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Abstract
Clinical trials are crucial for the advancement of treatment and knowledge within the medical community. Although the 
ClinicalTrials.gov initiative has resulted in a rich source of information for clinical trial research, only a handful of analytic 
studies have been carried out to understand this valuable data source. Analysis of this database provides insight for emerging 
trends of clinical research. In this study, we propose to use network analysis to understand infectious disease clinical trial 
research. Our goal is to understand two important issues related to the clinical trials: (1) the concentrations and character-
istics of infectious disease clinical trial research, and (2) recommendation of clinical trials to a sponsor (or an investigator). 
The first issue helps summarize clinical trial research related to a particular disease(s), and the second issue helps match 
clinical trial sponsors and investigators for information recommendation. By using 4228 clinical trials as the test bed, our 
study investigates 4864 sponsors and 1879 research areas characterized by Medical Subject Heading (MeSH) keywords. 
We use a network to characterize infectious disease clinical trials, and design a new community-topic-based link prediction 
approach to predict sponsors’ interests. Our design relies on network modeling of both clinical trial sponsors and keywords. 
For sponsors, we extract communities with each community consisting of sponsors with coherent interests. For keywords, 
we extract topics with each topic containing semantic consistent keywords. The communities and topics are combined for 
accurate clinical trial recommendation. This transformative study concludes that using network analysis can tremendously 
help the understanding of clinical trial research for effective summarization, characterization, and prediction.

Keywords Link prediction · Network community · Recommendation · Clinical trials

1 Introduction

Clinical trials carry out tests on human participants w.r.t. 
different interventions, including new medications or treat-
ment, to understand and answer meaningful clinical ques-
tions (Friedman et al. 2015; Elkin and Zhu 2021). These 
studies are critical for discovering new treatments to diag-
nose, treat, and reduce the risk of disease. Understanding the 
concentrations and characteristics of clinical trials in specific 
disease areas is important for researchers and industry to be 
aware of emerging trends. In addition, understanding clinical 

trial topics can also recommend clinical trials to researchers, 
using shared knowledge, such as common interests, commu-
nity, and topics (Hurtado et al. 2016). For example, a recom-
mendation engine can recommend relevant clinical trials to a 
researchers, by using shared study topics, so the researchers 
can be fully aware of existing/previous studies in the field.

1.1  Clinical trial reports

The ClinicalTrials.gov database serves as a registry and 
results database for clinical trials all over the world. The 
database provides patients, researchers and public easy 
access to past, current and future clinical trials. In 1997, 
ClinicalTrials.gov was created as a registry of clinical trial 
information for federally and privately funded trials. The 
Food and Drug Administration Amendments Act (FDAAA) 
was created in 2007 that defines Applicable Clinical Trials 
(ACT) that are legally required to register their trial to the 
ClinicalTrials.gov database. ACTs include the following: 
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clinical investigations of any U.S. Food and Drug Admin-
istration (FDA) regulated drug/biological product, certain 
studies of FDA-regulated medical devices, investigational 
studies that have one or more sites in the US, FDA inves-
tigational new drug studies and trials involving drug/bio-
logical/medical devices manufactured in U.S. (Zarin et al. 
2016). While the FDAAA act specifies what clinical trials 
are legally required to register on the online ClinicalTrials.
gov database, many trials are not legally obligated. As of 
October, 2020 the ClinicalTrials.gov database holds 355,127 
clinical trials from over 217 countries (ClinicalTrials.gov 
2020).

The Clini calTr ials. gov database is an abundant source of 
clinical trial studies with longest history and largest com-
plete data (Yang and Lee 2018). Unfortunately the database 
is an underutilized information source for the health industry 
and life science research (Glass et al. 2014). Conversely, 
there’s been an exponential increase in the amount of regis-
tered clinical trials in the US. The global clinical trial mar-
ket is expected to reach 65.2 billion dollars by 2025, grow-
ing at a compound annual growth rate of over 5.5% from 
2017 to 2025 (CenterWatch Staff 2017). This growth rate is 
expected to increase due to the growing prevalence of dis-
eases and incidence of new diseases. Such a trend naturally 
raises questions on how to better analyze and utilize existing 
clinical reports to benefit industry, academia, and individuals 
(Califf et al. 2012).

1.2  Network analysis of clinical trial reports

Determining the relationship and projection of trends in 
clinical trials can be a daunting task considering there are 
large number of variables from different sub-domains. Net-
work analytics are commonly used to understand structure, 
development, and relationships of complex systems. Such 
analysis provides valuable information about the systems, 
such as link prediction, correlation, or degree distribution 
(Gundogan and Kaya 2017).

For example, a previous research modeled clinical tri-
als as a collaboration network to understand relationships 
between listed pharmaceutical companies, research insti-
tutes, and universities, and their mechanisms (Yang and Lee 
2018). Another study created a bipartite graph from clini-
cal trial reports from ClinicalTrials.gov to study patterns of 
interventions in depression trials. The authors transformed 
the bipartite network into a single-mode network, where 
intervention nodes would connect if they co-occurred in a 
clinical trial (Bhavnani et al. 2010). This method was able to 
group together similar intervention methods while quantify-
ing trends in depression interventions.

Network analysis is commonly used for drug repurpos-
ing research. Drug or disease networks can be created using 
expression patterns, disease pathology, protein interactions 
or genetic data to find potential drugs to treat a disease of 
interest (Pushpakom et al. 2019). Such analysis can classify 
gene-disease associations with high accuracy; or identify 
drugs that have an effect against respiratory viral host targets 
(Pushpakom et al. 2019). A previous study created a disease-
drug bipartite network, where a drug is connected to a dis-
ease if it’s in the top three most commonly used treatments 
for the disease. Using an internal link based link prediction 
method, the authors were able to predict drugs that treated 
the diseases in the network (Gundogan and Kaya 2017).

In our previous study, we proposed to use bipartite net-
work to represent clinical trial research entities and their 
relationships, and designed a community-based link predic-
tion (CLP) to model sponsors as communities and predict 
links for information recommendation (Elkin et al. 2019). 
Although effective, CLP cannot make recommendation to 
all sponsors, because a small portion of sponsors may be 
assigned to invalid communities, due to their sparse con-
nections or specialized areas not sharing by many others. 
As a result, sponsors in invalid communities cannot leverage 
information from other peers, within the same community, 
for recommendation.

1.3  Contributions

In this paper, we propose to use both communities and topics 
for clinical trial recommendation. For sponsors, we extract 
communities with each community consisting of sponsors 
with coherent interests. For keywords, we extract topics 
with each topic containing semantic consistent keywords. 
By introducing topic-based link prediction, we’re able to 
connect sparse research areas by topics which provide a bet-
ter similarity metric to compare sponsors against. The com-
munities and topics are combined for accurate clinical trial 
recommendation.

The main contribution of the study is as follows.

– Infectious Disease Clinical trial Network: Our research 
uses a network to characterize infectious disease clini-
cal trials and understand relationships between different 
factors. The network and relevant materials are published 
online to benefit the community.

– Community and Topic Combined Modeling: Our 
research proposes to simultaneously discover commu-
nities and topics to characterize sponsors and research 
areas in clinical trials. The combined approach delivers 
a solutions to connect sparse research areas or sponsors 
to related groups for recommendation.

– Clinical Trial Recommendation: Our research proposes 
to use community and topic combined link prediction 

http://www.ClinicalTrials.gov
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to recommend clinical trials to sponsors. The general 
framework can be extended to many other disease types 
or medical domains.

2  Data

In our study, 4228 infectious disease clinical trial reports 
are downloaded, in XML format, from ClinicalTrials.gov 
database as test bed. The downloaded reports include past, 
current, and future clinical trials during 1991–2023.

Because the main goal of our research is to understand 
characteristics of infectious disease clinical trials (e.g. what 
are the main diseases studied in infectious disease clinical 
trials, who are interested in infectious disease, and what are 
other areas they are interested in), we extract investigators/
sponsors and clinical trial areas from two XML tags: (1) 
investigator information: ⟨overall_official⟩ , and (2) area of 
clinical trials: Medical subject headings (MeSH) ⟨mesh_
term⟩ ). An investigator is the individual (e.g. a physician or 
a researcher) who submits and is in charge of the underlying 
clinical trial. In the case that an investigator name does not 
exist in the clinical trial report, the trial’s sponsor was used 
instead. For simplicity, we will refer to investigators and 
sponsors as sponsors. Research areas are Medical Subject 
Headings (MeSH) Terms which roughly define the focused 
research topics of the underlying clinical trial. MeSH was 
created by the US National Library of Medicine as a method 
to describe a wide variety of biomedical topics to properly 
index articles in MEDLINE (Huang et al. 2011). In this 
study, the research area was determined by intervention 
and condition MeSH words from the file. A clinical trial 
report often contains one or multiple sponsors, and multiple 
research areas.

Formally, we use s to denote a sponsor and use k to denote 
a keyword of research area. Likewise, we use � to denote 

the set of all sponsors, and � represents the set of all key-
words (research areas). From our testbed, we extracted 4864 
investigators (i.e. |�|=4864) and 1878 research areas (i.e. 
|�|=1878)

3  Methods

3.1  Bipartite graph for clinical trial sponsor‑area 
relationship modeling

Clinical trials involve complex sponsors and research area 
relationships. A sponsor may be interested in multiple 
closely related (or interdisciplinary) research areas and 
results from one research area may be beneficial to another 
areas. The nature of pair-wise sponsor and research area 
bound provides a bipartite relationship for analysis. So we 
use bipartite network as the underlying data structure to 
support our analysis.

Formally, a bipartite network � = �(� ,�,�) is a graph 
where the node set �  can be partitioned into two disjointed 
sets ( � = �1∪ �2 ). No node belongs to both sets of � , 
( �1 ∩ �2 ). In our research, sponsors represent one set of 
nodes and research areas represent the second set of nodes. 
An edge e(s, k) connects a node s in sponsor node set to 
a node k in the research area node set ( � ⊂ �1× �2 ), and 
� denotes the edge set of the graph. An example bipartite 
network is shown in Fig. 1a. The degree of a node, deg(v), 
is the number of edges incident to node v. In an undirected 
bipartite graph, the deg(s) is the number of k nodes that 
s is connected to and vice versa. In Fig. 1a, deg(s1) = 3.

If a clinical trial had multiple sponsors, edges are cre-
ated from all investigators to research areas. For each 
edge, e(s, k), a weight value ws,k represents the number of 
times an investigator is connected to a research area. To 
decrease the sparsity of the network, MeSH words that 

Fig. 1  A conceptual view of bipartite graph for clinical trial sponsor-
area relationship modeling. a Shows a bipartite network where upper 
pink squares denote sponsors and lower blue circles indicate research 
areas. A blue solid line denotes an edge, indicating that a sponsor has 
conducted a clinical trial on the connected area. The brown dot-dash 
line separates the networks into communities suggesting that sponsors 
and their research areas fall into two groups. The red-dash line (with 
a question mark) is the predicted link, predicting that s2 is interested 

in k1 (although the connection currently does not exist); b shows the 
two-mode network of the bipartite network in (a); c shows one-mode 
network which omits sponsor nodes in the bipartite graph. Two area 
nodes are connected if they both connect to one sponsor node in the 
bipartite network in (a); and d shows a close 4-path (lower) and an 
open 4-path. A close 4-path in (d) is a circle in the one-mode network 
in (c)
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contain a comma were separated into two research areas, 
e.g., “Influenza, Human” was separated into “Influenza” 
and “Human”.

3.2  Clinical trial network community detection

Community detection aims to find connected groups of 
nodes within a network. In Fig. 1a the dot dash line rep-
resents the split of the bipartite network into two com-
munities such that ℂ1 contains node set s1, s2, s3, k1, k2, k3 . 
And ℂ2 contains node set s4, s5, k4, k5, k6 . Network com-
munity detection was done using the LPAwb+ algorithm 
created by Beckett (Beckett 2016). Communities are found 
by distinct modules that consists of a combination of two 
node types in a weighted bipartite network. The goal is to 
maximize the modularity score for a weighted bipartite 
network, QW , defined in Eq. (1) (Beckett 2016; Dormann 
and Strauss 2014).

where s and k are node types, sponsors and research areas, 
su is a sponsor node and kv is a research area node. The Kro-
necker delta function �(su, kv) equals one when nodes su and 
kv are in the same module, or community, or zero otherwise. 
Ẽ is a matrix of no interactions between two nodes, W̃  is the 
weighted incidence matrix, y is the incidence matrix row 
totals and z is the column totals.

The algorithm computes modules based on two stages. 
In the first stage sponsor nodes are updated using infor-
mation from research area nodes and research area nodes 
are updated using information from sponsor nodes. For a 
sponsor node x, its node label, sx , is found by maximizing 
Eq. (2). Labels are updated until modularity score, QW , no 
longer increases (Beckett 2016).

In the second stage, groups of communities are merged 
together. Each module consists of nodes sharing the same 
label. Communities are merged if merging increases network 
modularity. This is repeated until merging more communi-
ties does not increase network modularity further (Beckett 
2016). Each community, ℂc , contains a distinct subset of s 
and k such that 𝕍 = ℂ1∩ ℂ2.

(1)

QW =
1

M

�∑

u=1

�∑

v=1

(W̃uv − Ẽuv)𝛿(su, kv)

=
1

M
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�∑

v=1

(
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yxzv

M

)
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v=1
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W̃xv −

yxzv

M

)
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=
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v=1

W̃xv𝛿(x, kv) −

�∑

v=1

(W̃xv −
yxzv

M
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)
.

Because infectious disease clinical trials cover many 
diverse research areas, it is important to determine the 
robustness of communities. The transitivity of social net-
works has been widely studied (Newmann 2001; Opsahl 
2011). Transitivity can define connectivity in a network 
by defining the number of connections between connected 
nodes. It is measured by the fraction of connected triangles 
to the number of connected triplets (Newmann 2001). A 
triangle is where V1 and V2 are connected and are both con-
nected to V3 . A connected triplet is where V1 is connected 
to V2 , and V2 is connected to V3 and there is no connection 
between V1 and V3 . To measure transitivity, the cluster-
ing coefficient, Cc , is often used (Newmann 2001; Opsahl 
2011)

This is frequently used in one-mode networks, an example 
of one-mode network is shown in Fig. 1c. A high clustering 
coefficient indicates high robustness. If a graph is completely 
connected, e.g., all nodes connect to each other, Cc = 1 . If 
the graph has no triangles, Cc = 0.

However, the global clustering coefficient cannot be 
applied to two-mode networks, such as a bipartite network 
(Fig. 1a). By definition in a two-mode network, nodes in set 
� only connect to nodes in set � , thus a triangle will never 
form (Opsahl 2011), as shown in Fig. 1b. So to determine 
robustness, we used two coefficients created for bipartite 
two-mode networks. The first is a global coefficient, GCc , 
which measures the number of closed 4-paths compared to 
the number of 4-paths. A path is a sequence of connected 
distinct nodes. An open 4-path is the one where the first and 
last node do not connect. In Fig. 1d (upper panel) nodes 
k2, s2, k4, s5, k6 are on an open 4-path. A closed 4-path (also 
called a 4-cycle) is a path where the first and last nodes 
connect. In a bipartite graph, they are connected by a 5th 
node. In Fig. 1d (lower panel) nodes k2, s2, k4, s5, k5 are on a 
closed 4-path, closed by s4 . A 4-cycle is the smallest cycle 
possible in a two-mode network. GCc = 1 if all 4-paths in 
a bipartite network are closed, and 0 if all 4-paths are open 
(Opsahl 2011).

The second measure is the reinforcement coefficient, RCc , 
which measures the number of closed 3-paths compared to 
total 3-paths in the network. It’s considered reinforcement 
between two sponsors rather than a measure of clustering 
between a group of sponsors. A high reinforcement coef-
ficient indicates localized closeness in a bipartite network 
(Robbins and Alexander 2004).

(3)Cc =
3 × (# of triangles)

# of connected triplets

(4)GCc =
#of closed 4-paths

# of 4-paths
.
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A community whose research areas only connect to one 
sponsor, or multiple sponsors only connect to one research 
area would not have a value for either GCc or RCc coefficient 
(an example is shown in Fig. 6b). In this case, we consider 
this type of community as an invalid community.

3.3  Community‑based clinical trial 
recommendation

To accurately recommend/predict research areas inter-
esting to a sponsor, we propose to use link prediction to 
find connections between sponsor nodes s and research 
area node k that currently do not exist. In Fig. 1a the red 
dashed-line with a question mark is a predicted link that 
suggests that node s2 is interested in node k1.

Link Prediction has been extensively studied in research 
and many methods, such as similarity-based, supervised 
learning based, or collaborative filtering-based approach, 
have been used for link prediction (Liben-Nowell and 
Kleinberg 2007). In the following, we first discuss exist-
ing collaborative filtering-based link prediction, and then 
propose our community-based link prediction.

3.3.1  GLP: global link prediction using collaborative 
filtering

User-based collaborative filtering is generally performed to 
predict the votes of a user on a particular item by compar-
ing the user to other users in a dataset � , where other users 
have a vote on the particular item (Breese et al. 1998). In 
this study, we are predicting weight of linkage between a 
sponsor and a research area. The highest predicted weight 
would indicate that research area is interesting to the spon-
sor (e.g. the topic he/she may be interested in pursuing in 
the future). For clinical trial bipartite network, we treat 
users as sponsor nodes (s) and items as research area nodes 
(k). Thus we are predicting Ps,k which would indicate the 
weight value for sponsor s on research area k, as defined 
in Eq. (6). The highest value Ps,k for k would indicate the 
top one predicted research area and so on.

In Eq. (6), � denotes a dataset used to determine sponsor s’s 
sore, and |�| is the number of sponsors in � . �(s, i) denotes 

(5)RCc =
# of closed 3-paths

# of 3-paths

(6)Ps,k = v̄s + 𝜅

|𝛥|∑

i=1,si∈𝛥

𝜔(s, i)(vi,k − v̄i)

the similarity between two sponsors s and i; vi,k denotes the 
weight value (vote) between sponsor i and research area k, 
and � is a normalization parameter. v̄i is the average weights 
of sponsor i, which is defined in Eq. (7) ( Ni denotes the 
set of research area nodes connecting to sponsor si ) (Breese 
et al. 1998).

In summary, Ps,k denotes sponsor node s weight on research 
area k. Ps,k is the average weights of sponsor s plus the 
weighted summation of all other sponsors’ weight on 
research area k. The more similar two sponsor nodes are, 
the more similar their weights for research area k will be.

In this study, we used cosine similarity to measure similar-
ity between two sponsors a and b. Assume a and b are the 
vector representation of the sponsor of interest (a) and spon-
sor to compare (b) from, where a and b each denotes an m 
dimensional vector. The similarity between sponsors a and b 
is calculated as follows.

3.3.2  CLP: community‑based link prediction

In our study, we have observed that sponsor-area relationship 
has strong community ties, where sponsors/investigators are 
very likely to be interested in research areas within the same 
community. This is mainly because that biomedical research 
has a strong domain requirements, where an investigator 
trained in one area is often only specialized in limited rel-
evant areas. Meanwhile, as interdisciplinary and cross domain 
research continuously grows, more clinical trials involve teams 
of experts from multiple domains, which essentially compli-
cate the community structure in clinical trials.

Motivated by the above observations, we proposed a com-
munity link prediction method (CLP) to recommend links 
(Elkin et al. 2019), which includes three major components: 
(1) create bipartite network from clinical trial reports; (2) 
detect community from bipartite networks, and (3) apply user-
based link prediction to each community to find links. The 
theme of the CLP is to rely on the community to recommend 
clinical trials areas to each sponsor. For each sponsor s, CLP 
uses Eq. (6) to find the sponsor’s potential interest on keyword 
k, by using all sponsors in the same community as s, with the 
similarity between two sponsors calculated using Eq. (8). For 
each sponsor s, its vector representation s is keyword-based 
using Eq. (9), where e(s, ki) denotes an edge connecting spon-
sor s to keyword ki , and ws,ki

 denotes weight of edge e(s, ki).

(7)v̄i =
1

|Ni|
∑

j∈Ni

vi,j

(8)�(a, b) =
a ⋅ b

��a�� ⋅ ��b�� =
∑m

i=1
�i�i�∑m

i=1
(�i)

2

�∑m

i=1
(�i)

2
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Limitation: Although effective, CLP suffers from two major 
limitations: (1) If a sponsor does not belong to a valid com-
munity, it cannot make recommendation to the sponsor, 
because there is no other sponsors in the same community 
to calculate similarity scores (using Eq. (8)). In our experi-
ments, about 25% sponsors are placed in invalid communi-
ties, therefore cannot find recommendations for them; and 

(9)s =
[
�1,⋯ , �i,⋯ , �m

]
; �i ←

{
ws,ki

, If e(s, ki) ∈ �

0, Otherwise

(2) If a sponsor has a very specific focus on some rare key-
words not shared by many others, CLP may not recommend 
accurately or fails (because of the sparsity).

To overcome the above two limitations, we propose a 
community-topic-based recommendation algorithm, which 
replies on communities and topics for recommendation. The 
employment of the topics ensures that keywords with low/
rare occurrences are connected to others through topics, so 
we can make accurate recommendation to sponsors with 
very specific research interests, as shown in Fig. 2.

Algorithm 1 CTP: Community-Topic Based Link Prediction for Clinical
Trial Research Recommendation
1: input: (1) Infectious Disease Clinical Trial Report Dataset: D; (2) Number of recom-

mendations: k
2: output: Top-k recommended sponsor-area pairs: SAk

3: E ← ∅ Initialize edge list
4: for each clinical trial report d ∈ D do
5: S ← Extract sponsors from d. {sponsor nodes}
6: A ← Extract areas from d. {area nodes}
7: E ← E ∪ {S × A}. {sponsor-area edges}
8: end for
9: G ← E {Create Network from edge lists}.
10: Gk ← G {Create one-mode keyword network from G}
11: T ← Gk {Find topics from Gk}
12: Ti,j ← T {Create sponsor-topic matrix using Eq. (11)}
13: repeat
14: QW ← Maximizing modularity score of G using Eq. (1)
15: for each vertex x ∈ V do
16: gx ← Find its modularity-based label using Eq. (2)
17: G ← G ∪ gx
18: end for
19: until Convergence
20: C ← Find communities using modularity labels G
21: for each community c ∈ C do
22: if GCc or RCc are valid using Eqs. (4) and (5) then
23: CV ← CV ∪ c {valid community}
24: else
25: CI ← CI ∪ c {invalid community}
26: end if
27: end for
28: for each sponsor s ∈ S do
29: if s belongs to a valid community cx ∈ CV then
30: ∆ ← sj |sj ∈ cx
31: else if s belongs to an invalid community in CI then
32: ∆ ← sj |sj ∈ C

33: end if
34: for each research area k do
35: if es,k /∈ E {link e(s, k) does not exist} then
36: Ps,k ← Find sponsor s’s scores w.r.t. area k, using Eq. (6) and topic vector in

Eq. (12)
37: end if
38: end for
39: end for
40: Rank sponsors in V in descending order based on Ps,k sores.
41: SAk ← top-k nodes on the ranked list
42: return SAk.
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3.4  Community‑topic‑based trial recommendation

3.4.1  Clinical trial topic detection

The goal of topic detection is to group keywords together 
as topic groups. For example, “Penicillins”, “Amoxicillin”, 
and “Ceftriaxone” could be different keywords under a topic 
construct, “Antibiotics”. Grouping keywords as topics has 
two major benefits: (1) connecting different keywords at 
concept/semantic level; and (2) low-frequency keywords 
(rare search areas) can be linked to popular keywords, and 
tackle the sparsity challenge.

To detect topics, we use a hierarchical clustering method to 
combine keywords using their topological connections. To do 
so we create a one-mode graph, �k , consisting of keyword 
nodes only, � k = |�| . Edges �k connect two keywords, ki and 
kj , if both keywords co-occur in the same clinical trial report. 
Accordingly, a co-occurrence matrix �k is created as the 
weighted adjacency matrix to create one-mode keyword graph 
�

k . �k is a symmetric m × m matrix, where m is the number 
of keywords. �k

i,j
 equals to the number of clinical trials con-

taining two keywords, ki and kj . �k
i,j

 = 0 if no clinical trial 
contains both keywords. An example of a one-mode keyword 
network is shown in Fig. 1c.

The Walktrap algorithm is applied to the keyword graph �k 
to group keyword nodes into topic groups (Pons and Latapy 
2005). WalkTrap determines structural similarities between 
nodes using random walks, which start on a randomly selected 
vertex and moves randomly in the network by following edges. 
The distance between two vertices is determined from the ran-
dom walk, two vertices within the same subgraph region will 
have a small distance. Similar nodes are merged together to 
form communities, the merging process continues until all 
nodes are merged together.

To merge nodes into clusters, graph �k is first separated 
into m clusters consisting of a single vertex. Each iteration 
merges two clusters into one cluster to create a new partition 
of the graph. This completes when all nodes are joined into 
one cluster. This is an agglomerative hierarchical clustering 
algorithm. After i iterations, there is a sequence of partitions, 
P1 ≤ Pi ≤ Pm . Where P1 is the partition of m clusters consist-
ing of a single node and Pm is the partition of 1 cluster consist-
ing of m nodes. Of these partitions, there is one that has the 
best separation of clusters, this is determined by modularity 
Q(P) as defined in Eq. 10. Where eC is the number of edges 
inside cluster C and aC is the number of edges connected to 
cluster C. The partition with maximum Q(P) will have the final 
node cluster structure (Pons and Latapy 2005).

This method can produce cluster groups that consist of only 
a single node. If merging a node into a cluster decreases the 
partitions modularity score, Q(P), it might not be desired. 
In our research, we wanted to group together keywords into 
topics to have a more generalized groupings of keywords. 
Thus if we had topic groups with only one node, those 
were ultimately merged into the cluster with the highest co-
occurrence frequency. A topic cluster would consist of only 
a single keyword if that keyword didn’t appear in any other 
clinical trial.

3.4.2  CTP: community‑topic‑based link prediction

To leverage the topics for clinical trial recommendation, we 
propose a community-topic-based link prediction model, 
which combines topics and communities for recommenda-
tion, as shown in Algorithm 1.

(10)Q(P) =
∑

C∈P

eC − a2
C

Fig. 2  Comparison between community based (Elkin et al. 2019) (a) 
vs. the proposed community-topic-based link prediction (b) for rec-
ommendation. Community-based approach (Elkin et  al. 2019) relies 
on community structure for recommendation, therefore it cannot 
recommend link for sponsors in invalid community (e.g., the purple 

dashed line with a question mark from sponsor s4 to keyword k6 ). In 
comparison, the community-topic approach finds communities and 
topics from sponsors and keywords, respectively. Although sponsors 
s4 is in an invalid community, the existing linkage to topic �2 will help 
recommend connection to k6 which is within the same topic
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Topic detection: To leverage topics, we first create a topic 
matrix, � ∈ ℝ

n×� , with sponsors as rows and topic groups as 
columns. The value of �i,j , represents sponsor si ’s interest on 
topic �j , which is the total number of keywords in �j having 
an edge to sponsor si.

After the topic matrix is generated from the network, each 
row of the � is used as the the vector representation of a 
sponsor, as defined in Eq. (12), with Eq. (8) being used to 
calculate similarity between sponsors. So the similarity 
between two sponsors is based on the similarity on com-
mon topics, instead of based on common keywords like CLP 
does.

Community detection: Similarly to CLP, CTP also leverage 
the community to calculate a sponsor s’s potential interest 
on keyword k by using all sponsors in the same community. 
In other words, a sponsor s is only compared to the spon-
sors within the same community to calculate their similarity 
using Eq. (8), which is calculated using vectors from the 
topic matrix, � . However, due to limitations of community 
detection algorithms and uniqueness of network structures, 
not all sponsors will be placed in valid community. There-
fore, CTP combines topics and communities to make recom-
mendations for all sponsors.

Community-topic combined recommendation: Due to 
high sparsity and specification, invalid communities often 
consist of sponsors that are linked to keywords with low 
occurrences. Utilizing topic groups, these keywords are 
clustered in a method that can more accurately describe the 
similarity between two sponsors. From the previous study, 
it was determined that CLP has a high accuracy in recom-
mendation, so if a sponsor is within a community, we still 
follow community-based link prediction. On the other hand, 
if a sponsor is within an invalid community (which consists 
of a single sponsor), we would use topic based global link 
prediction to recommend areas for the sponsor, as shown in 
Algorithm 1 (steps 28–39).

3.5  Time complexity

Algorithm 1 mainly includes two major components: (1) 
create bipartite network and find community label for each 
node (line 3 to 27); and (2) recommend research areas to 
each sponsor (line 28 to 41). Denotes ns = |�| the number 

(11)�i,j =
∑

k∈�j

|e(si, k) ∈ �|

(12)si =
[
�i,1,⋯ ,�i,j,⋯ ,�i,�

]

of sponsor nodes and nk = |�| the number of research area 
nodes.

In order to find communities, Eq. (1) requires O(ns ⋅ nk) 
complexity to calculate the combinations between ns spon-
sors and nk research area nodes. For each repetition, Eq. (2) 
needs to be calculated for all nodes ( ns + nk ) in order to 
find their node labels. Therefore, the complexity for each 
repetition is O(ns ⋅ nk ⋅ (ns + nk)) . The process repeats until 
it reaches its convergence. Assume it repeats � times, the 
complexity is O(𝓁 ⋅ ns ⋅ nk ⋅ (ns + nk)).

For recommendation, the loop from lines 28 to 39 is 
repeated for each sponsor and each research area, so the 
total complexity is O(ns ⋅ nk) . The sorting on line 40 is based 
on all sponsor and keyword pairs, and the complexity is 
O(ns ⋅ nk ⋅ log(ns ⋅ nk)).

Because the log function log(ns ⋅ nk) has a lower 
order complexity than linear function ns + nk , the com-
plexity of the system is asymptotically bounded by 
O(𝓁 ⋅ ns ⋅ nk ⋅ (ns + nk)).

4  Experiments

4.1  Clinical trial bipartite network characteristics

The degree distributions of Research area nodes, � ; and 
sponsor nodes, � , are shown in Fig. 3a, b respectively. Both 
degree distributions follow a scale-free degree distribution 
with long-tail phenomenon. This indicates that a majority 
of sponsors focus on a few research areas and some research 
areas are studied by multiple different sponsors.

For research area nodes, the maximum deg(k) is 864. For 
sponsor nodes, the maximum deg(s) is 140. In total, there 
are 25 sponsors who all deg(s) = 140. These sponsors are all 
connected to the same set of nodes, indicating they may have 
worked together on one or many clinical trials.

Table 1 lists the top 20 k nodes by degree. The top k by 
degree, (deg(k) = 864), is “Infection.” The top 20 k nodes 
represent research areas in infectious disease research that 
receive a lot of attention from many sponsors. High on the 
top 20 k nodes list are “HIV Infections”,“Acquired Immu-
nodeficiency Syndrome”(AIDS), “Malaria”, and “Tubercu-
losis”. These represent the “big three” infectious diseases, 
Malaria, tuberculosis (TB) and HIV/AIDS (Bourzac 2014). 
These three diseases combined accounted for 2.7 million 
deaths worldwide in 2018 (Prudêncio and Costa 2020). 
Hepatitis-related research areas (“Hepatitis”,“Hepatitis A”, 
“Hepatitis C”), are also ranked high by degree. Hepatitis 
is responsible for 1.44 million deaths globally (Chen et al. 
2015). The high ranking of these serious infectious diseases 
reflect serious research efforts to combat these diseases.

Research areas such as “Anti-Bacterial Agents”, “Vac-
cines”, “Antibiotics”, “Antitubercular”, all represent 
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interventions that are ranked high as these are commonly 
used to treat/prevent infectious diseases. These research 
areas are broad and ranked high towards their likely combi-
nations with disease research areas. Such as a sponsor may 
be researching vaccine development for HIV.

While the research area nodes with large degree represent 
those with a lot of research attention, research area nodes 
with a smaller degree give information on research areas that 
are often overlooked. The majority of k nodes have deg(k) 
< 10 , with median deg(k) = 3. Often research areas with 
smaller degree represent more uncommon/rare infectious 
disease research areas. However, in some cases, it has been 
shown that certain infectious diseases are disproportionately 
neglected. The Neglected Tropical Diseases (NTDs) repre-
sent a group of infectious diseases that are commonly found 
in low-income developing areas of the world. These diseases 
affect the poorest one-sixth of the world’s population and 
have been neglected by research attention and funding. The 
more recent focus on the “big three” further declined efforts 
towards these diseases (Feasey et al. 2010).

To compare and contrast research areas that are 
receive differing amounts of research efforts, Table 2 dis-
plays research area nodes of infectious diseases that are 

considered NTD (CDC 2020; Feasey et al. 2010). These 
research areas represent infectious diseases that affect 0.1 
million (Trypanosomiasis) to 740 million people (Hook-
worm Infections) (Feasey et al. 2010). The number of years 
lost to disability and premature death, Disability-Adjusted 
Life-Years (DALYs), for NTDs is estimated at 56.6 mil-
lion; compared to 84.5 million for HIV/AIDS, 46.5 million 
for Malaria and 34.7 million for Tuberculosis (Hotez et al. 
2007). As suggested by their classification as NTDs, the 

Fig. 3  Degree distributions 
in log-log scale. The x−axis 
denotes node degrees, and the 
y−axis denotes the number of 
numbers with the specified node 
degrees: a research area nodes 
( � ) and b sponsor nodes ( �)

Table 1  Top 20 research area 
nodes by degree

Research area node Degree Research area node Degree

Infection 864 Toxemia 212
HIV Infections 656 Hepatitis C 203
Communicable Diseases 637 Human 197
Tuberculosis 412 Influenza 193
Pneumonia 399 Respiratory Tract Infections 190
Hepatitis 309 Acquired Immunodeficiency Syndrome 172
Sepsis 295 Chronic 170
Malaria 259 Vaccines 168
Anti-Bacterial Agents 256 Antibiotics 166
Hepatitis A 235 Antitubercular 166

Table 2  Neglected tropical disease research areas

Research area node Degree Research area node Degree

Leishmaniasis 39 Cysticercosis 7
Schistosomiasis 25 Hookworm Infections 6
Dengue 23 Onchocerciasis 5
Chagas Disease 22 Rabies 4
Leprosy 13 Severe Dengue 4
Filariasis 12 Trypanosomiasis 4
Helminthiasis 11 Echinococcosis 3
Taeniasis 7 Trachoma 3
Buruli Ulcer 7 Treponemal Infections 1
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degrees of the research areas in Table 2, demonstrate the 
lower research efforts.

4.2  Clinical trial topic detection results

Figure 4 shows a portion of the dendrogram resulted from 
the clustering process with four topics (denoted by different 
colors). The first topic cluster, denoted by green color, rep-
resent keywords all conceptually related to facial paralysis. 
The keywords Facial Paralysis, Paralysis and Facial Nerve 
Diseases all describe facial paralysis. The first keyword, Bell 
Palsy, is a form of facial paralysis (de Almeida et al. 2014).

The second topic group (colored in blue) represents key-
words conceptually related to neuropathic pain. Postherpetic 
Neuralgia is neuropathic pain due to complications caused 
by Herpes Zoster Oticus virus, also known as shingles 
(Forbes et al. 2015). Pregabalin is a treatment for posther-
petic neuralgia (Derry et al. 2019). The trigeminal nerve is 
responsible for facial sensation; Trigeminal nerve injuries 
cause neuropathic facial pain (Edvinsson et al. 2020).

The third topic group, denoted by purple color, are all 
serious bacterial or viral infections. Tetanus, Diptheria and 

Pertussis, also known as whopping cough, are commonly 
vaccinated together with the DTaP vaccination. Recently, 
a new vaccine (DTaP-IPV-Hib-HepB) was approved by the 
FDA to prevent Diphtheria, Tetanus, Pertussis, Polio, Hae-
mophilus Influenzae type B and Hepatitis B (Oliver 2020).

The final topic group, denoted by pink color, represent 
three serious viral diseases. Mumps, Rubella and Mea-
sles are all RNA viruses. Rubella is also known as Ger-
man measles. Mumps and Measles have unique symptoms 
between them, but the same vaccine, measles-mumps-
rubella (MMR) vaccine immunizes against all three viral 
diseases (White et al. 2013).

Conceptually the keywords in these topic groups rep-
resent a logical clustering. The keywords that are linked 
together at a lower height, such as Bell Palsy, Facial 
Paralysis and Paralysis, indicate these words frequently 
appeared in the same clinical trials. Facial Nerve diseases 
is a keyword that appeared with the first three keywords 
in only one clinical trial, thus the clustering is merged at 
a higher height.

After applying clustering method to keyword graph �k , 
� = 169 topic groups are derived, and the topic groups 

Fig. 4  A sub-dendrogram at 
height 2000. Four topic clusters 
shown. Red dots indicate when 
clusters were merged. The 
dashed line represents where the 
final partition separated the four 
clusters
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have an average of 13 keywords per group. The larg-
est topic includes 540 keywords, whereas the smallest 
contains 1 keyword, (there are 14 single keyword topic 
groups); which happens when a keyword only appears 
once in the set of clinical trials and there are no other 
keywords belonging to that clinical trial.

Figure 5 reports word clouds in two relatively large topic 
groups. Figure 5a are related to an oncology construct with 
236 keywords such as “Lymphoma”, “T-Cell”, “B-Cell”, etc. 
The topic group also contains some treatments for cancer 
such as Hydrocortisone. Figure 5b shows a word cloud for 
�30 which consists of 36 keywords. These keywords repre-
sent an HIV treatment construct.

Table 3 reports 10 selected small topic groups, the topic 
construct, and the respective keywords within the topic and 
their frequency within all clinical trials. The construct is a 
possible scientific construct for the keywords in the topic 

group, since the ultimate ground truth of the groupings of 
keywords is unknown and left to interpretation. Since the 
keywords are grouped into topics ultimately based on co-
occurrence, there are some cases where an odd keyword 
falls within a topic group. For example, all keywords in �17 
are related to the urinary system. While logically, “Stress” 
doesn’t directly relate to the Urinary system, it can play a 
role in overactive bladders (Lai et al. 2015). Since the key-
word “Stress” didn’t appear in any other clinical trial report, 
it is ultimately clustered in �17.

Overall, topic detection results show that topics are use-
ful in finding a group of keywords sharing similar/related 
semantic concepts. This is particularly beneficial in connect-
ing sparse keywords to related groups, so our method can 
recommend trials to sponsors with high research specificity.

Fig. 5  Word clouds for 
keywords in two separate 
topic groups. �12 a represents 
keywords within an oncology 
construct. �30 b represents key-
words within an HIV treatment 
construct

Table 3  A subset of topic 
groups, their possible construct 
descriptor, and the respective 
keywords. The numbers beside 
the keywords represents the 
frequency of keyword, k, found 
in all clinical trials

Topic Construct Keywords (frequency)

�4 Neuropathic Postherpetic (5); Neuralgia (7); Trigeminal Nerve Injuries (1)
Facial Pain (1); Pregabalin (1); Herpes Zoster Oticus (1)

�17 Urinary System Urinary Bladder (5); Overactive (3); Dyspareunia (2)
Enuresis (1); Stress (1); Solifenacin Succinate (1)
Urinary Incontinence (1)

�18 Hand, Foot Mouth Diseases (3); Hand (3); Foot-and-Mouth Disease (3)
Mouth Disease Magnesium Sulfate (2); Foot and Mouth Disease (3)

�42 Infectious Whopping Cough (12); Diptheria (5); Tetanus (4)
Disease Tetany (1); Haemophilus Infections (1)

�46 MMR Measles (3); Mumps (1); Rubella (1)
�50 Sinus Infections Triamcinolone (2); Triamcinolone diacetate (2)

Frontal Sinusitis (1); Triamcinolone Acetonide (2)
Triamcinolone hexacetonide (2)

�52 Gastrointestinal Stomach Ulcer (4); Anorexia (2)
System Weight Loss (2); Duodenal Ulcer (1)

�55 Vitamin A Vitamin A (3); Night Blindness (1)
Retinol palmitate (3); Vitamin A Deficiency (1)

�61 Blood Clots Mastoiditis (2); Intracranial (1); Thrombophilia (1)
Lateral Sinus Thrombosis (1); Sinus Thrombosis (1)

�69 Facial Paralysis Paralysis (3); Bell Palsy (3)
Facial Paralysis (3); Facial Nerve Diseases (1)
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4.3  Clinical trial community detection results

Table 4 lists the summary of detected infectious disease 
clinical trial communities. Overall, we found 478 com-
munities ℂ and 139 of them have valid GCc and RCc scores 
(these communities are listed as “Valid” in Table 4). In 
total, all valid communities have 3,662 sponsor nodes (s) 
(75.38% of all sponsor nodes) and 1,304 research area 
nodes (k) nodes (69.40% of all research area nodes), indi-
cating that valid communities cover large portions of the 
network. For all valid communities, their global cluster-
ing coefficients, GCc range from 0.4 to 1 with average of 
0.9814, and their reinforcement coefficients, RCc range 
from 0.054 to 1 with average of 0.728.

To show the structure of valid vs. invalid communities 
in the network, Fig. 6 demonstrates two separate commu-
nities. Figure 6a displays a valid community, ℂ34 with 12 
s nodes and 6 k nodes. Figure 6b displays an invalid com-
munity, ℂ413 with 2 s nodes and 3 k nodes. Table 5 lists the 
research area nodes for the two communities.

The valid community, ℂ34 , as shown in Fig. 6a, has all 
closed 4-paths, thus GC34 = 1 . The reinforcement coef-
ficient is slightly lower, RC = 0.4 , due to the four k nodes 
that only have connections to one other s node in the com-
munity. This indicates less localized clustering between 
sponsor nodes within ℂ34.

Figure 6b displays an invalid community, ℂ413 . This 
community has two s nodes and three k nodes. Since 
one of the s nodes is only connected to one k node in the 

community, there is no 4-paths, thus GC413 = NA. There 
exists a 3-path, but it is not closed, thus RC413 = 0 . Our 
analysis shows that a typical invalid community consists 
of only one or two sponsors from a single clinical trial.

4.4  Clinical trial recommendation results

To validate the performance of the proposed clinical trial 
recommendation algorithm, we carry out following designs 
to remove a small portion of connections from the networks 
as benchmarks, and then compare different methods’ perfor-
mance in predicting these “removed” links.

To create benchmark links for prediction, we generate 
following three benchmark node sets, representing sponsor 
nodes with increasing number of connections.

– �[�,�] : randomly select 100 sponsor nodes from � where 
each selected sponsor has minimum 2 edges and maxi-
mum 6 edges. This set represents sponsors with normal 
degree of connections (majority sponsors belong to this 
category as shown in Figure 3b).

– �(�,��] : randomly select 100 sponsor nodes from � where 
each selected sponsor has minimum 7 edges and maxi-
mum 10 edges. This set represents sponsor with a high 
degree of connections.

– �(��,∞) : randomly select 100 sponsor nodes from � 
where each selected sponsor has minimum 11 edges. 
This set represents sponsors with a very high degree of 
connections. The maximum degree of a sponsor node is 
140, so up to 70 edges are removed within this node set.

Table 4  Summary of community detection results

Each column represents: (1) valid vs. invalid communities, (2) num-
ber of communities ( |ℂ| ), (3) number of sponsors (|s|), (4) number 
of research areas (|k|), (5) average Global Coefficient ( GC

c
 ), and (6) 

reinforcement coefficient ( RC
c
 ), respectively

|ℂ| |s| |k| GC
c

RC
c

Valid 139 3662 1303 .981 .054
Invalid 339 1202 575 NA NA

Fig. 6  The structure of a valid 
community and an invalid 
community: a valid commu-
nity, ℂ34 , consists of 18 nodes 
( |s| = 12 , |k| = 6 ); and b invalid 
community, ℂ413 , consists of of 
5 nodes ( |s| = 2 , |k| = 3 ) The 
pink squares indicate sponsors 
and the blue circles indicate 
research areas

Table 5  Keywords within two communities

Community Keywords

ℂ34 Antibodies; Monoclonal; Immunologi-
cal; Yellow Fever

Blocking; Antineoplastic Agents
ℂ413 Stomach Ulcer; Anorexia; Weight Loss
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After creating the above three benchmark node sets, for 
each node in any of the selected sets, half of its edges 
are removed and the removed edges are used as bench-
mark edge set of the selected node set. After creating the 
subnetwork with removed edges, the corresponding topic 
matrix is created for recommendation. If a method predicts 
a research area that was previously removed, the predic-
tion is accurate (i.e. the predicted result is the one that was 
removed). By doing so, we know the ground truth of the 
links and can therefore compare algorithm performance.

In the experiments, we employ the following baseline 
methods for comparisons:

– GLP and CLP: These two methods are from our previ-
ous study (Elkin et al. 2019), which use keywords and 
communities for recommendation.

– CTP The proposed method which combines communi-
ties and topics for recommendation.

– CTP t  : A variant of the proposed CTP method, which 
removes the community detection module and only uses 
topics for recommendation.

The purpose of using CTPt is to carry out ablation study and 
remove communities to study CTP’s performance. Alterna-
tively, CLP only uses communities and does not use top-
ics. Therefore, by comparing CLP vs. CTPt  , we can under-
stand whether topics are playing more important role than 

communities for recommendation, or vice versa. It is worth 
noting that CLP relies on communities for recommendation, 
so it only works on sponsors within valid communities. GLP, 
CTP, and CTPt  , on the other hand, work for all sponsors.

Because some methods only work for valid communities, 
we carry out experiments by comparing their performance 
on Valid Community Network (which only consists of spon-
sors within valid community) and all network, respectively.

4.4.1  Link prediction on valid community network

To compare the performance of GLP, CLP, CTP, and CTPt , 
three benchmark node sets are created on a subnetwork con-
sisting of nodes only in valid communities. In each bench-
mark node set, 10 sponsor nodes are selected and half their 
links are removed with each method being used to predict 
links for recommendation. This repeats 20 times, and the 
mean accuracy for the link prediction methods is reported 
in Figs. 7 and 8.

Figure 7a, shows the performance with respect to top 3 
accuracy. This benchmark node set, �[2,6] , is the only case 
that CLP marginally outperforms CTP. GLP has the worst 
performance, and the addition of topic-based link prediction 
( CTPt ) increases accuracy.

Figure 7b shows the performance with respect to top 5 
accuracy. As the number of removed edges increases from 

Fig. 7  Link prediction accuracy 
comparison on valid community 
networks, a using benchmark 
node set �[2,6] , and b using 
benchmark node set �(6,10] . The 
x−axis denotes the top-k predic-
tion, and the y−axis denotes the 
link prediction accuracy
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maximum 3 to maximum 5, overall accuracy decreases. CTP 
now outperforms CLP.

Figure 8 shows the performance with benchmark node 
set �(10,∞) . The maximum degree of a sponosor node is 
140, thus sponsors in this node set had up to 70 edges 
removed. Generally, as the number of edges removed 
increases, the accuracy increases for all methods. CLP 
and CTP have similar performance, CTP achieves higher 
accuracy, and CTPt achieves much better performance 
than GLP.

The results can be summarized into two major find-
ings: (1) the addition of Topic-based link prediction 

significantly increases recommendation accuracy; and (2) 
the usage of community-based link prediction increases 
accuracy.

4.4.2  Link prediction on the whole network

The whole network consists of all nodes, regardless if they 
are within a valid community or not. Due to the findings 
that topic based and community-based increases link pre-
diction accuracy, we wanted to validate our CTP method 
on the whole network. To do so we create three benchmark 
node sets as previously described, in each node set, 20 spon-
sor nodes are selected and half their edges are randomly 
removed. Then GLP, CTP, and CTPt are used to predict 
links. This is repeated 20 times. The average accuracy of 
link prediction for the three benchmark node sets is reported 
in Figs. 9 and 10.

Figure 9a shows the accuracy with respect to top-3 pre-
diction with benchmark node set �[2,6] . The addition of topic-
based link prediction, CTPt , shows a major improvement 
compared to GLP. The addition of community and topic-
based link prediction, CTP, shows the highest performance.

Figure 9b demonstrates the accuracy with respect to top-5 
prediction with benchmark node set �(6,10] . As with the valid 
community network, this benchmark node set has slightly 
decreased performance for all methods. GLP shows the lowest 
performance. CTP shows an increased advantage over CTPt.

Fig. 8  Link prediction accuracy on the valid community network 
using benchmark node set �(10,∞) . The x−axis denotes the top-k pre-
diction, and the y−axis denotes the accuracy

Fig. 9  Link prediction accuracy 
comparison on valid community 
networks, a using benchmark 
node set �[2,6] , and b using 
benchmark node set �(6,10] . The 
x−axis denotes the top-k predic-
tion, and the y−axis denotes the 
link prediction accuracy
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Figure 10 demonstrates the accuracy with benchmark 
node set �(10,∞) with respect to Top 1 to Top 70 prediction. 
This follows the trend in the valid community network with 
increasing accuracy as the number of edges is removed. 
Again CTP has the highest performance and GLP has the 
lowest performance.

Overall the results show that the addition of topic-based 
link prediction increases accuracy. A topic-based similar-
ity metric provides a better basis for similarity comparison 
between two sponsors increasing the accuracy of collabora-
tive user filtering.

5  Discussions

This study aims to characterize clinical trials using network 
analysis of sponsors and research areas. By modeling infec-
tious disease clinical trials as a bipartite network between 
sponsors and research areas, we can differentiate infectious 
disease research areas receiving a lot vs. a little attention. 
The degree of a research area directly measures the num-
ber of sponsors studying the infectious disease. While it is 
expected for more uncommon infectious diseases to receive 
a smaller degree of research efforts, some infectious disease 
research areas do receive disproportionate research efforts. 
Our results show that NTDs infectious disease research 
areas have considerably smaller degree compared to the 
“big three” (HIV/AIDS, Malaria, Tuberculosis) and Hepa-
titis. This demonstrates their classification as “Neglected”. 
Similar analysis on research areas with a small degree can 
identify commonly overlooked infectious diseases.

Our previous research method demonstrated the high 
predictive power of using community-based link prediction 
(Elkin et al. 2019). While CLP does have an increase in per-
formance, it still can’t be used effectively towards the whole 
network. CLP requires that all nodes exist within a valid 
community. This study expands on our previous method by 
introducing topic-based modeling. By finding topics based 

on keywords and summarizing the number of keywords in 
each topic per sponsor, this metric provides a better basis 
for similarity comparison between sponsors increasing 
the accuracy of collaborative user filtering. Finding topics 
effectively groups together some keywords that are not as 
common within the network. If a sponsor only has connec-
tions to uncommon keywords, grouping them together can 
accurately represent the similarity between two sponsors. 
This is demonstrated in the increased performance of CTPt 
compared to GLP within both the valid community network 
and the whole network. The introduction of topic-based 
similarity is a more reliable similarity metric.

As shown with invalid community, C413 , the network 
connections are sparse, indicating that using community 
structure for link prediction wouldn’t be accurate for inva-
lid communities. Invalid communities often only consist 
of 1–2 s nodes. With sparse connections, community-
based link prediction may be unreliable if there are only 
a small number of sponsors in the community. The key-
words for C413 , as listed in Table 5, are also found within 
topic �52 . The groupings of keywords within a topic can 
provide more useful information regarding sponsors con-
nected to these research areas than relying on community 
structure only.

The performance of CTP within the valid community net-
work is greater than CTP within the whole network. Since 
the performance of GLP is similar between valid commu-
nity network and whole network, we can conclude that the 
network size isn’t the determining factor. This demonstrates 
the high predictive power of link prediction within a valid 
community network. However, this exclusion of nodes is not 
always feasible, especially if the sponsor of interest belongs 
to an invalid community. The superior performance of CTP 
vs. CTPt demonstrates the power of using community infor-
mation, if a node does belong to a valid community, using 
community-based link prediction will increase accuracy. 
Ultimately, CTP has increased performance because it uti-
lizes both community and topic information.

For both whole network and valid community network, 
performance on benchmark node set �(6,10] is slightly 
reduced than benchmark node set �[2,6] . The majority of 
sponsor nodes (|s| = 4056) fall within benchmark node 
set �[2,6] . These sponsors may represent those who only 
have specialized or localized research interests. As deg(s) 
increases for nodes in benchmark node set �(6,10] , the 
research areas become broader and link prediction accu-
racy is slightly reduced for all methods. In benchmark 
node set, �(10,∞) , accuracy increases as the number of links 
predicted increases. As the deg(s) increases for a sponsor 
node, the likelihood increases that the node belongs to a 
highly localized dense community. For example, the 25 s 
nodes that all have deg(s) = 140 all belong to a large dense 
community with 46 sponsors and 170 research areas. The 

Fig. 10  Link prediction accuracy on the whole network using bench-
mark node set �(10,∞) . The x−axis denotes the top-k prediction, and 
the y−axis denotes the accuracy
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dense connections effectively provide more information 
for each sponsor node and increase the link prediction 
accuracy, resulting in a gradual increase in accuracy for all 
methods. The difference between GLP and CTP is greatest 
at lower Top-k predictions. This demonstrates the ability 
of CTP to rely more necessary information regarding a 
sponsor node, which is necessary when the connections 
are less dense.

Overall these results suggest that link prediction has 
increased benefits from researchers in localized/specialized 
areas and researchers with large degrees (i.e. many research 
areas shared by many other researchers). Meanwhile, link 
prediction shows a decline for researchers with a broader set 
of interests while maintaining a lower degree.

In our research, the topics are based on the graph �k , 
instead of using node content. This indicates the original 
dataset itself has high importance with regards to finding 
topics. For example, if more clinical trials contained the key-
word “Stress”, that would affect the keyword’s placement in 
a topic group. Within the dataset used for this study, “Stress” 
only was found in one clinical trial, which determined it’s 
placement into a Urinary System topic group construct, as 
shown in Table 3. Using more information to enrich the net-
works can essentially improve the topic discovery, and result 
in more accurate clinical trial recommendation.

6  Conclusions

In this study, we proposed to study relationships between 
investigators/sponsors and research areas in infectious dis-
ease clinical trials extracted from ClinicalTrials.gov. which 
is a valuable, but under utilized, data source. We used bipar-
tite graph to create infectious disease networks between 
sponsors and research areas, and studied characteristics of 
the networks. The analysis of research area degree demon-
strates the research efforts given to separate infectious dis-
eases. Our research shows that clinical trial research follows 
unique scale-free network characteristics: (1) researchers are 
highly specialized where many of them primarily work on 
specific research areas, although a handful a researchers 
indeed work on many areas; (2) a small number of research 
areas are very commonly studied by many researchers, 
yet many research areas are studied by a small number of 
researchers. Overall, infectious disease research for the “big 
three” and Hepatitis receive large research efforts/attention 
from sponsors, whereas infectious disease research for NTDs 
receive a smaller amount of sponsor attention.

For accurate clinical trial recommendation, we proposed 
to reduce sparsity in the data, by extracting communities to 
group sponsors and using topics to model research areas. 
Combining communities and topics, we formed a link 

prediction task to recommend research areas for sponsors. 
Experiments and validations confirmed that, compared to 
the previous research, the proposed method is much more 
accurate in recommending links for infectious disease clini-
cal trial research. The proposed method provides an accurate 
and reliable method for recommending clinical trial research 
areas to a sponsor.

Future research can emphasize on integrating additional 
relationships, such as drug keywords, into the network analy-
sis, or extending the proposed framework to other clinical 
trial areas, such as heart disease.
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