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A Lower Bound for Sampling Disjoint Sets
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Suppose Alice and Bob each start with private randomness and no other input, and they wish to engage in

a protocol in which Alice ends up with a set x ⊆ [n] and Bob ends up with a set y ⊆ [n], such that (x ,y) is

uniformly distributed over all pairs of disjoint sets. We prove that for some constant β < 1, this requires Ω(n)

communication even to get within statistical distance 1 − βn of the target distribution. Previously, Ambainis,

Schulman, Ta-Shma, Vazirani, and Wigderson (FOCS 1998) proved that Ω(
√
n) communication is required to

get within some constant statistical distance ε > 0 of the uniform distribution over all pairs of disjoint sets of

size
√
n.
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1 INTRODUCTION

In most traditional computational problems, the goal is to take an input and produce the “correct”
output or produce one of a set of acceptable outputs. In a sampling problem, however, the goal is
to generate a random sample from a specified probability distribution D or at least from a distri-
bution that is close to D. There has been a surge of interest in studying sampling problems from a
complexity theory perspective [1, 7, 13, 15, 32, 36, 49, 61, 75–82]. Unlike more traditional compu-
tational problems, sampling problems do not necessarily need to have any real input, besides the
uniformly random bits fed into a sampling algorithm.
One commonly studied type of target distribution is “input–output pairs” of a function f , i.e.,

(D, f (D)), where D is perhaps the uniform distribution over inputs to f . This means an outcome
should be (x , z) where x is distributed according to D, and z = f (x ). Using an algorithm for com-
puting f , one can sample (D, f (D)) by first sampling from D and then evaluating f on that input.
However, for some functions f , generating an input jointly with the corresponding output may
be computationally easier than evaluating f on an adversarially chosen input. Thus, in general,
sampling lower bounds tend to be more challenging to prove than lower bounds for functions.
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20:2 M. Göös and T. Watson

Many of the above-cited works focus on concrete computational models such as low-depth
circuits. We consider the model of two-party communication complexity, for which compara-
tively less is known about sampling. Which problem should we study? Well, the single most
important function in communication complexity is Set-Disjointness, in which Alice gets a set
x ⊆ [n], Bob gets a sety ⊆ [n], and the goal is to determine whether x ∩ y = ∅. Identifying the sets
with their characteristic bit strings, this can be viewed as Disj : {0, 1}n × {0, 1}n → {0, 1}, where
Disj(x ,y) = 1 iff x ∧ y = 0n . The applications of communication bounds for Set-Disjointness are
far too numerous to list, but they span areas such as streaming, circuit complexity, proof complex-
ity, data structures, property testing, combinatorial optimization, fine-grained complexity, cryp-
tography, and game theory. Because of its central role, Set-Disjointness has become the de facto
testbed for proving new types of communication bounds. This function has been studied in the
contexts of randomized [9, 10, 17, 51, 65] and quantum [2, 25, 44, 66, 69, 73] protocols; multi-party
number-in-hand [6, 10, 18, 22, 27, 42, 50] and number-on-forehead [11, 12, 28, 41, 59, 63, 64, 69,
71, 72, 74] models; Merlin–Arthur and related models [3, 4, 29, 35, 38, 39, 52, 67]; with a bounded
number of rounds of interaction [19, 23, 48, 54, 83]; with bounds on the sizes of the sets [26, 31,
43, 45, 58, 62, 68]; very precise relationships between communication and error probability [20, 21,
30, 33, 39]; when the goal is to find the intersection [8, 24, 34, 82]; in space-bounded, online, and
streaming models [5, 16, 55]; and direct product theorems [12, 14, 47, 53, 56, 70–72]. We contribute
one more result to this thorough assault on Set-Disjointness.
Here is the definition of our two-party sampling model: Let D be a probability distribution over
{0, 1}n × {0, 1}n ; we also think of D as a matrix with rows and columns both indexed by {0, 1}n ,
where Dx,y is the probability of outcome (x ,y). We define Samp(D) as the minimum communi-
cation cost of any protocol where Alice and Bob each start with private randomness and no other
input, and at the end Alice outputs some x ∈ {0, 1}n and Bob outputs some y ∈ {0, 1}n such that
(x ,y) is distributed according to D. Note that Samp(D) = 0 iff D is a product distribution (x and
y are independent), and Samp(D) ≤ n for all D (since Alice can privately sample (x ,y) and send
y to Bob). Allowing public randomness would not make sense, since Alice and Bob could read a
properly distributed (x ,y) off of the randomness without communicating. We define Sampε (D) as
the minimum of Samp(D ′) over all distributions D ′ with ∆(D,D ′) ≤ ε , where ∆ denotes statistical
(total variation) distance, defined as

∆(D,D ′) � max
event E

���PD [E] − PD′[E]
��� =

1

2

∑

outcome o

���PD [o] − PD′[o]
���.

1.1 A Story

Our story begins with Reference [7], which proved that Sampε
(

(D,Disj(D))
)

≥ Ω(
√
n) for some

constant ε > 0, where D is uniform over the set of all pairs of sets of size
√
n (note that this D is a

product distribution and is approximately balanced between 0-inputs and 1-inputs of Disj); here
it does not matter which party is responsible for outputting the bit Disj(D). The main tool in the
proof was a lemma that was originally employed in Reference [9] to prove an Ω(

√
n) bound on

the randomized communication complexity of computing Disj. The latter bound was improved to
Ω(n) via several different proofs [10, 51, 65], which leads to a natural question: Can we improve
the sampling bound of [7] to Ω(n) by using the techniques of References [10, 51, 65] instead of
Reference [9]?
For starters, the answer is “no” for the particularD considered in Reference [7]—there is a trivial

exact protocol withO (
√
n logn) communication, since it only takes that many bits to specify a set

of size
√
n. What about other interesting distributions D? The following illuminates the situation.
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Observation 1. For any D and constants ε > δ > 0, if Sampε
(

(D,Disj(D))
)

≥ ω (
√
n) then

Sampδ (D) ≥ Ω
(

Sampε
(

(D,Disj(D))
))

.

Proof. It suffices to show Sampε
(

(D,Disj(D))
)

≤ Sampδ (D) +O (
√
n). First, note that for any

sampling protocol, if we condition on a particular transcript, then the output distribution becomes
product (Alice and Bob are independent after they stop communicating). Second, Reference [17]
proved that for every product distribution and every constant γ > 0, there exists a deterministic
protocol that usesO (

√
n) bits of communication and computes Disj with error probability ≤ γ on a

random input from the distribution. Now to ε-sample (D,Disj(D)), Alice and Bob can δ -sample D
to obtain (x ,y), and then conditioned on that sampler’s transcript, they can run the average-case
protocol from Reference [17] for the corresponding product distribution with error ε − δ . A simple
calculation shows this indeed gives statistical distance ε . �

The upshot is that to get an improved bound, the hardness of sampling (D,Disj(D)) would come

entirely from the hardness of just sampling D. Thus, such a result would not really be “about” the
Set-Disjointness function, it would be about the distribution on inputs. Instead of abandoning this
line of inquiry, we realize that if D itself is somehow defined in terms of Disj, then a bound for
sampling D would still be saying something about the complexity of Set-Disjointness. In fact, the
proof in Reference [7] actually shows something stronger than the previously stated result: If D is
instead defined as the uniform distribution over pairs of disjoint sets of size

√
n (which are 1-inputs

of Disj), then Sampε (D) ≥ Ω(
√
n). After this pivot, we are now facing a direction in which we can

hope for an improvement. We prove that by removing the restriction on the sizes of the sets, the
sampling problem becomes maximally hard. Our result holds for error ε < 1 that is exponentially
close to 1, but the result is already new and interesting for constant ε > 0.

Theorem 1. Let U be the uniform distribution over the set of all (x ,y) ∈ {0, 1}n × {0, 1}n with

x ∧ y = 0n . There exists a constant β < 1 such that Samp1−βn (U ) = Ω(n).

The proof from Reference [7] was a relatively short application of the technique from Refer-
ence [9], but for Theorem 1, harnessing known techniques for proving linear communication lower
bounds turns out to be more involved.
For calibration, the uniform distribution over all (x ,y) achieves statistical distance 1 − 0.75n

from U , since there are 4n inputs and 3n disjoint inputs (for a disjoint input, each coordinate
i ∈ [n] has 3 possibilities xiyi ∈ {00, 01, 10}). We can do a little better: Suppose for each coordinate
independently, Alice picks 0 with probability

√
1/3 and picks 1 with probability 1 −

√
1/3, and

Bob does the same. This again involves no communication, and it achieves statistical distance 1 −
(

2
√
1/3 − 1/3

)n
≤ 1 − 0.82n fromU . Theorem 1 shows that the constant 0.82 cannot be improved

arbitrarily close to 1 without a lot of communication. (In the setting of lower bounds for circuit
samplers, significant effort has gone into handling statistical distances exponentially close to the
maximum possible [13, 32, 79].)

1.2 Interpreting the Result

As an important step in the proof of Theorem 1, we first observe that our sampling model is
equivalent to two other models. One of these we call (for lack of a better word) “synthesizing”
the distribution D: Alice and Bob get inputs x ,y ∈ {0, 1}n , respectively, in addition to their private
randomness, and their goal is to accept with probability exactly Dx,y . We let Synth(D) denote
the minimum communication cost of any synthesizing protocol for D, and Synthε (D) denote the
minimum of Synth(D ′) over all D ′ with ∆(D,D ′) ≤ ε . The other model is the nonnegative rank of
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20:4 M. Göös and T. Watson

a matrix: rank+ (D) is defined as the minimum k for which D (viewed as a 2n × 2n matrix) can be
written as a sum of k many nonnegative rank-1 matrices.

Observation 2. For every distribution D, the following are all within ±O (1) of each other:

Samp(D), Synth(D), log rank+ (D).

Proof. Synth(D) ≤ Samp(D) + 2, since a synthesizing protocol can just run a sampling proto-
col and accept iff the result equals the given input (x ,y). (Only this part of Observation 2 is needed
in the proof of Theorem 1.)
log rank+ (D) ≤ Synth(D), since for each transcript of a synthesizing protocol, the matrix that

records the probability of getting that transcript on each particular input has rank 1 (since Alice’s
private randomness being consistent with the transcript, and Bob’s private randomness being con-
sistent with the transcript, are independent events); summing these matrices over all accepting
transcripts yields a nonnegative rank decomposition of D.

To see that Samp(D) ≤ �log rank+ (D)
, suppose D = M (1)
+M (2)

+ · · · +M (k ) is a sum of non-

negative rank-1 matrices. For each i , by scaling we can write M
(i )
x,y = pi u

(i )
x v

(i )
y for some distribu-

tions u (i ) and v (i ) over {0, 1}n , where pi is the sum of all entries of M (i ) . Since D is a distribution,
p � (p1, . . . ,pk ) is a distribution over [k]. To sample from D, Alice can privately sample i ∼ p and

send it to Bob using �logk
 bits, then Alice can sample x ∼ u (i ) and Bob can independently sample

y ∼ v (i ) with no further communication. �

By this characterization, Theorem 1 can be viewed as a lower bound on the approximate nonneg-
ative rank of the Disj matrix, where the approximation is in �1 (which has an average-case flavor).
In the recent literature, “approximate nonnegative rank” generally refers to approximation in �∞
(which is a worst-case requirement), and this model is equivalent to the so-called smooth rectangle
bound and WAPP communication complexity [37, 46, 57].

Observation 2 combined with a result of Reference [60] shows that the deterministic communi-
cation complexity of any total two-party Boolean function f is quadratically related to the com-
munication complexity of exactly sampling the uniform distribution over f −1 (1).

2 PROOF

2.1 Overview

Our proof of Theorem 1 is by a black-box reduction to the well-known corruption lemma for Set-
Disjointness due to Razborov [65]. We start with a high-level overview.

For notation: Let |z | denote the Hamming weight of a string z ∈ {0, 1}n . For � ∈ N , let U � be
the uniform distribution over all (x ,y) ∈ {0, 1}n × {0, 1}n with |x ∧ y | = �. Note thatU = U 0. For a
distribution D over {0, 1}n × {0, 1}n and an event E ⊆ {0, 1}n × {0, 1}n , let DE �

∑

(x,y )∈E Dx,y . For
a randomized protocol Π, let accΠ (x ,y) denote the probability that Π accepts (x ,y).

Step I: Uniform Corruption. The corruption lemma states that if a rectangle R ⊆ {0, 1}n × {0, 1}n
contains a noticeable fraction of disjoint pairs, then it must contain about as large a fraction of
uniquely intersecting pairs. More quantitatively, there exist a constantC > 0 and two distributions
D� , � = 0, 1, defined over disjoint (� = 0) and uniquely intersecting pairs (� = 1) such that for every
rectangle R,

if D0
R ≥ 2−o (n), then D1

R ≥ C · D0
R .

The original proof [65] defined D� as the uniform distribution over all pairs (x ,y) with fixed sizes
|x | = |y | = �n/4
 and |x ∧ y | = �. For our purpose, we need the corruption lemma to hold relative
to the aforementioned distributionsU � , � = 0, 1, which have no restrictions on set sizes. We derive
in Section 2.2 a corruption lemma for U � from the original lemma for D� . To do this, we exhibit
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a reduction that uses public randomness and no communication to transform a sample from D�

into a sample from a distribution that is close toU � in a suitable sense, for � = 0, 1.

Step II: Truncate and Scale. For simplicity, let us think about proving Theorem 1 for a small error
ε > 0. Assume for contradiction there is some distribution D, ∆(U ,D) ≤ ε , such that Synth(D) ≤
o(n) as witnessed by a private-randomness synthesizing protocol Π′ with accΠ′ (x ,y) = Dx,y . Note
that the total acceptance probability over disjoint inputs is close to 1:

∑

x,y : |x∧y |=0 accΠ′ (x ,y) ≥ 1 − ε and thus E(x,y )∼U 0[accΠ′ (x ,y)] ≥ (1 − ε )3−n .
Our eventual goal (in Step III) is to apply our corruption lemma to the transcript rectangles, but

the above threshold (1 − ε )3−n is too low for this. To raise the threshold to 2−o (n) as needed for
corruption, we would like to scale up all the acceptance probabilities accordingly. To “make room”
for the scaling, we first carry out a certain truncation step. Specifically, in Section 2.3, we transform
Π′ into a public-randomness protocol Π:

(1) First, we truncate (using a truncation lemma [37]) the values accΠ′ (x ,y), which has
the effect of decreasing some of them, but any accΠ′ (x ,y) that is under 3−n remains
approximately the same. This results in an intermediate protocol Π′′ that still satisfies
E(x,y )∼U 0[accΠ′′ (x ,y))] ≥ Ω((1 − ε )3−n ) (using the assumption that ∆(U ,D) ≤ ε).

(2) Second, we scale (using the low cost of Π′′) the truncated probabilities up by a large

factor 3n2−o (n) . This results in a protocol Π with large typical acceptance probabilities:

E(x,y )∼U 0[accΠ (x ,y)] ≥ 2−o (n) . (1)

Step III: Iterate Corruption. Because Π has such large acceptance probabilities Equation (1), our
corruption lemma can be applied: there is some constant C ′ > 0, such that

E(x,y )∼U 1[accΠ (x ,y)] ≥ C ′ · E(x,y )∼U 0[accΠ (x ,y)]. (2)

Since Π is a truncated-and-scaled version of Π′, this allows us to infer that

E(x,y )∼U 1[accΠ′ (x ,y)] ≥ Ω((1 − ε )3−n ) and thus
∑

x,y : |x∧y |=1 accΠ′ (x ,y) ≥ Ω((1 − ε )n)

using the fact that |supp(U 1) | = n3n−1 = (n/3) · |supp(U 0) |. Thus, for ε = 1 − ω (1/n), this means
Π′ must have placed a total probability mass > 1 on uniquely intersecting inputs, which is the
sought contradiction.
To prove Theorem 1 for very large error ε = 1 − βn , in Section 2.4, we iterate the above argu-

ment for U � over 0 ≤ � ≤ o(n). Namely, analogously to Equation (2), we show that the average
acceptance probability of Π overU �+1 is at least a constant times the average overU � . Meanwhile,
the support sizes increase as |supp(U �+1) | ≥ ω (1) · |supp(U � ) | for � ≤ o(n). These facts together
imply a large constant factor increase in the total probability mass that Π′ places on supp(U �+1)

as compared to supp(U � ). Starting with even a tiny probability mass over supp(U 0), this iteration
will eventually lead to a contradiction.

2.2 Step I: Uniform Corruption

The goal of this step is to derive Lemma 2 from Lemma 1.

Lemma 1 (Corruption [65]). For every rectangle R ⊆ {0, 1}n × {0, 1}n , we have D1
R ≥

1
45D

0
R
−

2−0.017n where, assuming n = 4k − 1, D� is the uniform distribution over all (x ,y) with |x | = |y | = k
and |x ∧ y | = �.

Lemma 2 (Uniform Corruption). For every rectangle R ⊆ {0, 1}n × {0, 1}n , we have U 1
R ≥

1
765U

0
R
− 2−0.008n .
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20:6 M. Göös and T. Watson

Proof. Assume for convenience that n/2 has the form 4k − 1 (otherwise use the nearest such
number instead of n/2 throughout). We prove that Lemma 1 for n/2 implies Lemma 2 for n by
the contrapositive. Thus, D0 and D1 are distributions over {0, 1}n/2 × {0, 1}n/2 whileU 0 andU 1 are
distributions over {0, 1}n × {0, 1}n . Assume there exists a rectangle R ⊆ {0, 1}n × {0, 1}n such that
U 1
R <

1
765U

0
R
− 2−0.008n . We exhibit a distribution over rectanglesQ ⊆ {0, 1}n/2 × {0, 1}n/2 such that

E[D1
Q ] <

1
45E[D0

Q
] − 2−0.017n/2; by linearity of expectation this implies that there exists such a Q

with D1
Q <

1
45D

0
Q
− 2−0.017n/2.

To this end, we define a distribution F over functions f : {0, 1}n/2 × {0, 1}n/2 → {0, 1}n × {0, 1}n
of the form f (x ,y) = ( f1 (x ), f2 (y)) and then let Qf be the rectangle f −1 (R) � {(x ,y) : f (x ,y) ∈
R}. LetH be the distribution over {(v,w ) ∈ N ×N : v +w ≤ n} obtained by sampling (x ,y) ∼ U 0

and outputting ( |x |, |y |); i.e., Hv,w �
n!

v !w ! (n−v−w )! · 3
−n . To sample f ∼ F :

1. Sample (v,w ) from H conditioned on v ≥ k ,w ≥ k , and v +w ≤ 2k + n/2.
2. Sample a uniformly random permutation π of [n].
3. Given (x ,y) ∈ {0, 1}n/2 × {0, 1}n/2, define (x ′,y ′) ∈ {0, 1}n × {0, 1}n by letting

x ′iy
′
i �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

xiyi for the first n/2 coordinates i;

10 for the next v − k coordinates i;

01 for the nextw − k coordinates i;

00 for the remaining n/2 − (v − k ) − (w − k ) ≥ 0 coordinates i .

4. Let f (x ,y) � (π (x ′),π (y ′)) (i.e., permute the coordinates according to π ).

For � ∈ {0, 1} let F (D� ) denote the distribution obtained by sampling (x ,y) ∼ D� and f ∼ F and
outputting f (x ,y), and note that F (D� )R = EF [D

�
QF

]. Now, we claim that F (D� ) andU � are close,

in the following senses:

(1) For every event E, F (D0)E ≥ U 0
E
− 2−0.01n .

(2) For every event E, F (D1)E ≤ U 1
E · 17.

Using R as the event E, we have

F (D1)R ≤ U 1
R · 17

< 17
(

1
765U

0
R
− 2−0.008n

)

≤ 17
(

1
765 (F (D

0)R + 2
−0.01n ) − 2−0.008n

)

≤ 1
45F (D

0)R − 2−0.017n/2

as desired. To see (1), note that F (D0) is precisely U 0 conditioned on v ≥ k , w ≥ k , and v +w ≤
2k + n/2, and this conditioning event has probability ≥ 1 − 2−0.01n by Chernoff bounds:

P [v < k] = P [w < k] = P [Bin(n, 1/3) < n/8 + 1/4] ≤ 2−0.12n ,

P [v +w > 2k + n/2] = P [Bin(n, 2/3) > 3n/4 + 1/2] ≤ 2−0.02n .

Thus, letting C be the complement of the conditioning event, we have F (D0)E ≥ U 0
E\C ≥ U 0

E
−

U 0
C
≥ U 0

E
− 2−0.01n . To see (2), consider any outcome (x ,y) ∈ {0, 1}n × {0, 1}n with |x ∧ y | = 1. We

have U 1
x,y = 1/(n3n−1). Abbreviating a � |x | and b � |y |, assume a ≥ k , b ≥ k , and a + b ≤ 2k +

n/2, since otherwise F (D1)x,y = 0, and there would be nothing to prove. Henceforth, consider the
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probability space with the randomness of D1 and of F . Let I be the event that F1 (D
1) ∧ F2 (D

1) =

x ∧ y, i.e., that the intersecting coordinate of F (D1) is the same as for (x ,y). We have

F (D1)x,y = P [I ]
︸︷︷︸

(∗)

·P [v = a andw = b]
︸��������������������︷︷��������������������︸

(∗∗)

·P
[
F (D1) = (x ,y)

��� I and v = a andw = b
]

︸���������������������������������������������������︷︷���������������������������������������������������︸
(∗∗∗)

.

For the three terms on the right-hand side, we have

(∗) = 1
n
, (∗∗) ≤ Ha,b/(1 − 2−0.01n ) ≤ n!

a!b! (n−a−b )! · 3
−n · 1.01, (∗∗∗) = 1/ (n−1)!

(a−1)! (b−1)! (n−a−b+1)! .

We have

n!
a!b! (n−a−b )! /

(n−1)!
(a−1)! (b−1)! (n−a−b+1)! =

n ·(n−a−b+1)
a ·b ≤ n ·(n−2k+1)

k ·k ≤ n ·(n−2n/8+1)
(n/8) ·(n/8) = ( 34 +

1
n
) · 64.

Combining, we get

F (D1)x,y /U
1
x,y = (∗) · (∗∗) · (∗∗∗) · n3n−1 ≤ 1.01

3 · (
3
4 +

1
n
) · 64 ≤ 17. �

2.3 Step II: Truncate and Scale

The goal of this step is to construct a truncated-and-scaled protocol Π from any given low-cost Π′

that synthesizes a distribution close to U .

For a nonnegative matrix M , we define its truncation M to be the same matrix but where each
entry > 1 is replaced with 1. We let a ± b denote the real interval [a − b,a + b].

Lemma 3 (Truncation Lemma [37]). For every 2n × 2n nonnegative rank-1 matrix M and every

natural numberd , there exists aO (d + logn)-communication public-randomness protocolΠ such that

for every (x ,y) we have accΠ (x ,y) ∈ Mx,y ± 2−d .

Let c ≥ 1 be the hidden constant in the bigO in Lemma 3, and let δ � 0.00005/c . Toward proving
Theorem 1, suppose for contradiction Samp(D) ≤ δn for some distribution D with ∆(U ,D) ≤ 1 −
2−δn (so β � 2−δ in Theorem 1) and thus

∑

x,y : |x∧y |=0 min(3−n ,Dx,y ) =
∑

x,y min(Ux,y ,Dx,y )

=

∑

x,y Ux,y −
∑

x,y :Ux,y>Dx,y
(Ux,y − Dx,y )

= 1 − ∆(U ,D)
≥ 2−δn .

By Observation 2, Synth(D) ≤ δn + 2, so consider a synthesizing protocol Π′ for D with com-
munication cost ≤ δn + 2. Let A be the set of all accepting transcripts of Π′. For each τ ∈ A let
N τ be the nonnegative rank-1 matrix such that N τ

x,y is the probability Π′ generates τ on input

(x ,y); thus, Dx,y =
∑

τ ∈A N τ
x,y . Let Π

τ be the public-randomness protocol from Lemma 3 applied
to Mτ

� 3nN τ and d � 15δn. Let Π be the public-randomness protocol that picks a uniformly
random τ ∈ A and then runs Πτ . The communication cost of Π is ≤ c · (d + logn) ≤ 0.001n.

Claim 1. For every input (x ,y), we have 3n

|A | min(3−n ,Dx,y ) − 2−d ≤ accΠ (x ,y) ≤ 3n

|A |Dx,y + 2
−d .

Proof. We have

accΠ (x ,y) =
1
|A |
∑

τ ∈A accΠτ (x ,y)

∈ 1
|A |
∑

τ ∈A (M
τ
x,y ± 2−d )

⊆ 1
|A |
∑

τ ∈Amin(1, 3nN τ
x,y ) ± 2−d

=
3n

|A |
∑

τ ∈Amin(3−n ,N τ
x,y ) ± 2−d .
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From this, it follows that

accΠ (x ,y) ≥ 3n

|A | min
(

3−n ,
∑

τ ∈A N τ
x,y

)

− 2−d = 3n

|A | min(3−n ,Dx,y ) − 2−d ,

accΠ (x ,y) ≤ 3n

|A |
∑

τ ∈A N τ
x,y + 2

−d
=

3n

|A |Dx,y + 2
−d . �

We can now formally state the large typical acceptance probability property (Equation (1) from
the overview): writing UΠ � E(x,y )∼U [accΠ (x ,y)] (and similarly for other input distributions),

UΠ ≥ 1
3n
∑

x,y : |x∧y |=0
(
3n

|A | min(3−n ,Dx,y ) − 2−d
)

(by Claim 1)

=
1
|A |
∑

x,y : |x∧y |=0 min(3−n ,Dx,y ) − 2−d

≥ 1
|A | 2

−δn − 2−15δn

≥ 1
|A | 2

−δn−1, (3)

where the last line follows because |A| ≤ 2δn+2 and 2−2δn−2 is at least twice 2−15δn .

2.4 Step III: Iterate Corruption

Here, we derive the final contradiction: Π′ places an acceptance probability mass exceeding 1 on
supp(U δn ). This is achieved by iterating our corruption lemma, starting with Equation (3) as the
base case.
For z ∈ {0, 1}n letU z be the uniform distribution over all (x ,y) ∈ {0, 1}n × {0, 1}n with x ∧ y = z

(so U � is the uniform mixture of all U z with |z | = �; in particular, U 0
= U 0n ), and if |z | < n, then

let Û z be the uniform mixture of U z′ over all z ′ that can be obtained from z by flipping a single 0

to 1 (soU �+1 is the uniform mixture of all Û z with |z | = �; in particular,U 1
= Û 0n ).

Claim 2. For every z ∈ {0, 1}n with |z | ≤ n/2, we have Û z
Π
≥ 1

765U
z
Π
− 2−0.003n .

Proof. Since all relevant inputs (x ,y) have xiyi = 11 for all i such that zi = 1, we can ignore

those coordinates and think of Û z and U z as U 1 and U 0, respectively, but defined on the remain-
ing n − |z | ≥ n/2 coordinates (instead of on all n coordinates). Thus, by Lemma 2, for every out-
come of the public randomness of Π and every accepting transcript, say corresponding to rectan-

gle R, we have Û z
R
≥ 1

765U
z
R
− 2−0.008n/2. Summing over all the (at most 20.001n many) accepting

transcripts, and then taking the expectation over the public randomness, yields the claim, since
20.001n · 2−0.008n/2 ≤ 2−0.003n . �

Claim 3. For every � = 0, . . . ,δn, we have U �
Π
≥ 1
|A | 2

−δn−1−11� .

Proof. We prove this by induction on �. The base case � = 0 is (3). For the inductive step, assume

the claim is true for �. Since U �+1 and U � are the uniform mixtures of Û z and U z , respectively,

over all z with |z | = � (so U �+1
Π
= Ez[Û

z
Π
] and U �

Π
= Ez[U

z
Π
]), by linearity of expectation Claim 2

implies

U �+1
Π
≥ 1

765U
�
Π
− 2−0.003n ≥ 1

|A | 2
−δn−1−11�−log2 (765) − 2−0.003n ≥ 1

|A | 2
−δn−1−11(�+1),

where the last inequality follows because |A| ≤ 2δn+2 and 2−δn−2−δn−1−11δn−log2 (765) ≥ 2−14δn is at

least twice 2−0.003n , which gives U �+1
Π
≥ 1
|A | 2

−δn−1−11�−log2 (765)−1, and log2 (765) + 1 ≤ 11. �

Choosing � = δn, we have

U �
Π
− 2−d ≥ 1

|A | 2
−δn−1−11� − 2−15δn ≥ 1

|A | 2
−δn−2−11�, (4)
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because |A| ≤ 2δn+2 and 2−δn−2−δn−1−11δn ≥ 2−14δn is at least twice 2−15δn . Thus, for � = δn,

∑

x,y Dx,y ≥
∑

x,y : |x∧y |=� Dx,y

≥ ∑x,y : |x∧y |=�
|A |
3n (accΠ (x ,y) − 2−d ) (by Claim 1)

=
|A |
3n

(
n
�

)

3n−� (U �
Π
− 2−d )

≥ |A |
3n ( n

�
)�3n−� 1

|A | 2
−δn−2−11� (using Equation (4))

= ( n
� ·3·211 )

�2−δn−2

= ( 1
δ ·3·211 ·2 )

δn/4

≥ 1.6δn

> 1,

contradicting the fact that D is a distribution.
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