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1  |   INTRODUCTION

Noisy matrix completion (NMC) refers to the reconstruction of a low-rank matrix M∈ℝ
d1×d2 after 

observing a small subset of M’s entries with random noise. Problems of this nature arise naturally in 
various applications. For the sake of generality, we shall cast it in the framework of trace regression 
where each observation is a random pair (X, Y) with X∈ℝ

d1×d2 and Y∈ℝ. The random matrix X is 
sampled uniformly from the orthonormal basis  ={ej1

e�
j2

: j1 ∈ [d1], j2 ∈ [d2]}, where [d]={1,⋯, d} 
and {ej1

}j1∈[d1] and {ej2
}j2∈[d2] are the canonical basis vectors in ℝd1 and ℝd2, respectively. It is worth 

pointing out that, while we shall focus on the canonical basis in this work, our framework can be 
easily extended to general product basis where {ej1

}j1∈[d1] and {ej2
}j2∈[d2] are arbitrary orthonormal 
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basis in ℝd1 and ℝd2, respectively. Without loss of generality, we shall assume that d1 ≥d2 and denote 
�d =d1∕d2 the aspect ratio of M. The response variable Y is related to X via

where ⟨M, X⟩=Tr(M�X), and the independent measurement error � is assumed to be a centred sub-Gauss-
ian random variable. Our goal is to infer M from n i.i.d. copies {(Xi, Yi)}

n
i=1

 obeying (1) when, in particular, 
M is of (approximately) low rank and n is much smaller than d1d2.

In the absence of measurement error (e.g. �=0), Candès and Recht (2009) first discovered that 
exact matrix completion can be solved efficiently by relaxing the non-convex and non-smooth rank 
constraint of a matrix to its nuclear norm. Following the pioneering work, nuclear-norm penalized 
least squares estimators (Cai & Zhou, 2016; Cai et al., 2010; Candès & Tao, 2009; Candes & Plan, 
2010; Gross, 2011; Negahban & Wainwright, 2011; Rohde and Tsybakov, 2011) and numerous other 
variants (Cai & Zhang, 2015; Gao et al., 2016; Klopp, 2014; Koltchinskii et al., 2011; Liu, 2011; 
Recht et al., 2010; Sun & Zhang, 2012) have been studied. It is now understood, from these develop-
ments, that even when the observations are contaminated with noise, statistically optimal convergence 
rates are attainable by efficiently computable convex methods. For instance, Koltchinskii et al. (2011) 
proved that a modified matrix LASSO estimator, denoted by M̂

���

, achieves the convergence rate:

as long as n≫d1logd1, where r is the rank of M and �2
�
 is the variance of �. Here, ‖ ⋅‖

�
 denotes the matrix 

Frobenius norm and ‖ ⋅‖
���

 denotes the max-norm defined as ‖A‖
���

=maxj1∈[d1],j2∈[d2]�A(j1, j2)�. It is 
worth noting that (2) was established without additional assumptions on M. As a result, the rate given on 
the right-hand side of (2) depends on ‖M‖

���
 and does not vanish even when �� =0.

In addition to convex methods, non-convex approaches such as those based on matrix factorization 
have also been developed. For instance, Keshavan, Montanari and Oh (2010b) proposed a non-convex 
estimator based on the thin singular value decomposition (SVD), denoted by M̂

���

, and show that

assuming that n≫ rd1(r+ logd1) and M satisfies the so-called incoherent condition. See also, for exam-
ple Zhao et al. (2015), Chen and Wainwright (2015), Cai et al. (2016b) and references therein. The rate 
(3) is optimal up to the logarithmic factors, see, for example Koltchinskii et al. (2011) and Ma and Wu 
(2015), for a comparable minimax lower bound. More recently, an alternative scheme of matrix factoriza-
tion attracted much attention. See, for example Wang et al. (2016); Ge et al. (2016); Zheng and Lafferty 
(2016); Chen et al. (2019c, 2019b); Ma et al. (2017); Chen et al. (2019a). In particular, Ma et al. (2017) 
showed this approach yields an estimator, denoted by M̂

���

, that is statistically optimal not only in matrix 
Frobenius norm but also in entry-wise max-norm, that is

provided that n≫ r3d1log3d1.

(1)Y= ⟨M, X⟩+�

(2)‖M̂
���

−M‖2
�
=OP

�
(��+‖M‖

���
)2
⋅

rd2
1
d2logd1

n

�

(3)‖M̂
���

−M‖2
�
=OP(�2

�
⋅

rd2
1
d2logd1

n
)

(4)‖M̂
���

−M‖2
���

=OP(�2
�
⋅

rd1logd1

n
)
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While there is a rich literature on statistical estimation for NMC, results about its statistical 
inferences are relatively scarce. In Carpentier et al. (2015), a debiasing procedure, based on sample 
splitting, was proposed for the nuclear norm penalized least squares estimator which enables con-
structing confidence region for M with respect to matrix Frobenius norm when n≫ rd1logd1. Their 
technique, however, cannot be directly used to make inferences about individual entries or linear 
forms as confidence regions for M with respect to matrix Frobenius norm can be too wide for such 
purposes. To this end, Carpentier et al. (2018) proposed another procedure to construct entry-wise 
confidence intervals. However, their procedure requires that the design, namely the underlying 
distribution of X satisfy the so-called restricted isometry property which is violated when X is sam-
pled uniformly from . Another proposal introduced by Cai et al. (2016a) can be used to construct 
confidence intervals for M’s entries. However, it requires that the sample size n≫d1d2 which is 
significantly larger than the optimal sample size requirement for estimation. In addition, during the 
preparation of the current work, Chen et al. (2019c) announced a different approach to constructing 
confidence intervals for the entries of M.

The present article aims to further expand this line of research by introducing a flexible framework 
for constructing confidence intervals and testing hypotheses about general linear forms of M, with its 
entries as special cases, under optimal sample size requirement. In a nutshell, we develop a procedure 
that, given any entry-wise consistent estimator M̂

����

 in that ‖M̂
����

−M‖
���

=oP(��), can yield valid 
statistical inferences for mT:=Tr(M�T) under mild regularity conditions. More specifically, we show 
that, through double-sample debiasing and spectral projection, we can obtain from the initial estimator 
a new one, denoted by M̂, so that

provided that

where U and V are M’s left and right singular vectors and �r is its r-th singular value, and ‖ ⋅‖
𝓁1

 stands for 
the vectorized �1 norm. We not only show that (5) holds under optimal sample size (independent of T) 
but also derive its non-asymptotic convergence rate explicitly. Note that condition for ‖U�T‖

�
+‖TV‖

�
 

in a certain sense is necessary to avoid non-regular asymptotic behaviour when ‖U�T‖
�
+‖TV‖

�
=0. 

Moreover, we show that under similar conditions, (5) continues to hold when we replace ��, ‖U�T‖
�
 and 

‖TV‖
�
 by suitable estimates, denoted by �̂�, ‖Û

�

T‖
�
 and ‖TV̂‖

�
, respectively:

The statistic on the left-hand side is now readily applicable for making inferences about the linear form 
Tr(M�T).

Our proposal greatly generalizes the scope of earlier works on inferences for entries of M in several 
crucial aspects. First, unlike earlier approaches that focus on a specific estimator of M, our procedure 

(5)Tr(M̂
�

T)−Tr(M�
T)

��(‖U
�
T‖2

�
+‖TV‖2

�
)1∕2

√
d1d2∕n

d

⟶�(0, 1),

‖U�T ‖
�
+‖TV‖

�
≫‖T‖

𝓁1

�
r

d1

⋅max

⎧⎪⎨⎪⎩

�
rlogd1

d2

,
𝜎𝜉

𝜆r

�
𝛼drd2

1
d2log2d1

n

⎫⎪⎬⎪⎭

(6)
Tr(M̂

�

T)−Tr(M�
T)

�̂�(‖Û
�

T‖2
�
+‖TV̂‖2

�
)1∕2

√
d1d2∕n

d

⟶�(0, 1).
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can be applied to any entry-wise consistent estimator. This not only brings potential practical bene-
fits but also helps us better understand the fundamental differences between estimation and testing 
in the context of NMC. For instance, our results suggest that, perhaps surprisingly, when it comes 
to make valid inferences with optimal sample sizes, the rate of convergence of the initial estimate is 
irrelevant as long as it is consistent; therefore, a suboptimal estimator may be used for making optimal 
inferences.

Second, our approach can be applied in general when T is sparse, and depending on its alignment 
with the singular spaces of M, even to cases where it is dense and ‖T‖2

�1
∕‖T‖2

�
 is of the order O(d2). 

Entry-wise inferences correspond to the special case when T takes the form eie
�

j
. Extensions to more 

general linear forms could prove useful in many applications. For example, in recommender systems, 
it may be of interest to decide between items j1 and j2 which should we recommend to user i. This can 
obviously be formulated as a testing problem:

which can be easily solved within our framework by taking T= eie
�

j1
−eie

�

j2
. More generally, if the target 

is a group of users �⊂ [d1], we might take a linear form T=
∑

i∈�ei(ej1
−ej2

)�. At a technical level, infer-
ences about general linear forms as opposed to entries of M present nontrivial challenges because of the 
complex dependence structure among the estimated entries. As our theoretical analysis shows, the vari-
ance of the plug-in estimator for the linear form depends on the alignment of the linear form with respect 
to the singular space of M rather than the sparsity of the linear form.

An essential part of our technical development is the characterization of the distribution 
of the empirical singular vectors for NMC where we take advantage of the recently developed 
spectral representation for empirical singular vectors. Similar tools have been used earlier to 
derive confidence regions for singular subspaces with respect to �2-norm for low-rank matrix 
regression (LMR) when the linear measurement matrix Xs are Gaussian (Xia, 2019a), and the 
planted low-rank matrix (PLM) model where every entry of M is observed with i.i.d. Gaussian 
noise (Xia, 2019b). In both cases, Gaussian assumption plays a critical role, and furthermore, 
it was observed that first-order approximation may lead to suboptimal performances. In the 
absence of the Gaussian assumption, the treatment of NMC is technically more challenging 
and requires us to derive sharp bounds for the (2, max)-norm for the higher order perturbation 
terms. Interestingly, it turns out that, unlike LMR or PLM, a first-order approximation actually 
suffices for NMC.

Even though our framework applies to any max-norm consistent matrix estimator, for concrete-
ness, we introduce a novel rotation calibrated gradient descent algorithm on Grassmannians that 
yields such an initial estimator. The rotation calibration promotes fast convergence on Grassmannians 
so that constant stepsize can be selected to guarantee geometric convergence. We note that exist-
ing results on max-norm convergence rates are established for sampling without replacement (Ma 
et al., 2017). It is plausible that (4) may continue to hold under our assumption of independent sam-
pling given the close connection between the two sampling schemes, but an actual proof is likely 
much more involved and therefore we opted for the proposed alternative for illustration as it is more 
amenable for analysis.

The rest of our paper is organized as follows. In next section, we present a general framework 
for estimating mT =Tr(M�T) given an initial estimator through double-sample debiasing and spectral 
projection. In Section 3, we establish the asymptotic normality of the estimate obtained. In Section 4, 
we propose data-driven estimates for the noise variance and the true singular vectors, based on which 
confidence intervals of mT are constructed. In Section 5, we introduce a rotation calibrated gradient 

(7)H0: M(i, j1)=M(i, j2) v. s. H1: M(i, j1)>M(i, j2),
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descent algorithm on Grassmannians, which, under mild conditions, provides the initial estimator 
M̂

����

 so that ‖M̂
����

−M‖
���

=oP(��). Numerical experiments on both synthetic and real-world data sets 
presented in Section 6 further demonstrate the merits of the proposed methodology. All proofs are 
presented in the online supplement.

2  |   ESTIMATING LINEAR FORMS

We are interested in making inferences about mT =Tr(M�T) for a given T based on observations 
={(Xi, Yi): 1≤ i≤n} satisfying model (1), assuming that M has low rank. To this end, we first need 
to construct an appropriate estimate of mT which we shall do in this section.

Without loss of generality, we assume n is an even number with n=2n0, and split  into two 
subsamples:

In what follows, we shall denote M’s thin SVD by M=UΛV�, where U∈�
d1×r, V∈�

d2×r and 
Λ=diag(�1,⋯, �r) represent M’s singular vectors and singular values, respectively. The Stiefel manifold 
�

d×r is defined as 𝕆d×r:={A∈ℝ
d×r: A�A= I}. We arrange M’s positive singular values non-increasingly, 

that is 𝜆1 ≥⋯≥𝜆r >0.
Assuming the availability of an initial estimator, our procedure consists of four steps as follows:

•	 Step 1 (Initialization): By utilizing the first and second data subsample 1,2 separately, we apply 
the initial estimating procedure on noisy matrix completion to yield initial (biased in general) esti-
mates M̂

����

1
 and M̂

����

2
, respectively.

•	 Step 2 (Debiasing): Using the second data subsample 2, we debias M̂
����

1
: 

 Similarly, we use the first data subsample 1 to debias M̂
����

2
 and obtain 

•	 Step 3 (Projection): Compute the top-r left and right singular vectors of M̂
����

1
, denoted by Û1 and V̂1

. Similarly, compute the top-r left and right singular vectors of M̂
����

2
, denoted by Û2 and V̂2. Then, 

we calculate the (averaged) projection estimate 

•	 Step 4 (Plug-in): Finally, we estimate mT by m̂T =Tr(M̂
�

T).

We now discuss each of the steps in further details.

1 ={(Xi, Yi)}
n0

i=1
and 2 ={(Xi, Yi)}

n
i=n0+1

.

M̂
����

1
= M̂

����

1
+

d1d2

n0

n�
i= n0 + 1

(Yi−⟨M̂����

1
, Xi⟩)Xi.

M̂
����

2
= M̂

����

2
+

d1d2

n0

n0�
i= 1

(Yi−⟨M̂����

2
, Xi⟩)Xi.

M̂=
1

2
Û1Û

�

1
M̂

����

1
V̂1V̂

�

1
+

1

2
Û2Û

�

2
M̂

����

2
V̂2V̂

�

2
.
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2.1  |  Initialization

Apparently, our final estimate depends on the initial estimates M̂
����

1
, M̂

����

2
. However, as we shall show 

in the next section, such dependence is fairly weak and the resulting estimate m̂T is asymptotically 
equivalent as long as the estimation error of M̂

����

1
 and M̂

����

2
, in terms of max-norm, is of a smaller order 

than ��. More specifically, we shall assume that

Assumption 1  There exists a sequence �n,d1,d2
→0 as n, d1, d2 →∞ so that with probability at least 

1−d−2
1

,

for an absolute constant C>0.
In particular, bounds similar to (8) have recently been established by Ma et al. (2017), Chen et al. 

(2019c). See Equation (4). Assumption 1 was motivated by their results. However, as noted earlier, (4) 
was obtained under sampling without replacement and for positively semidefinite matrices. While it is 
plausible that it also holds under independent sampling as considered here, an actual proof is lacking 
at this point. For concreteness, we shall present a simple algorithm in Section 5 capable of producing 
an initial estimate that satisfies Assumption 1.

2.2  |  Debiasing

The initial estimate is only assumed to be consistent. It may not necessarily be unbiased or optimal. 
To ensure good quality of our final estimate m̂T, it is important that we first debias it which allows for 
sharp spectral perturbation analysis. Debiasing is an essential technique in statistical inferences of high-
dimensional sparse linear regression (see, e.g. Cai & Guo, 2017; Javanmard & Montanari, 2014; Van 
de Geer et al, 2014; Zhang & Zhang, 2014) and low-rank matrix regression (see, e.g. Cai et al., 2016a; 
Carpentier & Kim, 2018; Carpentier et al., 2018; Xia, 2019a). Oftentimes, debiasing is done in the ab-
sence of the knowledge of �vec(X)vec(X)⊤ and a crucial step is to construct an appropriate decorrelating 
matrix. In our setting, it is clear that �vec(X)vec(X)⊤= (d1d2)−1Id1d2

. This allows for a much simplified 
treatment via sample splitting, in the same spirit as earlier works including Carpentier et al. (2015), Xia 
(2019a), among others. The particular double-sample-splitting technique we employ was first proposed 
by Chernozhukov et al. (2018) and avoids the loss of statistical efficiency associated with the sample 
splitting. It is worth noting that if the entries are not sampled uniformly, the debiasing procedure needs to 
be calibrated accordingly.

In addition to reducing possible bias of the initial estimate, the sample splitting also enables us to 
extend the recently developed spectral representation for empirical singular vectors under Gaussian 
assumptions to general sub-Gaussian distributions.

2.3  |  Spectral projection

Since M have low rank, it is natural to apply spectral truncation to a matrix estimate to yield an 
improved estimate. To this end, we project M̂

����

1
 and M̂

����

2
 to their respective leading singular sub-

spaces. Note that, while M̂
����

1
, M̂

����

2
 are unbiased, their empirical singular vectors Û1, Û2, V̂1 and V̂2 

(8)‖M̂
����

1
−M‖

���
+‖M̂

����

2
−M‖

���
≤C�n,d1,d2

⋅��



64  |      XIA et al.

are typically not. The spectral projection serves the purpose of reducing entry-wise variances at the 
cost of negligible biases.

It is worth noting that the estimate M̂ may not be of rank r. If an exact rank-r estimator is 
desired, it suffices to obtain the best rank-r approximation of M̂ via singular value decomposi-
tion and all our development remains valid under such a modification. In general, getting the 
initial estimates is the most computational expensive step as the other steps involving fairly 
standard operation without incurring any challenging optimization. This is noteworthy because 
it suggests that as long as we can compute a good estimate, it does not cost much more compu-
tationally to make inferences.

3  |   ASYMPTOTIC NORMALITY OF m̂
T

We now show the estimate m̂T we derived in the previous section is indeed suitable for inferences 
about mT by establishing its asymptotic normality.

3.1  |  General results

For brevity, let ej denote the j-th canonical basis in ℝd where d might be d1 or d2 or d1+d2 at different 
appearances. With slight abuse of notation, denote by ‖ ⋅‖ the matrix operator norm or vector �2-norm 
depending on the dimension of its argument. Denote the condition number of M by

As is conventional in the literature, we shall assume implicitly that rank r is known with r≪d2 and M 
is well-conditioned so that �(M)≤�0. In practice, r is usually not known in advance and needs to be 
estimated from the data. Our experience with numerical experiments such as those reported in Section 6 
suggests that our procedure is generally robust to reasonable estimate of r. Although a more rigorous justi-
fication of such a phenomenon has thus far eluded us, these promising empirical observations nonetheless 
indicate a more careful future investigation is warranted.

In addition, we shall assume that U and V are incoherent, a standard condition for matrix completion.

Assumption 2  Let ‖U‖
�,���

=maxj∈[d1]‖e�
j
U‖ and there exists 𝜇

���
>0 so that

We also assume that the noise � is independent with X and sub-Gaussian such that

Assumption 3  The noise � is independent with X and

Let �d =d1∕d2. There exists a large enough absolute constant C1 >0 so that

(9)�(M)=�1(M)∕�r(M)=�1∕�r.

max{

�
d1

r
‖U‖

�,���
,

�
d2

r
‖V‖

�,���
}≤�

���
.

(10)𝔼�=0, 𝔼�2 =�2
�
, and 𝔼es� ≤ e

s2�2
� , ∀s∈ℝ
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The SNR condition (11) is optimal up to the logarithmic factors if �d,�
���

, �0 =O(1). Indeed, the 
consistent estimation of singular subspaces requires 𝜆r ≫𝜎𝜉

√
rd2

1
d2∕n. This condition is common for 

non-convex methods of NMC. However, when 𝛼d ≫1, that is M is highly rectangular, condition (11) 
is significantly stronger than the optimal SNR condition even if �

���
, �0 =O(1). It is unclear to us 

whether this suboptimality is due to technical issues or reflection of more fundamental differences 
between statistical estimation and inference.

To avoid the non-regular asymptotics, we focus on the case when T does not lie entirely in the null 
space of M. More specifically, we assume that

Assumption 4  There exists a constant 𝛼T >0 such that

The alignment parameter �T in Assumption 4 is allowed to vanish as d1, d2, n→∞. Indeed, as we 
show below, the asymptotic normality of m̂T−mT only requires that

We are now in position to establish the asymptotic normality of m̂T.

Theorem 1  Under Assumptions 1–4, there exist absolute constants C1, C2, C3, C4, C5, C6 >0 so that 
if n≥C1�

2
���

rd1logd1, then

where Φ(x) denotes the c.d.f. of the standard normal distribution.
By Theorem 1, if �

���
, �d, �0 =O(1) and

(11)�r ≥C1����
�2

0
��

√
�drd2

1
d2log2d1

n
.

‖U�T‖
�
≥�T‖T‖

�
⋅

�
r

d1

or ‖TV‖F ≥�T‖T‖
�
⋅

�
r

d2

.

(12)�T ≥
‖T‖

𝓁1

‖T‖
�

⋅max

⎧⎪⎨⎪⎩
�2
���

�
rlogd1

d2

,
�0�

2
���

��

�r

�
�drd2

1
d2log2d1

n

⎫⎪⎬⎪⎭
.

supx∈ℝ�ℙ (
m̂T−mT

��(‖TV‖2
�
+‖U�T‖2

�
)1∕2 ⋅

√
d1d2∕n

≤ x)−Φ(x)�

≤C2

�2
���

‖T‖
𝓁1

�T‖T‖
�

�
logd1

d2

+C3�0

�2
���

‖T‖
𝓁1

�T‖T‖
�

⋅
��

�r

�
�drd2

1
d2log2d1

n

+C4

�4
���

‖T‖2
𝓁1

�2
T
‖T‖2

�

⋅
r
√

logd1

d2

+
6logd1

d2
1

+C5�n,d1,d2

√
logd1+C6����

�
rd1

n
.

(13)max

⎧⎪⎨⎪⎩

‖T‖
𝓁1

�T‖T‖
𝖥

�
rlogd1

d2

,
‖T‖

𝓁1

�T‖T‖
𝖥

⋅
��

�r

�
rd2

1
d2log2d1

n
, �n,d1,d2

√
logd1

⎫⎪⎬⎪⎭
→0,
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then

as n, d1, d2 →∞.

3.2  |  Specific examples

We now consider several specific linear forms to further illustrate the implications of Theorem 1.

Example 1  As noted before, among the simplest linear forms are entries of M. In particular, 
M(i, j)= ⟨M, T⟩ with T= eie

�

j
. It is clear that ‖T‖

�1
=‖T‖

�
=1 and Assumption 4 is equivalent to

Theorem 1 immediately implies that

provided that

as n, d1, d2 →∞.
We can also infer from the entry-wise asymptotic normality that

The mean squared error on the right-hand side is sharply optimal and matches the minimax lower bound 
in Koltchinskii et al. (2011).

Example 2  In the case when we want to compare M(i, j1) and M(i, j2), we can take T= eie
�

j1
−eie

�

j2
. 

Because ‖T‖
�1
∕‖T‖

�
=
√

2, Assumption 4 then becomes

Theorem 1 therefore implies that

m̂
T
−m

T

��(‖TV‖2
�
+‖U

�
T‖2

�
)1∕2 ⋅

√
d1d2∕n

d

⟶𝒩(0, 1),

(14)‖e�
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j
V‖≥�T

�
r

d1

.

M̂(i, j)−M(i, j)

(‖e�
i
U‖2+‖e�

j
V‖2)1∕2 ⋅��

√
d1d2∕n

d

⟶𝒩(0, 1),

(15)max{
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𝗆𝖺𝗑
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rlogd1
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�T
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�r

�
�drd2

1
d2log2d1

n
, �n,d1,d2

√
logd1}→0

(16)�‖M̂−M‖2
�
= (1+o(1)) ⋅

�2
�
rd1d2(d1+d2)

n
.

(17)‖TV‖2
�
+‖U�T‖2

�
=2‖U�ei‖2+‖V�(ej1

−ej2
)‖2 ≥

2�2
T
r
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.

(M̂(i, j1)−M̂(i, j2))− (M(i, j1)−M(i, j2))

(2‖U�ei‖2+‖V�(ej1
−ej2

)‖2)1∕2 ⋅��

√
d1d2∕n

d

⟶𝒩(0, 1),
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provided that

Example 3  More generally, we can consider the case when T is sparse in that it has up to s0 nonzero 
entries. By Cauchy–Schwartz inequality, ‖T‖

�1
∕‖T‖

�
≤
√

s0 so that Assumption 4 holds. By 
Theorem 1,

as long as

It is of interest to consider the effect of alignment of T with respect to the singular spaces of M. Note that

where U⊥∈�
d1×(d1−r) and V⊥∈�

d2×(d2−r) are the basis of the orthogonal complement of U and V, respec-
tively. In the case that T is not dominated by its projection onto U⊥ or V⊥ in that ‖U�T‖

�
+‖TV‖

�
 is of the 

same order as ‖T‖
�
, we can allow T to have as many as O(d2) non-zero entries.

4  |   INFERENCES ABOUT LINEAR FORMS

The asymptotic normality of m̂T we showed in the previous section forms the basis for making infer-
ences about mT. To derive confidence intervals of or testing hypotheses about mT, however, we need 
to also estimate the variance of m̂T. To this end, we shall estimate the noise variance by

and ‖TV‖2
�
+‖U�T‖2

�
 by

The following theorem shows that the asymptotic normality remains valid if we replace the variance of 
m̂T with these estimates:

Theorem 2  Under Assumptions 1–4, if n≥C�2
���

rd1logd1 for some absolute constant C>0 and

(18)max

⎧
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�
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√
logd1

⎫
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then

as n, d1, d2 →∞.
Theorem 2 immediately allows for constructing confidence intervals for mT. More specifically, we 

can define the 100(1−�)%-th confidence interval as

for any �∈ (0, 1), where z� =Φ−1(1−�) is the upper � quantile of the standard normal. In light of Theorem 
2, we have

for any �∈ (0, 1).
Similarly, we can also consider using Theorem 2 for the purpose of hypothesis test. Consider, for 

example testing linear hypothesis

Then we can proceed to reject H0 if |�z|> z𝜃∕2 and accept H0 otherwise, where

Following Theorem 2, this is a test with asymptotic level �. For example, in the particular case of com-
paring two entries of M:

the test statistic can be expressed as

and we shall proceed to reject the null hypothesis if and only if �z> z𝜃 to account for the one-sided 
alternative.

max{
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T
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H0: ⟨M, T⟩=0 against H1: ⟨M, T⟩≠0.
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5  |   INITIAL ESTIMATE

Thus far, our development has assumed a generic max-norm consistent matrix estimate as initial 
estimator. For concreteness, we now introduce a rotation calibrated gradient descent algorithm on 
Grassmannians which, under mild conditions, produces such an estimate.

Any rank r matrix of dimension d1×d2 can be written as UGV� where U∈�
d1×r, V∈�

d2×r and 
G∈ℝ

r×r. The loss of the triplet (U, G, V) over  is given by

Given (U, V), we can easily minimize (23) to solve for G. This allows us to reduce the problem of min-
imizing (23) to a minimization over the product space of two Grassmannians ��(d1, r)×��(d2, r) as 
��(d, r)=�

d1×r∕�r×r. In particular, we can do so via a rotation calibrated gradient descent algorithm on 
Grassmannians as detailed in Algorithm 1 where, for simplicity, we resort to data-splitting. It is plausible 
that a more elaborative analysis via the leave-one-out (LOO) framework introduced by Ma et al. (2017) 
can be applied to show that our algorithm continues to produce estimates of similar quality without da-
ta-splitting, as we observe empirically. An actual proof, however, is likely much more involved under our 
setting. For brevity, we opted here for data-splitting.

Let m=C1log(d1+d2) for some positive integer C1 ≥1. We shall partition the data ={(Xi, Yi)}
n
i=1

 
into 2m subsets:

where, without loss of generality, we assumed n=2mN0 for some positive integer N0.

(23)L(, (U, G, V))=
�

(X,Y)∈

(Y−⟨UGV�, X⟩)2.

t ={(Xj, Yj)}
tN0

j=(t−1)N0+1
, ∀ t=1,⋯, 2m
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The algorithm presented here is similar in spirit to those developed earlier by Keshavan et al. (2010a, 
2010b), Xia and Yuan (2019). A key difference is that we introduce an explicit rule of gradient descent 
update where each iteration on Grassmannians is calibrated with orthogonal rotations. The rotation cali-
brations are necessary to guarantee the contraction property for the (2, max)-norm accuracy of empirical 
singular vectors. Indeed, we show that the algorithm converges geometrically with constant stepsizes.

To this end, write

and, for all t=1,⋯, m−1, denote the SVDs

For all t=1,⋯, m−1, define the orthogonal matrices

Then we have

Theorem 3  Under Assumptions 2 and 3, if �∈ [0.25, 0.75] and

for some large enough constants C1, C2 >0, then for all t=1,⋯, m−1, with probability at least 1−4md−2
1

,

where C3 >0 is an absolute constant. Moreover, if in addition ‖M‖
���

∕�� ≤d
C4

1
 for some constant C4 >0, 

then, by setting m=2C4logd1 and �=0.75, with probability at least 1−C5d−2
1

logd1,

for some absolute constants C5, C6 >0.
We can then apply Algorithm 1 to produce initial estimates suitable for inferences about linear 

forms of M. With this particular choice of initial estimate, Assumption 1 is satisfied with
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(t)

V
‖
�,���

)

‖M̂
(m)

−M‖
���

≤C6����
�0��

�
r2d1log2d1

n

�n,d1,d2
=�

���
�0

√
r2d1log2d1

n



      |  71XIA et al.

when the sample size n≥C1�d�
6
0
�6
���

r3d1log2d1. We note that this sample size requirement in general 
is not optimal and the extra logarithmic factor is due to data splitting. As this is not the main focus of the 
current work, no attempt is made here to further improve it.

6  |   NUMERICAL EXPERIMENTS

We now present several sets of numerical studies to further illustrate the practical merits of the pro-
posed methodology, and complement our theoretical developments.

6.1  |  Simulations

We first consider several sets of simulation studies. Throughout the simulations, the true matrix M has 
rank r=3 and dimension d1 =d2 =d=2000. M’s singular values were set to be �i =d for i=1, 2, 3. In 
addition, M’s singular vectors were generated from the SVD of d×r Rademacher random matrices. 
The noise standard deviation was set at �� =0.6.

First, we show the convergence performance of the proposed Algorithm 1 where both Frobenius 
norm and max-norm convergence rates are recorded. Even though the algorithm we presented in the 
previous section uses sample splitting for technical convenience, in the simulation, we did not split 
the sample. Figure 1 shows a typical realization under Gaussian noise, which suggest the fast conver-
gence of Algorithm 1. In particular, log

‖M̂
����

−M‖
���

��

 becomes negative after 3 iterations when the stepsize 
is �=0.6. Recall that our double-sample debiasing approach requires ‖M̂

����

−M‖
���

=oP(��) for the 
initial estimates, that is M̂

����

1
, M̂

����

2
 in Assumption 1.

Next, we investigate how the proposed inference tools behave under Gaussian noise and for four 
different linear forms corresponding to T1 = e1e�

1
, T2 = e1e�

1
−e1e�

2
, T3 = e1e�

1
−e1e�

2
+e2e�

1
 and

T4 = e1e�
1
−e1e�

2
+2e2e�

1
+3e2e�

2
.

F I G U R E  1   Convergence of Algorithm 1 in relative matrix Frobenius norm and the max-norm, with respect to step 
size � and the number of iterations. The parameters are d1 =d2 =d=2000, r=3, �i =d, �� =0.6 and U, V are generated 
from the SVD of d×r Rademacher random matrices. The sample size is n=4r2dlog(d) and the noise is Gaussian
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For each T, we drew the density histogram of (m̂T−mT)∕(�̂� ŝT

√
d1d2∕n) based on 1000 independent sim-

ulation runs. The density histograms are displayed in Figure 2 where the dashed black curve represents the 
p.d.f. of standard normal distributions. The sample size was n=4r2dlog(d) for T1, T2 and n=5r2dlog(d) 
for T3, T4. The empirical observation agrees fairly well with our theoretical results.

Finally, we examine the performance of the proposed approach under non-Gaussian noise. In par-
ticular, we repeated the last set of experiments with noise (�∕

√
3��)∈Unif([−1, 1]). The density 

histograms are displayed in Figure 3 where the dashed black curve represents the p.d.f. of standard 
normal distributions. Again the empirical evidences support the asymptotic normality of the proposed 
statistic.

6.2  |  Real-world data examples

We now turn our attention to two real-world data examples—the Jester and MovieLens data sets. 
The Jester data set is downloadable from http://eigen​taste.berke​ley.edu/datas​et/. The Jester data set 
contains ratings of 100 jokes from ∼70K users Goldberg et al. (2001). The data set consists of three 

F I G U R E  2   Normal approximation of m̂T−mT

�̂� ŝT

√
d1d2∕n

. The parameters are d1 =d2 =d=2000, r=3, �i =d, �� =0.6

andU, Vare generated from the SVD of d×r Rademacher random matrices. The sample size is n=4r2dlog(d) for 
the top two and n=5r2dlog(d) for bottom two. The noise is Gaussian. Each density histogram is based on 1000 
independent simulations and the dashed black curve represents the p.d.f. of standard normal distributions. Top 
left:T= e1e�

1
, top right:T= e1e�

1
−e1e�

2
. Bottom left:T= e1e�

1
−e1e�

2
+e2e�

1
, bottom right:T= e1e�

1
−e1e�

2
+2e2e�

1
+3e2e�

2

http://eigentaste.berkeley.edu/dataset/
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subsets of data with different characteristics as summarized in Table 1. Note that for each subset, we 
randomly sample a fixed number of ratings for each user so that the numbers of ratings of all users are 
equal (see Table  1). MovieLens was a recommender system created by GroupLens that recommends 
movies for its users. We use three data sets released by MovieLens (Harper & Konstan, 2016) whose 
details are summarized in Table 1. These data sets are downloadable from https://group​lens.org/datas​
ets/movie​lens/. In these three data sets, each user rates at least 20 movies. The Matlab codes used for 
preprocessing the raw data sets are included in the supplementary files on the journal’s websites.

For illustration, we consider the task of recommending jokes or movies to a particular users. 
Because of the lack of ground truth, we resort to resampling. For the Jester data set, we randomly 
sample ∼2000 users, and for each user 2 ratings that at least � ∈{0, 2, 6, 10, 14} apart. We removed 
these ratings from the training and used the proposed procedure to infer, for each user (i), between 
these two jokes ( j1 or j2) with ratings which one should be recommended. This amounts to the follow-
ing one-sided tests:

H0: M(i, j1)≤M(i, j2) v. s. H1: M(i, j1)>M(i, j2).

F I G U R E  3   Normal approximation of m̂T−mT

�̂� ŝT

√
d1d2∕n

. The parameters are d1 =d2 =d=2000, r=3, �i =d, �� =0.6

andU, Vare generated from the SVD of d×r Rademacher random matrices. The sample size is n=4r2dlog(d)

for the top two and n=5r2dlog(d) for the bottom two. The non-Gaussian noise (�∕
√

3��)∈Unif([−1, 1]). Each 
density histogram is based on 1000 independent simulations and the dashed black curve represents the p.d.f. of 
standard normal distributions. Top left:T= e1e�

1
, top right:T= e1e�

1
−e1e�

2
. Bottom left:T= e1e�

1
−e1e�

2
+e2e�

1
, bottom 

right:T= e1e�
1
−e1e�
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1
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We ran the proposed procedure on the training data and evaluate the test statistic ẑ for each user from 
the testing set. In particular, we fixed the rank r=2 corresponding to the smallest estimate �̂�. Note 
that we do not know the true value of M(i, j) and only observe Y(i, j)=M(i, j)+�(i, j). We therefore use 
�(Y(i, j1)>Y(i, j2)) as a proxy to differentiate between H0 and H1. Assuming that the � has a distribu-
tion symmetric about 0, then �(Y(i, j1)>Y(i, j2)) is more likely to take value 0 under H0, and 1 under 
H1. We shall evaluate the performance of our procedure based on its discriminant power in predicting 
�(Y(i, j1)>Y(i, j2)). In particular, we record the ROC curve of ẑ for all users from the testing set. The 
results, averaged over 10 simulation runs for each value of �, are reported in Figure 4. Clearly, we can 
observe an increase in predictive power as � increases suggesting ẑ as a reasonable statistic for testing H0 
against H1.

We ran a similar experiment on the MovieLens data sets. In each simulation run, we ran-
domly sampled ∼800 users and 2 ratings each as the test data. These ratings are sampled such 
that |Y(i, j1)−Y(i, j2)|≥ � for � =0, 1, 2, 3, 4. The false-positive rates and true-positive rates of our 
proposed procedure were again recorded. The ROC curves, averaged again over 10 runs for each 
value of �, are shown in Figure 5. This again indicates a reasonable performance of the proposed 
testing procedure. Empirically, we observe a better debiasing approach on these data sets which is 
M̂

����

1
= M̂

����

1
+
∑

i∈2
(Yi−⟨M̂����

1
, Xi⟩)Xi. The rationale is to partially replace M̂

����

1
’s entries with the ob-

served training ratings. This improvement might be due to the severe heterogeneity in the numbers of 
observed ratings from distinct users, or due to the unknown noise distributions.

T A B L E  1   Summary of data sets

Data set #users #jokes #ratings per user rating values

Jester-1 24983 100 29 [‒10, 10]

Jester-2 23500 100 34 [‒10, 10]

Jester-3 24938 100 14 [‒10, 10]

Data set #users #movies total #ratings rating values

ml-100k 943 1682 ∼10
5 {1, 2, 3, 4, 5}

ml-1m 6040 3952 ∼10
6 {1, 2, 3, 4, 5}

ml-10m 71567 10681 ∼10
7 {0.5, 1.0, ..., 4.5, 

5.0}

F I G U R E  4   ROC curves for one-sided tests H0: M(i, j1)≤M(i, j2) v. s. H1: M(i, j1)>M(i, j2) on Jester data sets. The 
testing data are sampled such that |Y(i, j1)−Y(i, j2)|≥ �. The estimated noise level �̂� =4.5160 on Jester-1, �̂� =4.4843 
on Jester-2 and �̂� =5.1152 on Jester-3. The rightmost point of each ROC curve corresponds to the significance level 
�=0.5 so that z� =0
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