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Abstract. The classic TQBF problem can be viewed as a game in which
two players alternate turns assigning truth values to a CNF formula’s
variables in a prescribed order, and the winner is determined by whether
the CNF gets satisfied. The complexity of deciding which player has a
winning strategy in this game is well-understood: it is NL-complete for
2-CNFs and PSPACE-complete for 3-CNFs.

We continue the study of the unordered variant of this game, in which
each turn consists of picking any remaining variable and assigning it a
truth value. The complexity of deciding who can win on a given CNF
is less well-understood; prior work by the authors showed it is in L for
2-CNFs and PSPACE-complete for 5-CNFs. We conjecture it may be
efficiently solvable on 3-CNFs, and we make progress in this direction
by proving the problem is in P, indeed in L, for 3-CNFs with a certain
restriction, namely that each width-3 clause has at least one variable
that appears in no other clause. Another (incomparable) restriction of
this problem was previously shown to be tractable by Kutz.

Keywords: 3-CNF · Games · Unordered · Logarithmic space

1 Introduction

Two-player games play an important role in complexity theory, particularly in
the study of space-bounded computations. For example, the seminal PSPACE-
complete problem TQBF—in which the goal is to determine whether a given
quantified boolean formula ∃x1 ∀x2 ∃x3 ∀x4 · · · ϕ(x1, . . . , xn) is true—can be
viewed as deciding who has a winning strategy in the following two-player game:
player 1 picks a bit value to assign to x1, then player 2 assigns x2, then player 1
assigns x3, then player 2 assigns x4, etc., with player 1 winning iff ϕ is satisfied.

Most commonly, ϕ is a conjunctive normal form (CNF) formula, which con-
sists of a conjunction of clauses where each clause is a disjunction of literals. A
w-CNF has at most w literals in each clause, and this width parameter w often
governs the complexity of problems involving CNFs. For 2-CNFs, TQBF is NL-
complete [2,4] (in particular, in P), while for 3-CNFs it is PSPACE-complete [12].
We call the corresponding game the ordered CNF game because the players are
required to “play” the variables in a particular order prescribed in the input.
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Complexity of the Unordered CNF Game. In contrast, many real-world games
have greater flexibility in terms of the set of moves available in each turn: the
current player may be allowed to pick any of the remaining possible moves to
do. We can define a variant of TQBF, called the unordered CNF game, which
has this format: The input is again a CNF ϕ, and in each turn the current player
picks a remaining (unassigned) variable and picks a bit value to assign it. The
winner is determined by whether ϕ gets satisfied; we let T denote the player who
wins when every clause of ϕ is true, and F denote the player who wins when
some clause of ϕ is false. For 2-CNFs, deciding who has a winning strategy in
this game is known to be in L [7], while PSPACE-completeness was shown for
11-CNFs [10,11], then for 6-CNFs [1], and then for 5-CNFs [7]. It remains a
mystery what happens for widths 3 and 4.

We boldly conjecture that, in stark contrast to its ordered counterpart, the
unordered 3-CNF game may actually be tractable. Progress toward confirming
this conjecture can be made by considering certain restrictions on the input CNF,
and showing that the game is tractable under these restrictions. The contribution
of this paper is such a result. Before stating our result, for comparison we review
other restrictions that have been studied.

One natural restriction is CNFs that are positive (a.k.a. monotone), mean-
ing that all literal occurrences are unnegated variables; in this case, the
unordered CNF game is equivalent to the so-called Maker–Breaker game (which
is widely-studied in the combinatorics literature). In fact, [10,11] proved that
the unordered CNF game is PSPACE-complete even for positive 11-CNFs (and a
simplified proof for unbounded-width positive CNFs appears in [3]). Kutz [5,6]
proved that for positive 3-CNFs, the unordered CNF game is tractable (in P)
under an additional restriction on the hypergraph structure of the CNF, namely
that no two clauses have more than one variable in common. This is the only
previous result in the direction of confirming our conjecture.

It would be interesting to lift either the “positive” restriction or the “only
one common variable” restriction in Kutz’s result. We prove that both can be
lifted if we instead impose a different (incomparable) restriction on the CNF’s
hypergraph structure. Specifically, we can view the variables in a clause as nodes,
which are places where the clause can “connect” to other clauses (by sharing the
variable). One difficulty in Kutz’s analysis was handling width-3 clauses that use
each of their 3 nodes to connect to other clauses. By restricting this difficulty
away, we are able to address both limitations of Kutz’s result, by handling general
(not positive) CNFs that can have more than one common variable between pairs
of clauses. (Our analysis does not end up resembling Kutz’s very much, though.)

Thus our theorem can be stated as: the unordered 3-CNF game is in P, in
fact in L, when each width-3 clause has at least one “spare” variable that appears
in no other clauses. In the context of satisfiability, this restriction (each width-
3 clause has a spare variable) is not very interesting since it would reduce to
2-SAT (the width-3 clauses could automatically be satisfied). Similarly, under
this restriction, 3-TQBF would reduce to 2-TQBF since each clause with a spare
variable belonging to T (∃) would get satisfied (and thus disappear), and each
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clause whose spare variable belongs to F (∀) would shrink to a width-2 clause.
However, for the unordered 3-CNF game there is no clear way to reduce this
restricted version to a 2-CNF game, since both players can vie for any spare
variable. As we show in this paper, combinatorially characterizing the winner
of such a restricted unordered 3-CNF game turns out to be drastically more
involved than for unordered 2-CNF games [7].

Proof Outline. To prove our theorem, there are multiple cases depending on
who has the first move and who has the last move. The case where T goes first
reduces to the case where F goes first (by trying all possibilities for T’s opening
move, and seeing whether any of them lead to a win for T in the residual game
where F moves first), so we focus on the latter. Our proof separately handles the
cases where F has both the first and last moves (Sect. 3) and where F has the
first move and T has the last move (omitted due to space constraints).

The case where F has both the first and last moves (so the number of variables
is odd) is somewhat simpler to analyze. We state and prove a characterization of
who has a winning strategy in this case, in terms of certain features of the input
formula; an efficient algorithm follows straightforwardly from this. To obtain
the characterization, we begin by identifying various types of subformulas whose
presence in the input formula would enable F to win. It is an elementary but
non-trivial case analysis to verify that in any of these subformulas, F indeed has a
strategy to ensure some clause gets falsified (Sect. 3.1). The more interesting part
of the proof is to show that not only do these subformulas constitute “obstacles”
to T winning, but in a sense they are the only obstacles (Sect. 3.2). Although it is
not true that F can win iff at least one of those subformulas exists in the original
formula, we prove something just as good: F can win iff he has an opening move
that ensures at least one of those subformulas will exist in the residual formula
at the end of the first round. (A round consists of an F move followed by a T
move.)

In other words, if T can fend off all the obstacles for one round, then he will
be able to fend them off for the entire game. This non-obvious fact is key to
taming the combinatorial structure of the game. The proof of this fact involves
a subtle induction that modifies the game rules to allow F to “pass” (forgo his
turn) whenever he wishes—this can only make it harder for T to win, but it is
needed for the induction to go through. After a round, we can prove that for
each of the smaller components that were created in the residual formula: either
we can design a direct winning strategy for T in that component by exploiting
the absence of the obstacle subformulas, or T can fend off obstacles for one
more round in that component, enabling us to apply the induction hypothesis.
Finally, to combine the “sub-strategies” for the separate components into an
overall strategy for T, we exploit the resilience of the sub-strategies against pass
moves by F.

The case where F goes first and T goes last follows a similar structure but is
more involved. Some of the above argument can be recycled, but the parts that
relied on F moving last need to be changed. Now the “complete” set of obstacles
is larger and more complicated. The inductive argument for T’s winning strategy
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requires a more detailed analysis and uses a further modification of the game:
the new rule says that a certain subformula gets immediately removed from the
game (its variables become unplayable) whenever it is created in the residual
formula. The deleted copies of this subformula are then dealt with “outside of”
the induction, to recover a proof for the unmodified game.

Summary. One motivation for studying the unordered CNF game is that it is
naturally analogous to a variety of real-world games where the same moves are
available to both players. Indeed, the original result of Schaefer [10,11] has been
used in many reductions to show PSPACE-completeness of other natural games
with an unordered flavor (see [7] for a list). At a more fundamental level, the
problem we study is very simple to define, and our result reveals new insights
about CNFs, which are among the most ubiquitous representations of boolean
functions.

A potential big payoff for this research direction is to show that the general
unordered 3-CNF game is tractable. That may sound outlandish since arbi-
trary 3-CNFs are typically thought of as “too unstructured” to admit efficient
algorithms for interesting problems. Our result together with the complemen-
tary result by Kutz [5,6] provides a glimpse into why the bold conjecture may
be true, and a plausible roadmap for proving it: by combining our techniques,
which handle negated literals and clauses that share two variables, with Kutz’s
techniques, which handle clauses without spare variables. Short of handling
the general game, there are other open and interesting special cases to which
our techniques may be germane, such as the Maker–Breaker game on general
3-uniform hypergraphs.

The proof of our result reveals a novel structural property: it is impossible
for F to mount a “long-range” attack for creating a simple “obstacle” after a
super-constant number of rounds—it is a “now or never” situation for F. We
conjecture the same phenomenon holds for the game on unrestricted 3-CNFs,
since we are unaware of any counterexamples. If a counterexample is found, it
might be turned into a gadget for proving hardness of the general game. Even
NL-hardness would be fundamentally interesting since our algorithm—based on
detecting a simple obstacle after constantly many rounds—only uses logarithmic
space. (As a side result—not included in this paper—we can show that the
unordered 4-CNF game is NL-hard.)

Although our requirement that every width-3 clause has a spare variable
seems to be a very strong restriction, and may not naturally show up in other
contexts, we feel it is an important stepping stone for understanding more general
games. It already adds a very significant layer of complexity over the unordered
2-CNF game, and it represents a reasonable way of suppressing some of the
difficulties posed by the hypergraph structure of 3-CNFs (which Kutz’s proof
works hard to address), en route to a more general result.

Furthermore, our proof contributes some innovative techniques for analyzing
games, including: modifying the game to facilitate an induction; our framework
for showing how T can extend his good fortune from one round to all subsequent
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rounds; and a method for simplifying gameplay analysis by imagining that the
moves happened in a different order.

2 Preliminaries

We define a formula as a pair (ϕ,X) where ϕ is a CNF and X = {x1, . . . , xn}
contains all the variables that appear in ϕ (and possibly more). In the unordered
CNF game there are two players, denoted T (for “true”) and F (for “false”), who
alternate turns. Each turn consists of picking a remaining (unassigned) variable
from X and assigning it a value 0 or 1. The game ends when all variables of
X have been assigned, and T wins if ϕ is satisfied, and F wins if it is not. We
let G (for “game”) denote the problem of deciding which player has a winning
strategy, given the formula (ϕ,X) and a specification of which player goes first.
We let Gw denote the restriction of G to instances where each clause has at most
w literals (ϕ has width w). We define a spare variable as occurring in only one
clause, and we assume without loss of generality that a spare variable appears
as a positive literal. Then we let G∗

3 denote the restriction of G3 to instances
where each width-3 clause in ϕ has at least one spare variable.

Theorem 1. G∗
3 is in polynomial time, in fact, in logarithmic space.

We introduce subscripts to distinguish the different patterns for “who goes
first” and “who goes last”. For a, b ∈ {T,F}, the subscript a · · · b means player a
goes first and player b goes last, a · · · means a goes first, and · · · b means b goes
last. Thus G∗

3,T··· corresponds to the game where T goes first, which (as noted
in Sect. 1) reduces to G∗

3,F··· by brute-forcing T’s first move. So, we just prove
Theorem 1 for G∗

3,F···, which is split into the cases G∗
3,F···F (F goes first and last,

so n = |X| must be odd) and G∗
3,F···T (F goes first and T goes last, so n = |X|

must be even). We use the terms move, turn, or play interchangeably to mean
T or F assigning a bit value to one variable. A round consists of two consecutive
moves, and since we only need to consider F having the first move, each round
will consist of one F move followed by one T move (except in G∗

3,F···F, the last
round will have only one move).

A subformula (ϕ′,X ′) of a formula (ϕ,X) is defined as ϕ′ having a subset
of clauses from ϕ and X ′ ⊆ X containing all the variables that appear in ϕ′ (and
possibly more). After a move, the formula changes to a residual formula where
the variable that got played is removed from X, and each clause containing the
variable either disappears (since it is satisfied by a true literal) or shrinks (since
a false literal might as well not be there). F wins if the residual formula has
a width-0 clause, and T wins if it has no clauses. The residual formula after a
move may or may not be a subformula of the formula before the move.

When we say F can ensure some property within k rounds, we formally
mean that either

• the original formula has the property, or
• (∃ F move) (∀ T move) the residual formula has the property, or
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• (∃ F move) (∀ T move) (∃ F move) (∀ T move) the residual formula has the
property, or · · · · · ·

• (∃ F move) (∀ T move) · · · (∃ F move in kth round) (∀ T move in kth round)
the residual formula has the property.

Note that the property is only checked at the boundary between rounds (and
not after F’s move but before T’s move inside of a round).

A positive CNF is equivalent to a hypergraph where nodes are variables and
hyperedges are clauses. In this paper, we use a hypergraph representation of gen-
eral (not necessarily positive) CNFs. As shown in Fig. 1, a clause is a hyperedge
where nodes represent variables, and signs are annotations representing vari-
ables’ literal appearances. When we omit the sign of a variable on a diagram, it
could be either + or − but it is not relevant.

x1

+

(x1)

x1 x2

(x1 ∨ x2)

+ − x1 x2

x3

(x1 ∨ x2 ∨ x3)

+ −
+

Fig. 1. Example clauses and their hypergraph representations

Two clauses in a general CNF can share any number of same signed or
opposite signed literals. We think of a shared variable as a connection between
two clauses, and we define two types of connections:

• Pure Connection: A variable that appears with the same sign in two
clauses. For example, in (x1∨x2∨x3)∧(x2∨x4∨x5) there is a pure connection
at x2. See Fig. 2 on the left. Another example: in (x1∨x2∨x3)∧(x2∨x4∨x5)
there is again a pure connection at x2.

• Mixed Connection: A variable that appears with the opposite sign in two
clauses. For example, in (x1∨x2∨x3)∧(x2∨x4∨x5) there is a mixed connection
at x2. See Fig. 2 on the right. Another example: in (x1∨x2∨x3)∧(x2∨x4∨x5)
there is again a mixed connection at x2.

A formula (ϕ,X) is called connected if the associated hypergraph is con-
nected (with the signs being irrelevant); i.e., it is possible to get from any variable
to any other variable by a sequence of clauses, each having a connection to the
next. A formula is thus naturally partitioned into connected components, each
of which is a subformula. An isolated variable is one that is in X but not
in any clause of ϕ, and thus forms a connected component by itself since the
associated node is incident to no hyperedges. A variable in a width-1 clause is
not considered isolated.
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x1 x2

x3

Pure at x2

+
x4

x5

+
x1 x2

x3

Mixed at x2

+
x4

x5

−

Fig. 2. Clause connections

x1 ...
+ −

x2 x1 x2

+
−

Fig. 3. A chain between x1 and x2

A chain is a sequence of distinct width-3 clauses each sharing exactly one
variable with the next, and with no shared variables between two non-consecutive
clauses. The length L of the chain is the number of clauses. An arbitrary chain
between x1 and x2 is illustrated in Fig. 3 on the left. On the right, we show how
the chain can be depicted by a thick line. If L = 0 then x1 = x2. If L = 1 then
the only clause in the chain contains both x1 and x2.

A cycle is like a chain with L > 2 and x1 = x2. A diamond happens when
two width-3 clauses share exactly two variables. Intuitively, a diamond is like
the smallest case of a cycle, with L = 2.

3 G∗
3,F···F

We henceforth assume that in a formula (ϕ,X), ϕ is always a 3-CNF where each
width-3 clause has at least one spare variable.

Lemma 1. F has a winning strategy in a G∗
3,F···F game iff F can ensure within

one round at least one of the following subformulas exists.

(1) A width-0 or width-1 clause.
(2) Two width-2 clauses sharing both variables.
(3) Two width-2 clauses and a chain (of length ≥ 0) between them.
(4) A width-2 clause and a chain (of length ≥ 1) between its two variables with

at least one mixed connection between the chain and the width-2 clause.
(5) A width-2 clause, a cycle or diamond containing at most one width-2 clause

variable, and a chain (of length ≥ 0) between them.

Moreover, if subformula (4) or (5) exists at the beginning of a round then F can
ensure subformula (1) or (2) or (3) exists within two more rounds.

The proof of Lemma 1 is in Sect. 3.1 and Sect. 3.2.
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Corollary 1. F has a winning strategy in a G∗
3,F···F game iff F can ensure sub-

formula (1) or (2) or (3) exists within the first three rounds.

Corollary 1 yields a direct approach to devise an algorithm for G∗
3,F···F:

Try all possible sequences of 6 moves for the first 3 rounds. Check whether
(∃ F move) (∀ T move) (∃ F move) (∀ T move) (∃ F move) (∀ T move):
subformula (1) or (2) or (3) exists in the residual formula.

This can be implemented in log space, because keeping track of a sequence
of the first six moves takes log space, searching for subformula (1) or (2) takes
log space, and searching for subformula (3) also takes log space since it can be
expressed as an undirected s–t connectivity problem [8,9]: for each pair of width-
2 clauses, check whether there exists a chain between them.

We conjecture the same algorithm (possibly with a different number of brute-
force rounds) actually solves G3,F···F; we are not aware of any counterexamples.

3.1 Right-to-left Implication of Lemma 1

Suppose at least one of the subformulas (1–5) exists when it is F’s turn to play.
We will handle each subformula in separate claims. For concreteness, we illustrate
the arguments using literals with particular signs, but all the arguments work
even if we negate all occurrences of any variable.

Claim 1. If subformula (1) exists, F has a winning strategy.

Proof. If a width-0 clause exists then T has no chance to satisfy it, so F wins.
If a width-1 clause exists, say (x1), then F can play x1 = 0 and win. 	

Claim 2. If subformula (2) exists, F has a winning strategy.

Proof. There are two possible ways that can happen:

• Case 1: The clauses have opposite signs for one variable (mixed connection).
For example, in (x1 ∨ x2) ∧ (x1 ∨ x2) only x1 has opposite signs. Then F can
play x2 = 0, and whatever the value of x1, F will win.

• Case 2: The clauses have opposite signs for both variables. For example, in
(x1 ∨ x2) ∧ (x1 ∨ x2) both x1 and x2 have opposite signs. Since F moves last,
F can wait by playing other variables until T has to play x1 or x2. Then F
makes x1 = x2 and wins. 	


Claim 3. If subformula (3) exists, F has a winning strategy.

Proof. We call this situation a manriki (a Japanese ninja weapon). The two
width-2 clauses are like two handles and the chain in the middle can be arbitrarily
long. We prove this claim by induction on the length of the chain.

Base case: The length of the chain is zero, i.e., the two handles directly share
a variable. We can assume the two handles do not share both variables since
otherwise that falls under Claim 2. There are two possible ways the handles can
have one common variable:
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• Case 1: Pure Connection. For example, in (x1 ∨ x2) ∧ (x2 ∨ x3), x2 forms a
pure connection. F can play x2 = 0. Then whatever T does, F plays x1 = 0
or x3 = 0 and wins.

• Case 2: Mixed Connection. For example, in (x1 ∨ x2) ∧ (x2 ∨ x3), x2 forms a
mixed connection. F can play x1 = 0. If T plays x2 = 1 then F plays x3 = 0
and wins. If T plays x2 = 0 then F wins. If T does not play x2, F wins by
playing x2 = 0.

+ +x1 x2 x6

x5

x4 x3
+ −x1 x2 x6

x5

x4 x3

Pure Mixed

Fig. 4. Subformula (3) (Claim 3)

Induction Step: There are two cases depending on the type of connection at the
common variable between one of the handles and the chain:

• Case 1: Pure Connection. For example, in Fig. 4 on the left, x2 forms a pure
connection between handle (x1 ∨ x2) and the chain. F can play x2 = 0. If T
plays x1 = 1 then we have a smaller manriki from (x5∨x6) to (x4∨x3) where
F can win by the induction hypothesis. If T plays x1 = 0 then F wins. If T
does not play x1 then F wins by playing x1 = 0.

• Case 2: Mixed Connection. For example, in Fig. 4 on the right, x2 forms a
mixed connection between handle (x1 ∨x2) and the chain. F can play x1 = 0.
If T plays x2 = 1 then we have a smaller manriki from (x5 ∨ x6) to (x4 ∨ x3)
where F can win by the induction hypothesis. If T plays x2 = 0 then F wins.
If T does not play x2 then F wins by playing x2 = 0. 	


Claim 4. If subformula (4) exists, F has a winning strategy.

Proof. There are three cases depending on how the width-2 clause is connected
to the chain. For example, in Fig. 5, (x1 ∨ x2) is the width-2 clause and x2 is a
mixed connection. In the smallest versions, the chain (the bold line illustrated
in the general versions) has length 1 for cases 1 and 2 and length 0 for case 3.

• Case 1: Pure at x1. F can play x1 = 0. If T plays x2 = 1 then in the smallest
case F wins by x3 = 0 and in the general case F wins by Claim 3 by a manriki
created from x1’s left end to x2’s right end. If T plays x2 = 0 then F wins. If
T does not play x2 then F wins by x2 = 0.

• Case 2: Mixed at x1 but pure at x4 (the next non-spare variable on the chain).
F can play x4 = 0. If T plays x1 = 0 or x2 = 0 then F wins by x2 = 0 or
x1 = 0. If T plays x1 = 1 then F wins by x3 = 0. If T plays x2 = 1 then
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x1 x2
+ −

+ +
x1 x2

x3

+ −
+ +

x1 x2

x4x3

−
−

+
+

+ +
x1 x2

x4 x5x3

− −
++

+ +

x1 x2

x4x3

+ +

−
−

− +

x1 x2

x3

++

− −

Case 1:

Case 2:

Case 3:

General Smallest

Fig. 5. Subformula (4) (Claim 4)

in the smallest case F wins by x5 = 0 and in the general case F wins by a
manriki created from x4’s right end to x2’s right end. If T plays x3 then in the
smallest case F wins by the manriki (x5 ∨ x2) ∧ (x2 ∨ x1) and in the general
case F wins by a manriki created from x4’s right end to (x2 ∨ x1). If T plays
any other variable then F wins by the manriki (x3 ∨ x1) ∧ (x1 ∨ x2).

• Case 3: Mixed at both x1 and x4. F can play x3 = 0. In the smallest case,
since F moves last, F can wait by playing other variables until T has to play
x1 or x2, and then F can win by making x1 = x2. Now consider the general
case. If T plays x1 = 0 or x2 = 0 then F wins by x2 = 0 or x1 = 0. If T plays
x1 = 1 then F wins by x4 = 1. If T plays x2 = 1 then F wins by a manriki
created from x2’s right end to (x4 ∨ x1). If T plays x4 = 0 then F wins by
a manriki created from x4’s right end to (x2 ∨ x1). If T plays x4 = 1 then
F wins by x1 = 1. If T plays any other variable then F wins by the manriki
(x2 ∨ x1) ∧ (x1 ∨ x4). 	


Claim 5. If subformula (5) exists, F has a winning strategy.

The proof of Claim 5 is omitted due to space constraints.
Moreover, in all cases, there exists a subformula (1) or (2) or (3) within one

round for Claim 4 and within two rounds for Claim 5.
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3.2 Left-to-right Implication of Lemma 1

Definition 1. A cobweb is a formula where none of the subformulas (1–5) exist
(and each width-3 clause has at least one spare variable). Note that any subfor-
mula in a cobweb is also a cobweb.

Observation 1. A cobweb has a variable that occurs in at most one clause.

The proof of Observation 1 is omitted due to space constraints.
Suppose F cannot ensure that at least one of the subformulas (1–5) exists

within one round. So at the beginning the formula is a cobweb and in the first
round, for every move by F there exists a move for T such that the residual
formula is again a cobweb. In other words, T can ensure that the beginning
cobweb remains a cobweb after a round. We will argue that T has a winning
strategy. The proof will be by induction on the number of variables. In order for
the induction to go through, we need to prove something stronger: “T can win
even if F is allowed to use pass moves.” This means F has the option of forgoing
any turn, thus forcing T to play multiple variables in a row. In this case it does
not make sense to consider which player has the last move, so we consider the
game G∗

3,F··· in this section.
First we consider a special case of cobweb that we call a jellyfish.

Definition 2. A jellyfish is a connected cobweb with a width-2 clause. Its eyes
are the variables in the width-2 clause.

Lemma 2. If the formula is a jellyfish then T has a winning strategy in G∗
3,F···

even if F can use pass moves.

The proof of Lemma 2 is omitted due to space constraints.

Definition 3. A winweb is a cobweb such that T can ensure that it remains a
cobweb after a round (where F is not allowed to use pass moves).

Lemma 3. Every subformula of a winweb is also a winweb.

The proof of Lemma 3 is omitted due to space constraints.
The following lemma proves something stronger than the left-to-right impli-

cation of Lemma 1, because F can use pass moves.

Lemma 4. If the formula is a winweb then T has a winning strategy in G∗
3,F···

even if F can use pass moves.

Proof. We prove this by induction on the number of variables.
Base case: The formula is a cobweb with one or two variables. In case of

one variable the only possibility is an isolated variable with no clauses since
subformula (1) does not exist. T has already won in this case. In case of two
variables there exists either two isolated variables where T has already won or
a width-2 clause which T can satisfy in one move.

Induction step: The formula (ϕ,X) is a winweb with at least three variables.
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Suppose F played a pass move. There exists an isolated or spare variable
since the formula is a cobweb (Observation 1). T can play that isolated/spare
variable to remove the isolated variable or satisfy a clause. The residual formula
is a subformula, which is a winweb by Lemma 3. Thus T can win the rest of the
game by the induction hypothesis.

Now suppose F did not play a pass move. By the definition of winweb, T has
a response such that the residual formula is a cobweb. Call this residual formula
(ϕ′,X ′) and let (ϕ1,X1), (ϕ2,X2), . . . , (ϕk,Xk) be its connected components
(so ϕ′ =

∧
i ϕi and X ′ =

⋃
i Xi). We claim that for each component individually,

T has a winning strategy even if F can use pass moves:

• If (ϕi,Xi) has a width-2 clause then it is a jellyfish (since it is a connected
cobweb) so by Lemma 2, T can win even if F can use pass moves.

• Suppose (ϕi,Xi) has no width-2 clause. Then it has only width-3 clauses since
subformula (1) does not exist, and so it is a subformula of the winweb (ϕ,X)
since no new width-3 clause can be created during the game. By Lemma 3,
(ϕi,Xi) is also a winweb and hence by the induction hypothesis, T can win
even if F can use pass moves.

We now explain how to combine T’s winning strategies for the separate com-
ponents to get a winning strategy for the rest of the game on (ϕ′,X ′). After F
plays a variable in some Xi, T simply responds according to his winning strategy
for component (ϕi,Xi), unless F played the last remaining variable in Xi. In the
latter case, or if F played a pass move, T picks any other component (ϕj ,Xj)
with remaining variables and continues according to his winning strategy in that
component, as if F had just played a pass move in that component. 	
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