies an inter-
vention process which may contradict to patients” willing-
ness. For example, a model may predict a patient as high
readmission risk and requires further hospitalization, but
the patient feels fine and is unwilling to cope. Discharge
against medical advice (AMA) means a patient chooses to
leave the hospital earlier than the discharge recommenda-
tion. Leaving the hospital without following the doctor’s
advice may put the patient at risk of insufficient medical
care and result in the need for readmission. A retrospec-
tive cohort analysis based on 2014 National Readmission
Database shows that patients discharged against medical
advice (AMA) are of larger possibility of 30-day readmission
compared with non-AMA individuals, which has caused
huge loss to the healthcare system and higher hospital
mortality. Patients discharged from the AMA are also more
likely to have an earlier rebound and readmission, which
may reflect their dissatisfaction with the initial care [168].

6.3.2 Patient Privacy

As EMRs are becoming common, the automatic collection,
use and storage of patient medical information have been
facilitated, allowing studies on hospital readmission and
stimulating care providers for automated decision making.
However, the applications of large amounts of medical data
also raise public concerns about patients’ medical infor-
mation leakage. Although HIPAA and other institutions
prohibit researchers to use identified patient-level data and
patients” personal information are protected properly by
this policy [126], [169], indeed, there are always risks of
information breach. Developers need to find a balance be-
tween collecting sufficient representative patients’” medical
data and minimizing the risk of leaking patients’ privacy.
A governance structure that includes patients and other

1545-5963 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See htt%:
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stakeholders early in the development of a model is rec-
ommended to be implemented by model developers at the
earliest stage of development [125].

7 DATASETS AND RESOURCES

In this section, we summarize a list of datasets publicly
available for hospital readmission prediction in Table 9.

71

All cause datasets contain information about all hospitalized
patients of typical diseases within a specific period of time.

Among all data sources, the Healthcare Cost and Uti-
lization Project (HCUP) contributes significantly to the na-
tionwide databases in healthcare readmission. HCUP is de-
veloped as a combination of healthcare databases, software
tools, and products through federal-state-industry partner-
ships and are jointly developed by healthcare research and
the Agency for Healthcare Research and Quality (AHRQ).
Table 8 lists the National Inpatient Dataset (NIS), State
Inpatient Databases (SID), and Nationwide Readmissions
Database (NRD), which all belong to the HCUP databases.

The HCUP database brings together the data collection
efforts of state data organizations, hospital associations,
private data organizations, and the federal government to
create a national information resource for encounter-level
medical data as shown in Table 8. HCUP includes the largest
collection of longitudinal hospital care data in the United
States, starting from 1988 with full payment, encounter level
information. These databases can be used to study a wide
range of health policy issues, including the cost and quality
of medical services, medical practices at the national, state
and local market levels, access to health care plans, and
treatment outcomes.

TABLE 8: HCUP Databases

All Cause Readmission Datasets

Dataset Description #of
records
National (Nationwide) In- | U.S. regional and national | 7 million
patient  Sample  (NIS) https: | estimates of inpatient uti- | each year
/ /www.hcup-us.ahrq.gov/db/ lization, access, charges,
nation/nis/nisdbdocumentation.jsp quality, and outcomes
Kids’ Inpatient Database | The largest publicly- | 3 million
(KID) https://www.hcup-us. | available all-payer | each year
ahrq.gov/db/nation/kid/ pediatric  inpatient care
kiddbdocumentation.jsp database in the US
Nationwide Ambulatory Surgery | The largest all-payer ambu- | 9.9
Sample (NASS)  https://www. | latory surgery database in | million
hcup-us.ahrq.gov/db/nation/nass/ | the United States each year
nassdbdocumentation.jsp
Nationwide Emergency Department | The  largest all-payer | 30 million
Sample (NEDS) https://www. | emergency department | each year
hcup-us.ahrq.gov/db/nation/ (ED) database in the
neds/nedsdbdocumentation.jsp United States
Nationwide Readmissions | Support various types of | 18 million
Database (NRD) https://www. | analyses of national read- | each year
hcup-us.ahrq.gov/db/nation/nrd/ mission rates for all pa-
nrddbdocumentation jsp tients
State Inpatient Databases (SID) | Inpatient discharge records | State-
https:/ /www.hcup-us.ahrq.gov/ from community hospitals | specific
db/state/siddbdocumentation.jsp in that State
State Ambulatory Surgery and | Encounter-level data for | State-
Services Databases (SASD) | ambulatory surgeries and | specific
https:/ /www.hcup-us.ahrq.gov/ may also include various
db/state/sasddbdocumentation.jsp types of outpatient services
State Emergency Depart- | Emergency visits | State-
ment Databases (SEDD) | at hospital-affiliated | specific
https:/ /www.hcup-us.ahrq.gov/ emergency dept. (EDs) not
db/state/sedddbdocumentation.jsp resulting in hospitalization
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TABLE 9: Public datasets used for hospital readmission prediction (Demographics (Demo.), Hospital Information (Hosp.),
Clinical Information (CL), Healthcare utilization (HC)

Dataset & Paper Type Population #of patients | #of admin. Demo Hosp.| CL HC.
Medicare Provider Analysis & Review (MedPAR) [6], [73] | All cause Medicare 10E5 NA v v v v
Medicare Current Beneficiary Survey (MCBS) [158] All cause Medicare 10E5 NA v v v v
Health Care’s Enterprise Data Warehouse (EDW) [29] All cause 18+ 10E5 NA v v v v
Cerner’s Millennium® EHR software system [29] All cause NA 10E5 NA X X v X
New Zealand National Minimum Dataset [30], [87] All cause All patients 10E5 NA X X v X
National Inpatient Dataset (NIS) [32] All cause All patients 10E5 NA v v v v
State Inpatient DB (SID) [33], [50], [68], [75], [76], [145] All cause All patients 10E5 NA v X v v
Nationwide Readmissions Database (NRD) [84] All cause All patients 10E5 NA v v v v
Resource and Patient Management System (RPMS) [45] All cause All patients 10E5 NA v X v v
Nationally Rep. Health and Retirement Study (HRS) [47] All cause 50+ 20000 NA v X v X
Queensland Hosp. Admit. Patient Data (QHAPDC) [62] All cause All patients 10E5 NA v X v X
MIMIC III database [92] All cause 16+ 38,597 49,785 v X v v
MIMIC I database [81] All cause 16+ 26,000 NA v X v v
Cerner Health Facts database [100] All cause All patients 17,880,231 74,036,643 v v 4 v
Natl. Surgical Quality Imp. Program [42], [58], [106] Surgery All patients NA NA v v v v
PREVENT III database [60] Limb ischemia | 18+ 1404 24.4% v X v v
WHICH? Trial [94] Heart Failure 18+ 280 13% v X v v
UCI Machine Learning Repository”Diabetes-130US” [9] Diabetes All patients NA 69,984 v X v v

1545-5963 (c) 2021 IEEE. Personal use is permitted, but r

7.2 Specialized Readmission Datasets

Specialized readmission datasets focus on certain type of
diseases, such as diabetes or heart disease, special medical
conditions, or a certain type of medical procedures, such as
surgery procedure intervention.

The National Surgical Quality Improvement Program
(NSQIP) is a surgical result database of the American Col-
lege of Surgeons (ACS), which aims to measure the results
of risk-adjusted surgical interventions in order to compare
results between hospitals. It is based on 135 variables
collected before surgery to 30 days after surgery such as
demographics, surgical profile and infection at the surgical
site. Through this risk adjustment completed by logistic
regression model, the results of hospitals of different sizes
that serve different patient populations can be fairly com-
pared. ACS NSQIP data enhances the hospital’s ability to
zero preventable complications. Because it was developed
by surgeons understanding the actual conditions in the
operating room, ACS NSQIP can help hundreds of hospitals
across the country evaluate the quality of their surgical
plans with unparalleled accuracy and significantly improve
the surgical results.

7.3 Data Fields Related to Readmission
7.3.1 Dataset Statistics

Table 9 includes simple statistics and brief features the
dataset. The type of patient indicates whether the dataset
is collected from all causes or from specific cohorts. Pop-
ulation specifies the patient groups, and number of pa-
tients/admissions specify the dataset size. Because some
patients may return to hospital (readmission) for multiple
times, the number of patients and number of readmission
often vary for each dataset.

7.3.2 Patient Information

The check boxes in Table 9 list whether a dataset has
patient information includes demographics (Demo), patient
clinical information (CL) and healthcare utilization (HC).
Patients age, gender, insurance information, marital status,

epublication/redistribution requires IEEE permission. See http://www.ieee.org/pul
Authorized licensed use limited E): Florida Atlantic University. Downloaded on July %)5,2021 at 19:3%:06 UTC from IEE

education, medical history, income etc, are considered as
demographics. Clinical information including patients” in-
hospital information such as the treatment he/she received,
lab values are categorized into patient information. The
last part of patient information is the healthcare utilization,
which consists of patients” length of stay in the hospital,
admission and discharge date, medical notes etc.

7.3.3 Hospital Information

Hospital information (Hosp) specifies whether the dataset
has information about the hospitals to which patients were
admitted. In most cases, such hospital information includes
hospital teaching status, location (rural/urban), hospital
ownership (private/public), hospital bed sizes, and the an-
nually hospital total discharges etc.

8 DiscussION
8.1 Summary of Data & Model Challenge Solutions

Data and model challenges represent the two most critical
factors for predictive modeling of hospital readmission. In
Table 10, we outline strength and weakness of solutions
proposed to address these two types of challenges. Indeed,
no single approach can perfectly address both challenges,
and an effective solution should be customized based on
the real-world domain settings.

8.2 Future Research

This survey opens many opportunities for future study.
First, our taxonomy organizes challenges into two main
categories (data challenges vs. model challenges). Health
and medical domains typically rely on specific measures,
in addition to common measures, such as accuracy, AUC
value etc. Therefore, other challenges, such as performance
metrics, may also be considered for future research. Second,
our survey emphasizes on academic publications, yet many
commercial systems are available and they are focused
on the system and engineering aspects of the problem.
Third, we are focused on the English literature, and in-
herently overlooked high-quality publications from non-
English venues.

Xplore. Restrictions apply.
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TABLE 10: Summary of strength vs. weakness of methods addressing data & model challenges

Challenges Solutions Strengths

Weaknesses

Sampling approaches

low cost, high understandability

low representativeness

Cost-sensitive learning

can integrate medical costs in modeling

time-consuming finding accurate loss function

Ensemble learning

better performance than single classifier

time-consuming with Iarge medical record

Federated Iearning

better patient privacy protection

expensive communication

Singular features
Hybrid features

Data challenges

high representative features can be used

sparse, may ignore some informative features

Embedding features

dense features with Jow dimensionality

hard to understand feature meaning

Disease specific prediction
Gender-specific prediction
Race, ethnicity-specific prediction

provide better predictions for targeted patients

not applicable to different disease types prediction

All-cause prediction

rich data from all disease types

less accurate than domain-specific models

Simple transparent models

simple, easy to understand

less accurate

Hybrid transparent models

high interpretability

large computational requirement

Feature selection
Feature learning

Model challenges

important, indicative clinical features can be selected

do not guarantee improved performance

Feature regularization models
Feature topic models

fair weight values distribution

can not select groups of correlated features

9 CONCLUSIONS

In this paper, we provided a comprehensive review of
predictive models for hospital readmission. The survey first
proposes a taxonomy to summarize challenges into four
main categories: (1) data imbalance, locality and privacy;
(2) data variety and complexity; (3) model interpretability;
and (4) model implementation. We further organized chal-
lenges into subgroups in which the main probffems of these
challenges, the %indrance to hospital readmission prediction
research, and improvement or solutions are discussed. Pop-
ular predictive model types, according to methods used, and
public available datasets for hospital readmission prediction
are summarized to provide materials for creative modeling
approaches. The survey, including summary and analysis,
not only provides a thorough understanding of existing
challenges and methods in this field, but also lists avail-
able resources to advance the research for accurate hospital
readmission prediction and modelling.
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