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QUERY-TO-COMMUNICATION LIFTING FOR BPP*
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Abstract. For any n-bit boolean function f, we show that the randomized communication
complexity of the composed function f o g”, where g is an index gadget, is characterized by the
randomized decision tree complexity of f. In particular, this means that many query complexity
separations involving randomized models (e.g., classical vs. quantum) automatically imply analogous
separations in communication complexity.
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1. Introduction. A query-to-communication lifting theorem (a.k.a. communi-
cation-to-query simulation theorem) translates lower bounds on some type of query
complexity (a.k.a. decision tree complexity) [42, 10, 24] of a boolean function f into
lower bounds on a corresponding type of communication complezity [47, 28, 24, 31]
of a two-party version of f. See Table 1 for a list of several known results in this
vein. In this work, we show a lifting theorem for bounded-error randomized (i.e.,
BPP-type) query/communication complexity. Such a theorem had been conjectured
by [5, 8, 14, 45] and (ad nauseam) by the current authors.

1.1. Our result. For a function f: {0,1}" — {0,1} (called the outer function)
and a two-party function g: X x ) — {0,1} (called the gadget), their composition
fogh: X" x Y* — {0,1} is defined by

(fog") @ y) = flg(z1,y1)s -, 9(TnsYn))-

Here, Alice holds x € X™ and Bob holds y € Y™. Our result is proved for the popular
index gadget IND,,: [m] x {0,1}™ — {0,1} mapping (z,y) — y,. We use BPP®
and BPP®® to denote the usual bounded-error randomized query and communication
complexities. That is, BPPY(f) is the minimum cost of a randomized decision tree
(distribution over deterministic decision trees) which, on each input z, outputs f(z)
with probability at least 2/3, where the cost is the maximum number of queries over
all inputs and outcomes of the randomness; BPP“(F') is defined similarly but with
communication protocols instead of decision trees.

THEOREM 1.1 (lifting for BPP). Let m = m(n) = n?*®. For every f: {0,1}" —
{0,1},
BPP(f o IND",) = BPPU(f) - O(logn).
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TABLE 1
Query-to-communication lifting theorems. The first five are formulated in the language of
boolean functions (as in this paper); the last two are formulated in the language of combinatorial
optimization.

Class  Query model Communication model References

P deterministic deterministic [33, 22, 15, 23, 45, 14]

NP nondeterministic nondeterministic [21, 18]

many  polynomial degree rank [40, 38, 35, 36]

many  conical junta degree mnonnegative rank [21, 27]

pNP decision list rectangle overlay [20]
Sherali-Adams LP extension complexity [12, 27]
sum-of-squares SDP extension complexity — [29]

1.2. What does it mean? The upshot of our lifting theorem is that it automates
the task of proving randomized communication lower bounds: we only need to show a
problem-specific query lower bound for f (which is often relatively simple), and then
invoke the general-purpose lifting theorem to completely characterize the randomized
communication complexity of f o IND},.

Separation results. The lifting theorem is especially useful for constructing exam-
ples of two-party functions that have large randomized communication complexity, but
low complexity in some other communication model. For example, one of the main
results of Anshu et al. [5] is a nearly 2.5th power separation between randomized and
quantum (BQP‘) communication complexities for a total function F:

(1.1) BPP(F) > BQP(F)>5—o(1),

Previously, a quadratic separation was known (witnessed by set-disjointness). The
construction of F' (and its ad hoc analysis) in [5] was closely modeled after an analogous
query complexity separation, BPPY(f) > BQPY(f)25-°() shown earlier by [2]. Our
lifting theorem can reproduce the separation (1.1) by simply taking F := foIND;, and
using the query result of [2] as a black box. Here we only note that BQP“(F) is at
most a logarithmic factor larger than BQPdt( f), since a protocol can always efficiently
simulate a decision tree.

In a similar fashion, we can unify (and in some cases simplify) several other
existing results in communication complexity [32, 19, 5, 6], including separations
between BPP® and the log of the partition number; see section 5 for details.

Gadget size. A drawback of our lifting theorem is that it assumes gadget size m =
poly(n), which limits its applicability. For example, we are not able to reproduce tight
randomized lower bounds for important functions such as set-disjointness [25, 34, 7]
or gap-Hamming [11, 39, 43]. It remains an open problem to prove a lifting theorem
for m = O(1) even for the models studied in [21, 27].

Our result has been strengthened to hold for any gadget on O(logn) bits with
small enough discrepancy, such as the inner-product mod 2 gadget [13].

2. Reformulation. Our lifting theorem holds for all f, even if f is a partial
function or a general relation (search problem). Thus the theorem is not really about
the outer function at all; it is about the obfuscating ability of the index gadget IND,,
to hide information about the input bits of f. To focus on what is essential, let us
reformulate the lifting theorem in a more abstract way that makes no reference to f.
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2.1. Slices. Write G := g" for g := IND,;,. We view G’s input domain [m]™ x
({0,1}™)" as being partitioned into slices G=1(z) = {(x,y) : G(x,y) = 2}, one for
each z € {0,1}"; see (a) below. We will eventually consider randomized protocols, but
suppose for simplicity that we are given a deterministic protocol II of communication
cost |TI|. The most basic fact about IT is that it induces a partition of the input domain
into at most 2 rectangles (sets of the form X x Y, where X C [m]", Y C ({0,1}™)");
see (b) below. The rectangles are in 1-to-1 correspondence with the leaves of the
protocol tree, which are in 1-to-1 correspondence with the protocol’s transcripts (root-
to-leaf paths; each path is a concatenation of messages). Fixing some z € {0,1}", we
are interested in the distribution over transcripts that is generated when II is run on a
uniform random input from the slice G=1(2); see (c) below.

({0, 13m™)"

[m]" | ‘ ‘

(a) (b) (c)

2.2. The reformulation. We devise a randomized decision tree that on input
z outputs a random transcript distributed close (in total variation distance) to that
generated by IT on uniformly random input (z,y) ~ G~1(2). (We always use boldface
letters for random variables.)

THEOREM 2.1. Let IT be a deterministic protocol with inputs from the domain
of G = g™. There is a randomized decision tree of cost O(|Il|/logn) that on input
z € {0,1}™ samples a random transcript (or outputs L for failure) such that the
following two distributions are o(1)-close:

t. = output distribution of the randomized decision tree on input z;
t/

' = transcript generated by II when run on a random input (x,y) ~ G~ ().

Moreover, the simulation has “one-sided error”: supp(t.) C supp(t,)U{L} for every z.

The lifting theorem (Theorem 1.1) follows as a simple consequence of the above
reformulation. For the easy direction (“<”), any randomized decision tree for f making
¢ queries can be converted into a randomized protocol for f o ¢g" communicating c -
O(log n) bits, where the O(logn) factor is the deterministic communication complexity
of the gadget. For the nontrivial direction (“>"), suppose we have a randomized
protocol IT (viewed as a probability distribution over deterministic protocols) that
computes fog™ (with error < 1/3, say) and each IT ~ IT communicates at most |II| < ¢
bits. We convert this into a randomized decision tree for f of query cost O(c/logn)
as follows.

On input z:

(1) Pick a deterministic IT ~ IT (using random coins of the decision tree).

(2) Run the randomized decision tree for II from Theorem 2.1 that samples a
transcript ¢ ~ ¢, (II).

(3) Output the value of the leaf reached in t.
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The resulting decision tree has bounded error on input z:

Pr[output of decision tree # f(z)]

= En~m [Prtwtz(n)[value of leaf in t # f(z)]]

= Enort [Pryy ([ value of leaf in ¢ # f(2)] + o(1)]
= Enn [Pr(zy)~a-1(» [z, y) # f(2)] £ o(1)
=E(y)~c-1(2) [ProI(z,y) # f(2)]] £ o(1)

< E@yna-1(2)[L/3] £ o(1)

<1/3+o0(1).

This simple reformulation is one key conceptual insight that enabled progress on
obtaining a BPP lifting theorem.

2.3. Extensions. The correctness of our simulation hinged on the property of
BPP-type algorithms that the mizture of correct output distributions is correct. In fact,
the “moreover” part in Theorem 2.1 allows us to get a lifting theorem for one-sided error
(RP-type) and zero-sided error (ZPP-type) query/communication complexity: if the
randomized protocol IT on every input (x,y) € G~1(2) outputs values in {f(z), L}, so
does our decision tree simulation on input z. Funnily enough, it was previously known
that the existence of a query-to-communication lifting theorem for ZPP (for index
gadget) implies the existence of a lifting theorem for BPP in a black-box fashion [8]. We
also mention that Theorem 2.1 in fact holds with 1/poly(n)-closeness (instead of o(1))
for an arbitrarily high degree polynomial, provided m is chosen to be a correspondingly
high enough degree polynomial in n.

3. Simulation. We now prove Theorem 2.1. Fix a deterministic protocol II
henceforth. We start with a high-level sketch of the simulation and then fill in the
details.

3.1. Executive summary. The random-
ized decision tree will generate a random tran-
script of II by taking a random walk down the
protocol tree of II, guided by occasional queries
to the bits of z. The design of our random walk Gx.
is dictated by one (and only one) property of
the slice sets G~1(z), as follows. 9 X

Uniform marginals lemma (informal): For +}A
every z € {0,1}"™ and every rectangle X XY’
where X is “dense” and Y is “large,” the
uniform distribution on G~1(2)N X x Y has Y
both of its marginal distributions close to

uniform on X and Y, respectively.

(The definitions of “dense” and “large” are not needed for this outline of the argument
and are given in section 3.2.) This immediately suggests a way to begin the randomized
simulation. Each node of II’s protocol tree is associated with a rectangle X x Y
of all inputs that reach that node. We start at the root where, initially, X x Y =
[m]™ x ({0,1}™)™. Suppose Alice communicates the first bit b € {0,1}. This induces a
partition X = X°U X! where X? consists of those inputs where Alice sends b. When
IT is run on a random input (z,y) ~ G~1(2), the above lemma states that x is close
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to uniform on X, and hence the branch X? is taken with probability roughly | X°|/|X]|.
Our idea for a simulation is this: we pretend that @ ~ X is perfectly uniform so that
our simulation takes the branch X with probability exactly |X?|/|X|. It follows that
the first bit sent in the two scenarios (t, and t,) is distributed close to each other. We
can continue the simulation in the same manner, updating X < X° (and similarly
Y < Y’ when Bob speaks), as long as X x Y remains “dense x large.”

Largeness. A convenient property of the index gadget is that Bob’s nm-bit input is
much longer than Alice’s n log m-bit input. Consequently, the simulation will not need
to go out of its way to maintain the “largeness” of Bob’s set Y—we will argue that it
naturally remains “large” enough with high probability throughout the simulation.

Density. The interesting case is when Alice’s set X ceases to be “dense.” Our idea
is to promptly restore “density” by computing a density-restoring partition X = (J, X i
with the property that each X? is fixed on some subset of blocks I; C [n] (which
“caused” a density violation), and such that X is again “dense” on the remaining
blocks [n] \ I;. Moreover, |I;| will typically be bounded in terms of the number of bits
communicated so far.

After Alice has partitioned X = |J; X* we will follow the branch X* (updating
X + X") with probability |X*|/|X|; this random choice is justified by the uniform
marginals lemma, since it imitates what would happen on a uniform random input
from G7'(z). Since we made Alice’s pointers X fixed, say, to value a € [m]’i, we
need to fix the corresponding pointed-to bits on Bob’s side so as to make the output
of the gadgets ¢g"(X*,Y) consistent with z on the fixed coordinates. At this point,
our decision tree queries all the bits z;, € {0,1}!/ and we argue that we can indeed
typically restrict Bob’s set to some still-“large” Y* C Y to ensure g’i (X} X YI’) ={z5}.
Now that we have recovered “density” on the unfixed blocks, we may continue the
simulation as before (relativized to unfixed blocks).

3.2. Tools. Let us make the notions of “dense” and “large” precise. Let Ho, ()
= min, log(1/Pr[x = z]|) denote the usual min-entropy of a random variable x.
Supposing x is distributed over a set X, we define the deficiency of x as the nonnegative
quantity Do () = log|X| — Heo(x). A basic property, which we use freely and
repeatedly throughout the proof, is that marginalizing & to some coordinates (assuming
X is a product set) cannot increase the deficiency. For a set X we use the boldface X
to denote a random variable uniformly distributed on X.

DEFINITION 3.1 (blockwise-density [21]). A random variable © € [m]? (where J
is some index set) is called 6-dense if for every nonempty I C J the blocks ¢ have
min-entropy rate at least §, that is, Hoo (1) > - |I|logm. (Note that x is marginally
distributed over [m]!.)

LEMMA 3.2 (uniform marginals; simple version). Suppose X is 0.9-dense and
D (Y) < n3. Then for any z € {0,1}" the uniform distribution on G™1(2) N X x Y
(which is nonempty) has both of its marginal distributions 1/n?-close to uniform on X
and Y, respectively.

We postpone the proof of the lemma to section 4, and instead concentrate here on
the simulation itself—its correctness will mostly rely on this lemma. Actually, we need
a slightly more general-looking statement that we can easily apply when some blocks
in X have become fixed during the simulation. To this end, we introduce terminology
for such rectangles X x Y. Note that Lemma 3.4 below specializes to Lemma 3.2 by
taking p = ™.
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DEFINITION 3.3 (structured rectangles). For a partial assignment p € {0,1,x}",
define its free positions as freep == p~1(¥) C [n], and its fixed positions as fix p =
[n] \ freep. A rectangle X xY is called p-structured if Xgee, is 0.9-dense, X, is
fized, and each output in G(X X Y) is consistent with p.

An illustration of a p-structured rectangle appears in Figure 1.

¥
. T [*|*|*|*|*|*|*|*|1|*]:y1
8 Y
2 el [ fol =[]+ [+[<]=9
¥ ¥V ¥V ¥V ¥V v ¥
9 I3 [*|*|*|*|*|*|*|*|*|*]:y3
8 Y VvV VvV VOV VY

Fic. 1. Lllustration of € ~ X and y ~Y, where X XY 1is p-structured for p := 10%x%

LEMMA 3.4 (uniform marginals; general version). Suppose X x Y is p-structured
and Do (Y) < n3. Then for any z € {0,1}" consistent with p, the uniform distribution
on G71(2)NX XY (which is nonempty) has both of its marginal distributions 1/n?-close
to uniform on X andY, respectively.

The uniform marginals lemma is a key technical ingredient that enables us to go
beyond the limitations of techniques from previous work on query-to-communication
lifting.

3.3. Density-restoring partition. Fix some set X C [m]’. (In our application,
J C [n] will correspond to the set of free blocks during the simulation.) We describe
a procedure that takes X and outputs a density-restoring partition X = (J, X' such
that each X" is fixed on some subset of blocks I; C J and 0.9-dense on J \ I;. The
procedure associates a label of the form “xj, = «,;” with each part X;, recording which
blocks we fixed and to what value. If X is already 0.9-dense, the procedure outputs
just one part: X itself.

While X 1is nonempty:

(1) Let I C J be a mazimal subset (possibly I = ()) such that X; has min-entropy
rate < 0.9, and let a € [m]! be an outcome witnessing this: Pr[X; = a] >
m—0-911

(2) Output part X(*1=%) = {z € X : 27 = o} with label “z; = a.”

(3) Update X < X ~ X(@r=o),

# # Qo #* ag %+ ay

X >y, ? >z, >, 7 >z, ? > ()
l(i] l(lg l a3 l(u
Xt X2 X3 X4
LLmIl — a1” “xlzz a2” “.rI?’: ag?? CLxI4: a477

We collect below the key properties of the partition X = |J, X ¢ output by the
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procedure. First, the partition indeed restores blockwise-density for the unfixed blocks.
Second, the deficiency (relative to unfixed blocks) typically decreases proportional to
the number of blocks we fixed.

LEMMA 3.5. Each X' (labeled “z;, = o;”) in the density-restoring partition satis-
fies the following.

(Density) X%, is 0.9-dense.
(Deficiency) Deo(X%. ;) < Doo(X) = 0.1|1;|logm + 4,
where §; = log(|X|/| Uj>: X7|).

Proof. Write X>' == J;5,; X7 so that X' = (X' | X?l = ;). Suppose for
contradiction that some part X’ was not 0.9-dense on J \ I;. Then there is some
nonempty K C J \ I; and an outcome 3 € [m]|X violating the min-entropy condition:
Pr(Xi = 3] > m~ 09Kl But this contradicts the maximality of I; since the larger
set I; U K now violates the min-entropy condition for X >*:

Pr[XifJK =q;ff] = Pr[Xii = ;] - Pr[ Xk =

> g 09IL] | —0.9K| _ ) —0.9|LUK]|

This proves the first part. The second part is a straightforward calculation (intuitively,
going from X to X>? causes a §; increase in deficiency, going from X>* to X causes a
< 0.9]I;|log m increase, and restricting from J to J \ I; causes a |I;|logm decrease):

Doo(X5_s,) = |J ~ Li| logm — log | X|
< (|J|logm — |I;| logm) — log(|X>"| - 2_0'9|I"|logm)
= (|J|logm — log |X|) — 0.1I;| logm + log (| X|/| X >*|)
=D (X) — 0.1|I;| logm + ¢;. 0

3.4. The simulation. To describe our simulation in a convenient language,
we modify the deterministic protocol II into a refined deterministic protocol II; see
Figure 2. Namely, we insert two new rounds of communication whose sole purpose
is to restore density for Alice’s free blocks by fixing some other blocks and Bob’s
corresponding bits. In short, we maintain the rectangle X x Y as p-structured for
some p. Each communication round of II is thus replaced with a whole iteration in
II. The new communication rounds do not affect the input/output behavior of the
original protocol: any transcript of II can be projected back to a transcript of II (by
ignoring messages sent on lines 14 and 16). One way to think about II is that it
induces a partition of the communication matrix that is a refinement of the one II
induces. Therefore, for the purpose of proving Theorem 2.1, we can concentrate on
simulating II in place of II. The randomized decision tree becomes simple to describe
relative to II; see Figure 3.

Next, we proceed to show that our randomized decision tree is (1) correct—on input
z it samples a transcript distributed close to that of II when run on (z,y) ~ G~1(2)—
and (2) efficient—the number of queries it makes is bounded in terms of |II| (the
number of iterations in II).

3.5. Correctness: Transcript distribution. We show that for every z €
{0,1}™ the following distributions are o(1)-close:

t := transcript generated by our simulation of II with query access to z;

t' == transcript generated by IT when run on a random input from G~ *(z).
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Refined protocol 11 on input (z,y):

1. initialize: v =root of II, X xY = [m]™ x ({0,1}™)", p ="

2: while v is not a leaf [invariant: X x Y is p-structured |

3 let vg, v1 be the children of v

4 if Bob sends a bit at v then

5: let Y = Y9UY! be the partition according to Bob’s function at v
6 let b be such that y € Y°

7 > Bob sends b and we update Y < Y v« v,

8 else Alice sends a bit at v

9 let X = XU X! be the partition according to Alice’s function at v

10: let b be such that = € X

11: > Alice sends b and we update X < X°, v < v

12: let X =, X% be such that Xree p = UI Xfi'reep is a density-restoring
partition

13: let i be such that z € X* and suppose X{ ., , is labeled “z; = o,”
I C freep

14: > Alice sends i and we update X + X'’

15: let s = g/ (a,y7) € {0,1}/

16: » Bob sends s and we update Y < {y/ € Y : g/ (o, 9})) = s}, pr < s

17: end if

18: end while
19: output the value of the leaf v

FIG. 2. The refined (deterministic) protocol TI. The protocol explicitly keeps track of a rectangle
X XY consisting of all inputs that reach the current node (i.e., produce the same transcript so far).
The original protocol I can be recovered by simply ignoring lines 12-16 and text in red. The purpose
of lines 12-16 is to maintain the invariant; they do not affect the input/output behavior. (Color
available online.)

Randomized decision tree on input z:

To generate a transcript of II we take a random walk down II's protocol tree,
guided by queries to the bits of z. The following defines the distribution of
messages to send at each underlined line.

Lines marked “>”: We simulate an iteration of the protocol II pretending that
x ~ X and y ~ Y are uniformly distributed over their domains. Namely,
in line 7, we send b with probability |Y°|/|Y|; in line 11, we send b with
probability |X°|/|X|; in line 14 (after having updated X < X°), we send i
with probability |X?|/|X|.

Line marked “p»”: Here we query z; and send deterministically the message s =
21; except if this message is impossible to send (because z; ¢ g’ (a, Y7)), we
output L and halt the simulation with failure.

Fic. 3. The randomized decision tree with query access to z. Its goal is to generate a Tandom
transcript of I that is o(1)-close to the transcript generated by II on a random input (z,y) ~ G~1(z).
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The following is the heart of the argument.

LEMMA 3.6. Let z € {0,1}", and let t,t' be defined as above. Consider a node
v at the beginning of an iteration in IL’s protocol tree, such that z is consistent with
the associated p. Suppose X XY is the p-structured rectangle at v, and assume that
Do (Y) <n3. Let p and p' denote the messages sent in this iteration under t and t',
respectively (conditioned on reaching v). Then

(i) p and p' are 1/n%-close;

(ii) with probability at least 1 — 4/n? over w, at least a 2~ ("1°8™+2) fraction of Y

is retained.

Before proving the lemma, let us use it to show that ¢t and ¢’ are o(1)-close. For
this, it suffices to exhibit a coupling such that Pr[t =] > 1 — o(1). (A coupling of
any two random variables a and b is a joint distribution whose marginals are a and
b; a basic fact is that a and b are e-close in total variation distance iff there exists a
coupling with respect to which Pr[ja = b] > 1 —¢.) Our coupling works as follows:

Begin at the root, and for each iteration of I1:

(1) Sample this iteration’s messages p and p’ according to an optimal coupling.

(2) If w # o/, or if p results in < 2~ (*1°8™+2) fraction of Y being retained (this
includes the simulation’s failure case), then proceed to sample the rest of ¢
and t’ independently.

It follows by induction on k that after the kth iteration, with probability at least
(1 - 5/n2)k7

(I) ¢ and ¢’ match so far;

(II) Doo(Y) < k- (nlogm +2) < n3, where Y is Bob’s set under ¢ so far.
This trivially holds for k& = 0. For k > 0, conditioned on (I) and (II) for iteration k — 1,
the assumptions of Lemma 3.6 are met and hence Pr[pu = p/] > 1 —1/n? and

Pr[Do.(Y) < (k—1)-(nlogm+2) + (nlogm+2) = k- (nlogm +2)] > 1—4/n’
By a union bound, with probability > 1 —5/n?, (I) and (II) continue to hold. Thus,
Pr[(I) and (II) hold after the kth iteration] > (1—5/n?)*"1.(1-5/n?) = (1—-5/n%)".

Since there are at most nlogm iterations, we indeed always have k - (nlogm +2) < n3
(in (I)), and in the end we have Pr[t = | > (1 —5/n?)"°¢™ > 1 — (nlogm)-5/n? >
1 —o0(1), and thus t and ¢’ are o(1)-close.

Proof of Lemma 3.6. Let & := X be uniform over X, let y ;==Y be uniform over
Y, and let (z',y’) be uniform over G71(2) N X x Y. By Lemma 3.4,  and z’ are
1/n2-close, and y and y’ are 1/n>-close.

First assume Bob sends a bit at v. Then p is some deterministic function of y,
and g’ is the same deterministic function of y’ (the bit sent on line 7); thus p and p’
are 1/n2-close since y and gy’ are. Also, the second property in the lemma statement
trivially holds.

Henceforth assume Alice sends a bit at v. Write p = bis (jointly distributed with
x) and g/ = b’s’ (jointly distributed with (x’,y’)) as the concatenation of the three
messages sent (on lines 11, 14, and 16). Then bis is some deterministic function of
@, and b'%’s’ is the same deterministic function of ' (s and s’ depend on z, which is
fixed); thus p and p' are 1/n?-close since & and @’ are. A subtlety here is that there
may be outcomes of bi for which s is not defined (there is no corresponding child in
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II's protocol tree, since Bob’s set would become empty), in which case our randomized
decision tree fails and outputs L. But such outcomes have 0 probability under b’%’, so
it is still safe to say p and p' are 1/n?-close, treating s as L if it is undefined.

We turn to verifying the second property. Define X% x Y% C X x Y as the
rectangle at the end of the iteration if Alice sends b and 4, and note that € X% and
x' € X" We have
(3.1)

Pry;wbi [Pr[y € Ybi] < 9~ (nlog m+2)]

< Pry;~pir [Pr[y S Ybl] < 27(nlog m+2)] + 1/n2
< Pryipi [Prly € Y] < Priz € X"]/4] + 1/n?
< Pryipir [Pr[y € YY" < Prjz’ € X%]/2 or Pr[z’ € X"] < Pr[x € X"]/2| +1/n?,

where the second line follows since bi and b%’ are 1/n?-close, and the third line follows
since Pr[z € X%] > 1/|X| > 27"°e™_ It is straightforward to check that

(3.2) Prypy [Priz’ € X"] < Prlz € X"]/2] < 1/n?

since bi and b%’ are 1/n2-close. (Note that the inner probabilities “resample” the
random variables; e.g., although Prz’ € Xb%] = 1, we cannot say Pr[z’ € X"] =1
in (3.2) since the outcome bi is fixed inside the outer probability.) To analyze the other
event in (3.1), first note there is a coupling of y and ¥y’ such that Pr[y # y'] < 1/n?,
and we may imagine that y is jointly distributed with («’,y’): sample (’,vy’) and
then, conditioned on the outcome of 4, sample y according to the coupling. For each
bi,

Prly € YY" > Prly € Y | 2’ € X*]. Pr[z’ € X%
>Prly=1vy' |2’ € X"]. Pr[z’ € X"

(since ' € X implies y’ € Y*), and so

Pry;pi [Pr[y S Ybi] < PI‘[:BI € sz]/ﬂ < Pry;pi [Pr[y 7& y/ | x' e Xbi} > 1/2]
(3.3) < 2/n.

Combining (3.1), (3.2), and (3.3) using a union bound yields Pry;p; [Prly € Y] <
2—(nlogm+2)] < 2/n2 + 1/n2 + 1/7’1,2 — 4/n2 ]

One-sided error. One more detail to iron out is the “moreover” part in the
statement of Theorem 2.1. The simulation we described does not quite satisfy this
condition, but this is simple to fix: instead of halting with failure only when Y
becomes empty, we also halt with failure when Do, (Y") > n3. This does not affect the
correctness or efficiency analysis at all, but it ensures that we only output a transcript
if X xY is p-structured and Do (Y') < n? at the end, which by Lemma 3.4 guarantees
that the transcript’s rectangle intersects the slice G™1(z2) and thus t € supp(t').

3.6. Efficiency: Number of queries. We show that our randomized decision
tree makes O(|II|/logn) queries with high probability. If we insist on a decision tree
that always makes this many queries (to match the statement of Theorem 2.1), we may
terminate the execution early (with output L) whenever we exceed the threshold. This
would incur only a small additional loss in the closeness of transcript distributions.
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LEMMA 3.7. The simulation makes O(|II|/logn) queries with probability > 1 —
min(2- 1, 1/n2M),

Proof. During the simulation, we view the quantity Do, (Xfree p) > 0 as a nonneg-
ative potential function. Consider a single iteration where lines 11, 14, and 16 modify
the sets X and free p.

— In line 11, we shrink X = X% U X' down to X?, where Pr[b = b] = | X?|/|X|.
Hence the increase in the potential function is 7 := log(|X|/|X?|).
— In line 14 (after X + X?), we shrink X = J; X* down to X¢, where Pr[i =
i] = | X?|/|X|. Moreover, in line 16, |free p| decreases by the number of bits
we query. Lemma 3.5 says that the potential changes by §; — Q(logn) -
#(queries in this iteration), where §; = log(|X|/| U;>: X7|).
We will see later that for any iteration, E[v], E[d;] < O(1).

For j =1,...,|II], letting ~;,d; be the random variables s, d;, respectively, in
the jth iteration (and letting v; = 8; = 0 for outcomes in which Alice does not
communicate in the jth iteration), the potential function at the end of the simulation
is 32;(vj +9;) — Q(logn) - #(queries in total) > 0, and hence

E[#(queries in total)] < O(1/logn) - Z(E[’yj] + E[§;]) < O(|1]/logn).

By Markov’s inequality, this already suffices to show that with probability > 0.9 (say),
the simulation uses O(|II|/logn) queries. To get a better concentration bound, we
would like for the ;, d; variables (over all j) to be mutually independent, which they
unfortunately generally are not (e.g., 1,01 may reveal Alice’s message in the first
iteration, which in turn affects the set of possible values 3, 2 may take). However,
there is a trick to overcome this: we will define mutually independent random variables
c¢j,d; (for all j) and couple them with the -;,d; variables in such a way that each
7v; < ¢; and §; < d; with probability 1, and show that }_.(c; + d;) is bounded with
very high probability, which implies the same for > ;(v; + d;). For each j, do the
following:

— Sample a uniform real p; € [0,1) and define ¢; :=log(1/p;) +1og(1/(1 — p,)),
and let v; = v, where b = 0 if p; € [0,|X°/|X]) and b = 1 if p; €
[[X°/]1X],1) (where X, X% X! are the sets that arise in the first half of the
jth iteration, conditioned on the outcomes of previous iterations). Note that
v, is correctly distributed, and that v; < ¢; with probability 1 (specifically,
if b =0, then ~,; = log(|X|/|X°]) < log(1/p;) < ¢j, and if b = 1, then
v; = log(|X]/|X|) <log(1/(1—p;)) < ¢;j). Also note that, as claimed earlier,
E[vy;] <E[c;] = fol (log(1/p) +1og(1/(1 —p))) dp =2/In2 < O(1). For future
use, note that E[2%/2] = fol(p(l —p))~Y2dp =7 < O(1).

— Sample a uniform real g; € [0, 1) and define d; := log(1/(1—g;)), and let §; =
03, where % is such that g; falls in the ¢th interval, assuming we have partitioned
[0,1) into half-open intervals with lengths |X*|/|X| in the natural left-to-right
order (where X, X1, X2 ... are the sets that arise in the second half of the jth
iteration, conditioned on the outcomes of the first half and previous iterations).
Note that d; is correctly distributed, and that §; < d; with probability 1
(specifically, if 4 = i, then §; = log(|X|/| U;>; X7|) <log(1/(1 — q;)) = d;).
Also note that, as claimed earlier, E[d;] < E[d;] < E[¢;] < O(1). For future
use, note that E[2%/2] < E[2%/2] < O(1).
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Now for some sufficiently large constants C,C’ we have

- J

Pr[#(queries in total) > C’ - [II|/logn| < Pr Z('yj +4;)>C- |H]

<Pr|> (¢;+d;)>C- |H|}
-7
— Pr|o¥i(eitd)/2 o 20-\H|/2}

< E[QE]'(Cj‘f‘dj)/?] /20-|H\/2

_ (H B[2%/%] . B[2%/7] > Jocim/2

< (O(1)/2¢/2)™M

< o—I1]

If [TI| < o(logn), then a similar calculation shows that Pr|#(queries in total) > 1]
1/n®M),

4. Uniform marginals lemma.

<
ad

LEMMA 4.1 (uniform marginals; general version). Suppose X X Y is p-structured
and Do (Y') < n3. Then for any z € {0,1}" consistent with p, the uniform distribution
on G71(2)NX XY (which is nonempty) has both of its marginal distributions 1/n?-close
to uniform on X and Y, respectively.

We prove a slightly stronger statement formulated in Lemma 4.2 below. For
terminology, we say a distribution D; is e-pointwise-close to a distribution Ds if for
every outcome, the probability under D; is within a factor 1 4 ¢ of the probability
under Dy. As a minor technicality (for the purpose of deriving Lemma 3.4 from
Lemma 4.2), we say that a random variable & € [m]”’ is §-essentially-dense if for every
nonempty I C J, Hoo(xr) > 0 - [I|logm — 1 (the difference from Definition 3.1 is
the “—17); we also define p-essentially-structured in the same way as p-structured but
requiring Xpyee, to be only 0.9-essentially-dense instead of 0.9-dense. The following
strengthens a lemma from [20], which implied that G(X,Y") has full support over the
set of all z consistent with p.

LEMMA 4.2 (pointwise uniformity). Suppose X XY is p-essentially-structured and
Do (Y) <n3+1. Then G(X,Y) is 1/n-pointwise-close to the uniform distribution
over the set of all z consistent with p.

Proof of Lemma 3.4. Let (x,y) be uniformly distributed over G=1(2) N X x Y.
We show that x is 1/n?-close to X; a completely analogous argument works to show
that y is 1/n2-close to Y. Let E C X be any test event. Replacing E by X \ E
if necessary, we may assume |E| > |X|/2. Since X x Y is p-structured, £ x Y is
p-essentially-structured. Hence we can apply Lemma 4.2 in both the rectangles £ x Y
and X xY:

Priz € F] - \G:l(z) NExY| (1+1/n%) .Q:Ifreep\ J|ExY]|
|G (z)NX xY| (1£1/n3)-2-Ifreerl .| X x Y]
— (1£3/n®) - [B|/|X| = |EI/|X| £ 1/n?. 0

We prove Lemma 4.2 in the rest of this section. An alternative, shorter proof
relying on deeper Fourier analysis tools appears in [44].
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4.1. Overview for Lemma 4.2. A version of Lemma 4.2 (for the inner-product
gadget) was proved in [21, sect. 2.2] under the assumption that X and Y had low
deficiencies: Do (X7), Do (Y1) < O(|I]logn) for free blocks I. The key difference is
that we only assume D, (Y7) < n® + 1. We still follow the general plan from [21] but
with a new step that allows us to reduce the deficiency of Y.

Fourier perspective. We refer the reader to [30] for background on discrete Fourier
analysis. The idea in [21] to prove that z := G(X,Y) is pointwise-close to uniform is
to study z in the Fourier domain, and show that z’s Fourier coefficients (corresponding
to free blocks) decay exponentially fast. That is, for every nonempty I C free p we
want to show that the bias of ®(z;) (parity of the output bits z;) is exponentially
small in |I|. Tools tailor-made for this situation exist: various “XOR lemmas” are
known to hold for communication complexity (e.g., [37]) that apply as long as X; and
Y; have low deficiencies. All this is recalled in section 4.2. This suggests that all that
remains is to reduce our case of high deficiency (of Y7) to the case of low deficiency.

Reducing deficiency via buckets. For the moment assume I = [n] for simplicity of
discussion. Our idea for reducing the deficiency of Y; =Y is as follows. We partition
each m-bit string in Y € ({0,1}™)" into m'/? many buckets each of length m'/2. We
argue that Y can be expressed as a mixture of distributions y with the following
properties: for each index i, the ith string y; in y has few of its buckets fixed (where
a “fixed bucket” has all the corresponding bits of y; fixed to constants), and for any
way of choosing an unfixed bucket for each y;, the marginal distribution of y on the
union 7' of these buckets has deficiency as low as Dy (yr) < 1. Correspondingly, we
argue that X may be expressed as a mixture of distributions  that have a nice form:

~ ¥
i [ | | | el ) =
e YV vy
T [ T | | | fireg ] = Y2
ry -~ YV vy
T3 [ | Ts | | fized ] = Y3
1st bucket 2nd bucket 3rd bucket 4th bucket

Here each pointer x; ranges over a single bucket T;. Moreover, for a large subset
I’ C [n] of coordinates, T; is unfixed in y; for 7 € I’, and hence y has deficiency < 1 on
the union of these unfixed buckets. The remaining few ¢ € [n] \ I’ are associated with
fixed pointers x; = x; pointing into fixed buckets in y. Consequently, we may interpret
(z,y) as a random input to IND /. by identifying each bucket T; with [m'/?]. In
this restricted domain, we can show that (& o g™)(x, y) is indeed very unbiased: the
fixed coordinates do not contribute to the bias of the parity, and (x,y;/) is a pair of
low-deficiency variables for which an XORr lemma-type calculation applies. The heart
of the proof will be to find a decomposition of X x Y into such distributions x x y.
In the remaining subsections, we carry out the formal proof of Lemma 4.2.

4.2. Fourier perspective. Henceforth we abbreviate J = free p. We employ
the following calculation from [21], whose proof is reproduced in section 4.6 for
completeness. Here x(z) = (—1)®(),

LEMMA 4.3 (pointwise uniformity from parities). If a random variable z; over
{0,1}7 satisfies |E[X(z1)]| < 275108 for every nonempty I C J, then zy is 1/n®-
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pointwise-close to uniform.

To prove Lemma 4.2, it suffices to take z; = g7 (X, Y;) above and show that for
every 0 #1 C J,

1) IE[x(¢" (X1, Y7))]| < 27°Mlesn,

In our high-deficiency case, we have

(i) Doo(X7) <0.1|I|logm + 1,

(i) Doo(Y7) < 0%+ 1.

Low-deficiency case. As a warm-up, let us see how to obtain (4.1) by imagining
that we are in the low-deficiency case, i.e., replacing assumption (ii) by

(ii") Doo(Y7) < 1.

We present a calculation that is a very simple special case of, e.g., Shaltiel’s [37] XOR
lemma for discrepancy (relative to uniform distribution).

We first review a few mathematical concepts. For any real matrix M, its operator
2-norm ||M|| equals its largest singular value and satisfies || Mv| < [|M]| - ||v]| for any
vector v. The k-fold tensor product of M with itself is the matrix M®F defined by
Ma%]-c~a:k,y1--~yk = Hle My, 4,. A standard fact is that the 2-norm behaves multiplica-
tively under the tensor product: HM ®kH = ||M||¥. We denote the Rényi 2-entropy
of a random variable a by Ha(a) := —log >, Pr[a = a]?. A standard fact is that
H:(a) > Hoo(a).

Now let M be the communication matrix of g := IND,,, but with {+1, —1} instead
of {0,1} entries. The operator 2-norm of M is ||M|| = 2"/2 since the rows are
orthogonal and each has 2-norm 2"/2. The |I|-fold tensor product of M then satisfies
||M®|” H = 2llm/2 Here M®/! is the communication matrix of the 2-party function
x o g'. We think of the distribution of X as an m!!l-dimensional vector Dx,, and of
the distribution of Y7 as a (2™)/|-dimensional vector Dy,. By (i) we have

HDXIH :2*H2(X1)/2 < 2*Ho<>(XI)/2

< 2—(|I|10gm—0.1|I|logm—1)/2 — 2—0.45\I|10gm+1/2

Similarly, by (ii") we would have

HDYIH < 9= (m=1)/2 _ o=[Ilm/2+1/2
The left side of (4.1) is now

DX, M1 Dy, | < [[Dx, |- |1V - [, |
< 2—0.45|I\ logm+1/2 | 2\I\m/2 . 2—|I|m/2+1/2

(42) = 270'45”‘ log m+1 < 2*5|I\ logn.

Therefore our goal becomes to reduce (via buckets) from case (ii) to case (ii’).

4.3. Buckets. We introduce some bucket terminology for random (z,y) € [m]! x

({0, 13"

— Each string y; is partitioned into m!/2 buckets, each of length m?!/2.

— We think of x; as a pair £;r;, where £; specifies which bucket and r; specifies
which element of the bucket. (Or, viewing x; € {0,1}1°¢™ £; € {0,1}(cgm)/2
would be the left half and 7; € {0,1}1°8™)/2 would be the right half.) Thus
x = £r, where the random variable £ € [m'/2]! picks a bucket for each
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coordinate, and the random variable r € [m!/2]! picks an element from each
of the buckets specified by £. Every outcome £ of £ has an associated bucket
union (one bucket for each string) given by T, := (J,.;({i} x Ty,), where
Ty, C [m] is the bucket specified by ¢;. Here a bit index (¢, ) € I X [m] refers
to the jth bit of the string vy;.

4.4. Focused decompositions. Our goal is to express the product distribution
X7 x Yy as a convex combination of product distributions @ x y that are focused,
which informally means that many pointers in @ point into buckets that collectively
have low deficiency in y, and the remaining pointers produce constant gadget outputs.
A formal definition follows.

DEFINITION 4.4. A product distribution & x y over [m]! x ({0,1}™)! is called
focused if there is a partial assignment o € {0,1,x} such that, letting I' := freeo,
we have |I'| > |1/2, and g'(x,y) is always consistent with o, and for each i € I,
x; = {;r; is always in a specific bucket Ty, C [m], and

(i*) Dool(xrr) < 0.6|1'|log(m!/?) with respect to X

(ii*) Doo(yr) <1, where T == U, ({i} x Ty,).

We elaborate on this definition. Since g’ (x,y) is always consistent with o, the
coordinates fix o = I ~ I’ are irrelevant to the bias of the parity of ¢g’(x,y). For each
i € I', we might as well think of the domain of x; as Ty, instead of [m], and of the
domain of y; as {0,1}7% instead of {0,1}™. Hence, out of the |I’|m bits of y;/, the
only relevant ones are the |I’|m'/? bits indexed by T. We may thus interpret (z;,yr)

icl’ Tfi ;

!
as a random input to INDfnl/z. In summary,

’

(4.3) IE[x(s"(=,9)]| = [E[x(¢" (®r,yr)]| = [E[xANDL 2 (@1, y1))] |-

If & x y is focused, then the calculation leading to (4.2) can be applied to x X yr,
with m replaced by m!/2, |I| replaced by |I’| > |I|/2, and min-entropy rate 0.9 replaced
by 0.4, to show that

value of (4.3) < 270.2|I'|log(m1/2)+1 < 9—(0.2/4)|I|log m+1 < 9—5|1|logn—1

using m = n?°6,

LEMMA 4.5. The product distribution X7 X Y7 can be decomposed into a mizrture
of product distributions Eqwq[z? x y?] over [m]f x ({0,1}™)! (d stands for “data”)
such that % x y? is focused with probability at least 1 — 221 1egn=1 oo d ~ d.

Using Lemma 4.5, which we prove in the following subsection, we can derive (4.1):

|E[x(¢" (X1, Y1))]| < Eana|E[x(¢" (=, y%)]|

< Prld is not focused] + max d|E[x(gI(:cd, y?)] |

< 2—5|I|logn—1 + 2—5|I|logn—1 _ 2—5|I\ logn.

4.5. Finding a focused decomposition. We now prove Lemma 4.5. By as-
sumption, Xy = £r is 0.9-essentially-dense (since X ; is) and Do (Y7) < Doo(Y) <
n3 + 1. We carry out the decomposition in the following three steps. Define
€= 275\1\ logn—1

CLAM 4.6. Y7 can be decomposed into a mizture of distributions E..[y¢] over
({0,1}™)! such that, with probability at least 1 —&/3 over ¢ ~ c,
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(P1) each string in y© has at most 2n3 fived buckets;
(P2) each bucket union T, not containing fized buckets has Do (yf,) < 1.

CrAaM 4.7. For any c satisfying (P1), with probability at least 1 — /3 over £ ~ £,
(Q1) the bucket union Ty contains at most |I|/2 fized buckets of y©;
(Q2) Doo(r | £ =) <0.25|I|log(m'/?).

CLAIM 4.8. For any ¢ and ¢ satisfying (Q1), (Q2), letting

I = {z € I : the {; bucket of y; is ﬁfced} and I' =11

with probability at least 1 — /3 over ri= ~ (v« | £ = 1), we have

Doo(rp | £ =10, rr- = 77) < 0.6]T'|log(m*/?).

We now finish the proof of Lemma 4.5 assuming these three claims. Take d =
(c,ﬁ,rp); that is, the data d ~ d is sampled by first sampling ¢ ~ ¢, then ¢ ~ £,
then rr ~ (rr« | £ = {), where I* implicitly depends on ¢ and ¢. Take y? = y°
and x? = (X; | £ = ¢, r;- = r7), and note that Egoq[x? x y?] indeed forms a
decomposition of X; x Y;. By a union bound, with probability at least 1 — ¢ over
d ~ d, the properties of all three claims hold, in which case we just need to check that
x4 x y? is focused.

Since for each i € I*, z¢ € Ty, and yflei are both fixed, we have that ¢’ (x%., y%.)
is fixed, and hence g’ (x? y?) is always consistent with some partial assignment o
with fixo = I'* and freec = I'. We have |I'| > |I|/2 by (Q1). For each i € I’, note
that ¢ is always in Tp, since we conditioned on £ = £. Note that (i*) for ¢ holds by
Claim 4.8. To see that (ii*) for y? holds, pick any ¢’ that agrees with £ on I’ and such
that for every i € I* the £, bucket of y¢ is not fixed—this is possible since each y
has m!/? buckets but at most 2n® < m!/? fixed buckets by (P1), hence at least one
unfixed bucket. Since the bucket union Tj contains no fixed buckets of y?, we have
Doo(y4) < Deo(yf,,) < 1 by (P2).

Proof of Claim 4.6. We use a process highly reminiscent of the “density-restoring
partition” process described in section 3.3. We maintain an event ' which is initially
all of ({0,1}™)~.

While Pr[Y; € E] > ¢/3:

(1) Choose a maximal set of pairwise disjoint bucket unions 7 = {Tp1,..., Ty}
with the property that Do (Yur | E) > k (possibly 7 = 0) and let 8 €
{0,1}“7 be an outcome witnessing this: Pr[Y,r = | E] > 9= (k|Zim'/*—k)

(2) Output the distribution (Y7 | Yyr = B, F) with associated probability
Pr[Y,r = 8, E] > 0.

(3) Update E « {y; € E : yur # B}.

Output the distribution (Y7 | E') with associated probability Pr[Y; € E] if the latter
is nonzero.

The distributions output throughout the process are the y’s; note that with the
associated probabilities, they indeed form a decomposition of Y;. Each time (1) is
executed, we have

k< Do(Yyr | E) < Doo(Y7) + log(1/Pr[Y7 € E]) < n® + 1+ log(3/¢) < 2n>.
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Also, any y¢ = (Y7 | YU = 8, E) output in (2) has the property that for any bucket
union Ty not containing fixed buckets, Doo(y%e) < 1. To see this, first note that Ty
is disjoint from UT since the latter buckets are fixed to 3. If Doo(y7,) > 1 were

witnessed by some v € {0,1}7¢, then

PrYurur, = 67| E] =Pr[Yur = 8| E] - Pr[Yr, =~ | YUr = §, E]
o o= (kITImY2=k) | 9= (I[mY/2=1) _ o= ((e+D)Tm! /2~ (k1))

and s0 Doo (Yurur, | E) > k 4+ 1, which would contradict the maximality of & since
{Tp,..., Ty, Ty} is a set of pairwise disjoint bucket unions. d

In the proofs of both Claim 4.7 and Claim 4.8, we use the chain rule for min-
entropy [41, Lem. 6.30], which states that if @ and b are any joint random variables,
then for any § > 0, with probability at least 1 — § over a ~ a we have Do (b | a =
a) < Dy (ab) +log(1/9).

Proof of Claim 4.7. Assume that for each coordinate i € I, y¢ has at most 2n?
fixed buckets. Since X is 0.9-essentially-dense, £ is 0.8-essentially-dense (for each
nonempty H C I,

Doo(8rr) < Doo(Xp) < 0.1|H|logm + 1 = 0.2|H|log(m!'/?) + 1

holds). Thus, the probability that Tp hits fixed buckets in all coordinates in some set
H C I is at most the number of ways of choosing a fixed bucket from each of those
coordinates (< (2n?)!1) times the maximum probability that T} hits all the chosen

buckets (< 27 (0-81H] log(m**)=1) gince £ is 0.8-essentially-dense). We can now calculate

Pr[T} hits > |I]/2 fixed buckets]

< Z Pr[T} hits fixed buckets in coordinates H]
HCI |H|=[1|/2
|I|> 3\|I]/2  9—(0.8(]1]/2)1 1/2y_1
< - (2n3) 1172 . 9=(0.8(11/2)og(m"/)~1)
(|I|/2

< 2\I| . 21.5|I|10gn+1 . 2—(51.2\]\ logn—1) 256)

(using m =n
< 9lI1-49.7|1| log n+2

<e/6.

For convenience, we assumed above that |I] is even; if || is odd (including the case
|I| = 1), the same calculation works with [||/2] instead of |I]/2.

(Q2) follows by a direct application of the chain rule for min-entropy: with
probability at least 1 — &/6 over £ ~ £, we have

Do(r [ £=1) <Dy (Xr) + log(6/¢)
(0.1I|logm + 1) + (5||logn + 4)

< 0.25/]log(m!/?).

<
<

By a union bound, with probability at least 1 — &/3 over £, (Q1) and (Q2) hold
simultaneously. ]
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Proof of Claim 4.8. This is again a direct application of the chain rule for min-
entropy: with probability at least 1 —e/3 over r+ ~ (ry- | £ = £), we have

De(rp [£=4, 71+ =77+) < Deo(r | £ = () + log(3/e)
< (0.25|1|log(m'/?)) + (5|I|logn + 3)
< 0.6|I'|log(m!/?),

where the middle inequality uses (Q2), and the last inequality uses (Q1) (|I’| > |I]/2)
and m = n?%. O

4.6. Pointwise uniformity from parities.

LEMMA 4.9 (pointwise uniformity from parities). If a random variable z; over
{0,1}7 satisfies |E[X(z1)]| < 275108 for every nonempty I C J, then zy is 1/n®-
pointwise-close to uniform.

Proof (from [21, sect. 2.2]). We let € := 1/n3 and write z; as z throughout the

proof. We think of the distribution of z as a function D: {0,1}7 — [0, 1] and write it
in the Fourier basis as

IcJ
where 7(z) = (=1)®GD and D(I) = 21 >, D(2)x1(z) = 271 - E[x;(2)]. Note
that D(P) = 27!Vl because D is a distribution. Our assumption says that for all
nonempty I C J, 271 |D(I)| < 2751111°e" which is at most 2721118 1/]. Hence,

El
D J
2SSy (D) < 3 2 2Mleeldl — 3 <|k|>2—2klogJ
I#0 k=1
E
< 522—klog|J| <e.
k=1

We use this to show that |D(z) — 271/I| < e277I for all z € {0,1}7, which proves the

lemma. To this end, let &/ denote the uniform distribution (note that u (I) =0 for
all nonempty / C J) and let 1, denote the indicator for z defined by 1.(2) =1 and
1.(2') =0 for 2’ # z (note that [1,(I)| = 2/l for all I). We can now calculate

‘D(z) - 2_|J|’ = ‘<]IZ’D> - <1Z7u>‘ = ‘<1z7D_u>| = 2|J| : |<iﬁz’ﬁ _Z:{\H
<21 S]] = S IB()] < 227, 0

I4D I#£0

5. Applications. In this section, we collect some recent results in communication
complexity, which we can derive (often with simplifications) from our lifting theorem.

Classical vs. quantum. Anshu et al. [5] gave a nearly 2.5th power total function
separation between quantum and classical randomized protocols. Our lifting theorem
can reproduce this separation by lifting an analogous separation in query complexity
due to Aaronson, Ben-David, and Kothari [2]. Let us also mention that Aaronson
and Ambainis [1] conjectured that a slight generalization of FORRELATION witnesses

an O(logn)-vs.-Q(n) quantum/classical query separation. If true, our lifting theorem
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implies that “2.5” can be improved to “3” above; see [2] for a discussion. (Such an
improvement is not black-box implied by the techniques of Anshu et al. [5].)

Raz [32] gave an exponential partial function separation between quantum and
classical randomized protocols. Our lifting theorem can reproduce this separation
by lifting, say, the FORRELATION partial function [1], which witnesses a 1-vs.-Q(,/n)
separation for quantum/classical query complexity. However, qualitatively stronger
separations are known [26, 17] where the quantum protocol can be taken to be one-way

or even simultaneous.

Partition numbers. Anshu et al. [5] gave a nearly quadratic separation between
(the log of) the two-sided partition number (number of monochromatic rectangles
needed to partition the domain of F') and randomized communication complexity.
This result now follows by lifting an analogous separation in query complexity due to
Ambainis, Kokainis, and Kothari [4].

In [19], a nearly quadratic separation was shown between (the log of) the one-sided
partition number (number of rectangles needed to partition F'~!(1)) and randomized
communication complexity. This separation question can be equivalently phrased as
proving randomized lower bounds for the Clique vs. Independent Set game [46]. This
result now follows by lifting an analogous separation in query complexity, obtained
in several papers [19, 3, 2]; it was previously shown using the lifting theorem of [21],
which requires a query lower bound in a model stronger than BPP,

Approzimate Nash equilibria. Babichenko and Rubinstein [6] showed a randomized
communication lower bound for finding an approximate Nash equilibrium in a two-
player game. Their approach was to show a lower bound for a certain query version
of the PPAD-complete END-OF-LINE problem, and then lift this lower bound into
communication complexity using [21]. However, as in the above Clique vs. Independent
Set result, the application of [21] here requires that the query lower bound be established
for a model stronger than BPPdt, which required some additional busywork. Our
lifting theorem can be used to streamline their proof.

Direct sum. In [9], our lifting theorem has been applied to show that there exists
a total two-party function F such that BPP*“(F*) = O(klogk - BPP“(F)) holds for

all k < 27” | answering a question of [16].
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