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The complexity class ZPPNPL] (corresponding to zero-error randomized algorithms with access to one NP
oracle query) is known to have a number of curious properties. We further explore this class in the settings
of time complexity, query complexity, and communication complexity.
e For starters, we provide a new characterization: zppNPll] equals the restriction of BPPNPU where
the algorithm is only allowed to err when it forgoes the opportunity to make an NP oracle query.

e Using the above characterization, we prove a query-to-communication lifting theorem, which translates
any ZPPNPI decision tree lower bound for a function f into a ZPPNPI] communication lower bound
for a two-party version of f.

e Asan application, we use the above lifting theorem to prove that the ZP (1] communication lower
bound technique introduced by G66s, Pitassi, and Watson (ICALP 2016) is not tight. We also provide

a “primal” characterization of this lower bound technique as a complexity class.
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1 INTRODUCTION

Query-to-communication lifting is a paradigm for proving lower bounds in communication
complexity [32, 37, 45] using lower bounds in query complexity (a.k.a. decision tree complexity)
[9, 32, 51]. This technique has yielded a wide array of applications, including lower bounds for the
Clique vs. Independent Set communication game and the related Alon-Saks—Seymour conjecture
in graph theory [6, 18], separations between communication complexity and partition number [3,
4,19, 24, 25], lower bounds for monotone circuits, monotone span programs, and proof complexity
[7, 16, 17, 21, 23, 31, 42, 43, 46, 47], new and unified proofs of quantum communication lower
bounds [49] and of separations between randomized and quantum communication complexity
[1, 2, 24], lower bounds for LP and SDP relaxations of CSPs [12, 36, 38], separations between

Supported by NSF Grant No. CCF-1657377.

Authors’ address: T. Watson, University of Memphis, Dunn Hall, 3725 Norriswood Avenue, Memphis, TN, 38152; email:
Thomas.Watson@memphis.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

1942-3454/2020/11-ART27 $15.00

https://doi.org/10.1145/3428673

ACM Transactions on Computation Theory, Vol. 12, No. 4, Article 27. Publication date: November 2020.

27



27:2 T. Watson

Class Reference PP
P [25, 46] T
NP [18, 22] PostBPP
BPP [24] PN
NP
- [20] pNP ZPpNPl SBP AWPP
ZPP Theorem 2
SBP [22] \ T T /
AWPP [49] NP BPP
PostBPP [22]
PP [49] \ p /

Fig. 1. Classes with a known query-to-communication lifting theorem. C; — C denotes C; C Ca.

communication complexity classes [8, 10, 20, 22, 26, 35], lower bounds for finding Nash equilibria
[5, 27, 48], and data structure lower bounds [14].

The basic format of the technique is a two-step approach in which a relatively simple problem-
specific argument is combined with fairly heavy-duty general-purpose machinery for handling
communication protocols. More specifically:

(1) Capture the combinatorial core of the desired communication complexity lower bound by
proving an analogous query complexity lower bound.

(2) Apply a lifting theorem showing that the query complexity of any Boolean function f is
essentially the same as the communication complexity of a two-party version of f.

The availability of a lifting theorem greatly eases the burden on the lower bound prover, since
query lower bounds are generally much easier to prove than communication lower bounds.

The lifting theorem is with respect to a particular model of computation: deterministic, ran-
domized, nondeterministic, and so on; it is convenient to associate these models with their cor-
responding classical time-bounded complexity classes: P, BPP, NP, and so on. This idea has led
to an ongoing project: prove lifting theorems for the query/communication analogues of vari-
ous classical complexity classes. Figure 1 shows the main classes for which a lifting theorem is
known, along with primary references. Even the less well-known classes sometimes correspond
to standard measures in the query/communication settings; e.g., AWPP corresponds to approxi-
mate polynomial degree in query complexity and to log of approximate rank in communication
complexity. Some notable classes for which a lifting theorem is not known include BQP, UP, and
MA. Proving a lifting theorem for AM would be a breakthrough, as it is notoriously open to prove
any strong AM-type communication lower bound for an explicit function, but is trivial to do so in
the query complexity setting.

Our central contribution is a lifting theorem for the slightly exotic class ZPPNPU, which
corresponds to randomized algorithms that can make one call to an NP oracle, output the correct
answer with probability >3/4, and output L with the remaining probability. This model is interest-
ing, partly because it has so many curious properties, one of which is that it is robust with respect
to the success probability threshold: by Reference [13], the success probability can be efficiently
amplified as long as it is >1/2 (which is nontrivial, since the standard method for amplification
would use multiple independent trials, resulting in multiple NP oracle queries). In terms of
relations to other classes, ZPPNP[1] contains BPP [11] and is contained in S,P [11] and in PostBPP
(a.k.a. BPPpain) [26]. If we generalized ZPPNPI to allow success probability slightly <1/2, or to
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A ZPPNPI Lifting Theorem 27:3

allow two nonadaptive NP oracle calls, then either way the class would contain AM N coAM, hence
proving explicit lower bounds for the communication version would yield breakthrough AM com-
munication lower bounds; in this sense, ZPPNP[1] ig just shy of the communication lower bound
frontier. ZPPNP[U also shows up frequently in the literature on the “two queries problem” [50].

Our starting point is to uncover another curious property of ZPPN P Wwe prove it is equivalent
(in time, query, and communication complexities) to a new model we dub CautiousBPPNPI!), which
corresponds to randomized algorithms that can make one call to an NP oracle, output the correct
answer with probability >3/4, and are only allowed to err when they choose not to call the NP
oracle. This equivalence plays a crucial role in our proof of the lifting theorem for ZPPNP[1],

Once we have the lifting theorem, the natural application domain is to prove new ZPPNPIL.
type communication lower bounds. Reference [26] developed a technique for proving such lower
bounds, and we use our lifting theorem to derive new separations, which imply that the technique
from Reference [26] is not tight. This is analogous to the main application from Reference [20],
in which a PNP lifting theorem was used to show that the PNP-type communication lower bound
technique from References [30, 41] is not tight. For context, we note that certain other communi-
cation complexity classes have similar lower bound techniques that are tight; e.g., the discrepancy
bound captures PP communication [34], and the corruption bound captures SBP communication
[28]. So, for what class is the lower bound technique from Reference [26] tight, if not ZppNPll?
We also answer this question. The class did not have a standard name, but it turns out to have a
reasonably simple definition.

1.1 Statement of Results

We formally define ZPPNPIU and CautiousBPPNPI and their query/communication analogues in
Section 2. For any model C (such as ZPPNPI or CautiousBPPNPI), we use C for the polynomial
time complexity class, C%' and C° for the polylog query and communication complexity classes,
and CY(f) and C*(F) for the corresponding query and communication complexities of a partial
function f : {0,1}" — {0, 1} and a partial two-party function F : {0, 1}" X {0, 1}" — {0, 1} (we also
consider F’s where Alice and Bob have unequal but polynomially related input lengths). We use
O to hide polylog(n) factors. We prove the following characterization in Section 3.

THEOREM 1.

(i) ZPPNII = CautiousBPPNPL.
(i) ZPPNPIUdt(£) = ©(CautiousBPPNPIIA(£)) for all f.
(iii) ZPPNPUcC(F) = @(CautiousBPPNPIIC(F)) for all F.

We now prepare to state the lifting theorem. For f : {0,1}" — {0, 1} (called the outer function)
andg: X X Y — {0, 1} (called the gadget), their composition f o g" : X" x Y" — {0, 1} is the two-
party function where Alice gets x = (x1,...,x,) € X", Bob gets y = (y1,...,yn) € Y", and the
goalis to evaluate (f o g")(x,y) := f(g(x1,y1), . .., g(xn,yn)). Note that any deterministic (P-type)
decision tree for f can be turned into a deterministic protocol for f o g" where Alice and Bob
communicate to evaluate g(x;,y;) whenever the decision tree queries the ith input bit of f. A
similar thing can be done in other models besides deterministic. The essence of a lifting theorem
is to go in the other direction: convert a protocol for f o g into a comparable-cost decision tree
for f. In other words, if g is sufficiently complicated, then it hides the input bits to f so well that
a communication protocol cannot do any better than just running a decision tree for f.

We use the index gadget IND,,, : [m] X {0, 1}™ — {0, 1} mapping (x, y) — y, where m is a suffi-
ciently large polynomial in n. This gadget has previously been used for the P, BPP, and PN lifting
theorems. (In some cases, lifting theorems with simpler gadgets are known—such as the “inner
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27:4 T. Watson

product mod 2” gadget on O(log n) bits [15, 22, 53]—but for many applications the index gadget is
fine.)

THEOREM 2. Let m = m(n) := n for a large enough constant C. For every f : {0,1}" — {0,1},

(i) ZPPNPUUC(f o InDlL) = ©(ZPPNPIIA(£)),
(i) CautiousBPPNPUIC(f o IND!') = ©(CautiousBPPNPII(£) . log n).

Note that part (i) of Theorem 2 is a corollary of part (ii), since by Theorem 1,

ZPPNPLe( £ o Inp" ) = ©(CautiousBPPNPIIC(£ o IND™ )
= O(CautiousBPPNPII(£)) = @(zppNPIUdt(£y).

We are not aware of a way to prove part (i) directly, without going through Theorem 1. To prove
part (ii) (in Section 4), we combine tools and techniques from the proofs of lifting theorems for
BPP [24], NP [18, 22], and PN? [20], along with some new technical contributions.

Two of the main results in Reference [26] are MA® ¢ ZPPNPIee apd Usee ¢ ZPPNPUce where
MA and US are the classes associated with “Merlin-Arthur games” and “unique witnesses,” respec-
tively (more precise definitions are deferred to Section 5). The proofs introduced a certain lower
bound technique—let us use 8 (F) for the largest bound attainable for F using this technique, and
B for the class of all F’s with 8 (F) < polylog(n)—and showed that MA*“ ¢ B, US® ¢ B°,
and ZPPNPlce ¢ g<c The definition of B is not important for now, but we provide it in Section 6,
where we show that it can be characterized as a more natural complexity class.

Since ZPPNPIee ig closed under complement (whereas 8 is not), we have ZPppNPlilee ¢ gee
coB. A natural question is whether the latter is actually an equality, i.e., whether the lower
bound technique of Reference [26] for ZPpNPlee jg tight. Since Reference [26] observed that
MACC, US C coB, we have MA© N coMA®S, US N coUS C B N coB*, and thus the follow-
ing result (proven in Section 5 using Theorem 2) answers this question in the negative (in two
different ways).

THEOREM 3.

(i) MA® N coMA® ¢ zppNPltlee,
(ii) US“ N coUS* SZ 7ppNPec.

We mention that Theorem 3.(ii) answers an open question from Reference [29] by implying that
DP N coDPe¢ ¢ PNPICC (since US € DPC; see Section 6 for the definition of DP). The latter
separation has subsequently been generalized by Reference [44]. It was also shown in Reference
[44] that DP¢ N coDP<¢ = PNPIUce when the classes are restricted to contain only total functions,
and thus Theorem 3.(ii) is false for total functions. It remains open whether Theorem 3.(i) holds
for total functions.

2 DEFINITIONS

We set up notation and provide the formal definitions of ZPPNPI!l and CautiousBPPNPU, For the
query and communication complexity versions, we follow the convention of using the complex-
ity class names as complexity measures. That is, C%(f) denotes the minimum cost of any correct
C-type decision tree for f, and C% also denotes the class of families of partial f’s with C%(f) <
polylog(n); similarly, C*“(F) denotes the minimum cost of any correct C-type communication pro-
tocol for F, and C* also denotes the class of families of partial F’s with C“(F) < polylog(n) (as-
suming Alice and Bob have polynomially related input lengths).
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A ZPPNPI Lifting Theorem 27:5

In the query complexity setting, “query” actually has two meanings for us: A decision tree makes
queries to individual input bits, then it forms an NP-type (DNF) oracle query.

We think of a randomized algorithm M as taking a uniformly random string s € {0, 1}" (for
some number of coins r that depends on the input length); we let M;(x) denote M running
on input x with outcome s. Similarly, we think of a randomized (in our case, ZPPN"[-type or
CautiousBPPNPU_type) decision tree T or communication protocol II as the uniform distribution
over a multiset of corresponding non-randomized T;’s or II’s indexed by s € {0, 1}"; we denote
thisas T ~ {T; : s € {0,1}"} or IT ~ {II; : s € {0,1}"}.

In general, the single NP oracle query could happen in the middle of a computation, but WLOG
we assume it happens at the very end. This is because instead of making the oracle query, an
algorithm can remember the query, proceed with the rest of the computation under both possible
scenarios (the oracle returns 0 or 1), and finally make the query knowing what the output will be
in either scenario—which is captured by a little function we call out.

We use L to denote both a language and its characteristic function.

2.1 zppNPll

ZPPNPU consists of all languages L for which there is a polynomial-time randomized algorithm
M (taking input x and coin tosses s € {0, 1}") and a language L” € NP such that the following hold.

Syntax: The computation of M(x) produces an oracle query g and a function out : {0,1} —
{0, 1, L}; the output is then out(L'(q)).
Correctness: The output is always L(x) or L, and is L(x) with probability >3/4.

We define a ZPPNPI-type decision tree T for f on input x as follows.

Syntax: T ~ {Ts : s € {0,1}"} where each T; makes queries to the bits of x until it reaches a
leaf, which is labeled with a DNF D and a function out : {0,1} — {0, 1, L}; the output is
then out(D(x)).

Correctness: The output is always f(x) or L, and is f(x) with probability > 3/4.

Cost: The maximum height of any T, plus the maximum width of any DNF appearing at a
leaf.

We define a ZPPNPI-type communication protocol IT for F on input (x, y) as follows.

Syntax: I ~ {II5 : s € {0,1}"} where each II; communicates until it reaches a leaf, which
is labeled with a multiset of rectangles {R* : w € {0, 1}¥} (for some k) and a func-
tion out : {0,1} — {0, 1, L}; the output is then out applied to the indicator of whether
(x.y) € Uw R".

Correctness: The output is always F(x,y) or L, and is F(x, y) with probability > 3/4.

Cost: The maximum communication cost of any Il, plus the maximum k at any leaf.

A priori, the value 3/4 seems arbitrary, since it is not clear whether ZPPNPU is amenable to am-
plification of the success probability (naively doing repeated trials would increase the number of
NP queries). However, Reference [13] showed that amplification is actually possible, so we may
use any constant > 1/2 for the success probability in the definition of ZPPNPIl (while affecting
the measures ZPPNP[l]dt(f) and ZPPNPlec() by only constant factors).

2.2 CautiousBPPNPII

CautiousBPPNPU consists of all languages L for which there is a polynomial-time randomized
algorithm M (taking input x and coin tosses s € {0,1}") and a language L’ € NP such that the
following hold.
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27:6 T. Watson

Syntax: The computation of M (x) either directly outputs a bit (without invoking the oracle) or
produces an oracle query g and a nonconstant function out : {0, 1} — {0, 1}; in the latter
case the output is then out(L’(q)).

Correctness: The output is L(x) with probability > 3/4, and is L(x) for all s such that M (x)
makes an oracle query.

We define a CautiousBPPNPIU-type decision tree T for f on input x as follows.

Syntax: T ~ {Ts : s € {0,1}"} where each T; makes queries to the bits of x until it reaches a
leaf, which is labeled with either an output bit, or a DNF D and a nonconstant function
out : {0,1} — {0, 1}; in the latter case the output is then out(D(x)).

Correctness: The output is f(x) with probability >3/4, and is f(x) for all s such that Ts(x)
makes a DNF query.

Cost: The maximum height of any T, plus the maximum width of any DNF appearing at a
leaf.

We define a CautiousBPPN'I!-type communication protocol II for F on input (x, ) as follows.

Syntax: I1 ~ {Il; : s € {0,1}"} where each IIy communicates until it reaches a leaf, which is
labeled with either an output bit, or a multiset of rectangles {R* : w € {0, 1}%} (for some
k) and a nonconstant function out : {0,1} — {0, 1}; in the latter case the output is then
out applied to the indicator of whether (x,y) € |J,, R".

Correctness: The output is F(x,y) with probability > 3/4, and is F(x,y) for all s such that
I, (x, y) makes a “union of rectangles” query.

Cost: The maximum communication cost of any II;, plus the maximum k at any leaf.

The success probability of any CautiousBPPNl!l-type computation can be amplified by taking
the majority vote of multiple independent trials—except if at least one of those trials results in an
NP-type oracle query, then (to avoid making multiple oracle queries) we just use the output of
one such trial, since we know it will be correct. Thus, just like for BPP-type computations, success
probability 1/2 + ¢ can be amplified to 1 — § with a O(giz log %) factor overhead in cost.

3 zpPPNPII = CautiousBPPNPI

We now prove Theorem 1, starting with part (i). First assume L € ZPPN'IU witnessed by a
randomized algorithm M (taking input x and coin tosses s € {0,1}") and L’ € NP. To see that
L € CautiousBPPNPIY| consider the following randomized algorithm with oracle access to L’:

Sample s € {0, 1}" and run M, (x) until it produces q and out.

If out(0) = out(1), then output this common bit, or an arbitrary bit if out(0) = out(1) = L.
Else if one of out(0), out(1) is L then output whichever is not L.

Else invoke the oracle on g and output out(L’(q)).

Ll e

Consider any s for which this algorithm outputs the wrong bit: then it did not make an oracle
query (since M never outputs the wrong bit), and M;(x) would have output L (because of either
line 2, or line 3 with out(L’(q)) = L and out(1 — L’(q)) # L(x)). Hence, this algorithm correctly
solves L, with error probability at most that of M.

For the converse direction, we generalize the argument from Reference [11] that BPP C
ZPPNPU, Assume L € CautiousBPPNPIU, witnessed by a randomized algorithm M (taking input x
and coin tosses s € {0,1}") and L’ € NP. Assume that this has already been amplified so the error
probability is < 1/4r (by the remark at the end of Section 2.2). For a fixed input x and b € {0, 1},
let

Sp = {s €{0,1}" : My(x) outputs b without invoking the oracle}.
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A ZPPNPI Lifting Theorem 27:7

To see that L € ZPPNPU consider the following randomized algorithm:

1. Sample s € {0,1}" and run M, (x) until it produces either an output b (so s € Sp) or q and

out.
2. Ifit produced q and out, then ask the NP oracle for the value of L’ (¢) and output out(L’(q)).
3. Else sample independent strings s!,... ,s* €{0,1)" and ask the NP oracle whether

Ui(Sy @ s') # {0,1}" (i.e., whether there exists an s’ such that for every i, s’ ® s’ & Sp);
output L if so and b if not.

Note that this algorithm never outputs the wrong bit: If s € Sj, for b = 1 — L(x), then |S,| < 2" /4r
so by a union bound, | |J;(Sy ® s)| < 4r - (2"/4r) = 2", and hence the NP oracle returns 1 on
line 3 and the algorithm outputs L. For the success probability, consider two cases. If [Sy U 51| <
2" /4, then line 2 executes (guaranteeing correct output) with probability > 3/4. Otherwise, since
[S1-1(x)| < 2"/4r, we must have |Sy )| > 2"/4 — 2" /4r > 2" /5 (we may assume r is at least a large
enough constant), so by a union bound over all s’ € {0,1}", the probability over st ..., s* that
Ui(SLx) @ s') # {0,1}7 is < 2" - (4/5)* < (5/6)" < 1/5. In this latter case, the probability of out-
putting L is

Plb=1-L(x)] + P[U:(Sp ® s') # {0,1)7]b = L(x)] - P[b = L(x)] < 1/4r + (1/5) - |Sp()]/2" <1/4.

In both cases the success probability is > 3/4.

Parts (ii) and (iii) are proved in the same way as part (i), but we must carefully analyze the
cost. Let us summarize the differences. For the ZPPNP[l ¢ CautiousBPPNPIU direction, exactly
the same argument works but using T or Il in place of M;, and making the same DNF query
or “union of rectangles” query rather than the same NP oracle query on line 4. This shows that
CautiousBPPNPUIdt(£) < zppNPIUdt(£) and CautiousBPPNPIUcc(F) < zppNPltee(Fy,

Now consider the CautiousBPPNPII ¢ ZpPNPU direction for parts (ii) and (iii). By standard
sparsification of the randomness [39], we may assume T or IT uses only O(log n) coin tosses (while
affecting the success probability by only +0(1)). Then as noted at the end of Section 2.2, we may
amplify with O(loglogn) repetitions so r becomes O(logn - loglogn) and the error probability
becomes < 1/10g2 n < 1/4r. As above, we use T or Il in place of M;, and make the same DNF
query or “union of rectangles” query rather than the same NP oracle query on line 2. For line 3,
we note that the predicate | J;(Sy ® s') # {0, 1}, as a function of the input x or (x, y), can be com-
puted by nondeterministically guessing s’ and running Ty g (x) or g (x, y) for each i € [4r];
this can be expressed as a DNF of width 4r - (cost of amplified T), or as a union of 2¥ rectangles
with k = r + 4r - (cost of amplifiedIT). Thus, the overall cost is O(r - (cost of amplified T orII)) <
O((cost of original T orII) - log n - log? log n). This shows that

ZppNPdt £y O(CautiousBPPNP[I]dt (f) - logn - log®log n),
zpPNPLU(F) < O(CautiousBPPN"I(F) - log n - log® log n).

IA

(A factor of loglog n can be shaved off here, by amplifying the original algorithm using a random
walk of length O(loglog n) on an expander graph rather than doing the trials fully independently,
so r becomes O(log n + loglog n) = O(log n).) This finishes the proof of Theorem 1.

By the way, the above argument implies that the success probability of ZPPNPIU can be
amplified from 1/2 + 1/poly(n) to 1 — 1/poly(n) in polynomial time: a ZPPNPI!) algorithm can be
converted to a CautiousBPPNPI! one with no loss in efficiency or success probability, then the
latter can be amplified as remarked at the end of Section 2.2, then this can be converted back to
a ZPPNPIU algorithm with 1 — 1/poly(n) success probability by tweaking the parameters in the
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27:8 T. Watson

proof of Theorem 1. Reference [13] showed a stronger result—the success probability of ZPPNP[1]
can actually be amplified to 1 — 1/ exp(n)—but our proof is perhaps simpler.

4 PROOF OF THE LIFTING THEOREM

We now prove Theorem 2. As noted in Section 1.1, we just need to show part (ii). It is straightfor-
ward to see that for all f,

CautiousBPPNPIUec (£ o InD},) < O(CautiousBPPNPIUAt (£) . 1og n),

since we can have the communication protocol run the optimal decision tree for f, communicating
O(log n) bits to evaluate IND,, (x;, y;) whenever this bit is queried, and if a width-w DNF oracle
query is formed, then we can convert each of its < n* conjunctions into < m" rectangles, resulting
in a “union of rectangles” oracle query that contributes k = O(wlog n) to the cost. Thus, the bulk
of the proof is to show that for all f,

CautiousBPPNP[l]dt(f) < O(CautiousBPPNP[l]“(fOIND”m)/logn). (1)

In Section 4.1, we provide relevant technical background from the proofs of earlier lifting theorems
(mainly the one for BPP [24]). Then, in Section 4.2, we describe how to simulate the communication
protocol with a decision tree, and in Section 4.3, we prove a key technical lemma.

4.1 Background

Abbreviate G := IND],. We consider deterministic communication protocols on G’s input domain
[m]™ x ({0,1}™)", which we view as partitioned into slices G™'(z) = {(x,v) : G(x,y) = z}, one for
each z € {0, 1}"*. We let |IT| denote the worst-case number of bits communicated by a deterministic
protocol IT. We use boldface letters for random variables.

Let Ho (x) := min, log(1/P[x = x]) denote the usual min-entropy of a random variable x. Sup-
posing x is distributed over a set X, we define the deficiency of x as the nonnegative quantity
Do (x) :=log |X| — He(x). A basic property is that if X is a Cartesian product then marginalizing
x to some coordinates cannot increase the deficiency (as observed in Reference [24]). For a set X,
we let X denote a random variable uniformly distributed on X.

The following definition and claim originate in the proof of the lifting theorems for NP, SBP, and
PostBPP [18, 22]. They describe an invariant that Alice maintains throughout the simulation, and
how to restore it (by fixing some coordinates, which will correspond to querying those input bits of
f) when it gets violated. A proof of this specific version of the claim can be found in Reference [20].

Definition 1. A random variable x € [m]’ (where J C [n] is some index set) is called §-dense if
for every nonempty I C J, the coordinates x; (marginally distributed over [m]’) have min-entropy
rate at least J, i.e., Hoo(x7) > & - |I| log m.

Cramv 1 ([20]). If A C [m)/, then there exist an I C ] of size |I| < O(D«(A)/logn) and a
nonempty A" C A such that A’ is fixed on I and 0.9-dense on J \ I.

It is simple to check that all 2" slices of G’s input domain have the same size, and that the uni-
form distribution over any slice is marginally nearly uniform (o(1)-close in statistical distance) on
both Alice’s input and Bob’s input. The following lemma from Reference [24] provides a sufficient
condition for similar properties to hold, even after we have queried some of the input bits of f.

Definition 2. For a partial assignment p € {0, 1, *}", define its free positions as free p := p~1(*) C
[n], and its fixed positions as fixp := [n] \ freep. A rectangle X X Y is called p-structured if X g ,
is 0.9-dense, X iy , is fixed, and each element of G(X X Y) C {0, 1}" is consistent with p.
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Definition 3. A distribution D, is said to be e-pointwise-close to a distribution D if for every
outcome, the probability under 9, is within a factor 1 + ¢ of the probability under 9,. The distri-
butions are said to be e-close if the statistical (total variation) distance is < .

LEmMa 1 ([24]). Suppose X X Y is p-structured and Do, (Y) < n®. Then:

(i) For any z € {0, 1}" consistent with p, the uniform distribution on G™1(z) N X X Y (which is
nonempty) has both of its marginal distributions o(1)-close to X and Y, respectively.

(i) G(X,Y) is o(1)-pointwise-close to the uniform distribution over the set of all z consistent
with p.

Now, we come to the main part of the proof of the BPP lifting theorem from Reference [24]. It
shows that, given query access to z, we can approximately sample the transcript that would be
generated by a communication protocol on a random input from z’s slice. In fact, this simulation
maintains some invariants, which we need to expose (in the “furthermore” part of the lemma) for
use in the subsequent “NP oracle query” phase of our simulation.

Definition 4. A deterministic protocol II is said to be a refinement of a deterministic protocol IT
if they have the same input domain and for every transcript rectangle X X Y of II, there exists a
transcript rectangle of IT that contains X X Y.

LEmMA 2 ([24]). For every deterministic protocol I on G’s input domain with |II| < nlogm, there
exist a refinement Il and a randomized decision tree T of cost O(|I1|/log n) that on input z € {0, 1}"
outputs a transcript of I or L, such that the following two distributions are o(1)-close:

t
t/

output distribution of T on input z,
transcript generated by I1 when run on a random input (x,y) ~ G™1(z).

Furthermore, for every (non-L) transcript output by T on input z with positive probability, the asso-
ciated rectangle X X Y satisfies:

(i) X XY is p-structured, where p corresponds to the results of the queries made by T (and is
hence consistent with z),
(ii) Deo(Y) < n*>,
(iii) DDO(Xfreep) < O(|H|)

4.2 Simulation

LEMMA 3. Let X XY be a p-structured rectangle in G’s input domain such that D (Y) <
n?>. Suppose {R¥ C X XY : w e {0, 1}%} is a collection of rectangles whose union covers exactly
GN(f'(1)) N X X Y. Then f can be computed by a width-O((Deo(X fiee p) + k)/log n) DNF on the
domain of inputs consistent with p.

Lemma 3 is our key tool for converting the NP oracle query to an NP oracle query. The proof,
which we give in Section 4.3, combines insights from the lifting theorem proofs for NP [18, 22]
and PNP [20] with new calculations. For now we use Lemma 3 to argue Equation (1), thus finishing
the proof of Theorem 2.

LetIT ~ {II5 : s € {0,1}"} be a CautiousBPPNP[l]-type communication protocol for f o G (and
note WLOG the cost is < nlog m). Here is a CautiousBPPNPI-type decision tree for f on input z:

1. Sample s € {0,1}" and (eliding the dependence on s) let IT and T be the refinement and
randomized decision tree from Lemma 2 applied to IT;.

2. Sample T’s coin tosses s’ and run Ty on input z until it either outputs L (in which case we
halt and output an arbitrary bit) or produces a transcript ¢ of 1.

3. Let X X Y be the rectangle associated with ¢, and let t* be the transcript of II; whose rec-
tangle contains X X Y.
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4. If t* outputs a bit, then we halt and output the same bit; otherwise let {R" : w € {0, 11k}
and out : {0, 1} — {0, 1} be the rectangles and nonconstant function associated with ¢*.

5. Since X XY satisfies properties (i), (ii), and (iii) from Lemma 2, we may apply
Lemma 3 to the collection {R¥ NX xY : w € {0,1}*} (whose union covers exactly
G (fYout(1))) N X XY by the correctness of II), using f if out(1) =1 or =f if
out(1) =0, to obtain a width-O((|ILs| + k)/logn) DNF D that computes f or —f,
respectively, on all inputs consistent with p.

6. Output out(D(z)).

Since T makes O(|IL|/logn) queries and the DNF on line 5 has width O((|IL| + k)/logn), the
above decision tree indeed has cost O((cost of IT)/log n). If it reaches line 5 and makes a DNF
query, then the output is correct, since z is consistent with p, and hence out(D(z)) = f(z). For
the success probability, call ¢ good if the corresponding t* either outputs f(z) directly or makes a
“union of rectangles” query, and note that if the above decision tree generates a good ¢ then the
output is correct (by the previous sentence). Hence, letting t, ¢’ be the o(1)-close random variables
from Lemma 2 applied to IT (with (x,y) ~ G~!(2)), we have

P [output is correct] > Eg [IP’sz [t isa good transcript]]
> E; [IP’x,y[t’ is good] — 0(1)]

= Exy [Ps[t’ is good]] —o(1)

= Ex,y[Ps[Hs(x, y) outputs f(z)]] —-o(1)
2 Ex,y[3/4] - 0(1)

= 3/4-0(1)

We conclude that CautiousBPPNPIU4(£) < O(CautiousBPPNPIIC(f o G)/logn).!

4.3 Forming a DNF

We now prove Lemma 3. Fix any z € f~!(1) consistent with p, and define J := free p. We need to
show that there exists a width-O((D« (X ) + k)/logn) conjunction that accepts z but does not
accept any input in f~1(0) consistent with p. The final DNF is then the disjunction of these con-
junctions over all z € f71(1) consistent with p.

For each rectangle R* = X" X Y" define the set of weighty rows as

AY = {xeX¥ Y| 2 2™} where Y)Y = {yeY" : G(x.y) =z},

X
Cram 2. There exists aw € {0, 1} such that |A™| > |X|/2k*1.

Proor. Suppose for contradiction this is not the case. First, we show that the weighty rows of
all the rectangles do not cover too much of the slice G™!(z) N X x Y: By Lemma 1.(i), we have
G @0 (Una) ¥y, av) 2k - x| /21

T nXxyl g oW s T el <34 )

Let us summarize the fundamental reason we are unable to make this proof work directly for ZPPNPI (instead of
CautiousBPPNPI]) without going through Theorem 1. Suppose we reach line 5 with out(1) = L and out(0) # L. We
would like to form a DNF that accepts those z’s consistent with p where G™'(z) N X X Y is covered by the union of
(R NX XY : w e {0, 1}¥}—and then output L if the DNF accepts and output out(0) if it rejects. The issue is that there
may be some z’s consistent with p such that f(z) = out(0) but G7(z) N X X Y is partially covered by the union—even a
fairly small coverage might result in the DNF accepting z. This could cause the overall probability of outputting L on z to
be much higher in the decision tree than in the communication protocol.
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However, we show that the non-weighty rows also do not cover too much of the slice (this part
does not rely on our contradiction hypothesis): Since the R*’s cover G™(z) N X X Y and since
k < nlog m WLOG, we have

)G_I(Z) N (X\ UWAW) % Y| < ‘Uw, AW Y;V) < ok. 1X] - gnm-n® < 1X|- an—nz.g,
and by Lemma 1.(ii) and Do (Y) < n%> < n®, we have

|G_l(z) NXXY[ > [X]-]Y]-(1- 0(1))/2”' > |X]| - 2"’"_"2'5 S(1- 0(1))/2n > |X]- znm—n“,

and thus
6@ NN\ Uw A x Y] [X]- gnm-n*’ grtionts A 5
|Gl (z) N X X Y] T IX| - gnmentt < 1. ®
Now Equations (2) and (3) form a contradiction. This proves the claim. O

Now fix a w € {0, 1}* such that |A"| > |X|/2F*! = ml/1/2P=(X)+k+1 and hence Dw(AY) <
Do (X ;) + k + 1. Applying Claim 1 to A}V, we can obtain an I C J of size |I| < O((Do(X) +
k)/logn) and a nonempty A" C A" such that A’ is fixed on I U fix p and 0.9-dense on J \ I. Con-
sider the conjunction that accepts iff the I coordinates of the input equal z;; we now argue that
this conjunction satisfies the desired properties. It certainly has the right width and accepts z.

Define o € {0, 1, #}" as the partial assignment that extends p by fixing the coordinates in I to z;.
As in Reference [20], pickany x” € A" and let B := Y. Then, A" X Bis o-structured (note that for all
(x,y) € A" X B,G(x,y)r = G(x",y)r = 21, since x; = x;) and Do (B) < n®, and thus by Lemma 1.(ii),
G(A’,B) is o(1)-pointwise-close to the uniform distribution over all strings consistent with o.
In particular, for every z’ consistent with o (i.e., for every z’ consistent with p that is accepted
by the conjunction) there exists an (x,y) € A’ X B such that G(x,y) = z; since A’ X B C RY C
G 1(f71(1)), this implies that f(z’) = 1. In summary, the conjunction does not accept any input
in £71(0) consistent with p. This finishes the proof of Lemma 3.

5 APPLICATIONS

We prove Theorem 3 in this section. Since MA® N coMA¢, US“ N coUS*® C B N coB, Theo-
rem 3 cannot be shown using the lower bound technique from Reference [26], so we instead prove
the analogous separations in query complexity and apply our lifting theorem. We start by defining
the query/communication versions of MA and US.

Merlin—-Arthur games (MA) are the model where Merlin nondeterministically sends a message
to Arthur (comprised of Alice and Bob in the communication setting), who is randomized and
decides whether to accept. On a 1-input, there should exist a witness Merlin can send that makes
Arthur accept with probability 1, and on a 0-input, Arthur should reject with probability > 1/2
no matter what Merlin sends. In the query/communication settings, the cost is Merlin’s message
length plus Arthur’s query/communication cost.

The US model is like ordinary nondeterminism, except that an input is accepted iff there is
exactly one witness that leads to acceptance (so, rejection means there are either 0 or > 2 accepted
witnesses). In query complexity, the cost is the maximum width of any of the witness conjunctions.
In communication complexity, the cost is the log of the number of witness rectangles.

5.1 MA N coMA

We now prove Theorem 3.(i). We start with a general technique for proving CautiousBP
lower bounds. For a bit b, we say a conjunction is b-monochromatic for a partial function f if it
rejects all (1 — b)-inputs.

PNP[]]dt
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LEMMA 4. Suppose f has no monochromatic conjunction of width < k. Then,
CautiousBPPNP[l]dt(f) > min(k, BPPdt(f)).

ProoF. If f has a CautiousBPPNP[!-type decision tree of cost < k, then this decision tree must
never make a DNF query (in which case it is just a BPP-type decision tree, showing that BPPU(f) <
CautiousBPPNPIIYt (£)) To see this, suppose for contradiction some leaf is labeled with a DNF
query D and a function out, and consider the conjunction that accepts the inputs that lead to
that leaf and are accepted by an arbitrarily chosen term of D (which WLOG is consistent with
the partial assignment leading to the leaf). Then this conjunction has width < k and is out(1)-
monochromatic (as any input accepted by it would make the CautiousBPPNPIU-type decision tree
output out(1) after making a DNF query, for some outcome of the coin tosses, and hence could not
be an out(0)-input). O

Let n = 2¢2, and define the partial function f : {0,1}" — {0, 1} that interprets its input as a pair
of ¢ x £ Boolean matrices (A, B), such that (A, B) = 1iff Ahas an all-1 row and every row of B is at
most half 1’s, and f (A, B) = 0 iff B has an all-1 row and every row of A is at most half 1’s. Note that
f € MA% N coMA®, since an MA-type decision tree can guess a row in A and check that a random
bit from that row is 1, and a coMA-type decision tree can guess a row in B and check that a random
bit from that row is 1. This upper bound lifts to f o IND?, € MA® N coMA®‘. We now show that
f ¢ CautiousBPPNPIUdt which, by Theorems 1 and 2, implies that f o INp™ ¢ ZPPNPIUec This will
yield Theorem 3.(i).

By Lemma 4, it suffices to show that

(1) f has no monochromatic conjunction of width < £/2, and
(2) BPPU(f) > Q(0).

To see (1), consider any conjunction C of width < £/2: Since it does not touch every row of A,
and it touches at most half the bits in each row of B, we can construct a 1-input accepted by C by
putting all 1’s in an untouched row of A, and filling the rest of the matrix entries with 0’s (except
those whose value is determined by C accepting). Similarly, there must exist a 0-input accepted by
C. Thus, C is not monochromatic.

For (2), by the minimax principle it suffices to exhibit an input distribution such that every cost-
o({) deterministic decision tree succeeds with probability < 3/4 over a random input. We define
the input distribution by filling a uniformly random one of the 2{ rows with 1’s, and letting all
other entries of (A, B) be 0’s. If the decision tree accepts after seeing only 0’s, then conditioned
on a random 0O-input it continues to accept (and hence err) with probability > 1 — o(1) (since the
all-0’s path of the decision tree only touches a o(1) fraction of the rows). Similarly, if it rejects after
seeing only 0’s, then conditioned on a random 1-input it continues to reject (and hence err) with
probability > 1 — o(1). In either case, it errs with probability > 1/2 — o(1) over an unconditioned
random input.

5.2 US N coUS

We now prove Theorem 3.(ii). Let weight(-) refer to Hamming weight. For even n, define the
partial function f : {0,1}" — {0,1} that interprets its input as (a,b) € {0,1}"/? x {0, 1}"/2, such
that f(a,b) =1 iff weight(a) =1 and weight(b) € {0,2}, and f(a,b) = 0 iff weight(b) =1 and
weight(a) € {0,2}. Note that f € US% N coUS™, since a US-type decision tree can guess the lo-
cation of a 1 in a, and a coUS-type decision tree can guess the location of a 1 in b. This upper
bound lifts to f o IND”, € US N coUS* . We now show that f ¢ CautiousBPPNPIUdt wwhich, by
Theorems 1 and 2, implies that f o INp”, ¢ ZPPNPUe, This will yield Theorem 3.(ii).
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Note that Lemma 4 cannot help us here, since this f does have small monochromatic con-
junctions (e.g., a conjunction with two positive literals from a is 0-monochromatic), so we devise
a different technique. In fact, we show something stronger than f ¢ CautiousBPPNP[Udt Define
BPPNPU in the natural way (two-sided error, and allowed to err after an NP oracle query is made),
and notice that the class may depend on the exact choice of success probability (since the standard

method of amplification involves multiple independent trials, which would increase the number of

P

NP oracle queries). Let us use BPP " to indicate that the success probability must be > p on each

input. As CautiousBPPNPIU can be efficiently amplified (see the end of Section 2.2), the following

lemma implies that f ¢ CautiousBPPNPIdt,
LeEmMA 5. For every constant € > 0, BPP3/4+€dt(f) > Q(n).

Proor. It suffices to show that every cost-o(n) PNPll-type decision tree succeeds with proba-
bility < 3/4 + o(1) over the uniform distribution on valid inputs to f. Let v be the leaf reached
after seeing only 0’s, and say v is labeled with DNF D and function out : {0, 1} — {0, 1}. Assume
out(1) = 1 (the case out(1) = 0 is argued similarly). Consider the joint random variables a, b, a’, b’
where a has a unique 1 in a random position, b is all 0’s, a’ is obtained from a by flipping a
random 0 to 1, and b’ is obtained from b by flipping a random 0 to 1. Note that (a, b) is the in-
put distribution conditioned on weight(a) = 1 and weight(b) = 0, and (a’, b’) is the input distri-
bution conditioned on weight(a) = 2 and weight(b) = 1. We have P[(a, b) reaches v] > 1 — 0(1)
and thus P[(a, b) reaches v and is accepted] > IP[(a, b) is accepted] — o(1). Also, conditioned on
any outcome of (a, b) that reaches v and is accepted, with probability > 1 — o(1) the two flipped
bits are not among those read along the path to v and not among those read by an arbitrar-
ily chosen term of D that accepts (a, b), in which case (a’,b’) also reaches v and is accepted.
Thus, P[(a’, b’) reaches v and is accepted | (a, b) reaches v and is accepted] > 1 — o(1). Combin-
ing these, we get

P[(a’,b’) is accepted] > P[(a’,b’) and (a, b) both reach v and are accepted]

P[(a’,b’) reaches v and is accepted | (a, b) reaches v and is accepted]

P[(a, b) reaches v and is accepted]
(1=0(1)) - (P[(a, b) is accepted] — o(1))
P[(a, b) is accepted] — o(1).

\%

Thus, under the uniform distribution on valid inputs to f,

P[err]

\%

P[err|weight(a) = 1 and weight(b) = 0]/4 + P[err|weight(a) = 2 and weight(b) = 1]/4
(IP’ a,b) is rejected] + P[(a’,b’) is accepted])/4
( — (P[(a, b) is accepted] — P[(a’,b’) is accepted]))/4
> (1-o0(1))/4. O

We can complement Lemma 5 by noting that BPP3 /1 Hde f) < 2: With probability 1/4 each:

accept iff weight(a) < 1,
accept iff weight(a) > 1
reject iff weight(b) <
reject iff weight(b) >

1
1.
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PostBPP BppNPI1]
coNP@QSBP AM
DP SBP
T ZppPNPUI =
CautiousBPPNP[]
coNP BPP

Fig. 2. Classes relevant to our applications. C; — C; denotes C; C Ca.

Hence, BPP) 4" ¢ BPP)IY, which implies that BPP))") ¢ BPP)!) in a relativized world.

Thus, unlike ZPPNPIU BPPNPU js not generally amenable to efficient amplification; this phenom-
enon has subsequently been fully explored in Reference [52].

6 PRIMAL CHARACTERIZATION OF THE LOWER BOUND TECHNIQUE

The following is the lower bound technique introduced in Reference [26].

LEMMA 6 ([26]). Suppose g is a distribution over F1(0), p, is a distribution over F™1(1), and C is
a constant such that for every rectangle R,

(i) p1(R) < 8 if R is 1-monochromatic (i.e., contains no 0-inputs), and
(i) po(R) < C- p1(R) + 6.

Then ZPPNPUIC(F) > Q(log(1/6)).

By an argument of Reference [33], the exact value of the constant C does not matter (as long
as it is sufficiently large), only affecting the final bound by constant factors. Thus, there exists a
constant C such that 8°(F) is defined as the maximum of [log(1/6)] over all yo, y11, 5 satisfying
the properties of Lemma 6.

Using only assumption (i) of Lemma 6 would give rise to the so-called 1-monochromatic rec-
tangle size bound, which is well-known to be a tight “dual” characterization of NP“(F) [37, Sec-
tion 2.4]. Using only assumption (ii) would give rise to the corruption bound, which is known
to be a tight “dual” characterization of so-called coSBP“(F) [28]. Since the latter model is less
widely known, we define it here: An SBP algorithm is randomized and must accept 1-inputs with
probability > «, and accept 0-inputs with probability < «/2, for some « > 0, which is an arbitrar-
ily small function of the input size. In the communication complexity setting, this is equivalent
to having a multiset of 2F rectangles (the cost is k) such that each 1-input (0-input) is contained
in > a (< a/2) fraction of them. The query complexity setting is similar but with conjunctions
instead of rectangles (the cost is the maximum width).

Since B is defined as a certain dual combination of NP and coSBP** (requiring the bounds to
hold simultaneously, under the same input distribution), it is natural to wonder whether it is also
a “primal” combination of NP“ and coSBP*“. Specifically, an educated guess is that 8 functions
are exactly those than can be expressed as an “or” of an NP function and a coSBP“ function. We
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now confirm this, and then reprove some lemmas from Reference [26] through the primal lens.
We first set up the relevant notation.

For two partial Boolean functions F, H, we let F U H denote the partial function such that
(FUH)'(1) = F'(1) UH'(1) and (F U H)"1(0) = F"1(0) n H~!(0), and we let F N H denote the
partial function such that (FN H)™!(1) = F~}(1) n H™'(1) and (F N H)~!(0) = F~}(0) U H™(0).
Note that F, H, F U H, F N H may all have different domains. For classes C, D, we let CQ D denote
the class of all partial functions of the form F U H for some F € C and H € D, and we let COD
denote the class of all partial functions of the form F N H for some F € C and H € D.

The class DP may be defined as NP@coNP, and we may assume WLOG in this definition that
F,H,F N H all have the same domain. The latter assumption cannot always be made for combina-
tions of other classes. For example, consider NP@coSBP: on each 0-input, there is no NP witness
and the coSBP algorithm accepts with probability > «, and on each 1-input, either there exists an
NP witness or the coSBP algorithm accepts with probability < /2. Note that if there exists an
NP witness then the coSBP algorithm may accept with illegal probability in the range («/2, ), in
which case the input must not be in the domain of the coSBP partial function. This shows that the
NP partial function and the coSBP partial function might not have the same domain as each other.

THEOREM 4. B = NP“@QcoSBP*¢ and coB“ = coNP*“QSBP*.

Proor. This is inspired by the argument from Reference [28] that coSBP® captures the corrup-
tion bound. A cost-k (NP@coSBP)-type protocol for F consists of a pair of multisets of rectangles
(R¥ : we {0,1}5},{0° : s €{0,1}*} and an « > 0 such that if F(x,y) = 0 then (x,y) ¢ U, R”
and (x,y) is in > « fraction of Q%’s, and if F(x,y) = 1 then either (x,y) € J,, R" or (x,y) is in
< a/2 fraction of Q°’s. We may assume the latter /2 is actually «/2¢ (for any integer ¢ > 0), by
using the multiset of intersections of all c-tuples of Q°’s, at the cost of increasing k by a factor of
¢ (and raising «a to the power c) [28].

First, we show that 8°(F) < O((NP““@coSBP)(F)) for all F. Consider an (NP©coSBP)-type
protocol, and assume the coSBP part has already been amplified to have «/4C instead of /2; let
k be the new cost, and note that & > 27 WLOG. Consider any pq, 1.

Case (i): p1(U,y R¥) > 272k Then there exists an R (which is 1-monochromatic) such that
pi(RY) > 273,

Case (ii): p1 (U, R™) < 272K, Let u! denote y; conditioned on F~1(1)\ lJ,, R". For each s €
{0, 1}%, let qs == po(Q°) and r, := p(Q°). We claim there exists an s such that g; > «/2 and
rs < qs/2C. Suppose for contradiction the claim is false, and let S C {0, 1}* be such that for all
s€S,qs <aj2,andforalls € S, ry > qs/2C. Then,

a/4C 2 E(xyy)wfpse{o,uk[(x’ y) € Q°]
= Esco,1)6 Pl y)~p [(x, ) € QO°]

2k Zs€{0,1}k T's

2 27535

> 27" 3 595/2C

- Z_k(zse{o,l}k qs = 2ses qs)/ZC

= (Ese{o,l:kﬁ”(x,y)wo[(x, y) € Q°] - z—k|5|a/z)/zc
> (B ypoPocione[(xy) € Q°1 - a/2) /2C

> a/4C.
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Furthermore, at least one of the inequalities must be strict, which is a contradiction. Now for a
fixed such s, we have

p0(Q°) = po(Q)/2+a/a = C-pj(Q°) + /4 = C- (p(Q®) — pi (Uw R”)) + /4
C-m(Q%)—C-27% 42752 > . 4y (%) + 273,

v

Combining the two cases shows that if g, j11, § satisfy the properties of Lemma 6, then § > 273k,
and hence log(1/6) < 3k.

Now, we show that (NP““@coSBP®)(F) < O(B°(F) + log n) for all F. Consider any ¢ such that
for all yg, p11 there exists a rectangle R such that either

(1) p1(R) > 6 and R is 1-monochromatic, or
(ii) po(R) > C- p1(R) + 6.

Our goal is to show that (NP““@coSBP*‘)(F) < O(log(1/9) + logn).

First, we record that if (ii) holds above, then there exists a subrectangle R’ C R such that
Ho(R) = 6 and py(R’) < 6/4, assuming C > 8: Let Ry, R;,... be the rows of R sorted in in-
creasing order of u;(R;)/po(R;) and consider the least i such that po(R<;) = . If po(R<;) < 26,
then p1(R<;)/po(R<;i) < p1(R)/po(R) < 1/C, and thus we may take R’ = R.;, since pj(R<;) <
1o(R<;)/8 < /4. Otherwise, we have po(R;) > &, and thus we may take R’ = R; N F~1(0).

Now let R(;) be the set of all 1-monochromatic rectangles, and R;; be the set of all other rect-
angles. Let M be the matrix with rows indexed by inputs (x, y) in the domain of F and columns
indexed by rectangles R, such that

1 if F(x,y) = 0and R € R,

1 if F(x,y) =1and R € R(; and (x,y) € R,
Mz, yr = {1 if F(x,y) = 0and R € R(;; and (x,y) € R,

ﬁ if F(x,y) = 1and R € R(;; and (x,y) ¢ R,

0 otherwise.

We claim that for every distribution y over the domain of F, there exists a rectangle R such that
E[M,, g] > 8. For b € {0,1} let 7}, := p(F~(b)) and pyp := (u|F~'(b)) (or let y; be an arbitrary
distribution over F~1(b) if r, = 0), so u = mypy + 71 11. Now, by the above, there exists a rectangle R
such that either 11 (R) > § and R € Ry;), in which case E[M,, r] = 78 + mp1(R) = 6, or jig(R) = 6
(so R € R(;j)) and p1(R) < 8/4, in which case E[M,, r] = mopio(R) + (1 - ,ul(R))ﬁ > 0.

By the minimax theorem, there exists a distribution v over rectangles such that for every (x, y)
in F’s domain, E[M(y, ),,] = 6. For b € {(i), (ii)} let 7, := v(Rp) and vj, := (v |Rp),s0 v = 7y vy +
iy V(ii)- Assume for now that 7(;), 7r(;;) are both nonzero; we explain later how to handle if one of
them is zero. Also, let vj,(x, y) := Pg~y, [(x,y) € R].

If F(x,y) = 0, then we have § < E[M, 4, ] = 716 + 7y v(in) (x, y) and thus v; (x,y) > 6 (and
of course, v(;(x,y) = 0). If F(x,y) =1, then we have § < E[M 4 ] = muvi(x,y) + w1 -
Vi (x, y))l_‘sT/4 and thus either v(; (x,y) > J or v (x,y) < §/4. For k = O(log(1/9) + logn), if we
sample rectangles {R* : w € {0, 1%, {OQ° : se{o, 1}%}, where each R ~ V(i) independently and
each Q° ~ v(;;) independently, then with positive probability, we arrive at a pair of multisets such
that if F(x,y) = 0 then (x,y) ¢ U,, R* and (x,y) is in > 2§/3 fraction of Q°’s, and if F(x,y) =1
then either (x,y) € J,, R or (x,y) isin < §/3 fraction of Q%’s. This constitutes an (NP@coSBP)-
type protocol for F, with « := 26/3.

If (i) = 0, then the above argument yields an NP-type protocol for F (as v(;(x, y) is 0 if F(x, y) =
0, and is > § if F(x,y) = 1, so we get that | J,, R™ covers none of F~1(0) and all of F~!(1)); in
particular, this yields an (NP@coSBP)-type protocol (by having, say, each of the Q*’s cover all the
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inputs). Similarly, if 7; = 0 then the above argument yields a coSBP-type protocol for F; the NP
part is not needed. O

By our characterization, the following inclusions are implicit in Reference [26]. For complete-
ness, we now provide “primal” arguments for them. We consider the time complexity versions, but
the same arguments work for query and communication complexities.

Lemma 7. ZPPNPIU € NP©coSBP.

Proor. It is slightly more convenient to show CautiousBPPNI1l ¢ NP@coSBP, so consider a
CautiousBPPNPL!] algorithm for L, where M uses coin tosses s € {0, 1}” and each NP oracle query
has possible witnesses w € {0, 1}*. Consider an NP-type algorithm N that accepts x iff there exist
s and w such that M;(x) produces g and out with out(1) = 1 and the NP oracle verifier accepts
(g, w). Note that if L(x) = 0 then N(x) must reject (since M cannot err if it makes an oracle query).
Consider a coSBP-type algorithm A that samples uniformly random s, w, and bit b, and accepts x
iff either

e b =0,w = 0%, and M;(x) either directly outputs 0 or produces q and out with out(0) = 0, or
e b =1, Ms(x) produces g and out with out(1) = 0, and the NP oracle verifier accepts (g, w).

If L(x) = 0, then for every s such that M;(x) outputs 0, A(x) accepts with probability > 27%/2
(by sampling b = 0 and w = 0 if M,(x) outputs 0 either directly or after the oracle responds 0,
or by sampling b = 1 and a correct witness w if M;(x) outputs 0 after the oracle responds 1);
thus, overall A(x) accepts with probability > « := 27 - 3/8.If L(x) = 1 and N(x) rejects, then A(x)
can only accept if b = 0, w = 0, and M, (x) directly outputs 0, so A(x) accepts with probability
<27%/8 < «/2. Thus, N and A together show that L € NP@QcoSBP. O

LEMMA 8. NP©coSBP C PostBPP.

ProoF. A PostBPP-type algorithm is randomized, produces an output from {0, 1, L}, and must
be correct with probability > 3/4 conditioned on not outputting L. Reference [40] showed that
PostBPP = PﬁBP, and the proof works for partial functions (in which case, if the algorithm makes
an oracle query outside the SBP function’s domain, the algorithm is required to be correct for both
possible responses from the oracle). We have NP©@coSBP C PiBP[Z] by using one oracle query to
evaluate the NP function and another to evaluate the complement of the coSBP function, and

outputting 1 iff the first query returns 1 or the second query returns 0. O

Since ZPPNP[U and PostBPP are closed under complement, Lemmas 7 and 8 imply that
ZPPNPUI € coNP@SBP C PostBPP, as shown in Figure 2.
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