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Topology and Content Co-Alignment Graph Convolutional Learning
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Abstract—1In traditional graph neural networks (GNNs), graph con-
volutional learning is carried out through topology-driven recursive
node content aggregation for network representation learning. In reality,
network topology and node content each provide unique and important
information, and they are not always consistent because of noise,
irrelevance, or missing links between nodes. A pure topology-driven
feature aggregation approach between unaligned neighborhoods may
deteriorate learning from nodes with poor structure-content consistency,
due to the propagation of incorrect messages over the whole network.
Alternatively, in this brief, we advocate a co-alignment graph convo-
lutional learning (CoGL) paradigm, by aligning topology and content
networks to maximize consistency. Our theme is to enforce the learning
from the topology network to be consistent with the content network
while simultaneously optimizing the content network to comply with
the topology for optimized representation learning. Given a network,
CoGL first reconstructs a content network from node features then
co-aligns the content network and the original network through a
unified optimization goal with: 1) minimized content loss; 2) minimized
classification loss; and 3) minimized adversarial loss. Experiments on
six benchmarks demonstrate that CoGL achieves comparable and even
better performance compared with existing state-of-the-art GNN models.

Index Terms— Graph convolutional learning, graph mining,
network embedding, network representation learning, neural
networks.

I. INTRODUCTION

Recent years have witnessed a significant growth of graph neural
networks (GNN) in domains involving data with dependence rela-
tionships, such as social network mining [1] and image recognition
[2]. This is mainly attributed to GNN’s efficient message-passing
mechanism to encode network topology and node content/features
in a unified latent space, through iterative feature aggregation of
neighborhoods for each node [3], [4]. Because node content (or node
features) is propagated through network topology, both node features
and topological structures are naturally preserved throughout the
interactive learning process between features and structures. Under
this learning paradigm, tremendous effort has been focused on devel-
oping effective feature aggregators for improved node representation
learning, such as GAT [5] that learns different importance weights
for various neighborhoods and GraphSAGE [4] that learns a set of
aggregator functions for each node.

Despite promising results, existing graph convolutional learning
approaches employ a topology-driven principle, requiring node con-
tent to be aggregated by following edge connections. By doing
so, they consider that node features and edge relationships are
largely consistent and are mutually enhanced during the learning
[6]. In reality, network node content (e.g., text and image semantics)
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Fig. 1.  Tlustration of inconsistent/incomplete relationships in networks.
(a) Image network. (b) Document network. The topology of both networks
is given but is not always consistent with the node content. For example,
when using image semantics as node content, the edge between imgl and
img2 is inconsistent as they do not share any common semantics (they
might be connected because of other unobserved correlations, such as pictures
taken during the same trip). Analogically, the inconsistencies exist between
(docl, doc2) and (doc3, doc4), and there is a potential missing edge between
docl and doc4 due to common features X3 and Xs.

and graph topology (e.g., link relations) may be highly inconsistent
due to unconscious or deliberate human behaviors [7], [8]. For
example, irrelevant citations between scholarly publications result
in noisy citation networks. Similarly, an attacker may create fake
followers or manipulate friendships, resulting in inconsistent social
networks [9]. In addition, incomplete or missing links between nodes
are also common, i.e., an image graph based on tag sharing rules
often has sparse tag information, therefore, results in missing edges.
Fig. 1 shows two examples of inconsistent and incomplete graphs
or networks. In summary, graph inconsistency combined with sparse
node relations severely challenges existing GNN learning models for
the following two reasons.

1) Noisy Message Passing: When neighborhood relationships are
misaligned to node affinities reflected by node content, nodes
will aggregate irrelevant information from neighbors, resulting
in noisy content and inferior representation learning. Such noisy
messages will continue to pass through graph structures and
finally deteriorate the learning of all nodes.

2) Node Relationship Impairing: When two nodes have similar
content but no link between them, there is no explicit constraint
to force similar nodes to be similar in the embedding space.
In addition, these absent relations will further impair the
relation modeling between other pairs of nodes over the entire
network.

Note that network topology is often not optimal, a recent study [10]
proposes to optimize network topology structure to improve graph
convolutional network (GCN) learning. However, such an approach
is potentially risky because revising network topology to satisfy
optimization tends to overfit the training data. Alternatively, in this
brief, we take a different route to co-align network topology and node
content for graph convolutional learning.

Specifically, we focus on information networks where nodes have
rich features (content) such as texts and images. Instead of employing
the traditional topology-driven principle, we treat network topology
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Co-Alignment Learning

(b)

Fig. 2. Difference between GCN and our proposed CoGL. (a) GCN learns
graph embeddings based on network topology A and node content X by
optimizing classification loss Lgq,. (b) CoGL first learns to construct a
content network A and then performs content and topology co-alignment
embedding learning by optimizing a unified loss from three parts: content
network construction loss L, node classification loss Lg, and adversarial
training loss Lgqp.

and node content as two distinct, but highly correlated, data sources,
and explicitly characterize their differences for embedding learning.
We advocate a new “co-alignment” learning principle where the
topology network should respect underlying node content, and the
content should comply with the topology network for optimized
representation learning. A GNN model namely co-alignment graph
convolutional learning (CoGL) is purposed for this purpose.

To enable co-alignment learning, CoGL reconstructs a content
network from node features. The content network together with
the original topology network is then set to perform co-alignment
learning in an adversarial fashion: 1) the content network aims
to learn good embeddings complying with graph topology while
2) the topology network trains to learn optimal embeddings with
shared learning parameters for semisupervised node classification.
In addition, the content network enforces adversarial training on the
topology network in order to balance node content and topology
information for optimal node representation learning. The difference
between the proposed CoGL and existing GCNs [3] is explained
in Fig. 2.

In summary, our main contribution is twofold: 1) we propose
modeling inconsistency and discrepancy between network node con-
tent and topology for optimal and robust graph embedding and
2) we propose CoGL, a novel GNN model that enables co-alignment
leaning between content-based network and the original topology
network.

II. RELATED WORK

Given a network with edge connections and content (features) asso-
ciated with each node, graph embedding learns a low-dimensional
vector for each node to preserve node content and network topol-
ogy [11]. Many works have been proposed, ranging from unsu-
pervised learning methods such as DeepWalk [12] to supervised
learning methods such as SemiGraph [13]. The common idea is that
nodes with similar topology or similar content are represented using
embedding vectors close to each other in the latent space [14].

GNNs [6] are a family of neural network models specifically
developed for learning from networked data. GNN models usually
have efficient information aggregators [15] that apply directly to
graphs to easily incorporate graph structures and features for uni-
fied node representation learning. GCNs [3] adopt a spectral-based
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convolution filter by which nodes can aggregate features from their
respective local graph neighborhoods for representation learning.
This convolution learning mechanism has been proven successful
in many real-world analytic tasks such as link prediction [16],
image recognition [2], and new drug discovery [17]. Following the
similar convolution graph embedding scheme, many GNN models
with more efficient information aggregators have been proposed. For
example, graph attention network (GAT) [5] learns to assign different
importance weights for various nodes so that nodes can highlight
important neighborhoods while aggregating features. GraphSAGE
[4] learns a set of aggregation functions for each node to flexibly
aggregate information from neighborhoods within different hops.
GraphAIR [18] explicitly models the neighborhood interaction in
addition to neighborhood aggregation to better capture the complex
and non-linear node features. Deep adaptive graph neural network
(DAGNN) [19] aims to design deeper convolution layers to capture
information from large and adaptive receptive fields.

For all existing GNN approaches, graph convolutional learning is
carried out by using topology to drive feature aggregation. A widely
accepted assumption is that node content and graph structures are
consistent and complementary for measuring node closeness in the
embedding space [20], [21]. In reality, the network topology is often
noisy and inconsistent to node content [22]. A recent study [23]
shows that network topology is not only inconsistent with node
content at the individual node level but is also different from the
affinity network (built from node content) at the network level (e.g.
degree distributions). A recent topology optimization based GCN [10]
proposes to revise network topology to improve GCN learning but
requires revising/changing network topology which is risky to most
users.

Different from the above models that consider graph structures
and node content as consistent by default or revise them to ensure
consistency, we propose a new co-alignment paradigm to explicitly
model their inconsistency for optimal and robust graph embedding in
an adversarial training fashion. It is worth mentioning that a couple of
existing works [24], [25], including a recently proposed model ARGA
[25] built on GCN, also use adversarial network embedding. However,
our work is different from ARGA mainly in twofold. First, ARGA
aims to design a graph autoencoder to encode network topology
and node content in low-dimensional vectors, where topology and
content are assumed to be consistent for aligned node relationships
modeling based on GCN. In comparison, our work considers that
network topology and node content could be inconsistent and aims to
balance the two aspects for adversarial node relationships modeling.
Second, ARGA aims to force latent node representations to match
a prior distribution via an adversarial training scheme, whereas our
work aims to balance the network topology and node content for
unified and optimal embedding learning through adversarial training
between them.

ITII. PROBLEM DEFINITION AND FRAMEWORK
A. Problem Definition

An information graph can be represented as G = (V, E, X)), where
V = {v;}i=1,..,jv| is a set of unique nodes and E = {e; ; }i j=1, v i
is a set of edges which can be equal to a |V| x |V| adjacency matrix
A with A;; = w;; > 0if ¢;; € Eand A;; = 0 if ¢;; ¢ E.
X e RVI*¥" ig a matrix containing all |V| nodes with their features,
i.e., X; € R™ represents the feature vector of node v;, where m is
the feature vector’s dimension. It is easy to conclude that G can be
any type of networked data where nodes have feature contents, such
as citation networks with texts as node features and image networks
with image semantics as node features. Given an information graph G,
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Fig. 3.

Proposed CoGL model which performs two convolution representation learning on content network (A) and topology network (A), respectively. The

content network tries to learn embeddings that best reconstruct A by minimizing L., while the topology network tries to learn optimal embeddigs with
co-trained parameters by optimizing node classification loss Lg,. Meanwhile, The content network enforces an adversarial training on the topology network

by optimizing binary classification loss Lguy.

we aim to learn graph embeddings O € RIVI*¢ for node classification
in a semisupervised fashion, where c is the embedding size. In this
brief, the expressions of graph embedding and representation learning
are used interchangeably.

B. Overall Framework

The proposed CoGL model for semisupervised graph embedding
and node classification is shown in Fig. 3. It performs co-alignment
learning between the constructed content network and the original
topology network through three collaborative components.

1) Content-aligned Graph Topology Learning: This section

intends to learn the content-aligned graph topology network A

(content network) from input node features X by minimizing a

graph reconstruction loss.

Semisupervised Graph Embedding: This section aims to learn

convolution graph embeddings from the original graph topology

network (topology network) A for node classification in a

semi-supervised manner.

3) Adversarial Graph Embedding Training: In this section,
the content network embedding enforces an adversarial training
on the topology network embedding.

2)

IV. PROPOSED METHOD
A. Content-Aligned Graph Topology Learning

We aim to learn a nonnegative matrix A € RV*IVI (also called
the content network) that could reveal the underlying pairwise node
relationships from node features X. An ad hoc solution is to build
a k-nearest neighbor graph [26] or simply calculate the Euclidean
distance for each pair of nodes by A; ; = IX; — Xj||. This, however,
does not generate optimal graph embeddings for specific problems.
Instead, we adopt a single-layer feed-forward neural network para-
metrized by a weight vector W, € R"*! and followed by a nonlinear
transformation (e.g., ReLU(x) = max(0, u)). It takes the feature
difference |X; — X;| between ith and jth nodes as the input and
outputs the corresponding relevance weight by

w,,; = ReLUW|X; — X, ). M

Then, we apply softmax normalization on each node and finally
obtain the weight matrix A as
. ReLUW!|X; — X;
A, ; = softmax(w; ;) = :}Tp( eLU(W, | s i) )
' ' exp(ReLU(W,, [X; — X;|))

j=1

(@)

After the normalization, A is no longer a symmetric matrix
(e, A;; # A;,;), which is rational as the target is to learn an
aligned approximation of nodes to their respective neighborhoods
for optimal graph embedding. The calculation of (2) is expensive
especially when input node features are with very high dimensions.
For efficient calculation, we can first map input node features (X) to
a dimension-reduced space [5], [27] and (2) can be rewritten as

- exp(ReLUW! X;W, — X;W,|))
Y SV exp(ReLUW! X, W, — X; W, |))

3

where W, € R"*¢ is a learned matrix and d < m.

To derive a consistent content network that best aligns node
features, we first perform a two-layer convolutional representation
learning [3] based on A by

X? = AReLUAXW")W®? )

where W) e R™" and W® e R"*¢ are the first and second
convolution-layer embedding parameters, respectively. Then, we min-
imize the reconstruction error between learned node embeddings and
input node features as

_ _ T
Leon = XXT = XPXP" 12 )

where both X and X' have been normalized to ensure stable parame-
ter learning, i.e., through X = softmax(X) and X = softmax(X"*).
The idea of above topology learning process is analogical to an
autoencoder which aims to learn the suitable content-aligned network
topology A by minimizing [i.e., through (5)] the input node features X
and output node features X *) after the convolution learning. Because
the input and output node features may have different dimensions,
we transform them to minimize their respective gram matrices which
have the same shape.

B. Semisupervised Graph Embedding

We perform graph representation learning for node classification
in a semisupervised manner. In a similar way, the low-dimensional
embeddings are derived through a two-layer recursive convolution
learning based on the original topology network A by

O = AReLUAXW)Ww® (6)

where A = D 2T 4+ A)D™/? denotes the normalized form
of A, I is an identity matrix with the same shape and D is the
degree matrix of (I + A). Here, the convolution learning parameters
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W and W are shared and co-trained between the content network
and the topology network, which are beneficial to balance node
content and topology for graph construction and embedding learning.
Then, we apply semisupervised training to learn the parameters by
minimizing the node classification loss L,, as follows:

exp(0)
H = softmax(0) = ———— 7
=35 ewon @
Egm = - Z ZYi,_j In H;,_/ (8)
i€y j=I1

where the node embedding size ¢ equals to the total number of labels
for graph nodes. Y € RIVI*¢ denotes the one-hot label indicators
matrix for all nodes and ); is a set of node indices with labels
known for semisupervised training.

C. Adversarial Graph Embedding Training

The learning balance between content and topology is achieved
through adversarial training [28], where the goal is to consider both
content and topology information for optimal graph embedding and
node classification. As shown in Fig. 3, the topology network learning
component is considered a generator G(A, X) that generates node
embeddings based on the topology network A. During adversarial
training, the discriminator tries to classify the real node (positive)
sample x € X® learned from the content network A as class 1 and
meanwhile classify the fake node (negative) sample z = G(A, X) as
class 0. On the other side, the generator tries to fool the discriminator
by classifying z as class 1. The adversarial embedding training
objective is given as

mgin max Lean(D,G) =E_ 0 logD(x)
+E.log(1 - D(G(A,X))). (9)

D. Model Optimization and Training

As described above, the content network construction and graph
embedding conform to an adversarial co-alignment learning fashion
for optimal node classification performance. As the three components
in Fig. 3 share and co-train convolution graph embedding parameters
WO and WP, we finally seek to optimize the following combined
objective as

L= Egcn + aﬁ('ont + ﬁﬁgan (D, g) (10)

where o and f are set to balance the content network construc-
tion and the adversarial embedding training, respectively. Note that
Lean(D, G) in (9) involves both discriminator and generator trainings,
where each part needs to combine both L,, and L., for collective
model parameter optimization. The training procedure of our CoGL
model is summarized in Algorithm 1.

V. EXPERIMENTS

In this section, we evaluate the proposed model for supervised
node classification on six benchmark datasets. The dataset statistics
are summarized in Tables I and II.

A. Datasets

We use four benchmark networks, Cora, Citeseer, Pubmed, and
DBLP that have been widely used for node-level classification in
previous work [3], [29]. Cora contains 2708 research articles grouped
into seven machine learning classes such as Reinforce Learning
and Genetic Algorithms. There are 5429 edges between them and
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Algorithm 1 Training the CoGL Model

Input : Graph topology A and node features X
Output: Node embeddings O € RIVIx¢
Initialization: i = 0, training epochs M and N

while i < M do
A < build content network through (3);

X < learn content network embeddings through (4);
O < learn topology network embeddings through (6);
for j =0,...,N do
Sample n instances from content network embeddings
72
X
Sample n instances from topology network embeddings
O;
Update model parameters based on (10) in two steps:
1) Optimize £ while training the discriminator;
2) Optimize £ while training the generator.

end
i=i+1.
end
TABLE 1
DOCUMENT NETWORK CHARACTERISTICS
Items Cora | Citeseer | PubMed | DBLP
# Nodes 2708 3327 19717 17725
# Edges 5429 4732 44338 52890
# Features | 1433 3703 500 6974
# Classes 7 6 3 4
TABLE II
IMAGE NETWORK CHARACTERISTICS
Items (#) Nodes Edges Features Classes
MIR 5892 | 380808 | 500 x 375 152
ImageCLEF | 3461 221185 | 500 x 375 134

each paper node is described with a feature vector of 1433 dimen-
sions. Citeseer contains 3327 research articles in six classes with
4732 links between them, where each paper node has a feature vector
of 3703 dimensions. Pubmed contains 19717 literature nodes and
44338 edges. Each node belongs to one of the three classes and has a
feature vector of 500 dimensions. DBLP contains 17 725 publications
from four classes. It has 52890 edges and each node is associated
with a feature vector of 6974 dimensions.

We also use two multilabel image networks' MIR and ImageCLEF.
MIR has 5892 nodes from 152 classes. Each node represents a
500 x 375 RGB color image and there are 380808 edges for this
network. ImageCLEF contains 3461 nodes and 221 185 edges. Each
node is also a 500 x 375 RGB image that corresponds to one or more
of the 134 classes. For each image in these two datasets, we extract
a CNN feature descriptor and the feature dimensions for MIR and
ImageCLEF are transformed to 152 and 134, respectively.

B. Baseline Methods and Settings

1) Baseline Methods: We employ the following baselines for
semisupervised node classification comparison. For all baselines,
DeepWalk [12], SemiEmb [30], and so on represent classical shallow
node embedding methods. GCN [3], GAT [5], DGCN [31], and
so on represent GNNs and attention mechanisms. GMNN [32]

Uhttps://snap.stanford.edu/data/web-flickr.html
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and GMI [33] represent the most recent approaches that actively
model discrepancy between node content and topology for embedding
learning.

1) DeepWalk [12]: It performs random walks over the network
to capture neighborhood relationships between nodes. The
SkipGram model is then used to derive the low-dimensional
node embeddings.

2) SemiEmb [30]: A semisupervised embedding method that
applies “shallow” learning techniques such as kernel methods
on deep network architectures by adding a regularizer at the
output layer.

3) Planetoid [34]: A semisupervised method in which the embed-
ding of each node is jointly trained to predict the class label
of the node and the context on the network.

4) Chebyshev [35]: It extends the traditional convolutional neural
networks to design fast localized convolutional filters on graphs.

5) ARGA [25]: It is a graph autoencoder where node embeddings
are trained to reconstruct the graph structure. Meanwhile, node
embeddings are enforced to match a prior distribution via an
adversarial training scheme.

6) GCN [3]: It performs embedding learning with the
spectral-based convolutional filter, where each node generates
the representation by aggregating features from its immediate
neighborhoods.

7) GMNN [32]: 1t performs semisupervised embedding learning
with a graph Markov neural network. A conditional random
field is used to model the joint distribution of node labels,
and two GNNs are utilized to improve both the inference and
learning procedures.

8) DGCN [31]: It performs semisupervised embedding learning
by simultaneously preserving local neighborhood and global
context information with two GCNs.

9) GAT [5]: It learns importance weights for different nodes and
each node is able to highlight important neighborhoods for
efficient embedding learning.

10) GMI [33]: It performs unsupervised embedding learning based
on the concept of graph mutual information. The idea is to
directly maximize the mutual information between the input
and output of a graph neural encoder in terms of node features
and topological structure.

11) CoGL: The proposed model, which first learns a
content-aligned graph topology network, and then couples the
learned network topology and the original network topology
for adversarial supervised embedding learning.

2) Topology-Content Inconsistency Intervention: To further evalu-
ate the proposed CoGL model in handling incomplete and inconsis-
tent node relationships for improved embedding learning, we design
experiments to learn inconsistent network topology created in
two ways.

1) Structure Removal: We randomly remove some portion of
structures (e.g., edges) from the original network to create
incomplete node relationships in the network. We use rgs to
denote the portion of the total number of edges removed from
the network. After removal the left number of edges will be
(1 = rrs)IE[.

2) Structure Injection: We randomly inject some portion of noisy
structures in the original network to cause inconsistent node
relationships in the network, i.e., manually add links for some
pairs of nodes. We use r;s to denote the ratio of the number
of edges over the total added to original the network. After
injection, the total number of edges will be (1 + r;5)|E|.

TABLE III

NODE CLASSIFICATION ACCURACY ON CORA, CITESEER, PUBMED, AND
DBLP DATASETS (THE TOP TWO BEST RESULTS ARE BOLDFACED
AND UNDERSCORED, RESPECTIVELY)

Methods ‘ Cora Citeseer Pubmed DBLP
DeepWalk 67.2% 43.2% 65.3% 66.3%
SemiEmd 59.0% 59.6% 71.7% 72.1%
Planetoid 75.7% 64.7% 77.2% 74.7%
Chebyshev 81.2% 69.8% 74.4% 74.3%
ARGA 78.4% 61.3% 73.8% 65.4%
GCN 81.5% 70.9% 79.0% 75.1%
GMNN 83.4% 72.6% 81.2% 80.2%
DGCN 82.9+0.4% 72.1+04% 78.3+0.3% 76.5+0.3%
GAT 83.2+0.7% 71.0£0.7% 79.0+0.3% 78.2+0.7%
GMI 82.1+£0.1% 72.0+£0.7% 79.6+0.4% 77.4+0.1%
CoGL (Ours) ‘ 84.1+0.6% 72.4+0.5% 79.2+0.3%  79.8 +0.6%

Although we consider network content to be reliable information
for node relationship reconstruction in this work, network content
could be noisy which may degrade the embedding performance.
Therefore, we design the following experiment to test the impact.

1) Content Injection: We randomly inject noisy content into the
original node features, i.e., for the document networks the
random irrelevant words can be added to the nodes. We denote
ric as the injection ratio. After the content injection steps the
total number of features in the network would be (1+r;¢)|X].

Since CoGL is developed from the GCN, we specially compare
the performance between CoGL and GCN to validate the effective-
ness of the proposed model for topology and content co-alignment
embedding learning, where the comparison results on Cora, Citeseer,
and DBLP are reported.

3) Parameter Settings: For experiments of baseline methods on
Cora, Citeseer, Pubmed, and DBLP datasets, we follow the same
settings as in previous works [3], [5]. Twenty labeled nodes for
each class are used for semisupervised training. Five hundred val-
idation nodes are used for fine-tuning the hyperparameters and the
classification results are compared on 1000 test nodes. For the MIR
and ImageCLEF datasets, we, respectively, select 300, 500, and
700 labeled image nodes for training the model. For other unlabeled
nodes, we select 1000 and 2000 images for validation and test,
respectively. For each experiment, data splits are performed randomly
and the average performances are finally reported over ten runs.

In our approach, the hidden layer dimensions d for content network
construction are set as 30 and the hidden convolution layer dimension
h is set as 30. We train CoGL for a maximum of 1000 epochs based
on the Adam algorithm with early stopping of 200 epochs. For the
four document networks, the dropout probability and learning rate
are set as 0.5 and 0.002, and they are 0.2 and 0.01 for MIR and
ImageCLEF datasets. For comparison, we set the default balance
parameters oo and S as 0.4 and 0.8, respectively. Similar to previous
work [3], we use a L, norm regularization where the weight decay
is set as Se-4. The implementation code of CoGL can be available at
https://github.com/codeshareabc/CoGL.

C. Node Classification Results

Table III shows the node classification results on Cora, Citeseer,
Pubmed, and DBLP datasets, and the results for MIR and
ImageCLEF datasets are shown in Table IV. The top two best
results in the two tables are boldfaced and underscored. From the
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TABLE IV

NODE CLASSIFICATION ACCURACY (%) ON MIR AND IMAGECLEF DATASETS (THE TOP TWO BEST RESULTS ARE BOLDFACED AND UNDERSCORED,

RESPECTIVELY)

Datasets ‘ MIR ImageCLEF
# Labeled Nodes ‘ 300 500 700 300 500 700
DeepWalk 4142022 42.98+0.25 44.50+£0.33 | 43.34£0.50 43.67+0.39  44.98 +0.43
SemiEmd 46.75+0.39 47.24+0.48 48.61+0.27 | 54.30+0.67 55.22+0.49 56.50+0.42
Planetoid 50.74+0.33  51.04+0.40 51.91+0.23 | 56.75+0.36 57.77+0.36  57.99 +0.49
Chebyshev 53.28+0.32 54.28+0.32 55.87+0.45 | 58.12+0.37 58.79+0.51 59.58 £0.51
ARGA 52.14+0.48 52.65+0.53 53.51+0.36 | 57.46+0.41 58.39+0.42 58.67+0.45
GCN 55.43+0.41 56.14+0.38 57.65+0.27 | 60.33+£0.34 61.04+0.54 61.60+0.38
GMNN 56.09 +0.21 57.42+0.24 58.61+0.29 | 61.12+0.38 61.74+0.32 62.83 +0.37
DGCN 55.76 £0.52  57.05+0.47 58.37+0.38 | 61.02+0.54 61.54+0.43 62.21+£0.46
GAT 55.59+0.54 57.27+0.76 58.38+0.48 | 61.45+0.52 61.47+0.32 62.32+0.41
GMI 54.62+0.51 55.77+0.49 57.08+0.46 | 60.05+0.61 61.68+0.45 61.23+0.48
CoGL (Ours) ‘ 5723 +046 58.78+0.39 60.11+045 | 61.77+0.57 62.52+040 63.86 + 0.52
comparison results, we have four major observations together with
their possible explanations. w e {

1) Graph convolutional kernel-based methods including CoGL, \§ » ] .
GAT, DHCN, GMNN, GCN, and Chebyshev perform gener- ¥ 1,‘5*:‘-. ® e
ally better than other random walk and regularization based . \"n o * eSS ;f
methods such as DeepWalk, SemiEmb, and Planetoid. The i PP T ' . A
improvements are mainly attributed to the graph convolutional . .‘Aﬂ 4. - ,@é / '
kernel which allows nodes to aggregate desired features from f } b ﬁ
their neighborhoods for efficient end-to-end supervised classi- 100 ”
fication training. From Tables III and IV, we can observe that 10 = 0 ® LI T T A I
CoGL consistently outperforms some strong baseline methods o oot
including GAT, DGCN, GCN, and ARGA, which demonstrate Fig. 4. Embedding 2-D visualization on Cora dataset.
the effectiveness of the proposed co-alignment node structure
and feature learning framework.

2) The results in Tables III and IV show that GMNN frequently that the introduced topology learning component in CoGL has
outperforms other models, including GCN- and GAT-based contributed to the performance gain over the basic GCN model
approaches. This is mainly attributed to its unique design which learning on the original image networks.
models the joint distribution of node labels conditioned on 4) Both CoGL and ARGA are developed based on the adversarial
node attributes, given the network topology structure. GMNN training principle. We can observe from Tables IV and V
combines two GNN models through an EM (Expectation Max- that CoGL significantly outperforms ARGA to the node
imization) learning process. This is similar to the co-training classification task. There are two main reasons to explain
process employed in CoGL. Both CoGL and GMNN share sim- the difference. First, although both ARGA and CoGL use
ilar design principles to consider/model discrepancy between GCN to integrate network topology and content for unified
node labels, topology, and node content for node embedding embedding learning, CoGL is more specifically designed for
learning. However, the major difference is that CoGL explicitly the end-to-end node classification, while ARGA targets at
models content as a content-aligned graph topology A, whereas implementing a graph autoencoder in an unsupervised manner.
GMNN still uses the original network and models node labels Second, the adversarial training in ARGA simply aims to
as a conditional random field. force the latent node representations to follow a prior Gaussian

3) CoGLachieves generally comparable results with the state- distribution, whereas the adversarial training in CoGL aims to

of-the-art method GMNN on the citation networks and per-
forms slightly better than GMI on Cora and DBLP observed
from Table III, while both GMNN and GMI outpace GCN.
It means that the content-aligned graph topology learned in
CoGL is enhancing the original graph topology learning (e.g.,
GCN) through the adversarial training process. In addition,
the comparison results in Table IV show that CoGL out-
performs all baseline methods. The reason is probably that
the two image networks contain many irrelevant or missing
links because of the coarse-grained way to construct image
node connections, i.e., images sharing at least one tag build
a link. However, images often correspond to multiple tags of
different importance and the original network structure may not
capture accurate node relationships. The results demonstrate

5)

balance network topology and node content for consistent and
improved embedding learning.

Among all baselines, GAT aims to assign varying importance
weights to different links while performing the feature
aggregation, which helps to encode important network
topology aligned with node content for unified embedding
learning. However, we can observe from the results that CoGL
performs slightly better than GAT, where the potential reason
is that the learned content-aligned network may have provided
enriched information over the plain node content to reveal the
relationships between nodes [27].

The comparison results of CoGL against various strong baselines
empirically verified the effectiveness of our approach for infor-
mation network embedding learning. In addition, the tSNE-based
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Fig. 7. Impact of injection ratio r;c of noise content in Cora, Citeseer and DBLP networks. (a) r;¢ on Cora. (b) r;¢ on Citeseer. (¢) r;c on DBLP.

visualization results in the 2-D space shown in Fig. 4 demonstrate
that CoGL can achieve slightly discriminative clusters compared
with GCN, i.e., for CoGL, nodes in some clusters are slightly more
compact and boundaries among clusters are slightly more clear as
well, which is consistent with the node classification result that CoGL
slightly outperforms GCN on the Cora dataset.

D. Topology-Content Inconsistency Intervention Results

Compared with GCN which relies on the original network
topology for convolutional embedding learning, CoGL adds a
content-aligned topology learning component to balance the content
and topology parts for consistent learning. We manually disturb
the inconsistency level between network topology and content by
removing network links, injecting noisy network links, and injecting
noisy node contents, which are controlled by parameters rgg, /s,
and rgc, respectively.

Fig. 5 shows the impact of rgs using different values. We can
observe that performances of CoGL and GCN gradually decline with
rrs increasing from 0.1 to 1.0, where CoGL significantly outperforms
GCN all the way. It is interesting to note that when rgg is set to
be larger, CoGL tends to achieve better performance gain in all
three networks, i.e., rgg = 1 means that nodes in the network are
fully isolated and the embedding for each node is only derived
from its content, which verifies that the content-aligned topology
learning component in CoGL is beneficial to complement the missing
linkage relationships between nodes. Fig. 6 shows the impact of r;g
where we can observe similar decreasing trends with more noisy
structures injected in the networks. The noisy network structures
would deteriorate the relationships among nodes and we can conclude
the content-based network topology has benefited the performance
when irrelevant links existed in the networks.

Similar decreasing trend and improvement of CoGL over GCN can
be observed for r;c shown in Fig. 7. As we have hypothesized, noisy
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Fig. 8. Impact of parameters o, f, d, and the classification training loss.

features will be propagated over the network during the convolution
learning, which may deteriorate the linkage relationships among
nodes for GCN-based methods such as GCN and CoGL. However,
we can conclude from Fig. 7 that the introduced content-aligned
topology learning in CoGL has mitigated the above issue for two
possible reasons. First, the learned network topology is able to span
more enriched node relationships than the naive content that has
enhanced the embedding learning. Second, although the input node
content is noisy, the topology learning component is able to learn
fair structural relationships among nodes to maximize the end-to-end
classification accuracy, such that the unified embedding learning
has benefited from the adversarial and balanced training between
the original topology and the learned topology. It is interesting to
note that the performance degradation is less dramatic for r;c when
compared with rgs and r;g, where the reason is that the GCN-based
embedding learning methods rely more on the network structure
than the content for modeling relationships between nodes, i.e., the
original network topology stays intact for ;- which has guaranteed
the network embedding quality.

E. Parameter Sensitivity and Classification Loss

The impacts of parameters o and f are reported in Fig. 8.
The results show that ignoring the content network construction
component (o = 0.0) or the adversarial training component (5 = 0.0)
during training will cause the lowest classification performance,
which verifies the benefit of combining content network and topology
network for co-alignment training in this brief. We also studied the
parameter d which is involved in (3). The impact of d is shown
in Fig. 8 (third). We can observe that performances vary from the
values of d, where performance on Cora tends to be lower with larger
values of d, whereas d has a less classification impact on Citeseer.

To demonstrate the balanced learning between topology network
and content network, we show the combined loss of node classi-
fication (L,,) and adversarial binary classification (discriminator
Loan (D) or generator L,,,(G)) in Fig. 8 (fourth). We observe
that the two curves tend to be closer but there still a difference,
which reflects an adversarial balance between topology network and
content network for unified and optimal graph embedding and node
classification.

VI. CONCLUSION

Network topology and node content (including labels) are two main
information sources commonly used in many network embedding
models. Although topology and node content are often inconsistent,
existing methods, especially graph convolution networks, naturally
ignore such inconsistency for embedding learning. In this brief,
we took the inconsistency between graph structure and features into
consideration for improved graph embedding learning, and proposed a
novel CoGL model, CoGL. The merit of CoGL lies in that it co-aligns

Lgen+ L gan(D)

—— Lgn+ LganlC)

m 3.00

Performance
°
N
G
Combined loss

2.00
—i— Cora
—— Citeseer 1.80

10 30 50 70 90 110 130 150 1.60

d Training epoch

the original topology network and the constructed content network
for optimal node embedding and classification. Experiments and
validations on six benchmark datasets demonstrated the effectiveness
of CoGL. The proposed model can be used to learn embeddings for
a variety of information networks with rich node content, such as the
widely seen document networks and image networks.
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