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1 | INTRODUCTION

Noisy matrix completion (NMC) refers to the reconstruction of a low-rank matrix M € R41*% after
observing a small subset of M’s entries with random noise. Problems of this nature arise naturally in
various applications. For the sake of generality, we shall cast it in the framework of trace regression
where each observation is a random pair (X, ¥) with X € R%*% and Y€ R. The random matrix X is
sampled uniformly from the orthonormal basis € = {ejl ejT: ji1 €ld,l.j, €ld,]}, where [d]={1,---,d}
2
and {e; }; ¢4, and {e; }; ¢14,) are the canonical basis vectors in R4 and R®, respectively. It is worth
pointing out that, while we shall focus on the canonical basis in this work, our framework can be
easily extended to general product basis where {e; }; c(4,; and {e; }; ¢4, are arbitrary orthonormal
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basis in R4 and R%, respectively. Without loss of generality, we shall assume that d, > d, and denote
a,=d, /d, the aspect ratio of M. The response variable Y is related to X via

Y=(M,X)+¢ 1)

where (M, X) = Tr(M" X), and the independent measurement error & is assumed to be a centred sub-Gauss-
ian random variable. Our goal is to infer M from n i.i.d. copies {(X;, ¥;)} _, obeying (1) when, in particular,
M is of (approximately) low rank and » is much smaller than d, d,.

In the absence of measurement error (e.g. £=0), Candes and Recht (2009) first discovered that
exact matrix completion can be solved efficiently by relaxing the non-convex and non-smooth rank
constraint of a matrix to its nuclear norm. Following the pioneering work, nuclear-norm penalized
least squares estimators (Cai & Zhou, 2016; Cai et al., 2010; Candes & Tao, 2009; Candes & Plan,
2010; Gross, 2011; Negahban & Wainwright, 2011; Rohde and Tsybakov, 2011) and numerous other
variants (Cai & Zhang, 2015; Gao et al., 2016; Klopp, 2014; Koltchinskii et al., 2011; Liu, 2011;
Recht et al., 2010; Sun & Zhang, 2012) have been studied. It is now understood, from these develop-
ments, that even when the observations are contaminated with noise, statistically optimal convergence
rates are attainable by efficiently computable convex methods. For instance, Koltchinskii et al. (2011)
proved that a modified matrix LASSO estimator, denoted by M , achieves the convergence rate:

@

A~KLT T dzdzlogdl
M~ -M|Z=0 <(6¢+ M| a)? - ————

as long as n>>d,logd,, where r is the rank of M and o-? is the variance of . Here, || - || denotes the matrix
Frobenius norm and || - ||, denotes the max-norm defined as [|A|| . =max; eig.15,e14, A0 72| Tt is
worth noting that (2) was established without additional assumptions on M. As a result, the rate given on
the right-hand side of (2) depends on ||M||,,,, and does not vanish even when o, =0.

In addition to convex methods, non-convex approaches such as those based on matrix factorization
have also been developed. For instance, Keshavan, Montanari and Oh (2010b) proposed a non-convex
estimator based on the thin singular value decomposition (SVD), denoted by M , and show that

2
rd|dylogd, ) 3)

~KMO 2 >
I3 M2 =002

assuming that n>>rd, (r+logd,) and M satisfies the so-called incoherent condition. See also, for exam-
ple Zhao et al. (2015), Chen and Wainwright (2015), Cai et al. (2016b) and references therein. The rate
(3) is optimal up to the logarithmic factors, see, for example Koltchinskii et al. (2011) and Ma and Wu
(2015), for a comparable minimax lower bound. More recently, an alternative scheme of matrix factoriza-
tion attracted much attention. See, for example Wang et al. (2016); Ge et al. (2016); Zheng and Lafferty
(2016); Chen et al. (2019c, 2019b); Ma et al. (2017); Cheré et al. (2019a). In particular, Ma et al. (2017)
showed this approach yields an estimator, denoted by M, that is statistically optimal not only in matrix
Frobenius norm but also in entry-wise max-norm, that is

~MWC 2
M —Mjl

max

logd,

= 0y(02- 105, )

provided that > r*d,log’d,.
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While there is a rich literature on statistical estimation for NMC, results about its statistical
inferences are relatively scarce. In Carpentier et al. (2015), a debiasing procedure, based on sample
splitting, was proposed for the nuclear norm penalized least squares estimator which enables con-
structing confidence region for M with respect to matrix Frobenius norm when n>> rd,logd,. Their
technique, however, cannot be directly used to make inferences about individual entries or linear
forms as confidence regions for M with respect to matrix Frobenius norm can be too wide for such
purposes. To this end, Carpentier et al. (2018) proposed another procedure to construct entry-wise
confidence intervals. However, their procedure requires that the design, namely the underlying
distribution of X satisfy the so-called restricted isometry property which is violated when X is sam-
pled uniformly from £. Another proposal introduced by Cai et al. (2016a) can be used to construct
confidence intervals for M’s entries. However, it requires that the sample size n>>d,d, which is
significantly larger than the optimal sample size requirement for estimation. In addition, during the
preparation of the current work, Chen et al. (2019¢) announced a different approach to constructing
confidence intervals for the entries of M.

The present article aims to further expand this line of research by introducing a flexible framework
for constructing confidence intervals and testing hypotheses about general linear forms of M, with its
entries as special cases, under optimal sample size:\ rineiquirement. /\Ilrrln a nutshell, we develop a procedure
that, given any entry-wise consistent estimator M in that |[M  —M]||,,, =0p(c;), can yield valid
statistical inferences for m;: = Tr(M" T) under mild regularity conditions. More specifically, we show
that, through double-sample debiasing and spectral projection, we can obtain from the initial estimator
a new one, denoted by M , SO that

Te(M' T) = Tr(M" T)
o (IUTTIIZ+TVIIZ) /2 \/d,d, /n

4 ., 5)

provided that

2 2
T r rlogd, o0 [ayrdid,log°d,
1% T||F+||TV||F>>||T||KI,/d—l-max Vo 2V —

where U and V are M’s left and right singular vectors and 4, is its r-th singular value, and|| - || ,, stands for
the vectorized £, norm. We not only show that (5) holds under optimal sample size (independent of 7)
but also derive its non-asymptotic convergence rate explicitly. Note that condition for ||UT T|| + || TV]|
in a certain sense is necessary to avoid non-regular asymptotic behaviour when || UTT||F+ ITV|[¢=0.
Moreover, we show that under similar conditigns, &) continAues to hold when we replace o, || UTT||F and
|ITV|| by suitable estimates, denoted by 35, [|U T||g and || TV||g, respectively:

Te(' T) = Tr(M'T)
T N
o:(1U TIZE+ITVID/2+/ddy/n

L .1 )

The statistic on the left-hand side is now readily applicable for making inferences about the linear form
Te(M' 7).

Our proposal greatly generalizes the scope of earlier works on inferences for entries of M in several
crucial aspects. First, unlike earlier approaches that focus on a specific estimator of M, our procedure
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can be applied to any entry-wise consistent estimator. This not only brings potential practical bene-
fits but also helps us better understand the fundamental differences between estimation and testing
in the context of NMC. For instance, our results suggest that, perhaps surprisingly, when it comes
to make valid inferences with optimal sample sizes, the rate of convergence of the initial estimate is
irrelevant as long as it is consistent; therefore, a suboptimal estimator may be used for making optimal
inferences.

Second, our approach can be applied in general when T is sparse, and depending on its alignment
with the singular spaces of M, even to cases where it is dense and ||T||§] / ||T||,2: is of the order O(d,).
Entry-wise inferences correspond to the special case when T takes the form eie}'. Extensions to more
general linear forms could prove useful in many applications. For example, in recommender systems,
it may be of interest to decide between items j; and j, which should we recommend to user i. This can
obviously be formulated as a testing problem:

Hy:M(i,j,)=MG.j,) v.s. Hy:M(Gi,j,)>MG,j,), 7

which can be easily solved within our framework by taking T=e; eJ —e; e . More generally, if the target
is a group of users & C [d, ], we might take a linear form 7= Zle?e (e e )T At a technical level, infer-
ences about general linear forms as opposed to entries of M present nontr1v1al challenges because of the
complex dependence structure among the estimated entries. As our theoretical analysis shows, the vari-
ance of the plug-in estimator for the linear form depends on the alignment of the linear form with respect
to the singular space of M rather than the sparsity of the linear form.

An essential part of our technical development is the characterization of the distribution
of the empirical singular vectors for NMC where we take advantage of the recently developed
spectral representation for empirical singular vectors. Similar tools have been used earlier to
derive confidence regions for singular subspaces with respect to £,-norm for low-rank matrix
regression (LMR) when the linear measurement matrix Xs are Gaussian (Xia, 2019a), and the
planted low-rank matrix (PLM) model where every entry of M is observed with i.i.d. Gaussian
noise (Xia, 2019b). In both cases, Gaussian assumption plays a critical role, and furthermore,
it was observed that first-order approximation may lead to suboptimal performances. In the
absence of the Gaussian assumption, the treatment of NMC is technically more challenging
and requires us to derive sharp bounds for the (2, max)-norm for the higher order perturbation
terms. Interestingly, it turns out that, unlike LMR or PLM, a first-order approximation actually
suffices for NMC.

Even though our framework applies to any max-norm consistent matrix estimator, for concrete-
ness, we introduce a novel rotation calibrated gradient descent algorithm on Grassmannians that
yields such an initial estimator. The rotation calibration promotes fast convergence on Grassmannians
so that constant stepsize can be selected to guarantee geometric convergence. We note that exist-
ing results on max-norm convergence rates are established for sampling without replacement (Ma
et al., 2017). It is plausible that (4) may continue to hold under our assumption of independent sam-
pling given the close connection between the two sampling schemes, but an actual proof is likely
much more involved and therefore we opted for the proposed alternative for illustration as it is more
amenable for analysis.

The rest of our paper is organized as follows. In next section, we present a general framework
for estimating m,=Tr(M" T) given an initial estimator through double-sample debiasing and spectral
projection. In Section 3, we establish the asymptotic normality of the estimate obtained. In Section 4,
we propose data-driven estimates for the noise variance and the true singular vectors, based on which
confidence intervals of m; are constructed. In Section 5, we introduce a rotation calibrated gradient
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descent algorlthm on Grassmannians, which, under mild conditions, provides the initial estimator
Il/;[mI so that ||M —M || nax = 0p(0 ). Numerical experiments on both synthetic and real-world data sets
presented in Section 6 further demonstrate the merits of the proposed methodology. All proofs are
presented in the online supplement.

2 | ESTIMATING LINEAR FORMS

We are interested in making inferences about m;=Tr(M'T) for a given T based on observations
={(X;, Y;): 1 <i<n} satisfying model (1), assuming that M has low rank. To this end, we first need
to construct an appropriate estimate of m; which we shall do in this section.

Without loss of generality, we assume 7 is an even number with n=2n,, and split D into two

subsamples:

D\ ={(X, ¥}, and Dy={X.YD}L, .,
In what follows, we shall denote M’s thin SVD by M= UAV", where Ue Q9> Ve Q%> and
A =diag(4,, ---, A,) represent M’s singular vectors and singular values, respectively. The Stiefel manifold
O is defined as O%": = {A € R™": ATA =I}. We arrange M’s positive singular values non-increasingly,
thatis A; >-->4,>0.

Assuming the availability of an initial estimator, our procedure consists of four steps as follows:

e Step I (Initialization): By utilizing the first and second data subsample D,, D, separately, we apply
the initial est1mat1n{g procedure on noisy matrix completion to yield initial (biased in general) esti-
A init ~ Nl

mates M, and M, , respectively. it
e Step 2 (Debiasing): Using the second data subsample D,, we debias M,

n

~unbs  ~init  dd, ~init
M7 =M =2 (= (M, X)X,
ng .
0 i=ny+1

Similarly, we use the first data subsample D, to debias IlA/I;1 " and obtain

~ unbs ~ |n|t d d

M2 = 2 Y, - < i) » XX

e Step 3 (Projection): Compute the top-r left and right singular vectors of M denoted by U 1and V1
. Similarly, compute the top-r left and right singular vectors of M denoted by U2 and V2 Then,
we calculate the (averaged) projection estimate

1~ ATAunbsA AT ] A~ Aunbs A AT

A=§U1UM1 A% +2U2UM V,V,.

o Step 4 (Plug-in): Finally, we estimate m;. by #i; = Tr(M 7).

We now discuss each of the steps in further details.
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2.1 | [Initialization
. . L . A~jinit A init
Apparently, our final estimate depends on the initial estimates M, , M, . However, as we shall show
in the next section, such dependence is falrly weak and the resultmg estimate 7y is asymptotically
init
equivalent as long as the estimation error of M and M, , in terms of max-norm, is of a smaller order
than o & More specifically, we shall assume that

Assumption 1  There exists a sequence y,, 4 4, =0 as n,d,, d, — oo so that with probability at least
1-d;?
] 9

Ainit A init 8
||1‘41 _M”max+“M2 —Mllmax_Cy,,d d, " O¢ (8)

for an absolute constant C > 0.

In particular, bounds similar to (8) have recently been established by Ma et al. (2017), Chen et al.
(2019c). See Equation (4). Assumption 1 was motivated by their results. However, as noted earlier, (4)
was obtained under sampling without replacement and for positively semidefinite matrices. While it is
plausible that it also holds under independent sampling as considered here, an actual proof is lacking
at this point. For concreteness, we shall present a simple algorithm in Section 5 capable of producing
an initial estimate that satisfies Assumption 1.

2.2 | Debiasing

The initial estimate is only assumed to be consistent. It may not necessarily be unbiased or optimal.
To ensure good quality of our final estimate iy, it is important that we first debias it which allows for
sharp spectral perturbation analysis. Debiasing is an essential technique in statistical inferences of high-
dimensional sparse linear regression (see, e.g. Cai & Guo, 2017; Javanmard & Montanari, 2014; Van
de Geer et al, 2014; Zhang & Zhang, 2014) and low-rank matrix regression (see, e.g. Cai et al., 2016a;
Carpentier & Kim, 2018; Carpentier et al., 2018; Xia, 2019a). Oftentimes, debiasing is done in the ab-
sence of the knowledge of Evec(X)vec(X)" and a crucial step is to construct an appropriate decorrelating
matrix. In our setting, it is clear that Evec(X)vec(X)T = (dldz)‘lldl d This allows for a much simplified
treatment via sample splitting, in the same spirit as earlier works including Carpentier et al. (2015), Xia
(2019a), among others. The particular double-sample-splitting technique we employ was first proposed
by Chernozhukov et al. (2018) and avoids the loss of statistical efficiency associated with the sample
splitting. It is worth noting that if the entries are not sampled uniformly, the debiasing procedure needs to
be calibrated accordingly.

In addition to reducing possible bias of the initial estimate, the sample splitting also enables us to
extend the recently developed spectral representation for empirical singular vectors under Gaussian
assumptions to general sub-Gaussian distributions.

2.3 | Spectral projection

Since M have low rank, it is natural to apply spectral trgncatlon to a matrix estimate to yield an
improved estimate. To this egld we | project M and M to their respective leadlng s1ngular sub-

A un Aun
spaces. Note that, while M ,M, are unblased their emp1r1ca1 singular vectors U 1s U2, Vl and V2

2
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are typically not. The spectral projection serves the purpose of reducing entry-wise variances at the
cost of negligible biases.

It is worth noting that the estimate M may not be of rank r. If an exact rank-r estimator is
desired, it suffices to obtain the best rank-r approximation of M via singular value decomposi-
tion and all our development remains valid under such a modification. In general, getting the
initial estimates is the most computational expensive step as the other steps involving fairly
standard operation without incurring any challenging optimization. This is noteworthy because
it suggests that as long as we can compute a good estimate, it does not cost much more compu-
tationally to make inferences.

3 | ASYMPTOTIC NORMALITY OF ni,

We now show the estimate 7i; we derived in the previous section is indeed suitable for inferences
about my by establishing its asymptotic normality.

3.1 | General results

For brevity, let ¢; denote the j-th canonical basis in R< where d might be d, or d, or d, +d, at different
appearances. With slight abuse of notation, denote by || - || the matrix operator norm or vector £,-norm
depending on the dimension of its argument. Denote the condition number of M by

K(M)=A(M)/2,(M)= A,/ 4,. ©

As is conventional in the literature, we shall assume implicitly that rank r is known with r <« d, and M
is well-conditioned so that k(M) < k. In practice, r is usually not known in advance and needs to be
estimated from the data. Our experience with numerical experiments such as those reported in Section 6
suggests that our procedure is generally robust to reasonable estimate of 7. Although a more rigorous justi-
fication of such a phenomenon has thus far eluded us, these promising empirical observations nonetheless
indicate a more careful future investigation is warranted.

In addition, we shall assume that U and V are incoherent, a standard condition for matrix completion.

Assumption 2 Let [|U||p . = MaX;ery, | ||eJ.TU || and there exists p,,, > 0 so that

dl d2
max{ THU“Q,max’ THVHZ,max} SMmax'

We also assume that the noise & is independent with X and sub-Gaussian such that

Assumption 3 The noise ¢ is independent with X and

EE=0, E&=¢2 and Ee¥<e’ ™, VseR (10)

£

Let @;=d, /d,. There exists a large enough absolute constant C; >0 so that
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a,rd>d,log’d
Arzcl,lmax,((z)%‘/%%_ (11)

The SNR condition (11) is optimal up to the logarithmic factors if @ ;, f,y. Ko = O(1). Indeed, the
consistent estimation of singular subspaces requires 1, o, rdfdz /n. This condition is common for
non-convex methods of NMC. However, when a,;>> 1, that is M is highly rectangular, condition (11)
is significantly stronger than the optimal SNR condition even if u,,,,, ko =0(1). It is unclear to us
whether this suboptimality is due to technical issues or reflection of more fundamental differences
between statistical estimation and inference.

To avoid the non-regular asymptotics, we focus on the case when 7' does not lie entirely in the null
space of M. More specifically, we assume that

Assumption 4 There exists a constant a; > 0 such that

r r
U2 arlTle- /5 or ITVIEZarlTle: 4 /-
1 2

The alignment parameter a; in Assumption 4 is allowed to vanish as d,, d,, n — oo. Indeed, as we
show below, the asymptotic normality of /i, —m only requires that

an> ”T”f max 2 rlogdl KOMrznaxo-ﬁ adrd%dZIngdl 12
T= ”max ? . ( )
171l d, A, V n

We are now in position to establish the asymptotic normality of 7i;.

Theorem 1 Under Assumptions 1—4, there exist absolute constants C,, C,, C3, C4, Cs, Cg > 0 so that
ifn>Cu> rdlogd, then

max

My—My

- <9 -0
o (ITVIZ+IUTTIR) - \/ddy

<C oI Tz, [logd, iC HaolI TNz, 0, [a rd>d)log?d,
S K . —
? aTnTnF dy 0 aglTle A n

ITI2, ry/logd  6logd [rd
Hmax 1 2 T
: + o 1 +Cs¥ a0, V108d + Cophimay 71

aTIITlli d, |

SuprIR | P (

where ®@(x) denotes the c.d.f. of the standard normal distribution.
By Theorem 1, if p,,,, @4, ko =0(1) and

7, rlogd1 ITll,, o, |rd dzlog
Ly Vlogd, ¢ —0, (13)
arllT|le aT”T”F /1 ooy !
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then
iy —my

o (ITVIR+IUTTIPY2 - \/d dy /n

d
I '/’/(09 1)7

asn,d,d, — co.

3.2 | Specific examples
We now consider several specific linear forms to further illustrate the implications of Theorem 1.

Example 1 As noted before, among the simplest linear forms are entries of M. In particular,
M(i,j)=(M, T) with T= el-ejT. It is clear that ||T||,f1 =||T||¢=1and Assumption 4 is equivalent to

E
el Ull+lle] VI > azy [ (14)
J dl

Theorem 1 immediately implies that

M, j)— MG, j)
(le] UIP+1le] VI)'/2 - 0.+/dydy [n
provided that

2 2 2 2
logd, « (o) a rdd,log"d
max( 222 [T S0 6N JRRE D aVlogd) 0 (9
ar d, ar A, n

asn,d,d, — co.
We can also infer from the entry-wise asymptotic normality that

40, 1),

R o2rd,d,(d, +d,)
ENI-MI2=(1+0o(1)) ———— = (16)
n

The mean squared error on the right-hand side is sharply optimal and matches the minimax lower bound
in Koltchinskii et al. (2011).

Example 2 In the case when we want to compare M(i,j,) and M(i,j,), we can take T=e¢; ej —e; eJT
Because | T]|,, JITe= \/_ 2, Assumption 4 then becomes

2
ITVIR+IUTTIE =200 el + 11V (e;, —e)II* > d a7
1
Theorem 1 therefore implies that

QIUTe I +11V'(e; e, )P/ 0:1/drdy/n
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provided that

2 2 / 2 2
Miae [rlogd, KoHi. © a,rdid,log"d
max " =4 s 0" ma : _5 Lgl» }/n,dl,dz \/ logdl —0. (18)
ar v d, ar A, n

Example 3 More generally, we can consider the case when 7 is sparse in that it has up to s, nonzero
entries. By Cauchy—Schwartz inequality, ||T||fl /ITe < \/% so that Assumption 4 holds. By
Theorem 1,

~
mp—my

o (ITVIR+IUTTIPY2 - \/dydy /n

) 2 2 2
U sorlogd, Kol o soa rdsd,log”d
max max 0108d, , 0 max _¢ Odl—zgl,yn’dl’dz\/logdl - 0. (19)
ar v d, ar 4, n

It is of interest to consider the effect of alignment of 7" with respect to the singular spaces of M. Note that

L # O, 1),

as long as

ITIZ=NUTTIZ+NUTTIZ=TVIE+ TV 12,

where U € 04*@=D and V| € 04X(@~") are the basis of the orthogonal complement of U and V, respec-
tively. In the case that 7 is not dominated by its projection onto U, or V| in that|| U’ T||g+||TV||gis of the
same order as || 7|, we can allow 7 to have as many as O(d,) non-zero entries.

4 | INFERENCES ABOUT LINEAR FORMS

The asymptotic normality of 777 we showed in the previous section forms the basis for making infer-
ences about my. To derive confidence intervals of or testing hypotheses about m, however, we need
to also estimate the variance of 71i;. To this end, we shall estimate the noise variance by

2 1 n A init ~ init

_ 2 1 ny 2
Gé_z_no i=ny+1 ¥i—(M, . X)) +2—”0 Zi:l (Y= (M, X)) (20)

and | TVIIZ+IUTTIZ by

~2

L T/\ ) /\TTZ T/‘> b /\TT2
spo=5 (ITVilE+ 11U, T+ 1TV, IE+ U, TIE ) -

N —

The following theorem shows that the asymptotic normality remains valid if we replace the variance of
my with these estimates:

Theorem 2 Under Assumptions 1-4, ifn> Cu?  rd,logd, for some absolute constant C >0 and

max
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7, rlogd kou2 T, o /a rd d log d
Hmax 1 1 max 1 -5 d 2 1

T : R Vlogd,} -0,
aT“ ”F aT” 1 ”F Jdy,dy 1

~
My — My

&\éET‘ V dldz/n

then

d
— (0, 1),

asn,d;,d, — co.
Theorem 2 immediately allows for constructing confidence intervals for m;. More specifically, we
can define the 100(1 — 6)%-th confidence interval as

[d\d, . /d,d
CIeT [my— Zop agsT TZ, mr+zg,- agsT 172] 21

for any @ € (0, 1), where z, = ®~! (1 — ) iis the upper @ quantile of the standard normal. In light of Theorem
2, we have

lim P(m;eCly)=1-0,

n,d,,d,—oco0

for any 8 € (0, 1).
Similarly, we can also consider using Theorem 2 for the purpose of hypothesis test. Consider, for
example testing linear hypothesis

Hy: (M, T)=0 against H,;:(M,T)#0.

Then we can proceed to reject Hy if [Z] > z4, and accept H;, otherwise, where

A

mr
6-\6/5}7" \V dldz/n

Following Theorem 2, this is a test with asymptotic level 8. For example, in the particular case of com-
paring two entries of M:

7=

Hy:M(,j))=M@,j,) v.s. H;:M@,j)>M(3,j,), (22)

the test statistic can be expressed as

V20MG.j,) — M. j,))
~ AT AT AT AT
0'§(||V1 (ejz _ejl)|||2:+2”U1 ei”|2:+ ”Vz(ejz —ejl)||§+2||Uzei||§)1/2 \% d\dy/n

7=

and we shall proceed to reject the null hypothesis if and only if 7>z, to account for the one-sided
alternative.
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5 | INITIAL ESTIMATE

Thus far, our development has assumed a generic max-norm consistent matrix estimate as initial
estimator. For concreteness, we now introduce a rotation calibrated gradient descent algorithm on
Grassmannians which, under mild conditions, produces such an estimate.

Any rank 7 matrix of dimension d, Xd, can be written as UGV" where U€ 04>, V€ Q%*" and
G €R"™", The loss of the triplet (U, G, V) over D is given by

LD,(U,G. V)= Y. (Y=(UGV",X)). (23)
X, Y)eD

Given (U, V), we can easily minimize (23) to solve for G. This allows us to reduce the problem of min-
imizing (23) to a minimization over the product space of two Grassmannians Gr(d;, r)XGr(d,, r) as
Gr(d, r) = 0%>" /@™, In particular, we can do so via a rotation calibrated gradient descent algorithm on
Grassmannians as detailed in Algorithm 1 where, for simplicity, we resort to data-splitting. It is plausible
that a more elaborative analysis via the leave-one-out (LOO) framework introduced by Ma et al. (2017)
can be applied to show that our algorithm continues to produce estimates of similar quality without da-
ta-splitting, as we observe empirically. An actual proof, however, is likely much more involved under our
setting. For brevity, we opted here for data-splitting.

Algorithm 1 Rotation Calibrated Gradient descent on Grassmannians
Let U and V(1) be the top-r left and right singular vectors of didaNy ' 3 jen, Vi X;.
2: Compute GM) = argmingegr« L(Dy, (UM, G, VD)) and its SVD G = LS)A(l)R(Gl)T.
fort=1,2,3,--- ,m—1do
4: Update by rotation calibrated gradient descent

G5 — GOLY _ . djl\;& (OOEOPO, X,y —v;) X, VORD (R®)1
0 .
JED 241

P+05) _ ?(t)ﬁ(é) - d]1vdz Z (TOEOPO Xy - Yj)XjTﬁ(t)E(é) (A0)-1
JED 2141

Compute the top-r left singular vectors
f](m—l) _ SVD(ﬁ(H’O'S)) and ‘7(t+1) _ SVD(‘A/(t+0‘5))
6: Compute G+ by

G = arg min L(©2t+2, (ﬁ(t+1), G, ‘A/(H'l))) and its SVD G+ = ZgH)K(HUEgHW
GeRrxr

end for R R . L R
8: Output: (U™, G VY and M = gmGom) (v (m)T,

Let m= C,log(d, +d,) for some positive integer C; > 1. We shall partition the data D= {(X;, ¥))}|_,
into 2m subsets:

IN,

== DNy+1° Y t=1,-,2m

D,={(X,.Y))

where, without loss of generality, we assumed n =2mN,, for some positive integer N,



70 | XIA ET AL.

The algorithm presented here is similar in spirit to those developed earlier by Keshavan et al. (2010a,
2010b), Xia and Yuan (2019). A key difference is that we introduce an explicit rule of gradient descent
update where each iteration on Grassmannians is calibrated with orthogonal rotations. The rotation cali-
brations are necessary to guarantee the contraction property for the (2, max)-norm accuracy of empirical
singular vectors. Indeed, we show that the algorithm converges geometrically with constant stepsizes.

To this end, write

(1 — A1 (1 — (1
0, =arg00" xmin|| 0"~ U0|| and 0, =arg00" xmin||?" ~vO||

and, for all¢=1, ---, m— 1, denote the SVDs

/U(t+0.5) D) AHD AHDT AH0.5) A+ A ACHDT

=U X, K, and V =V v v
Forallt=1, .-, m—1, define the orthogonal matrices
A AOA)AFF]) A+ A ~(+])
v “UYuylbcghy and O, =O0yR;K,

Then we have

Theorem 3  Under Assumptions 2 and 3, if n €[0.25,0.75] and

o a rd*d,log*d
nz Clad’(g”fnax’:jdllogzdl and CZK%Mmax),_g ' @S 1

for some large enough constants C;, C, >0, then for all =1, ---, m — 1, with probability at least 1 — 4md=?,

/ 2
~(+1) A(t+1) D) A+]D) 0¢ [rd,d,log"d,
“U _UOU ”2,max+|lv _VOV ||2,max$c3n7 T

M. AD AW NG
+(1_?)(”U _U0U||2,max+||v _VOV “2,max)

where C; > 0 is an absolute constant. Moreover, if in addition || M| . /0 < dlc4 for some constant C,, >0,
then, by setting m =2C,logd, and n=0.75, with probability at least1 — Csdl_zlogd b

~(m) r2d,log*d,
|1M _M”maxSCG”maxKOO-é T

for some absolute constants Cs, Cg > 0.
We can then apply Algorithm 1 to produce initial estimates suitable for inferences about linear
forms of M. With this particular choice of initial estimate, Assumption 1 is satisfied with

12d,log*d,

yn,dl dy = Hmax Ko n
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when the sample size n > C,a k) ymaxiﬁdllogzdl. We note that this sample size requirement in general
is not optimal and the extra logarithmic factor is due to data splitting. As this is not the main focus of the
current work, no attempt is made here to further improve it.

6 | NUMERICAL EXPERIMENTS

We now present several sets of numerical studies to further illustrate the practical merits of the pro-
posed methodology, and complement our theoretical developments.

6.1 | Simulations

We first consider several sets of simulation studies. Throughout the simulations, the true matrix M has
rank »=3 and dimension d, =d, =d=2000. M’s singular values were set to be 4;=d fori=1,2,3.In
addition, M’s singular vectors were generated from the SVD of dx r Rademacher random matrices.
The noise standard deviation was set at o =0.6.

First, we show the convergence performance of the proposed Algorithm 1 where both Frobenius
norm and max-norm convergence rates are recorded. Even though the algorithm we presented in the
previous section uses sample splitting for technical convenience, in the simulation, we did not split
the sample. Figure 1 shows a typical realization under Gaussian noise, which suggest the fast conver-
gence of Algorithm 1. In particular, 1ogM becomes negative after 3 1terat10ns when the stepsize
is #=0.6. Recall that ourlgto@lln?t sample deblasmg approach requires ||M —M]|.x =0p(0) for the
initial estimates, that is M, ,M, in Assumption 1.

Next, we investigate how the proposed inference tools behave under Gaussian noise and for four
different linear forms corresponding to 7', = ele T,= eleT

max

ele;, T;= eleI —ele; +ezeI and

T, =ele]T - ele; +26261T + 3626‘;.

Fast convergence of gradient descent on Grassmannians Fast convergence of gradient d 1t on Gr nians
2 —+-1=0.6 1 —+-1=00
Ap =04 —A—-n =04
22 ) = 0.2 0.8 ) = 0.2
0.6
S
i
&
w» 021
2
ot
-3+ ..., 1 0ok °
O @ 0.2 ‘6.,
Q...
9....0_,,.
3.2 . . . . . . 0.4
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Iterations lterations

FIGURE 1 Convergence of Algorithm 1 in relative matrix Frobenius norm and the max-norm, with respect to step
size n and the number of iterations. The parameters are d; =d, =d=2000,r=3, 4,;=d, 6, =0.6 and U, V are generated
from the SVD of dx r Rademacher random matrices. The sample size is n=4r2dlog(d) and the noise is Gaussian
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FIGURE 2 Normal approximation off%’";. The parameters are d; =d, =d=2000,r=3,4;=d,0,=0.6
andU, Vare generated from the SVD of d xaislri\éﬂacher random matrices. The sample size is n=4r>dlog(d) for
the top two and n=5r2dlog(d) for bottom two. The noise is Gaussian. Each density histogram is based on 1000
independent simulations and the dashed black curve represents the p.d.f. of standard normal distributions. Top

left:T=e,e], top right:T=e,e] —¢,e]. Bottom left:T=¢,e] —e,e] +e,e], bottom right:T=e,e] —e, €] +2e,e] +3e,e]

For each T, we drew the density histogram of (it —my) /(6 /574/d, d, /n) based on 1000 independent sim-
ulation runs. The density histograms are displayed in Figure 2 where the dashed black curve represents the
p.d.f. of standard normal distributions. The sample size was n=4r2dlog(d) for T, T, and n=5r*dlog(d)
for T3, T,. The empirical observation agrees fairly well with our theoretical results.

Finally, we examine the performance of the proposed approach under non-Gaussian noise. In par-
ticular, we repeated the last set of experiments with noise (¢/ \/50' &) € Unif([—1, 1]). The density
histograms are displayed in Figure 3 where the dashed black curve represents the p.d.f. of standard
normal distributions. Again the empirical evidences support the asymptotic normality of the proposed
statistic.

6.2 | Real-world data examples
We now turn our attention to two real-world data examples—the Jester and MovieLens data sets.

The Jester data set is downloadable from http://eigentaste.berkeley.edu/dataset/. The Jester data set
contains ratings of 100 jokes from ~70K users Goldberg et al. (2001). The data set consists of three
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FIGURE 3 Normal approximation ofm’—dm; The parameters are d; =d, =d=2000,r=3, ,=d,0,=0.6
andU, Vare generated from the SVD of dxr *Rademacher random matrices. The sample size is n=4r2dlog(d)

for the top two and n=5r*dlog(d) for the bottom two. The non-Gaussian noise (£/ \/_ 30,) € Unif([ -1, 1]). Each
density histogram is based on 1000 independent simulations and the dashed black curve represents the p.d.f. of
standard normal distributions. Top left:T=e,e], top right:T=e,e] —e,e]. Bottom left:T=e,e] —e, €] +e,e], bottom
right:T=e,e] —e €] +2e,e] +3ee]

subsets of data with different characteristics as summarized in Table 1. Note that for each subset, we
randomly sample a fixed number of ratings for each user so that the numbers of ratings of all users are
equal (see Table 1). MovieLens was a recommender system created by GroupLens that recommends
movies for its users. We use three data sets released by MovieLens (Harper & Konstan, 2016) whose
details are summarized in Table 1. These data sets are downloadable from https://grouplens.org/datas
ets/movielens/. In these three data sets, each user rates at least 20 movies. The Matlab codes used for
preprocessing the raw data sets are included in the supplementary files on the journal’s websites.

For illustration, we consider the task of recommending jokes or movies to a particular users.
Because of the lack of ground truth, we resort to resampling. For the Jester data set, we randomly
sample ~2000 users, and for each user 2 ratings that at least { € {0, 2, 6, 10, 14} apart. We removed
these ratings from the training and used the proposed procedure to infer, for each user (i), between
these two jokes (j, or j,) with ratings which one should be recommended. This amounts to the follow-

ing one-sided tests:
Hy:M(3,j,) <M, j,) v.s. H;:M(@,j;)>M(3,j,).
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TABLE 1 Summary of data sets

Data set #users #jokes #ratings per user  rating values
Jester-1 24983 100 29 [-10, 10]
Jester-2 23500 100 34 [-10, 10]
Jester-3 24938 100 14 [-10, 10]

Data set #users #movies total #ratings rating values
ml-100k 943 1682 ~10° {1,2,3,4,5}
ml-1m 6040 3952 ~10° {1,2,3,4,5}
ml-10m 71567 10681 ~107 {0.5, 1.0, ..., 4.5,

5.0}

We ran the proposed procedure on the training data and evaluate the test statistic Z for each user from
the testing set. In particular, we fixed the rank =2 corresponding to the smallest estimate .. Note
that we do not know the true value of M(i, j) and only observe Y(i, j) = M(i, j) + £(i, j). We therefore use
I(YG,j,)> Y(i,j,)) as a proxy to differentiate between H, and H,. Assuming that the £ has a distribu-
tion symmetric about 0, then I(Y(i,j,) > Y(i,,)) is more likely to take value O under H,,, and 1 under
H,. We shall evaluate the performance of our procedure based on its discriminant power in predicting
I(Y(i,j,) > Y(i,j,)). In particular, we record the ROC curve of Z for all users from the testing set. The
results, averaged over 10 simulation runs for each value of ¢, are reported in Figure 4. Clearly, we can
observe an increase in predictive power as ¢ increases suggesting Z as a reasonable statistic for testing H,,
against H,.

We ran a similar experiment on the MovieLens data sets. In each simulation run, we ran-
domly sampled ~ 800 users and 2 ratings each as the test data. These ratings are sampled such
that |Y(i,j,)—Y(,j,)| >¢ for {=0,1,2,3,4. The false-positive rates and true-positive rates of our
proposed procedure were again recorded. The ROC curves, averaged again over 10 runs for each
value of ¢, are shown in Figure 5. This again indicates a reasonable performance of the proposed
tgsutnigég p{(i)rfi:tedure. Empiric;}\lilr% we observe a better debiasing approach onAt%li?se data sets which is
M, =M, + ZieDz(Yi —(M, , X;))X;. The rationale is to partially replace M, ’s entries with the ob-
served training ratings. This improvement might be due to the severe heterogeneity in the numbers of
observed ratings from distinct users, or due to the unknown noise distributions.

ROC curve of One-sided Test on Jester-2 dataset

ROC curve of One-sided Test on Jester-1 dataset

ROC curve of One-sided Test on Jester-3 dataset
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FIGURE 4 ROC curves for one-sided tests H: M(i,j,) <M(i,j,) v.s. H;:M(,j,;)>M(,j,) on Jester data sets. The
testing data are sampled such that |Y(i,j,) — Y(i,,)| > {. The estimated noise level 85 =4.5160 on Jester-1, 85 =4.4843
on Jester-2 and 6, =5.1152 on Jester-3. The rightmost point of each ROC curve corresponds to the significance level
0=0.5so that z, =0
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ROC curve of One-sided Test on mi-100k dataset ROC curve of One-sided Test on ml-1m dataset ROC curve of One-sided Test on mI-10m dataset
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FIGURE 5 ROC curves for one-sided tests Hy: M(i,j,) <M(i,j,) v.s. H,:M(,j,)>M(,j,) on MovieLens data
sets. The testing data are sampled such that |Y(i, ;) — Y(i, j,)| > ¢{. The estimated noise level 85 =0.9973 on ml-100Kk,
0:=0.8936 on ml-1m and 6, =0.9151 on ml-10m. The rightmost point of each ROC curve corresponds to the
significance level 8 =0.5 so that z, =0
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