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Traditional network embedding primarily focuses on learning a continuous vector representation for each

node, preserving network structure and/or node content information, such that off-the-shelf machine learn-

ing algorithms can be easily applied to the vector-format node representations for network analysis. How-

ever, the learned continuous vector representations are inefficient for large-scale similarity search, which

often involves finding nearest neighbors measured by distance or similarity in a continuous vector space. In

this article, we propose a search efficient binary network embedding algorithm called BinaryNE to learn a

binary code for each node, by simultaneously modeling node context relations and node attribute relations

through a three-layer neural network. BinaryNE learns binary node representations using a stochastic gradi-

ent descent-based online learning algorithm. The learned binary encoding not only reduces memory usage to

represent each node, but also allows fast bit-wise comparisons to support faster node similarity search than

using Euclidean or other distance measures. Extensive experiments and comparisons demonstrate that Bina-

ryNE not only delivers more than 25 times faster search speed, but also provides comparable or better search

quality than traditional continuous vector based network embedding methods. The binary codes learned by

BinaryNE also render competitive performance on node classification and node clustering tasks. The source

code of the BinaryNE algorithm is available at https://github.com/daokunzhang/BinaryNE.
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1 INTRODUCTION

Networks offer a natural way to capture intrinsic relationships between entities—social interac-
tions among people, collaborations between co-workers, biological interactions among proteins,
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flow-of-funds between financial transactions, and so on. Networks can be modeled as a graph,
where nodes indicate entities and edges indicate pairwise relationships between entities. Search-
ing similar nodes in networks is an essential network analytic task, which directly benefits many
real-world applications. For social security, potential terrorists can be detected by searching people
with the same organization associations in the communication networks or online social networks.
On e-commerce platforms, personalized recommendations can be effectively delivered by search-
ing users with similar interests among users’ social relations. In social networks, social actors with
important structural roles, such as the center of a star or the hole spanner, can be discovered by
searching nodes with the same properties among the whole network. Searching similar nodes can
also benefits other tasks, such as web page retrieval in the World Wide Web [14], link prediction
in social networks [43], and identity resolution in bibliographic collaboration networks [66].
To enable similarity search over networks, structural properties including common neighbors

and structural context have been leveraged to estimate the similarity between nodes. Representa-
tive algorithms include Personalized PageRank [14], SimRank [18], P-Rank [68], TopSim [25], and
Panther [66]. However, these methods suffer from the following major drawback:

—Incapable of capturing node content similarity. In addition to network structure, net-
work nodes are often associated with rich content, such as user profiles in social networks,
texts in web page networks. Node content contains crucial information that provides direct
evidence to measure node similarity. The structure based similarity search methods fail to
leverage the similarity measured by node content, leading to suboptimal search results.

Recently, network embedding [35, 46, 58, 64] has been proposed to facilitate network analytic
tasks, which aims to embed network nodes into a low-dimensional continuous vector space, by
preserving network structure and/or node content information. After learning new node repre-
sentations, network analytic tasks can be easily carried out by applying off-the-shelf machine
learning algorithms to the new embedding space. However, such a machine learning-driven net-
work embedding paradigm often results in node representations that are inefficient for large-scale
similarity search in terms of both time and memory. Consider a network with 10 million nodes,
if we learn 200-dimensional continuous vector-format representations for each node, it requires
15GB memory to accommodate these representations using standard double precision numbers,
which is prohibitively intractable for general computing devices. Given a query node, if we want
to find its similar nodes among the whole network using Euclidean distance in the continuous em-
bedding space, it requires 2 billion times of floating-point product operation and 2 billion times of
floating-point addition operation, to measure distance between the query node and all other nodes
in the network. The high computational cost makes it unsuitable for real-time retrieval systems
that require responsive solutions. In summary, searching similar nodes with continuous node rep-
resentations inevitably incurs high time andmemory cost, resulting in unsatisfactory performance
on large-scale networks.
As an alternative way of nearest neighbor search, locality-sensitive hashing techniques [9, 38,

39, 67] have been proposed to improve search efficiency. They transform the numeric vector data
into binary (or integer) codes that preserve the similarity in the original space. As a consequence,
data can be stored with low memory cost and similarity search can be conducted efficiently by
calculating the Hamming distance, e.g., between node binary codes with bit-wise operations. Bor-
rowing the idea of hashing, we propose to learn binary representations for network nodes, i.e.,
transforming network nodes into binary codes rather than numeric vectors, such that the mem-
ory and time efficiency for similarity search can be significantly improved. Despite its potential,
the binary node representation learning is confronted with the following two challenges:
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—Heterogeneity. To guarantee search accuracy, binary node representations are expected to
capture the information from both network structure and node content, i.e., preserving node
similarity at both structure level and node content level. However, network structure and
node content are not always consistent or correlated with each other. How to fuse informa-
tion from these two heterogeneous sources into binary codes and make them complement
rather than deteriorate each other is a big challenge.

—Scalability. To learn binary node representations that well preserve network structure and
node content, we need to jointly optimize the respective objectives, such as random walk
context node prediction [35] and node attribute reconstruction [59], which are usually non-
linear functions of node representations. With the constraint that each dimension should
take value from {0, 1}, finding the optimal solution to node binary representations that opti-
mizes the nonlinear objective function is a nonlinear integer programming problem, which
has been proved NP-hard [15]. When it comes to large-scale networks with millions or bil-
lions of nodes/edges, and high-dimensional node content features, it is impossible to find
the exact optimal solutions in an efficient way. To make the learning highly scalable, in the
promise of assuring the quality of solutions, approximation techniques together with online
or parallel learning strategies need to be developed.

An intuitive solution to binary network embedding is to first learn continuous node represen-
tations and then binarize them into binary codes with conventional hashing techniques. However,
because converting continuous embeddings into binary codes inevitably causes information loss,
the learned binary codes cannot accurately capture node similarity at both structure and content
level. As a result, as demonstrated later in our experiments, this two-step learning strategy usually
results in suboptimal search accuracy.
The binary network embedding problem can also be addressed by supervised hash learning

algorithms [7, 69] originally designed for non-relational data, with the required node similarity
labels estimated from network structure and/or node attributes in advance. However, directly ap-
plying supervised hash learning algorithms [7, 69] to large-scale networks is confronted with the
following three key challenges: (1) the high complexity for calculating all pairwise node similarity
values from network structure with the objective of preserving high-order proximities as well as
node attributes that are usually high dimensional; (2) the information loss caused by quantizing
the continuous similarity values into binary similarity labels; and (3) most seriously, the imbal-
anced similarity relations, i.e., the number of dissimilar node pairs is overwhelmingly larger than
the number of similar node pairs on graphs.
In this article, we propose a novel Binary Network Embedding algorithm, called BinaryNE, to

learn binary node representations directly from both network structure and node content features
for efficient similarity search. BinaryNE learns binary node representations by simultaneously
modeling node context and node attribute relations through a three-layer neural network, with
the objective of capturing node similarity in both network structure and node content. To obtain
binary codes, the sign function sgn(·) is employed as the activation function in the hidden layer.
However, as the gradient of the sign function is zero almost everywhere, traditional gradient de-
cent based optimization strategies are infeasible for learning parameters, which is known as the
ill-posed gradient problem. To address this problem, we adopt the state-of-the-art continuation
technique [2, 7] and develop an online stochastic gradient descent algorithm to learn parameters,
which guarantees the great scalability of BinaryNE. In the learning process, node binary represen-
tations are sequentially updated with regards to the given node-context or node-attribute occur-
rence pair, by maximizing the occurrence probability of the context node or node attribute condi-
tioned on the given node. Reflected on the binary representation space, nodes are dragged by their
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context nodes and attributes back-and-forth until an equilibrium status. In this way, nodes shar-
ing overlapping sets of context nodes and attributes are finally represented closely in the binary
embedding space. Our learning strategy can effectively capture the similarity in network struc-
ture and node attributes, and avoid the learning process to be dominated by the overwhelmingly
large quantities of dissimilar node pairs to the most extent, which seriously challenges traditional
supervised hash learning algorithms [7, 69]. Experiments on six real-world networks show that
BinaryNE exhibits much lower memory usage and quicker search speed than the state-of-the-art
network embedding methods, while achieving appealing search accuracy. BinaryNE’s binary node
representations also deliver competitive results on node classification and node clustering tasks.
The main contribution of this article is threefold:

—We analyze the feasibility and advantage of learning binary node representations as a solu-
tion to efficient node similarity search over large-scale networks involving node attributes.

—We propose a new algorithm called BinaryNE to effectively learn high-quality binary node
representations from both network structure and node features, together with an efficient
stochastic gradient descent based solution.

—Extensive experiments on six real-world networks validate the superiority of BinaryNE on
similarity search in terms of search accuracy, memory usage and efficiency, as well as its
competitive performance on node classification and node clustering.

The remainder of this article is organized as follows. In Section 2, we review the related work,
including network embedding and node similarity search. In Section 3, we give a formal definition
of binary network embedding and review the DeepWalk algorithm as preliminaries. The proposed
BinaryNE algorithm is described in Section 4, followed by experiments presented in Section 5.
Finally, we conclude this article in Section 6.

2 RELATEDWORK

In this section, we review two lines of related work: network embedding that aims to learn node
vector-format representations, and node similarity search that is realized by directly estimating
node similarity from network structure.

2.1 Network Embedding

According to whether the learned node representations take continuous or discrete values, the
network embedding techniques can be divided into two groups: continuous network embedding
and discrete network embedding.

2.1.1 Continuous Network Embedding. Depending on whether node content features are lever-
aged, continuous network embedding techniques can be divided into two groups: structure pre-
serving network embedding and attributed network embedding.
Structure preserving network embedding learns node representations from only network struc-

ture. DeepWalk [35] first encodes network structure into a set of random walk sequences, and
then employs Skip-Gram [31] to learn node representations that capture structural context simi-
larity. node2vec [11] extends DeepWalk to better balance the local structure preserving and global
structure preserving objective by leveraging biased random walks. LINE [46] learns node repre-
sentations through directly modeling the first-order proximity (the proximity between connect
nodes) and the second-order proximity (the proximity between nodes sharing direct neighbors).
Although DeepWalk, node2vec, and LINE are all based on the Skip-Gram model explicitly or im-
plicitly, [37] proves their equivalence to a unified matrix factorization formulation. GraRep [5]
further extends LINE [46] to capture high-order proximities through the matrix factorization
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version of Skip-Gram [26]. M-NMF [55] complements the local structure proximity with the intra-
community proximity to learn community-aware node representations. DNGR [6] first obtains
high-dimensional structure preserving node representations through the proposed random surfing
method, and then utilizes the stacked denoising autoencoder [52] to learn low-dimensional repre-
sentations. SNDE [53] employs deep autoencoder to learn deep nonlinear node representations, by
reconstructing node adjacent matrix representations to preserve the second-order proximity and
penalizing the representation difference of connected nodes to preserve the first-order proximity.
Attributed network embedding learns node representations by coupling node attributes with

network structure. TADW [58] first proves the equivalence between DeepWalk [35] and a matrix
factorization formulation, and then proposes to incorporate rich node text features into network
embedding through inductive matrix factorization [33]. Through penalizing the distance of con-
nected nodes in the embedding space, HSCA [62] enforces TADW with the first-order proximity
to obtain more informative node representations. UPP-SNE [63] learns node representations by
performing a structure-aware non-linear mapping on node content features. CANE [49] learns
context-aware node embeddings by applying the mutual attention mechanism on the attributes
of connected nodes. MVC-DNE [59] applies deep multi-view learning technique to fuse informa-
tion from network structure and node content into node representations. GraphSAGE [13] first
takes node content features as node representations, and then iteratively updates node represen-
tations by aggregating representations of neighboring nodes. AANE [16] employs symmetric ma-
trix factorization [22] to obtain node representations that capture attribute affinity, and simulta-
neously penalizes the representation difference between connected nodes. SINE [65] learns node
representations for large-scale incomplete attributed networks by using node representations to
simultaneously predict context nodes and node attributes. These network embedding algorithms
learn task-general node representations in an unsupervised setting, where node class labels are not
provided.
Recently, several supervised network embedding algorithms have also been proposed, such as

DMF [61], TriDNR [34], DDRW [28], MMDW [50], and LANE [17], with the objective of learning
discriminative node representations by exerting the power of available node labels. Built upon
the success of deep neural networks on grid-structured data (e.g., images), graph neural networks,
such as graph convolutional networks (GCN) [21] and graph attention networks [51], generalize
to learning node embeddings on graphs by passing, transforming, and aggregating node features
from the local neighborhood. The generated node embeddings can then be used as input to any
differentiable prediction layer, e.g., for node classification or link prediction.
All of the above network embedding techniques primarily consider embedding network nodes

into a continuous Euclidean space, which could be favored by node classification tasks to achieve
excellent performance. However, calculating pairwise similarity between nodes in a continuous
space is computationally expensive, making it infeasible to perform node similarity search on
large-scale networks.

2.1.2 Discrete Network Embedding. Graph-based hashing [30, 56] has been proposed to learn
binary codes for traditional non-relational data, such as images. This kind of hashing techniques
work on the graphs constructed from data points by calculating their pairwise similarity. The
constructed graph reflects the geographical data distribution in their original feature space, and
helps learn similar binary codes for closely located data points. The graphs considered by graph
based hashing are artificially constructed from the input data, which are essentially different from
real-world graphs where edges are naturally formed resulting from interactions between entities
(nodes). In real-world natural graphs, connected nodes unnecessarily exhibit similar features [3,
45]. This breaks the assumption made by graph-based hashing [30, 56] that connected nodes are
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located closely in the Euclidean feature space. Therefore, directly applying graph based hashing
to natural graphs may result in unsatisfactory performance.
Very recently, several embedding algorithms have been proposed to learn discrete node repre-

sentations for real-world networks. For efficient node retrieval, Bernoulli Network Embedding [32]
learns binary node representations by modeling the generation of each dimension as a Bernoulli
random test. KD-coding [8] is proposed to learn discreteword embeddingswith the Skip-Gram [31]
model, which can also be coupled with DeepWalk [35] to learn discrete node representations.
Through explicitly capturing high-order structure proximity, INH-MF [29] learns binary codes for
network nodes with matrix factorization. DNE [40] learns binary node representations to speed
up node classification. However, the above methods cannot support accurate search, because node
content features are simply ignored. In addition, DNE is a supervised binary network embedding
algorithm that requires node labels to be provided, which is different from our research that aims
to learn binary node representations in an unsupervised setting.
NetHash [57] is the first algorithm proposed to generate discrete node representations that en-

code both network structure and node content features. It applies the MinHash technique [4] to
the union of tree-structured neighboring node features. As the learned discrete embeddings do
not take binary values, similarity search with such embeddings tends to be inefficient. In this
work, we aim to learn binary node representations that are directly optimized with binarization
to enable similarity search efficacy and efficiency. BANE [60] is another algorithm that learns bi-
nary node representations from network structure and node attributes. BANE first constructs the
Weisfeiler–Lehman proximity matrix [41] which enables neighboring node attribute vector ag-
gregation and then performs binary factorization on the proximity matrix to obtain binary codes
for each node. The Weisfeiler–Lehman matrix representation heavily relies on the homophily as-
sumption and tends to be less informative when neighboring nodes have discrepant attributes,
which is, however, very common in real-world networks. Hence, BANE is less effective in retriev-
ing similar nodes, as demonstrated later in the experiments. DGCN-BinCF [54] is proposed to
learn binary node representations for bipartite networks formed by users and items together with
their implicit feedback, with the purpose of binary collaborative filtering. To capture user-item
relations implied by implicit feedback, GCN [21] is employed to learn their network embeddings.
The structure information carried by network embeddings of users and items are then distilled
into their binary codes to minimize the rank loss for recommendation. DGCN-BinCF is performed
on the heterogeneous bipartite networks under the supervised recommendation setting, which is
different from our problem of unsupervised binary node representation learning on homogeneous
attributed networks.

2.2 Node Similarity Search

To enable similarity search over networks, various metrics have been proposed to measure the
structural relatedness between nodes. Bibliographic Coupling [20] and Co-citation [42] measure
node similarity by counting the number of common neighbors. Other common neighbor-based
metrics include Jaccard’s coefficient, Salton’s coefficient, the Adamic/Acar coefficient [1], and the
like. This type of metrics are incapable of capturing the similarity between nodes sharing no com-
mon neighbors. SimRank [18] estimates node similarity recursively with the principle that two
nodes are similar if they have connections with similar nodes. Because calculating SimRank sim-
ilarity is computationally expensive, other algorithms, like TopSim [25] and [23], are proposed to
reduce its time complexity. P-Rank [68] enhances SimRank by jointly modeling both in- and out-
link relationships for node structural similarity estimation. VertexSim [48] represents each node
as a convex combination of anchor nodes by optimizing a geometric objective, and then mea-
sures node similarity with the new representations. The above metrics only capture the similarity
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relying on the connectivity among the local neighborhood, but neglect the structural equivalence
between nodes sharing similar structural roles while being distantly located. [19] justifies a se-
ries of axiomatic properties that should be satisfied by a role similarity measure, and proposes
RoleSim, a role similarity measure, which is calculated in an iterative way and is proved to sat-
isfy all the justified properties. Panther [66] estimates local structural similarity between pairwise
nodes through their co-occurrence frequencies in randomly sampled paths. Panther++ [66] aug-
ments Panther with structural role similarity by measuring the difference in neighboring node
co-occurrence frequency distributions.
Calculating the aforementioned structure similarity metrics between all pairwise nodes, which

is necessary for exact node similarity search, is time-consuming, with a time complexity at least
quadratic to the number of nodes. Moreover, the above structure similarity metrics fail to cap-
ture the similarity measured by node features. The two limitations make the existing structural
similarity estimation based search methods unsuitable for large-scale networks with rich node
features.

3 PROBLEM DEFINITION AND PRELIMINARIES

In this section, we give a formal definition of the binary network embedding problem, followed by
a review on the preliminaries of DeepWalk.

3.1 Problem Definition

Assume we are given a network G = (V,E,A,X ), where V is the set of nodes, E ⊆ V ×V is
the set of edges, and A is the set of attributes. X ∈ R |V |×|A | is the node feature matrix, with
each element Xi j ≥ 0 indicating the occurrence times/weights of attribute aj ∈ A at nodevi ∈ V .
Here, we assume node attributes take the discrete values, which is natural for text features in web
page/citation networks and most user profile features in social networks, like gender, affiliation,
and education type. In case of the numeric node attributes like age, we can easily discretize them
into discrete/categorical values through transforming them into interval or bin based features.
The BinaryNE algorithm aims to learn binary representations for network nodes, i.e., learning a

mapping function Φ : vi ∈ V �→ {+1,−1}d , where d is the dimension of the embedding space. The
learned binary node representations Φ(vi ) are expected to satisfy the following two properties: (1)
low-dimensional: the dimension d should be much smaller than the dimension of adjacent-matrix
node representations, |V |, the original high-dimensional node representations, for the sake of
search efficiency; (2) informative: the learned binary node representations should capture node
similarity measured by both network structure and node content features to guarantee the quality
of node similarity search.

3.2 Preliminaries: DeepWalk

Borrowing the idea of Skip-Gram model [31], which learns word representations by preserving
context similarity, DeepWalk leverages random walks to generate node context and represents
nodes sharing similar context closely in the new embedding space. Given a random walk with
length L, {vr1 ,vr2 , . . . ,vri , . . .vrL }, for each nodevri , DeepWalk learns its representation by using it
to predict its context nodes, which is realized by maximizing the occurrence probability of context
nodes conditioned on this node:

min
Φ
− log P({vri−t , . . . ,vri+t } \vri |vri ), (1)

where {vri−t , . . . ,vri+t } \vri are the context nodes of vri within a window size of t . Here, the
window size refers to the number of context nodes to be collected, which are located before or
after the given target node in the given random walk.
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Using the conditional independence assumption, the probability P({vri−t , . . . ,vri+t } \vri |vri )
can be calculated as

P({vri−t , . . . ,vri+t } \vri |vri ) =
i+t∏

j=i−t, j�i
P(vr j |vri ). (2)

Following [63], after a set of random walks are generated, we can formulate the overall optimiza-
tion problem as

min
Φ
−
|V |∑
i=1

|V |∑
j=1

n(vi ,vj ) log P(vj |vi ), (3)

where n(vi ,vj ) is the occurrence time of node context pair (vi ,vj ) collected from all randomwalks
with t window size and P(vj |vi ) is modeled by softmax:

P(vj |vi ) =
exp(Φ(vi ) · Ψ(vj ))∑ |V |

k=1
exp(Φ(vi ) · Ψ(vk ))

,

where Ψ(·) is the node embedding vector when the node act as a context node.
The overall optimization problem can be solved by iteratively sampling a node context pair

(vi ,vj ) and minimizing the following partial objective:

Osi j = − log P(vj |vi ). (4)

4 BINARY NETWORK EMBEDDING

This section details the optimization problem that we formulate for the binary network embedding,
followed by the solution on how to solve it efficiently.

4.1 The Optimization Problem

Our objective is to learn informative binary network embeddings, with both network structure
and node content features well preserved. The idea of DeepWalk can be borrowed for capturing
network structure. To capture node content level similarity, we try to represent nodes sharing
similar attributes closely in the low-dimensional space. To achieve this goal, we borrow the idea of
Paragraph Vector [24], which learns document representations through modeling document-word
relations with the Skip-Gram model. This ensures that similar representations can be learned for
documents with similar words. Here, to encode node attributes into binary node representations,
we apply the idea of Skip-Gram [31] again, by using each node to predict its attributes. For each
node attribute co-occurrence pair (vi ,aj ), we minimize the following objective:

Oa
i j = − log P(aj |vi ). (5)

We illustrate the architecture of the proposed BinaryNE algorithm in Figure 1, which is a three-
layer neural network: the first layer is the one-hot representation for each node vi , the hidden
layer is the binary node representation Φ(vi ) ∈ {+1,−1}d constructed from the input layer, and
the output layer is the softmax conditional probability P(vj |vi ) and P(aj |vi ) for each context node
vj and each attribute aj , modeled through node binary representations in the hidden layer.

Given node vi ’s one-hot representation p
i ∈ R |V | with p

i
k
= 1 for k = i , and p

i
k
= 0 for k � i .

The binary node representation Φ(vi ) in the hidden layer is constructed by performing a linear
transformation on p

i and activating it with the sign function:

Φ(vi ) =
[
sgn(pi ·W in

:1 ), sgn(pi ·W in
:2 ), . . . , sgn(pi ·W in

:d )
]T

=
[
sgn(W in

i1 ), sgn(W
in
i2 ), . . . , sgn(W

in
id )

]T
,

(6)
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Fig. 1. The model architecture of BinaryNE. For each node vi , BinaryNE learns its binary representation by

using it to predict its context node vj and its attribute aj .

whereW in
:k

is the k-th column ofW in ∈ R |V |×d (the weight matrix from the input layer to the
hidden layer) and sgn(·) is the sign function, which is defined as

sgn(x ) =

{
+ 1, if x � 0,

− 1, otherwise.

In the output layer, for the node context pair (vi ,vj ), we model the probability P(vj |vi ) with soft-
max:

P(vj |vi ) =
exp(Φ(vi ) ·W out,s

:j )∑ |V |
k=1

exp(Φ(vi ) ·W out,s
:k

)
,

whereW out,s
:j is the j-th column ofW out,s ∈ Rd×|V | (the weight matrix from the hidden layer to

the output layer for predicting context node). Similarly, for the node attribute co-occurrence pair
(vi ,aj ), we model the probability P(aj |vi ) as

P(aj |vi ) =
exp(Φ(vi ) ·W out,a

:j )∑ |A |
k=1

exp(Φ(vi ) ·W out,a
:k

)
,

whereW out,a
:j is the j-th column ofW out,a ∈ Rd×|A | (the weight matrix from the hidden layer to

the output layer for predicting node attribute).
To learn informative binary node embeddings, we integrate the structure proximity preserving

objective in Equation (4) with the node attribute similarity preserving objective in Equation (5),
and obtain the following overall optimization problem:

min
Φ
O, (7)

where

O = −α1
|V |∑
i=1

|V |∑
j=1

n(vi ,vj )logP(vj |vi ) − α2
|V |∑
i=1

|A |∑
j=1

Xi j logP(aj |vi ). (8)

Here, α1 and α2 are the trade-off parameters to balance the contribution of the structure preserving
objective and the node content preserving objective. Specifically, we set α1 and α2 to the reciprocal
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of the number of node context pairs and the number of observed node attribute co-occurrence
pairs, respectively:

α1 =
1∑ |V |

i=1

∑ |V |
j=1 n(vi ,vj )

, α2 =
1∑ |V |

i=1

∑ |A |
j=1 Xi j

,

which essentially makes the objective Equation (7) perform minimization over the averaged
−logP(vj |vi ) and −logP(aj |vi ). In Equation (8), only the non-zero entries of n(vi ,vj ) and Xi j are
considered, whose numbers are much smaller than |V | × |V | and |V | × |A|, respectively.

4.2 Solving the Optimization Problem

As the derivative of the sign function used to construct binary codes is zero almost everywhere,
solving the optimization problem (7) with gradient descent is ill-posed. Following [7], we approx-
imate the non-smooth sign function sgn(x ) with its smooth proxy tanh(βx ), which satisfies the
following property:

lim
β→∞

tanh(βx ) = sgn(x ).

Using tanh, node representation Φ(vi ) in Equation (6) is constructed as

Φ(vi ) =
[
tanh

(
βW in

i1

)
, tanh

(
βW in

i2

)
, . . . , tanh

(
βW in

id

)]T
. (9)

With this continuous approximation, we can solve the optimization problem (7) with stochastic
gradient descent. At each iteration, we randomly select a node context pair (vi ,vj ) according to the
distribution of n(vi ,vj ) or a node attribute co-occurrence pair (vi ,aj ) according to the distribution
of Xi j , and then update parameters towards minimizing the corresponding partial objective Osi j in
Equation (4) or Oa

i j in Equation (5).

Given a sampled node context pair (vi ,vj ), for training efficiency, we adopt negative sam-
pling [12] to approximate the partial objective Osi j in Equation (4) as

Osi j = − logσ
(
Φ(vi ) ·W out,s

:j

)
−

∑
k :vk ∈Vneд

logσ
(
− Φ(vi ) ·W out,s

:k

)
, (10)

whereVneд is the set of sampled negative nodes and σ (·) is the sigmoid function. Then, we update
the parameters with gradient descent:

W in
i : =W

in
i : − η

∂Osi j
∂W in

i :

,

W out,s
:j =W out,s

:j − η
∂Osi j
∂W out,s

:j

,

W out,s
:k

=W out,s
:k

− η
∂Osi j
∂W out,s

:k

, for vk ∈ Vneд ,

(11)
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where η is the learning rate. The gradients are calculated as

∂Osi j
∂W in

ir

= β
[
1 − tanh

(
βW in

ir

)2] [
σ
(
Φ(vi ) ·W out,s

:j

)
− 1

]
W out,s

r j

+ β
[
1 − tanh

(
βW in

ir

)2] ∑
k :vk ∈Vneд

σ
(
Φ(vi ) ·W out,s

:k

)
W out,s

rk
,

∂Osi j
W out,s

:j

=
[
σ
(
Φ(vi ) ·W out,s

:j

)
− 1

]
Φ(vi ),

∂Osi j
W out,s

:k

= σ
(
Φ(vi ) ·W out,s

:k

)
Φ(vi ), for vk ∈ Vneд .

Similarly, after a node attribute co-occurrence pair (vi ,aj ) is sampled, with negative sampling [12],
the partial objective Oa

i j in Equation (5) is approximated as

Oa
i j = − logσ

(
Φ(vi ) ·W out,a

:j

)
−

∑
k :vk ∈Aneд

logσ
(
− Φ(vi ) ·W out,a

:k

)
, (12)

whereAneд is the set of sampled negative attributes.We then update the parameters with gradient
descent

W in
i : =W

in
i : − η

∂Oa
i j

∂W in
i :

,

W out,a
:j =W out,a

:j − η
∂Oa

i j

∂W out,a
:j

,

W out,a
:k

=W out,a
:k

− η
∂Oa

i j

∂W out,a
:k

, for ak ∈ Aneд .

(13)

The gradients are calculated as

∂Oa
i j

∂W in
ir

= β
[
1 − tanh

(
βW in

ir

)2] [
σ
(
Φ(vi ) ·W out,a

:j

)
− 1

]
W out,a

r j

+ β
[
1 − tanh

(
βW in

ir

)2] ∑
k :vk ∈Aneд

σ
(
Φ(vi ) ·W out,a

:k

)
W out,a

rk
,

∂Oa
i j

W out,a
:j

=
[
σ
(
Φ(vi ) ·W out,a

:j

)
− 1

]
Φ(vi ),

∂Oa
i j

W out,a
:k

= σ
(
Φ(vi ) ·W out,a

:k

)
Φ(vi ), for ak ∈ Aneд .

After the parameters are learned, for node vi ∈ V , we construct its embedding Φ(vi ) as

Φ(vi )r =
⎧⎪⎨⎪⎩
+ 1, if tanh(βW in

ir ) � 0,

− 1, if tanh(βW in
ir ) < 0.

(14)

To obtain binary codes for efficient Hamming distance calculation, we store the −1 value of Φ(vi )r
as 0 instead.
Algorithm 1 provides the pseudocode of the proposed BinaryNE algorithm. At Step 1, a set of

random walks with length L are generated by starting random walks at each node vi ∈ V for γ
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ALGORITHM 1: BinaryNE: Binary Network Embedding

Input:

A given networkG = (V, E,A,X );
Output:

Binary node embedding Φ(·) for each vi ∈ V ;

1: S← generate a set of random walks on G;
2: n(vi ,vj ) ← count the frequency of node context pairs (vi ,vj ) in S;
3: (W in ,W out,s ,W out,a ) ← initialization;

4: repeat

5: draw a random number δ ∈ (0, 1);
6: if δ � 0.5 then

7: (vi ,vj ) ← sample a node context pair according to the distribution of n(vi ,vj );
8: Vneд ← draw K negative nodes;

9: (W in ,W out,s ) ← update parameters with (vi ,vj ,Vneд ) according to Equation (11);

10: else

11: (vi ,aj ) ← sample a node attribute pair according to the distribution of Xi j ;
12: Aneд ← draw K negative attributes;

13: (W in ,W out,a ) ← update parameters with (vi ,aj ,Aneд ) according to Equation (13);

14: end if

15: until maximum number of iterations expire;

16: construct node embedding Φ(·) withW in and Equation (14);

17: return Φ(·);

times. At Step 2, on the generated random walks, with t window size, BinaryNE collects node con-
text pairs (vi ,vj ) and counts their occurrence frequencies n(vi ,vj ). At Step 3,W in is initialized

with random numbers sampled from a uniform distribution in the range of [− 1
2d ,

1
2d ], andW

out,s

andW out,a are initialized with zero. At Steps 4–15, the parameters are updated with stochastic gra-
dient descent. Each iteration starts from drawing a random switch variable δ ∈ (0, 1) to determine
which partial objective to be optimized. To optimize the structure preserving partial objective,
BinaryNE randomly draws a node context pair (vi ,vj ) according to the distribution of n(vi ,vj ),
and draws K negative nodes, forming Vneд , then updates the parameters with Equation (11). To
optimize the attribute preserving objective, BinaryNE draws a node attribute co-occurrence pair
(vi ,aj ) according the distribution of Xi j and draws a negative attribute set Aneд with size K ,
then updates the parameters with Equation (13). For efficient node context pair and node attribute
pair sampling, BinaryNE adopts the alias table [27] method, which takes only O (1) time at each
sampling. Finally, BinaryNE constructs binary node representations Φ(·) withW in according to
Equation (14).
The time complexity of BinaryNE is determined by only the dimension of node embeddings

d and the maximum number of iterations. The scale of the maximum number of iterations is
O (max(nnz (X ), |V |)), where nnz (X ) is the number of non-zero entries of X , and |V | is the
scale of node context pairs collected via random walks. BinaryNE has a time complexity of
O (d ·max(nnz (X ), |V |)), which guarantees its ability to scale up to large-scale graphs.

5 EXPERIMENTS

In this section, we conduct experiments on six real-world networks to evaluate the effectiveness
of binary node representations learned by BinaryNE for node similarity search, including search
precision, response time, and memory usage, as well as node classification and node clustering.
The detailed experimental settings are given in the Appendix.
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Table 1. Summary of Six Real-world Networks

|V | |E | |A| nnz (X ) # of Class
Cora 2,708 5,278 1,433 49,216 7

Citeseer 3,312 4,732 3,703 105,165 6
BlogCatalog 5,196 171,743 8,189 369,435 6

Flickr 7,575 239,738 12,047 182,517 9
DBLP(Subgraph) 18,448 45,611 2,476 103,130 4

DBLP(Full) 1,632,442 2,327,450 154,309 10,413,178 N/A

5.1 Datasets

Six real-world networks are used in the experiments, with the details as follows:

—Cora1 [36]. The Cora network is composed of 2,708 machine learning publications and their
citation relationships. Theses publications are categorized into seven groups. Each publica-
tion is represented by a 1,433-dimensional binary vector, with each dimension denoting the
presence/absence of the corresponding word.

—Citeseer1 [36]. Citeseer is another citation network with 3,312 papers and 4,732 citation
relations. There are six classes among papers. According to the occurrence of the corre-
sponding word, each paper is described by a 3,703-dimensional binary vector.

—BlogCatalog2 [16]. The BlogCatalog network is an online social network formed by Blog-
Catalog, a blogger community. The BlogCatalog network contains 5,196 users and 171,743
follower–followee relations. Users’ groups are defined as the categories of their blogs. The
keywords of users’ blogs are used to construct users’ feature vectors. Here, binary feature
vectors are constructed, with only the keyword occurrence state concerned.

—Flickr2 [16]. Flickr is an online photo sharing platform. The Flickr network includes 7,575
users and 239,738 follower–followee relations. These users join in nine predefined groups.
Users’ features are described by the tags of their images. Each user is represented by 12,047-
dimensional binary vector, according to the occurrence/absence of the corresponding
tag.

—DBLP(Subgraph) and DBLP(Full). The DBLP(Full) network is formed by the papers, pa-
per titles, and paper citations of the DBLP bibliographic network3 [47]. In DBLP(Full),
there are in total 1,632,442 papers and 2,327,450 citations. The DBLP(Subgraph) is a sub-
graph of the DBLP(Full) network, constructed by papers from four research areas:Database,
Data Mining, Artificial Intelligence, and Computer Version, which also act as paper labels.
DBLP(Subgraph) contains 18,448 papers and 45,611 citation relations. For DBLP(Full) and
DBLP(Subgraph), papers’ titles are used to construct binary bag-of-words feature vectors.

Table 1 summarizes the statistics of the networks. For each network, the direction of links is
ignored. Cora, Citeseer, BlogCatalog, Flickr, and DBLP(Subgraph) are used to evaluate the perfor-
mance of the binary node representations learned by BinaryNE on node similarity search, includ-
ing search precision, query time, and memory usage, as well as on node classification and node
clustering.DBLP(Full) is used to investigate the scalability of node similarity search with BinaryNE
binary codes.

1 https://linqs.soe.ucsc.edu/data.
2 https://www4.comp.polyu.edu.hk/∼xiaohuang/Code.html.
3https://aminer.org/citation (Version 3 is used).
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5.2 Baseline Methods

BinaryNE is compared with two groups of the state-of-the-art methods:

—Continuous embeddings measured by Euclidean distance:
—DeepWalk/node2vec [11, 35] preserves the similarity between nodes sharing similar
context in randomwalks. node2vec is equivalent to DeepWalk with the default parameter
setting p = q = 1.

—LINE1 [46] denotes the version of LINE that captures the first-order proximity.
—LINE2 [46] represents the version of LINE that models the second-order proximity.
—SDNE [53] learns deep non-linear node representations via a semi-supervised deep
autoencoder.

—TADW [58] learns node embeddings that capture both network structure and node con-
tent similarity via inductive matrix factorization [33].

—UPP-SNE [63] performs a non-linear mapping on node content features to learn node
embeddings that preserve both network structure and node content features.

—MVC-DNE [59] fuses network structure and node content features into node embeddings
through deep cross-view learning.

—SINE [65] learns node representations by using node representations to simultaneously
predict context nodes and node attributes.

—Feature. Node raw content feature is also used as a baseline for similarity search. For
each node vi ∈ V , its feature vector is Xi :, with Xi : being the i-th row of X .

—Discrete embeddings measured by Hamming distance:
—QuantizedContinuous Embeddings. To obtain binary node representations, one naive
way is to quantize the continuous node embeddings into binary codes. As a baseline, we
binarize the continuous embeddings learned by above baseline methods with the state-
of-the-art hash learning algorithm: Iterative Quantization [10], and denote these meth-
ods as DeepWalk+Q, LINE1+Q, LINE2+Q, SDNE+Q, TADW+Q, UPP-SNE+Q, MVC-DNE+Q,
SINE+Q, and Feature+Q, respectively.

—BANE [60] learns binary node representations by performing binary factorization on the
Weisfeiler-Lehman proximity matrix [41] that carries both network structure and node
content information.

—KD-coding [8] learnsK-wayD-dimensional discrete node representations from the con-
tinuous node representations learned by DeepWalk. To obtain 128-dimensional binary
codes, we set K = 2 and D = 128, respectively.

—DNE [40] learns binary node representations through discrete matrix factorization in a
supervised manner. To enable DNE to work under our unsupervised setting, we set the
weight of its supervised learning component to 0 in the optimization objective.

—NetHash [57] generates discrete node embeddings by randomly sampling the union
of neighboring node attributes. As the learned discrete node representations do not
take binary values, the Hamming distance cannot be efficiently calculated with bit-wise
operations.

—BinaryNE_S is the ablated version of BinaryNE that uses only network structure to learn
binary node representations.

—BinaryNE_C is the ablated version of BinaryNE that uses only node content attributes
to learn binary node codes.

—BinaryNE_S+C concatenates the binary codes learned via BinaryNE_S and BinaryNE_C,
which is another ablated version of BinaryNE that respectively encodes network struc-
ture and node content attributes into seperated dimensions of binary node representa-
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tions. The binary codes learned via BinaryNE_S and BinaryNE_C have half dimensions
of BinaryNE’s binary codes for fair comparisons.

5.3 Evaluation Metrics

For all methods, we use the entire network to learn continuous or binary node representations
for all nodes and evaluate the node similarity search performance by searching similar nodes for
every node in the network from the remaining nodes.
For each node in a network, we in turn query its top-K similar nodes. K is set to 100, 200, and

500, respectively. We adopt averaged precision and MAP (Mean Averaged Precision) as evaluation
metrics.
For querying nodes similar to node vi , the precision@K (vi ) is defined as

precision@K (vi ) =
|{vj |rank (vj ) ≤ K ,C (vi ) = C (vj )}|

K
,

where rank (vj ) is the position of vj in the rank list of nodes similar to vi . C (vi ) = C (vj ) indicates
that node vi and vj have the same class label, with C (·) denoting node class label. As we in turn
take all nodes inV as query nodes, we report the averaged precision@K as final results.
Mean Average Precision (MAP) is an information retrieval metric with good discrimination

and stability. Different from precision, MAP takes into account the order in which relevant nodes
are placed in the returned rank list. When we vary the query node vi over V , the MAP value is
calculated as

AP@K (vi ) =

∑K
k=1 precision@k (vi ) · relavant@k (vi )

|{vj |C (vj ) = C (vi ),vj ∈ V}|
,

MAP@K =

∑ |V |
i=1 AP@K (vi )

|V | ,

where relavant@k (vi ) is an indicator function equaling 1 if the k-th retrieved node is relevant to
vi and 0 otherwise.

5.4 Similarity Search Results

Tables 2–6 give similarity search results on Cora, Citeseer, BlogCatalog, Flickr, and
DBLP(Subgraph). For query time, we only consider the time consumed by calculating the distance
between the query node and all remaining nodes, which contributes to the main computational
overhead of similarity search, and report the time averaged over all query nodes (in milliseconds).
We provide the search speedup of BinaryNE compared with baselines. We also perform paired
t-tests between the search precisions delivered by BinaryNE and baseline methods, where we use
• (◦) to indicate that BinaryNE is significantly better (worse) than the compared baseline methods
at 95% significance level. For all methods, the best and second best performers are highlighted by
bold and underline, respectively.

From Tables 2–6, we can see that BinaryNE generally achieves significantly better precision
and MAP than other discrete embedding methods on Cora, Citeseer, Flickr, and DBLP(Subgraph),
except that for MAP@100, MAP@200 on Cora, and MAP@500 on DBLP(Subgraph) it lags slightly
behind the best performers. On BlogCatalog, among the discrete embedding methods, TADW+Q
performs best while BinaryNE follows with comparable performance. From the above observa-
tions, we can see that our BinaryNE achieves the best overall similarity search performance on all
datasets among the discrete embeddingmethods.What also deserves to be noticed is that BinaryNE
still delivers competitive or even better performance compared with the continuous network em-
bedding methods. Through using node binary representations to predict the existence of context
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Table 2. Similarity Search Results on Cora

Metric Method precision@100 MAP@100 precision@200 MAP@200 precision@500 MAP@500
Query

time (ms) Speedup

DeepWalk 0.5621 • 0.1149 ◦ 0.4782 • 0.1771 ◦ 0.3464 • 0.2616 • 1.62 32.5 ×
LINE1 0.4042 • 0.0678 • 0.3002 • 0.0828 • 0.2270 • 0.1110 • 1.62 32.5 ×
LINE2 0.3425 • 0.0482 • 0.2868 • 0.0645 • 0.2411 • 0.0993 • 1.90 37.9 ×
SDNE 0.3595 • 0.0565 • 0.2901 • 0.0730 • 0.2370 • 0.1058 • 1.62 32.5 ×

Euclidean TADW 0.4508 • 0.0871 • 0.3621 • 0.1227 • 0.2607 • 0.1682 • 1.62 32.5 ×
UPP-SNE 0.6032 ◦ 0.1204 ◦ 0.5242 ◦ 0.1890 ◦ 0.3990 • 0.2947 ◦ 1.62 32.5 ×
MVC-DNE 0.3559 • 0.0408 • 0.3190 • 0.0626 • 0.2738 • 0.1094 • 1.62 32.5 ×

SINE 0.4309 • 0.0701 • 0.3703 • 0.1026 • 0.2968 • 0.1611 • 1.62 32.5 ×
Feature 0.2240 • 0.0166 • 0.2060 • 0.0252 • 0.2189 • 0.0551 • 19.23 384.5 ×

DeepWalk+Q 0.5748 0.1139 ◦ 0.4912 • 0.1749 ◦ 0.3703 • 0.2666 • 0.05 1.0 ×
LINE1+Q 0.3916 • 0.0688 • 0.2922 • 0.0833 • 0.2160 • 0.1087 • 0.05 1.0 ×
LINE2+Q 0.3880 • 0.0606 • 0.3203 • 0.0834 • 0.2516 • 0.1219 • 0.05 1.0 ×
SDNE+Q 0.4522 • 0.0838 • 0.3635 • 0.1146 • 0.2666 • 0.1552 • 0.05 1.0 ×
TADW+Q 0.5621 • 0.1138 ◦ 0.4570 • 0.1623 • 0.3310 • 0.2282 • 0.06 1.2 ×
UPP-SNE+Q 0.5520 • 0.1031 • 0.4732 • 0.1572 • 0.3606 • 0.2421 • 0.05 1.0 ×
MVC-DNE+Q 0.3323 • 0.0348 • 0.3013 • 0.0546 • 0.2609 • 0.0976 • 0.07 1.4 ×

SINE+Q 0.4564 • 0.0715 • 0.3909 • 0.1055 • 0.3114 • 0.1667 • 0.06 1.2 ×
Hamming Feature+Q 0.3701 • 0.0459 • 0.3285 • 0.0702 • 0.2740 • 0.1179 • 0.06 1.2 ×

BANE 0.2225 • 0.0168 • 0.2086 • 0.0260 • 0.1960 • 0.0499 • 0.05 1.0 ×
DNE 0.4781 • 0.0969 • 0.3906 • 0.1397 • 0.2838 • 0.1886 • 0.05 1.0 ×

KD-coding 0.5092 • 0.0874 • 0.4640 • 0.1460 • 0.3795 • 0.2570 • 0.05 1.0 ×
NetHash 0.4546 • 0.0757 • 0.3852 • 0.1097 • 0.2993 • 0.1656 • 1.17 23.4 ×

BinaryNE_S 0.5598 • 0.1072 ◦ 0.4916 • 0.1693 0.3748 • 0.2603 • 0.05 1.0 ×
BinaryNE_C 0.3553 • 0.0391 • 0.3217 • 0.0623 • 0.2768 • 0.1114 • 0.05 1.0 ×

BinaryNE_S+C 0.5483 • 0.1009 • 0.4811 • 0.1592 • 0.3738 • 0.2543 • 0.05 1.0 ×
BinaryNE 0.5723 0.1050 0.5091 0.1694 0.4070 0.2848 0.05

nodes, nodes sharing similar structural context are embedded closely in the binary space. Similar
binary representations are also learned for nodes sharing similar node attributes with the same
mechanism, by using node binary representations to predict node attributes. The seamless integra-
tion between embedding binarization and embedding learning empowers BinaryNE to effectively
capture both network structure and node content features, which makes the learned binary codes
informative enough to measure node similarity accurately.
On the other hand, BinaryNE remarkably improves search efficiency, providing more than 25

times faster search speed than continuous network embedding methods, and more than 20 times
than NetHash, which learns non-binary discrete representations. Compared with the Euclidean
distance in the continuous embedding space and the Hamming distance in the non-binary discrete
embedding space, the Hamming distance measured by binary representations can be calculated far
more efficiently with the bit-wise operations.
Among the continuous network embedding baselines, the attributed network embedding

(TADW, UPP-SNE, or SINE) achieves the best search precisions. On the five networks, raw node
content features consistently fail to achieve satisfactory precisions. By integrating network struc-
ture and node content in measuring node similarity, attributed network embedding is superior to
structure preserving network embedding and raw node content features.
With the state-of-the-art quantization technique, the binarized continuous network embeddings

are able to achieve satisfactory search precision in some cases. However, they still tend to be
inferior when they are compared with our BinaryNE algorithm. The results demonstrate that it
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Table 3. Similarity Search Results on Citeseer

Metric Method precision@100 MAP@100 precision@200 MAP@200 precision@500 MAP@500
Query

time (ms) Speedup

DeepWalk 0.3806 • 0.0419 • 0.3165 • 0.0597 • 0.2534 • 0.0923 • 1.99 33.1 ×
LINE1 0.2875 • 0.0282 • 0.2360 • 0.0372 • 0.1997 • 0.0573 • 1.99 33.1 ×
LINE2 0.2493 • 0.0210 • 0.2171 • 0.0286 • 0.1943 • 0.0473 • 1.99 33.1 ×
SDNE 0.2436 • 0.0210 • 0.2091 • 0.0282 • 0.1866 • 0.0469 • 1.99 33.1 ×

Euclidean TADW 0.3728 • 0.0381 • 0.3213 • 0.0572 • 0.2609 • 0.0944 • 1.99 33.1 ×
UPP-SNE 0.4951 ◦ 0.0591 ◦ 0.4504 ◦ 0.1000 ◦ 0.3714 • 0.1801 1.99 33.1 ×
MVC-DNE 0.3478 • 0.0293 • 0.3143 • 0.0465 • 0.2724 • 0.0847 • 1.99 33.1 ×

SINE 0.3831 • 0.0376 • 0.3418 • 0.0590 • 0.2882 • 0.1023 • 1.99 33.1 ×
feature 0.2532 • 0.0140 • 0.2471 • 0.0249 • 0.2320 • 0.0530 • 54.65 910.8 ×

DeepWalk+Q 0.3854 • 0.0417 • 0.3384 • 0.0647 • 0.2771 • 0.1073 • 0.07 1.2 ×
LINE1+Q 0.2785 • 0.0266 • 0.2317 • 0.0350 • 0.1967 • 0.0539 • 0.06 1.0 ×
LINE2+Q 0.2777 • 0.0244 • 0.2384 • 0.0339 • 0.2063 • 0.0553 • 0.07 1.2 ×
SDNE+Q 0.3232 • 0.0327 • 0.2724 • 0.0462 • 0.2249 • 0.0722 • 0.06 1.0 ×
TADW+Q 0.4212 • 0.0461 • 0.3605 • 0.0692 • 0.2877 • 0.1112 • 0.07 1.2 ×
UPP-SNE+Q 0.4768 • 0.0560 • 0.4332 • 0.0942 • 0.3578 • 0.1687 • 0.07 1.2 ×
MVC-DNE+Q 0.3165 • 0.0239 • 0.2900 • 0.0386 • 0.2574 • 0.0730 • 0.07 1.2 ×

SINE+Q 0.3435 • 0.0292 • 0.3098 • 0.0460 • 0.2682 • 0.0833 • 0.07 1.2 ×
Hamming Feature+Q 0.3701 • 0.0331 • 0.3343 • 0.0532 • 0.2841 • 0.0952 • 0.07 1.2 ×

BANE 0.2300 • 0.0136 • 0.2162 • 0.0219 • 0.2007 • 0.0426 • 0.06 1.0 ×
DNE 0.3030 • 0.0294 • 0.2675 • 0.0445 • 0.2271 • 0.0732 • 0.07 1.2 ×

KD-coding 0.2572 • 0.0199 • 0.2496 • 0.0397 • 0.2538 • 0.1033 • 0.06 1.0 ×
NetHash 0.3866 • 0.0378 • 0.3417 • 0.0583 • 0.2851 • 0.0999 • 1.35 22.5 ×

BinaryNE_S 0.3975 • 0.0440 • 0.3641 • 0.0741 • 0.3072 • 0.1350 • 0.06 1.0 ×
BinaryNE_C 0.3528 • 0.0286 • 0.3241 • 0.0473 • 0.2847 • 0.0896 • 0.06 1.0 ×

BinaryNE_S+C 0.4369 • 0.0485 • 0.4003 • 0.0820 • 0.3393 • 0.1507 • 0.06 1.0 ×
BinaryNE 0.4846 0.0572 0.4454 0.0981 0.3758 0.1814 0.06

is suboptimal to separately learn continuous network embeddings and quantize them into binary
codes. In comparison, BinaryNE directly encodes network structure and node content features into
binary node representations, achieving superior search precisions.
BANE achieves relatively good performance on BlogCatalog, Flick, and DBLP(Subgraph), but

yields unsatisfactory performance on Cora and Citeseer. This is because, BANE performs neigh-
boring node attribute vector aggregation to integrate network structure and node attributes into
a unified binary node representation. When the inconsistency between network structure and at-
tributes occurs, that is, linked nodes have discrepant attributes, the similaritymeasured by network
structure and node attributes tends to heavily deteriorate each other.
DNE and KD-coding fail to achieve satisfactory performance in most cases. They learn binary

node representations from only network structure and do not leverage the essential information on
node attributes. Without the supervision of node labels, DNE cannot learn discriminative binary
codes, preventing it from performing well for similarity search.
NetHash constructs discrete node representations by randomly sampling the IDs of node

features aggregated from local neighborhood. With both network structure and node features
leveraged, NetHash achieves relatively good performance on Cora, Citeseer, and DBLP(Subgraph).
As the discrete embeddings do not take binary values, bit-wise operations cannot be performed to
calculate Hamming distance. As a result, its query speedup over continuous network embedding
is limited.
By comparing BinaryNE with its three ablated versions, BinaryNE_S and BinaryNE_C with

only network structure or only node content preserved, as well as BinaryNE_S+C with only half
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Table 4. Similarity Search Results on BlogCatalog

Metric Method precision@100 MAP@100 precision@200 MAP@200 precision@500 MAP@500
Query

time (ms) Speedup

DeepWalk 0.4349 • 0.0327 • 0.3818 • 0.0521 • 0.3005 • 0.0859 • 3.12 31.2 ×
LINE1 0.3850 • 0.0275 • 0.3160 • 0.0411 • 0.2375 • 0.0616 • 3.12 31.2 ×
LINE2 0.2412 • 0.0140 • 0.2239 • 0.0226 • 0.2029 • 0.0420 • 2.60 26.0 ×
SDNE 0.3145 • 0.0201 • 0.2795 • 0.0316 • 0.2366 • 0.0548 • 3.12 31.2 ×

Euclidean TADW 0.7431 ◦ 0.0758 ◦ 0.6923 ◦ 0.1373 ◦ 0.5675 • 0.2621 ◦ 2.60 26.0 ×
UPP-SNE 0.5173 • 0.0417 • 0.4735 • 0.0707 • 0.3931 • 0.1281 • 2.60 26.0 ×
MVC-DNE 0.5616 • 0.0463 • 0.5008 • 0.0761 • 0.4109 • 0.1356 • 3.12 31.2 ×

SINE 0.3502 • 0.0216 • 0.3067 • 0.0326 • 0.2599 • 0.0567 • 3.12 31.2 ×
Feature 0.2424 • 0.0113 • 0.2239 • 0.0177 • 0.2023 • 0.0333 • 184.98 1849.8 ×

DeepWalk+Q 0.3950 • 0.0266 • 0.3545 • 0.0432 • 0.2883 • 0.0728 • 0.11 1.1 ×
LINE1+Q 0.4021 • 0.0275 • 0.3529 • 0.0436 • 0.2779 • 0.0701 • 0.11 1.1 ×
LINE2+Q 0.2958 • 0.0146 • 0.2720 • 0.0236 • 0.2402 • 0.0440 • 0.10 1.0 ×
SDNE+Q 0.3538 • 0.0219 • 0.3127 • 0.0342 • 0.2607 • 0.0578 • 0.12 1.2 ×
TADW+Q 0.7448 ◦ 0.0776 ◦ 0.7081 ◦ 0.1453 ◦ 0.6147 ◦ 0.3028 ◦ 0.10 1.0 ×
UPP-SNE+Q 0.4830 • 0.0372 • 0.4416 • 0.0628 • 0.3655 • 0.1123 • 0.10 1.0 ×
MVC-DNE+Q 0.5117 • 0.0393 • 0.4568 • 0.0642 • 0.3804 • 0.1154 • 0.11 1.1 ×

SINE+Q 0.3745 • 0.0225 • 0.3363 • 0.0356 • 0.2903 • 0.0650 • 0.10 1.0 ×
Hamming Feature+Q 0.4921 • 0.0396 • 0.4473 • 0.0666 • 0.3798 • 0.1244 • 0.10 1.0 ×

BANE 0.4892 • 0.0371 • 0.4572 • 0.0655 • 0.4023 • 0.1308 • 0.11 1.1 ×
DNE 0.1689 • 0.0044 • 0.1689 • 0.0080 • 0.1692 • 0.0191 • 0.09 0.9 ×

KD-coding 0.3754 • 0.0242 • 0.3455 • 0.0409 • 0.2887 • 0.0724 • 0.08 0.8 ×
NetHash 0.3811 • 0.0246 • 0.3388 • 0.0385 • 0.2882 • 0.0684 • 3.14 31.4 ×

BinaryNE_S 0.4729 • 0.0352 • 0.4347 • 0.0604 • 0.3672 • 0.1126 • 0.09 0.9 ×
BinaryNE_C 0.5571 • 0.0466 • 0.5181 • 0.0820 • 0.4531 • 0.1647 • 0.10 1.0 ×

BinaryNE_S+C 0.6500 • 0.0601 • 0.5846 • 0.1024 • 0.4769 • 0.1870 • 0.10 1.0 ×
BinaryNE 0.7081 0.0687 0.6637 0.1239 0.5828 0.2547 0.10

dimensions encoded with network structure/node content, we can find that BinaryNE consistently
outperforms the three counterparts in all cases. This verifies BinaryNE’s advantage of integrating
both network structure and node content to learn informative binary node representations over
the counterparts using only network structure or node content, as well as the naive combina-
tion of their respective binary node representations. Apart from Cora and Flickr, where network
structure and node content, respectively, dominate similarity search, BinaryNE_S+C indeed out-
performs BinaryNE_S and BinaryNE_C on Citeseer, BlogCatalog and DBLP(Subgraph), with more
information leveraged. However, as BinaryNE_S+C encodes network structure/node content into
only half dimensions of binary node representations, it is inferior to BinaryNE that preserves net-
work structure and node content at each dimension.

5.5 Experiments on Node Classification and Node Clustering

We further evaluate the effectiveness of the binary codes learned by BinaryNE through node classi-
fication and node clustering. Although the binary codes learned by BinaryNE aim to serve efficient
node similarity search, they can also speed up other tasks, like node classification, link prediction
and node clustering. Here, with the guaranteed efficiency, we select node classification and node
clustering to check whether BinaryNE is able to deliver satisfactory results for other downstream
tasks, like the competitive continuous network embedding methods.
We perform node classification experiments on DBLP(Subgraph). By taking the binary codes

learned by BinaryNE and node representations learned by other continuous network embedding
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Table 5. Similarity Search Results on Flickr

Metric Method precision@100 MAP@100 precision@200 MAP@200 precision@500 MAP@500
Query

time (ms) Speedup

DeepWalk 0.2194 • 0.0101 • 0.2014 • 0.0162 • 0.1762 • 0.0287 • 4.54 32.5 ×
LINE1 0.2318 • 0.0125 • 0.2075 • 0.0198 • 0.1747 • 0.0333 • 4.54 32.5 ×
LINE2 0.1573 • 0.0074 • 0.1464 • 0.0122 • 0.1357 • 0.0239 • 3.79 27.1 ×
SDNE 0.1693 • 0.0082 • 0.1548 • 0.0131 • 0.1408 • 0.0251 • 3.79 27.1 ×

Euclidean TADW 0.3644 • 0.0278 • 0.3104 • 0.0421 • 0.2368 • 0.0649 • 3.79 27.1 ×
UPP-SNE 0.3917 • 0.0309 • 0.3594 • 0.0525 • 0.3142 • 0.0990 • 4.54 32.5 ×
MVC-DNE 0.3047 • 0.0176 • 0.2723 • 0.0275 • 0.2329 • 0.0489 • 4.54 32.5 ×

SINE 0.3053 • 0.0180 • 0.2630 • 0.0266 • 0.2124 • 0.0436 • 3.79 27.1 ×
Feature 0.1379 • 0.0055 • 0.1275 • 0.0082 • 0.1190 • 0.0152 • 415.11 2965.1 ×

DeepWalk+Q 0.2348 • 0.0119 • 0.2155 • 0.0193 • 0.1855 • 0.0334 • 0.14 1.0 ×
LINE1+Q 0.2505 • 0.0129 • 0.2244 • 0.0203 • 0.1875 • 0.0338 • 0.16 1.1 ×
LINE2+Q 0.2135 • 0.0083 • 0.1974 • 0.0135 • 0.1764 • 0.0253 • 0.15 1.1 ×
SDNE+Q 0.2352 • 0.0109 • 0.2127 • 0.0171 • 0.1835 • 0.0298 • 0.15 1.1 ×
TADW+Q 0.3952 • 0.0313 • 0.3601 • 0.0522 • 0.3008 • 0.0927 • 0.15 1.1 ×
UPP-SNE+Q 0.4939 • 0.0434 • 0.4642 • 0.0785 • 0.4028 • 0.1573 • 0.16 1.1 ×
MVC-DNE+Q 0.3028 • 0.0167 • 0.2711 • 0.0263 • 0.2317 • 0.0468 • 0.14 1.0 ×

SINE+Q 0.3660 • 0.0248 • 0.3154 • 0.0366 • 0.2575 • 0.0605 • 0.15 1.1 ×
Hamming Feature+Q 0.4733 • 0.0430 • 0.4063 • 0.0662 • 0.3107 • 0.1042 • 0.17 1.2 ×

BANE 0.3165 • 0.0217 • 0.2887 • 0.0369 • 0.2467 • 0.0692 • 0.17 1.2 ×
DNE 0.1163 • 0.0023 • 0.1160 • 0.0041 • 0.1157 • 0.0091 • 0.13 0.9 ×

KD-coding 0.1923 • 0.0076 • 0.1817 • 0.0127 • 0.1655 • 0.0242 • 0.13 0.9 ×
NetHash 0.2035 • 0.0090 • 0.1814 • 0.0133 • 0.1594 • 0.0232 • 4.28 30.5 ×

BinaryNE_S 0.2219 • 0.0104 • 0.2071 • 0.0175 • 0.1874 • 0.0339 • 0.13 0.9 ×
BinaryNE_C 0.5469 • 0.0486 • 0.4897 • 0.0805 • 0.4010 • 0.1434 • 0.14 1.0 ×

BinaryNE_S+C 0.4293 • 0.0322 • 0.3813 • 0.0523 • 0.3125 • 0.0918 • 0.14 1.0 ×
BinaryNE 0.5865 0.0548 0.5340 0.0938 0.4467 0.1747 0.14

algorithms as features, we evaluate their classification effectiveness with a training-test split. We
vary the training ratio from 10% to 30%, 50%, and 70%. Node classification accuracy values are
reported in Table 7.4 As shown in Table 7, SINE performs the best while BinaryNE achieves com-
parable performance.
On Cora, we conduct node clustering experiments on the learned node representations with

the k-means algorithm. For the node representations learned by continuous network embedding
algorithms, we use the Euclidean distance metric, while hamming distance is used for binary codes
learned by BinaryNE, which is much more efficient than the Euclidean distance. Table 84 reports
the node clustering results on Accuracy, Fvalue, and NMI [44]. From Table 8, we can see that
BinaryNE achieves the best clustering performance, significantly outperforming other continuous
network embedding methods.
The excellent performance on node classification and node clustering proves that the binary

codes learned by BinaryNE are informative enough to well represent network nodes. The Bi-
naryNE binary codes can not only serve fast node similarity search with high search preci-
sion, but also underpin the fast operation of other network analytic tasks with competitive
performance.

4In Tables 7 and 8, the best and the second best performers are highlighted by bold and underline, respectively, and • (◦)
indicates that BinaryNE is significantly better (worse) than the compared baseline methods at 95% significance level.
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Table 6. Similarity Search Results on DBLP(Subgraph)

Metric Method precision@100 MAP@100 precision@200 MAP@200 precision@500 MAP@500
Query

time (ms) Speedup

DeepWalk 0.7109 • 0.0113 • 0.6941 • 0.0214 • 0.6648 • 0.0488 • 11.07 31.6 ×
LINE1 0.6852 • 0.0106 • 0.6421 • 0.0190 • 0.5338 • 0.0350 • 11.07 31.6 ×
LINE2 0.6302 • 0.0091 • 0.5720 • 0.0151 • 0.4800 • 0.0273 • 11.07 31.6 ×
SDNE 0.6464 • 0.0096 • 0.6033 • 0.0172 • 0.5149 • 0.0332 • 11.07 31.6 ×

Euclidean TADW 0.7156 • 0.0107 • 0.6951 • 0.0199 • 0.6581 • 0.0441 • 11.07 31.6 ×
UPP-SNE 0.7164 • 0.0115 • 0.7098 • 0.0224 • 0.6950 • 0.0535 • 11.07 31.6 ×
MVC-DNE 0.5575 • 0.0067 • 0.5285 • 0.0118 • 0.4908 • 0.0245 • 11.07 31.6 ×

SINE 0.7364 • 0.0118 • 0.7130 • 0.0219 • 0.6714 • 0.0480 • 11.07 31.6 ×
Feature 0.4555 • 0.0043 • 0.4408 • 0.0077 • 0.4289 • 0.0172 • 202.93 579.8 ×

DeepWalk+Q 0.7261 • 0.0117 • 0.7155 • 0.0225 • 0.6960 • 0.0528 • 0.35 1.0 ×
LINE1+Q 0.6881 • 0.0106 • 0.6528 • 0.0193 • 0.5555 • 0.0366 • 0.36 1.0 ×
LINE2+Q 0.6682 • 0.0099 • 0.6278 • 0.0173 • 0.5553 • 0.0340 • 0.38 1.1 ×
SDNE+Q 0.6922 • 0.0103 • 0.6740 • 0.0195 • 0.6256 • 0.0425 • 0.35 1.0 ×
TADW+Q 0.6964 • 0.0111 • 0.6751 • 0.0206 • 0.6329 • 0.0444 • 0.35 1.0 ×
UPP-SNE+Q 0.7291 • 0.0120 • 0.7256 • 0.0238 • 0.7182 0.0582 ◦ 0.36 1.0 ×
MVC-DNE+Q 0.5234 • 0.0057 • 0.5005 • 0.0101 • 0.4710 • 0.0217 • 0.36 1.0 ×

SINE+Q 0.7395 • 0.0120 • 0.7207 • 0.0227 • 0.6867 • 0.0510 • 0.38 1.1 ×
Hamming Feature+Q 0.5489 • 0.0067 • 0.5304 • 0.0122 • 0.4983 • 0.0263 • 0.36 1.0 ×

BANE 0.7285 • 0.0116 • 0.7032 • 0.0214 • 0.6608 • 0.0465 • 0.38 1.1 ×
DNE 0.6237 • 0.0085 • 0.5980 • 0.0155 • 0.5695 • 0.0348 • 0.36 1.0 ×

KD-coding 0.6437 • 0.0085 • 0.6683 • 0.0182 • 0.6586 • 0.0453 • 0.29 0.8 ×
NetHash 0.6606 • 0.0097 • 0.6242 • 0.0171 • 0.5750 • 0.0357 • 7.31 20.9 ×

BinaryNE_S 0.7195 • 0.0115 • 0.7069 • 0.0222 • 0.6830 • 0.0518 • 0.32 0.9 ×
BinaryNE_C 0.5500 • 0.0064 • 0.5329 • 0.0118 • 0.5088 • 0.0261 • 0.35 1.0 ×

BinaryNE_S+C 0.7353 • 0.0119 • 0.7203 • 0.0228 • 0.6934 • 0.0520 • 0.37 1.1 ×
BinaryNE 0.7528 0.0125 0.7403 0.0242 0.7155 0.0563 0.35

Table 7. Node Classification Accuracy on

DBLP(Subgraph)

Training Ratio 10% 30% 50% 70%

DeepWalk 0.7869 • 0.7997 • 0.8024 • 0.8036 •
LINE1 0.7320 • 0.7572 • 0.7620 • 0.7639 •
LINE2 0.6567 • 0.6941 • 0.7026 • 0.7089 •
SDNE 0.6391 • 0.6676 • 0.6782 • 0.6838 •
TADW 0.7903 • 0.8125 • 0.8186 • 0.8217

UPP-SNE 0.7881 • 0.7965 • 0.7977 • 0.7993 •
MVC-DNE 0.6984 • 0.7478 • 0.7589 • 0.7650 •

SINE 0.8054 ◦ 0.8270 ◦ 0.8319 ◦ 0.8327 ◦
BinaryNE 0.8005 0.8193 0.8216 0.8237

Table 8. Node Clustering Results

on Cora

Metric Accuracy Fvalue NMI

DeepWalk 0.6263 • 0.6096 • 0.4306 •
LINE1 0.3510 • 0.3110 • 0.1023 •
LINE2 0.4170 • 0.3797 • 0.1763 •
SDNE 0.4061 • 0.3804 • 0.1939 •
TADW 0.3705 • 0.3556 • 0.1487 •
UPP-SNE 0.6337 • 0.6209 • 0.4412 •
MVC-DNE 0.6095 • 0.5885 • 0.3510 •

SINE 0.6345 • 0.6239 • 0.4540 •
BinaryNE 0.6729 0.6656 0.4810

5.6 A Case Study on Relevant Paper Search

In this subsection, we conduct a case study on relevant paper search on the DBLP network. We
select the paper “Learning Classifiers from Only Positive and Unlabeled Data” published on KDD-
2008 as the query paper, which is a highly cited paper on the topic of “Positive Unlabeled Learning”.
We retrieve the top five similar papers with the node representations learned by DeepWalk+Q,
Feature+Q, TADW+Q, NetHash, and BinaryNE, by calculating the Hamming distance between the
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Table 9. Top Five Relevant Paper Search on DBLP

Query: Learning Classifiers from Only Positive and Unlabeled Data

DeepWalk+Q:
1. Finding Transport Proteins in a General Protein Database
2. A Bayesian Network Framework for Reject Inference
3. Making Generative Classifiers Robust to Selection Bias
4. Building Text Classifiers Using Positive and Unlabeled Examples �
5. Audience Selection for On-line Brand Advertising: Privacy-friendly Social Network Targeting
Feature+Q:
1. Learning Coordination Classifiers
2. Learning from Little: Comparison of Classifiers Given Little Training
3. Learning a Two-stage SVM/CRF Sequence Classifier
4. Delegating Classifiers
5. On the Chance Accuracies of Large Collections of Classifiers
TADW+Q:
1. Efficient Learning of Naive Bayes Classifiers under Class-conditional Classification Noise
2. Learning to Classify Texts Using Positive and Unlabeled Data �
3. Semi-Supervised Learning with Very Few Labeled Training Examples
4. Calculation of the Learning Curve of Bayes Optimal Classification Algorithm for Learning a
Perceptron With Noise

5. How To Use What You Know
NetHash:
1. Making Generative Classifiers Robust to Selection bias
2. A Bayesian Network Framework for Reject Inference
3. Building Text Classifiers Using Positive and Unlabeled Examples �
4. Finding Transport Proteins in a General Protein Database
5. Active Learning in Partially Supervised Classification
BinaryNE:
1. Learning to Classify Texts Using Positive and Unlabeled Data �
2. Learning the Common Structure of Data
3. Enhancing Supervised Learning with Unlabeled Data
4. Learning from Multiple Sources
5. Text Classification from Positive and Unlabeled Documents�

query paper and candidate papers. Table 9 reports the search results. As can be seen, DeepWalk+Q,
Feature+Q, TADW+Q, and NetHash only retrieve one relevant paper, and no relevant papers are
discovered by Feature+Q. By contrast, our BinaryNE algorithm achieves the best search results,
with two relevant papers (1 and 5) discovered. It is worth noting that, as different algorithms use
various information sources to measure node similarity, the top five relevant papers retrieved by
different algorithms may have few intersections.

5.7 Comparison of Memory Usage

In Table 10, we compare the memory used for accommodating the continuous node representa-
tions learned by DeepWalk, the non-binary discrete node representations learned by NetHash,
and the binary codes learned by BinaryNE. Compared with DeepWalk and NetHash, with the
same dimension, the binary representations learned by BinaryNE significantly reduce the mem-
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Table 10. The Memory Usage of DeepWalk, NetHash, and BinaryNE Embeddings

Dataset DeepWalk NetHash BinaryNE
Memory Reduction Memory Reduction Memory

Cora 2.64MB 64× 1.32MB 32× 42.32KB
Citeseer 3.23MB 64× 1.62MB 32× 51.75KB

BlogCatalog 5.07MB 64× 2.54MB 32× 81.19KB
Flickr 7.40MB 64× 3.70MB 32× 118.36KB

DBLP(Subgraph) 18.02MB 64× 9.01MB 32× 288.25KB
DBLP(Full) 1.56GB 64× 797.09MB 32× 24.91MB

(a) (b) d

Fig. 2. Query time with varying |V | and d .

ory consumption by 64 and 32 times, respectively. For the DBLP(Full) network with more than
1 million nodes, the memory used for storing the continuous node representations is more than
1.5GB, which is intractable for computing devices with lowmemory configuration to perform node
similarity search. By contrast, the binary node representations learned by BinaryNE only consume
25MB memory for the DBLP(Full) network, which is more practical for general devices. The low
memory consumption makes BinaryNE more desirable for real-world applications.

5.8 Experiments on Search Scalability

We also conduct experiments on the large DBLP(Full) network to test the search scalability of
different types of network embeddings with respect to network size |V | and embedding dimen-
sion d . We compare the binary embeddings generated by BinaryNE with those by DeepWalk and
NetHash, which respectively take continuous numeric values and non-binary discrete values.
To study the search scalability on network size |V |, we first learn 128-dimensional embeddings

with DeepWalk, NetHash, and BinaryNE on the whole DBLP(Full) network, and then randomly
sample a series of node subsets with increasing sizes. Among each node subset, we randomly se-
lect 1,000 nodes as query nodes and search similar nodes with the learned node representations.
Figure 2(a) shows query time (in milliseconds) with regard to different network sizes, where both
query time (in milliseconds) and |V | are in logarithmic scales. As is shown, node similarity search
with different embedding methods scales linearly with the increase of network size, whereas Bi-
naryNE provides more than 10 times faster query speed than Deepwalk and NetHash.
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Fig. 3. The time consumed by different network embedding methods for learning node representations.

To study the search scalability in terms of embedding dimensiond , we learn DeepWalk, NetHash
and BinaryNE embeddings with varying dimensions (8, 16, 32, 64, 128, and 256). We randomly
select 100 nodes as query nodes, and search similar nodes across the whole DBLP(Full) network.
Figure 2(b) shows query time (in milliseconds) with varying embedding dimensions, with both
axes in logarithmic scale. We can see that, in general, similarity search with three methods scales
almost linearly with regards to embedding dimension, but BinaryNE is consistently more efficient
than DeepWalk and Nethash (with more than 10 times search speedup in most cases).

5.9 Comparison of Embedding Learning Time

We now select the Cora and Citeseer network to evaluate the efficiency of learning node represen-
tations with different network embedding methods. Figure 3 compares the CPU time (in seconds)
consumed by different network embedding methods. As shown in the figure, BinaryNE is far more
efficient in learning node representations than SDNE, TADW, UPP-SNE, and MVC-DNE, and its
efficiency is comparable to that of DeepWalk, LINE1, LINE2, and SINE, which have been demon-
strated to be efficient on large-scale networks. This proves the ability of BinaryNE to scale to
large-scale networks for learning node representations, like DeepWalk, LINE, and SINE.

5.10 Experiments on Parameter Sensitivity

Lastly, we perform a case study on BlogCatalog and Flickr to investigate the sensitivity of BinaryNE
to three important parameters: the number of iterations, the dimension of learned embeddings d ,
and the window size t used for collecting node context pairs. We take turns to fix any two pa-
rameters and study the effect of the remaining parameter on the search performance measured by
precision@500. Figure 4 shows the performance of BinaryNE with respect to varying parameters.
As the number of iterations increases, the performance of BinaryNE gradually increases and then
declines slightly. This indicates that, in general, more iterations would be helpful for BinaryNE to
find the local minimal solution, but excessive iterations tend to make the model parameters deviate
from the local minima. However, to guarantee good performance, the number of iterations should
scale linearly to the network scale. In practice, the number of iterations should be set to 500 ∼ 1000
times the sum of the number of edges and the number of node-attribute occurrence times. When
the embedding dimension d increases, the performance of BinaryNE increases and stabilizes later.
This shows that, embeddings with higher dimensions provide more information to measure node
similarity. Interestingly, when the window size t increases from 2 to 16, the search precision drops
slightly. This is probably because a larger window size imports broader contextual structure, but
may introduce more noise to measure node similarity.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 4, Article 61. Publication date: May 2021.



61:24 D. Zhang et al.

(a) #iteration (b) d (c) t

Fig. 4. The sensitivity of BinaryNE with parameters: the number of iterations, the dimension of learned

embeddings d , and the window size t .

6 CONCLUSION

Learning binary node representations is a desirable solution to similarity search over large-scale
networks, due to its advantage in efficient bit-wise Hamming distance calculation and lowmemory
usage. In this article, we proposed a BinaryNE algorithm to embed network nodes into a binary
space, with well preserved network structure and node content features. Through a three-layer
neural network, BinaryNE learns binary node representations bymodeling node structural context
and node attribute relations. The sign function is adopted as the activation function in the hidden
layer to obtain binary node representations. To deal with the ill-posed gradient problem caused by
the non-smoothness of the sign activation function, the state-of-the-art continuation technique [2,
7] is employed. Model parameters are efficiently learned through an online stochastic gradient de-
scent algorithm, which ensures the low time complexity and great scalability of BinaryNE. Exten-
sive experiments on six real-world networks show that BinaryNE exhibits much lowermemory us-
age and computational cost than continuous network embedding algorithms, but with comparable
or even better search precision. The binary node representations learned by BinaryNE also achieve
competitive results on other network analytic tasks such as node classification and node clustering.

APPENDIX: EXPERIMENTAL SETTINGS

All reported experiments are conducted on a Mac laptop with an Inter Core i5, 2.3 GHz processor
and 8 GB memory, with no GPU or other accelerators used.
For all embedding learning methods used in our experiments, we set the dimension of embed-

dings d = 128. For DeepWalk, UPP-SNE, SINE, and BinaryNE, we set the length of random walks
L = 100, the number of random walks starting from per node γ = 40, and the window size t = 10.

For fair comparisons, we use the same strategy to train DeepWalk, UPP-SNE, SINE, and Bina-
ryNE: we first collect node context pairs from the generated randomwalks, and update parameters
with stochastic gradient descent by sampling node context pairs. We uniformly set the number of
sampled negative context nodesK to 5. For DeepWalk, LINE, UPP-SNE, SINE, and BinaryNE, we set
the maximum number of iterations to 100 million for Cora and Citeseer, 200 million for BlogCat-
alog, Flickr and DBLP(Subgraph). For DeepWalk and BinaryNE, we set the maximum number of
iterations to 1 billion for DBLP. For DeepWalk, LINE, UPP-SNE, SINE, and BinaryNE, we gradually
decrease the learning rateη from 0.025 to 2.5 × 10−6.We use the author provided LINE,5 UPP-SNE,6

and SINE7 implementations. We implement DeepWalk based on the SINE implementation.

5https://github.com/tangjianpku/LINE.
6https://github.com/daokunzhang/UPPSNE.
7https://github.com/daokunzhang/SINE.
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We use the SDNE implementation8 provided by authors and implement MVC-DNE based on
the SDNE implementation. For SDNE, we find the best hyperparameter setting for α , ν , and
β via a grid search from {0.01, 0.1} × {0.01, 0.1} × {10, 50} by evaluating on randomly selected
10% nodes for each network. The number of neurons at each layer is set to 2708-512-128, 3312-
512-128, 5,196-512-128, 7,575-512-128, and 18,448-512-128 for Cora, Citeseer, BlogCatalog, Flickr,
and DBLP(Subgraph), respectively. For MVC-DNE, on Cora, Citeseer, BlogCatalog, Flickr, and
DBLP(Subgraph), the number of neurons at each layer in the structure view is set to 2708-512-64,
3312-512-64, 5,196-512-64, 7,575-512-64, and 18,448-512-64, respectively, and the number of neu-
rons at each layer in the node content feature view is set to 1,433-512-64, 3,703-512-64, 8,189-512-64,
12,047-512-64, and 2,476-512-64, respectively.When setting the number of neurons at each layer for
SDNE and MVC-DNE, we gradually decrease the number of neurons from the high-dimensional
input layer to 128 neurons in the final node representation layer, so as to hierarchically extract
deeper and more abstract latent features, as is operated in SDNE [53] and MVC-DNE [59]. For
SDNE and MVC-DNE, 500 default epochs are used for pre-training and parameter fine-tuning,
respectively. Other parameters of SDNE and MVC-DNE are set according to [59].
As the content feature dimension of BlogCatalog, Flickr, and DBLP(Subgraph) is too large for

TADW, before running TADW on them, we reduce the dimension of their node content features
to 200 with SVD. Default settings are used to train NetHash and BANE. For BinaryNE, we grad-
ually increase the parameter β from 0.01 to 1. We use the author provided TADW,9 BANE,10 and
NetHash11 implementations. We implement the KD-coding for network embedding based on the
original KD-coding implementation for word embedding.12 We implement the DNE algorithm ac-
cording to the DNE paper [40].
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