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ABSTRACT
We present the time lag/delay reconstructor (TLDR), an algorithm for reconstructing velocity delay maps in the maximum a
posteriori framework for reverberation mapping. Reverberation mapping is a tomographical method for studying the kinematics
and geometry of the broad-line region of active galactic nuclei at high spatial resolution. Leveraging modern image reconstruction
techniques, including total variation and compressed sensing, TLDR applies multiple regularization schemes to reconstruct
velocity delay maps using the alternating direction method of multipliers. Along with the detailed description of the TLDR
algorithm we present test reconstructions from TLDR applied to synthetic reverberation mapping spectra as well as a preliminary
reconstruction of the Hβ feature of Arp 151 from the 2008 Lick Active Galactic Nuclei Monitoring Project.
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1 INTRODUCTION

In an active galactic nucleus (AGN), clouds of photoionized gas
near the supermassive black hole (SMBH) at the galaxy’s centre
emit highly broadened emission lines due to the extreme kinematics
of the region. The area in which these broad lines are emitted is
known as the broad-line region (BLR). Rapid variation of the broad-
line emission in response to variations in the continuum emission
has long been observed for both radio quiet and radio loud AGNs
(Sandage 1967; Cromwell & Weymann 1970; Penston et al. 1974;
Peterson 1988; Ulrich, Maraschi & Urry 1997).

While the precise mechanism behind the observed variability is
unknown, a number of viable theories exist, including, but not limited
to, simple accretion on to the SMBH, magnetic field interactions
within the accretion disc, or some combination of processes varying
in contribution over various time-scales (Czerny 2006). Regardless
of the mechanism at play, the release of energy is observed as
continuum light that propagates outwards from the central region of
the AGN. During the process, clouds of gas are ionized at different
times depending on their distance from the accretion disc. As the
photoionized gas recombines, it re-emits the light as an emission
line feature subject to the kinematics of the cloud. This is to say
that any observed change above the noise in continuum emission
from the AGN will be followed by a change in emission lines in
the BLR separated by a delay corresponding to the difference in
path-length between the directly observed continuum emission, the
resulting emission line feature, and the observer.

The classic example is that of a thin ring as described in Peterson
(1993), shown in schematic form in Fig. 1, where the observer lies
in plane of the figure at a sufficient distance along the horizontal
line that light traveling from the thin ring to the observer arrive in
effectively flat wavefronts. The thin ring of gas at a radius of one
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light-day from the central black hole is ionized by a pulse of light
described by a δ-function. The ionizing pulse reaches the gas that
comprises the shell at the same time. The gas is ionized and the
energy is then re-emitted by the gas, subject to Doppler effects due
to the kinematics of the region. Some of this re-emitted light is along
the line of sight to the observer. Light that is re-emitted at the far side
of the ring must travel back across the region, a distance of twice
the ring’s radius, such that it arrives at the observer with a delay
of 2r/c. Following the arc of the ring from the near side to the far
side, the observer will see the re-emitted light arrive with delay times
covering the range from 0 to 2r/c with a bulk average delay of r/c.
In Fig. 1, the dashed lines show lines of constant delay, known as
isodelay surfaces, across the thin ring at varying delay times τ .

Moving from the thin ring to a more realistic distribution of gas
around the SMBH results in more complex patterns in the observed
response. Reverberation mapping (RM) is the tomographical method
used to study the arrangement of photoionized gas near accreting
black holes (Blandford & McKee 1982). At present, RM is primarily
used to measure the masses of the SMBH at the heart of AGNs
(Peterson & Wandel 2000; Bentz et al. 2009; Bentz & Katz 2015;
De Rosa et al. 2015; Shen et al. 2015). RM results also establish
the radius–luminosity relationship (Bentz 2009; Bentz et al. 2013),
which allows us to estimate SMBH masses across all redshifts and
consequently consider their influence on the evolution of galaxies
across cosmological time (Booth & Schaye 2009).

Studying the kinematics of AGNs at the geometric scales provided
by RM represents a substantial impetus behind RM campaigns
(Peterson 1993; Horne et al. 2004). By providing complementary
information on scales smaller than may be probed via integral
field spectroscopy (Storchi-Bergmann & Schnorr-Müller 2019) or
interferometry (Gravity Collaboration 2020), RM has the potential
to bridge the gap in spatial scale between inflows and outflows and
the central engine of AGNs.

One goal of RM in the inverse problem approach is to recover
the velocity delay map (VDM) of an observed AGN. The VDM is
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Figure 1. Classic isodelay surface schematic of an AGN showing how the
various delays sample the entire area of the AGN consisting of a thin ring of
spectral emitting material about the central SMBH. Based on Figure 1 from
Peterson (1993), with permission.

a representation of the BLR where the geometry is encoded in the
observed delay time and line-of-sight velocity of the re-emitting gas.
Mathematical recovery of the VDM results from solving an ill-posed
inverse problem, meaning that the number of degrees of freedom to
reconstruct (the VDM) is greater than the effective number of data
points (flux-varying spectra). A conventional solution to this problem
is regularized maximum likelihood or maximum a posteriori (MAP)
in a Bayesian framework. Most software packages for RM rely on
this formalism (Horne 1994; Krolik 1994; Skielboe et al. 2015),
where the χ2 of the reconstructed map is minimized along a set of
regularizers that enforce the prior expectations on the model, the
exception being a direct modelling approach (Pancoast, Brewer &
Treu 2014).

Classic examples of regularizers are positivity and maximum
entropy (to enforce smoothness). Note that without these priors, the
reconstruction algorithm would overfit the χ2, giving rise to spurious
artefacts which would make the VDM uninterpretable. On the other
hand, regularizers must remain generic, i.e. as non-committal as
possible, so as not to bias the reconstruction towards a non-physical
solution. As shown in other fields of study such as interferometry
(Thiebaut & Giovannelli 2010; Schutz et al. 2015) and medical
imaging (Cao, Nehorai & Jacob 2007; Yao et al. 2015; Li et al.
2016), it is the quality of the regularization and its strength that
determine the actual mapping fidelity of a given piece of software.
Unfortunately, currently available software packages for RM offer
little to no flexibility in terms of regularizers, and are mostly centred
on smoothing, which de facto limit the interpretation of the data.
From recent advances in the theory of Compressed Sensing, we now
know that the key to optimally regularize such inverse problems
is tapping into the sparsity of the reconstructed signals (Candes &
Wakin 2008). In image reconstruction, sparsity is the idea that a
signal may be represented by a number of non-zero coefficients
that is small relative to the total number of coefficients in the signal
(Davenport et al. 2011; Bryan & Leise 2013). RM is a poster example
for Compressed Sensing, in that the VDMs that have been previously
recovered for various AGNs are sparse.

The time lag/delay reconstructor (TLDR) algorithm presented here
utilizes the alternating direction method of multipliers (ADMM),

as well as two-dimensional regularization across the temporal and
spectral axes of RM data, to reconstruct VDMs for RM.

This paper serves as an introduction to image reconstruction in
the MAP framework as applied to RM. It will discuss the basics
of RM in Section 2, the inverse problem approach and appropriate
regularizers in Section 3, the basics of ADMM in Section 4, the
construction of the TLDR algorithm as an application of ADMM
in Section 5, basic reconstruction tests in Section 6, and offer a
preliminary reconstruction of the Arp 151 Hβ feature in Section 7.

2 REVERBERATION MAPPING

RM is a tomographical imaging process in which rapid changes
in continuum emission from the centre of an AGN is used to map
the kinematics and geometry of the gas that re-emits the continuum
emission as line emission. While the precise relationship between the
ionizing and emitted radiation is unknown, a number of assumptions
serve as the backbone of RM. These assumptions as laid down in
Peterson (1993) are:

(i) The continuum emission originates from a compact isotropi-
cally emitting central source.

(ii) The light-traveltime between the central source and the clouds
of the BLR is the primary source of delay.

(iii) A simple relationship between the ionizing emission of the
central source and the response observed in BLR exists. This
relationship need not be strictly linear in nature.

In reality, continuum emission does not appear in δ-function
pulses, but rather as continuous variations. Both the spectral line and
continuum emission must be treated as continuous functions. Doing
so, the observed line emission,L(t, λ) and continuum emission,C(t),
are functions of time which are related by the VDM x (Peterson
1994). Mathematically, the emission line response is the result of the
continuum being convolved with the VDM, also called the transfer
function (Blandford & McKee 1982),

L (t, λ) =
∫ ∞

0
x (τ, λ)C (t − τ ) dτ. (1)

Due to the discrete nature of observations, the convolution is not
continuous, but discrete which appears as

L[t, λ] =
N∑

τ=0

x[τ, λ]C[t − τ ]. (2)

The nature of the element-wise convolution allows the construction
of a mapping matrix H comprised of elements from the continuum
so that equation (2) can be represented purely as the linear relation

L = Hx. (3)

The matrix H is constructed with rows corresponding to the num-
ber of observations in the spectra taken at time t and columns
corresponding to the delay times τ such that each element in the
matrix is a value of the continuum flux measured at time t − τ .
The resulting mapping matrix H is a Toeplitz matrix representing
the one-dimensional convolution. Since the entire problem is linear,
recovering the VDM is a straightforward inverse problem.

It is evident in equation (3) that this method requires that the contin-
uum data must exist at the proper sample times t − τ for all spectral
sample dates t and all delay times τ . The required high cadence
represents a serious challenge for all RM observational campaigns.
In earlier work on RM, the requirement that continuum observations
exist on a grid has been met by linearly interpolating the continuum
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data (Horne 1994; Krolik 1994). Recently, it has become common to
model the continuum data in some way where both damped random
walk (Kelly, Bechtold & Siemiginowska 2009; Zu, Kochanek &
Peterson 2011) and Gaussian process (Pancoast, Brewer & Treu
2011) models have been used to interpolate continuum observations.

3 INVERSE PROBLEM APPROACH

In order to find the VDM, we adopt here the general framework
for MAP. Prior knowledge about the system, such as positivity,
smoothness, etc., is introduced in the form of regularization terms
(Thiébaut 2005) that are minimized alongside the neg-log-likelihood
of the data. The VDM solution xopt is given by

xopt = arg min
x∈RM×N

{
fdata (x) + fprior (x)

}
. (4)

Assuming Gaussian statistics based on flux levels, exposure times,
and the Central Limit Theorem, the fdata term is commonly known
as the χ2 of the model relative to the data. In the case that Gaussian
statistics do not hold and Poisson noise dominates, ADMM could
still be used. Here, construction of the χ2 involves combining the
discrete convolution of equation (3) with knowledge of the error in
the data,

fdata(x) = 1

2
χ2(x) = 1

2
‖L − Hx‖2

W = 1

2
(Hx − L)� W (Hx − L) ,

(5)

where W is the inverse covariance matrix of the emission line data
L.

The second term in equation (4) is the regularization term where
the prior knowledge and expectations of the problem are enforced.
The regularization term consists of the weighted sum of all regular-
izers, so that fprior can be written as

fprior(x) =
∑

i

μiRi(x). (6)

The combination of each regularizer, Ri, and its associated regular-
ization hyperparameter, μi, allows each regularization term to be
weighted individually allowing for flexibility in the reconstruction
process. These functions serve to penalize the likelihood term in the
minimization equation (equation 4). The effect of these penalties is
to increase the value of the function within the minimizer, making
these solutions less probable in the Bayesian framework. Selection
of regularizers for a reconstruction is an important step in setting
up the reconstruction. Aside from being important to the eventual
solution the use of different regularization strategies may impact the
problem to be fed into the minimization algorithm.

For the RM problem, there are a number of regularizations that
are natural choices. Foremost among these is positivity. Due to the
nature of the AGN system creating the continuum pulses and the
linear relationship between the pulses and the re-emission from
the reverberating medium, only positive delays have any physical
meaning. Negative values can only arise in the reconstruction where
the linear model does not hold. The positivity regularizer works as a
filter where negative values are simply projected to zero.

Since previously reconstructed VDMs are visibly sparse in the
spectral axis (Bentz et al. 2010; Grier et al. 2013), another obvious
regularizer choice is that of the �1-norm. More specifically, in the
spectrum of an AGN at wavelengths where no broad emission lines
are present, the VDM is expected to be zero for all delay times.
As previously mentioned, this sparsity makes the RM problem a
particularly good example for compressed sensing. As such, the so-
called �1-norm is well suited for reconstructing VDMs. The �1-norm

favours the fewest number of non-zero terms in x. In the case of
RM this means that solutions with more zero-valued VDMs will
be favoured over any other solutions, matching with the expected
sparsity in the VDM. Regularization by the �1-norm is accomplished
according to the soft thresholding scheme of Donoho (1995) with an
additional enforcement of positivity.

As an alternative to the �1-norm, the square of the �2-norm favours
images with many zero valued coefficients. It is however, slightly
different mathematically and its primary purpose is to promote
smoothness in the image. The �2-norm penalizes larger pixel values
more than small ones due to the square of the values seen in equation.
Reducing the value of the �2-norm-squared drives the total amount
of flux in the image down and brings the maximum and minimum
flux values closer together, promoting smoother images.

Perhaps most importantly, the VDM is expected to be smooth both
along the temporal axis and the spectral axis. The temporal axis is
expected to be smooth due to the relationship between absorbed and
emitted light from the gas clouds being mapped in the BLR. The spec-
tral axis will be smooth due to the kinematics of the region and the
Doppler broadening of the emission lines themselves. Compressed
sensing theory prescribes to enforce smoothness based on sparsity,
either that of the gradient of the solution, or even more generally
that of its wavelet transform. In both cases, regularization along the
different axes is better treated as two individual regularization steps,
allowing the regularization along each axis to be weighted differently.

In the case of gradient sparsity, the regularizer is known as
anisotropic total variation (TV) and given by the �1-norm of the
gradient of the image (Rudin, Osher & Fatemi 1992). Minimizing
this regularization term favours x such that the sum over the gradient
is as small as possible, which is to say the solutions with the least
variations are favoured. TV in this case is constructed using a finite
difference matrix operator to represent the gradient, and the TV
regularization term can be easily calculated and minimized using
the same Soft Thresholding scheme as the standard �1-norm, albeit
without the enforcement of positivity.

4 ADMM

In order to solve the problem posed by equation (12), ADMM is used.
ADMM was developed as a combination of the method of multipliers
and the dual ascent method (Boyd et al. 2011; Eckstein & Yao 2012).
The convergence behaviour of ADMM is well documented in general
(Nishihara et al. 2015; Wang, Yin & Zeng 2018) and for linear and
quadratic problems specifically (Boley 2013; Han & Yuan 2013).
This section is comprised of a discussion of ADMM for global
variable consensus optimization (GVCO) and how it solves problems
of the form of equation (12).

GVCO ADMM seeks to find the solution to the general GVCO
problem,

arg min
xi

N∑
i=1

fi (xi)

subject to xi − z = 0, i = 1, ..., N.

(7)

While having a different form than the general equation for solving
an inverse problem in the MAP framework (equation 4), equation (7)
represents the same problem. The differences lie in the construction
of the ADMM algorithm. Key in the construction of ADMM is a
variable splitting. In ADMM, the problem must be separable so that
the general function can be split into two groups of functions, fi(xi)
and g(z). ADMM will then seek to bring these two function into
consensus so that at convergence xi = z.
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Table 1. ADMM variable assignments within TLDR.

Regularizer Original term Variable assignment New term Penalty parameter Lagrange multiplier

Smoothing ‖Hx − L‖2
2 + μ�2

2 ‖x‖2
2 x0 = X ‖HX − L‖2

F + μ�2
2 ‖X‖2

2 ρX YX

Positivity 1R+ (x) x1 = P 1R+ (P) ρP YP

�1-norm μ�1 ‖x‖1 x2 = N μ�1 ‖N‖1 ρN YN

Total variation μT ‖∇x‖1 x3 = ∇Z = T μT ‖T‖1 ρT YT

The ADMM algorithm is an augmented Lagrangian method, so
the algorithm relies on the augmented Lagrangian in its minimization
steps. The augmented Lagrangian takes the general form,

L ( x1, . . . , xN, z, y) =
N∑

i=1

(
fi (xi) + y�

i (xi − z) + ρi

2
‖xi − z‖2

2

)
(8)

where y represents the Lagrange multipliers and ρ the penalty
parameter.

ADMM then proceeds iterating and following these three steps,
where the current iteration number is denoted by a superscript k:

(i) Minimize each term, subscript i, of the augmented Lagrangian
with respect to the corresponding xi,

xk+1
i = arg min

xi

(
fi

(
xk

i

) + y�,k
i

(
xk

i − zk
) + ρi

2

∥∥xk
i − zk

∥∥2

2

)
. (9)

(ii) Minimize the augmented Lagrangian with respect to z,

zk+1 = arg min
z

(
N∑

i=1

−y�,k
i zk + ρi

2

∥∥xk+1
i − zk

∥∥2

2

)
. (10)

(iii) Update the Lagrange multipliers,

yk+1
i = yk

i + ρi

(
xk+1

i − zk+1
)
. (11)

This procedure repeats until whatever convergence parameters are
in place are satisfied. This method offers flexibility in that numerous
regularization terms can be added with relatively little difficulty. The
method also offers the potential for great computational speed in that
many steps and subroutines in the algorithm can be implemented in
parallel.

5 TLDR

Inspired by recent implementations of ADMM in interferometry
(Thiébaut & Soulez 2012; Schutz et al. 2014; Ferrari et al. 2015),
the TLDR algorithm is built as an implementation of GVCO ADMM
constructed to solve the RM problem given by equation (12). Through
the assignment of new variable names, one for each regularization
term used, equations (9)–(11) can be expanded to build the algorithm.
Within TLDR, the χ2 and �2-norm smoothing regularizations operate
on X, the positivity regularization operates on P, the compressed
sensing regularizer operates on N, and the total variation regularizer
operates on T. The new variables and their associated penalty pa-
rameters and Lagrange multipliers help to distinguish mathematical
operations in the code and are listed in Table 1. For convenience, the
z variable is assigned to Z.

With the new variables in place, the problem can be rewritten as
follows:

arg min
X

1

2
(HX − L)� W (HX − L) + μX

2
‖X‖2

2 +
μN ‖N‖1 + 1R+ (P) + μT ‖T‖1

subject toX,P,N = Z;T = ∇Z. (12)

Expanding equation (8) using the new variables and the problem as
written in equation (12) allows us to easily write the full augmented
Lagrangian:

L = (HX − L)� W (HX − L) + μ�2

2
‖X‖2

2

+ YX
� (X − Z) + ρX

2
‖X − Z‖2

2

+ 1R+ (P) + YP
� (P − Z) + ρP

2
‖P − Z‖2

2

+ μ�1 ‖N‖1 + YN
� (N − Z) + ρN

2
‖N − Z‖2

2

+ μT ‖T‖1 + YT
� (T − ∇Z) + ρT

2
‖T − ∇Z‖2

2 . (13)

TLDR proceeds through the steps of ADMM outlined in Section 4
shown as pseudo-code in Algorithm 1.

Algorithm 1: Pseudocode for TLDR’s ADMM block.

initialization X,P,N = Z; T = ∇Z
calculate Initial VDM
while converged == False do

minimization of Augmented Lagrangian w.r.t. X
minimization of Augmented Lagrangian w.r.t.

regularization terms P, N, T
minimization of Augmented Lagrangian w.r.t. Z
update Lagrange Multipliers YX, YP, YN, YT

check for convergence
end

Aside from the Lagrange multipliers update, which is performed
exactly as equation (11), the steps in Algorithm 1 are non-trivial and
each warrants some discussion. So each will be discussed in order.

5.1 Initial VDM

The TLDR algorithm could begin from any initial VDM, but the
optimal starting delay map should be as close to the final solution as
possible. This reduces the amount of parameter space over which the
pixel values in the delay map must move to find the best values. By
starting near to the final solution, the number of iterations required
by the algorithm is reduced thereby reducing the amount of time
required for the algorithm to find the final solution. However, care
must be taken as it is possible to introduce artefacts into the initial
VDM that will not easily be removed within the rest of the algorithm.

By isolating the first term in the augmented Lagrangian, a singly
regularized least-squares equation for the RM problem is found:

f (X) = (HX − L)� W (HX − L) + μ�2

2
‖X‖2

2 . (14)

Minimizing, by taking the derivative of the function f (X), setting it
equal to zero, and solving for X yields the initial VDM:

X0 = (
H�WH + μ�2I

)−1 (
H�WL

)
. (15)
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This method for analytically solving the �2-squared regularized least-
squares problem is known as the Tikhonov regularization (Tikhonov
1963) or ridge regression (Hoerl & Kennard 1970).

5.2 Minimization with respect to X

The minimization for X can be found analytically by solving the
derivative of equation (13), set equal to zero, for X, yielding:

Xk+1 = (
H�WH + (μX + ρX) I

)−1 (
H�WL + ρXZ − Yk

X

)
. (16)

Due to the spectral dependence of W, the minimization with
respect to X must be carried out spectral line by spectral line so
that equation (16) is used to find X by finding Xλ using each unique
Wλ; however, this step can be parallelized and the inversion step
is constant. The pseudo-code for solving equation (16) is shown in
Algorithm 2.

Algorithm 2: Pseudocode for TLDR’s minimization of the
Augmented Lagrangian with respect to X.

for λ do
Xλ =(

H�WλH + (μX + ρX) I
)−1(

H�WλLλ + ρXZλ − YX,λ

)
end

5.3 Minimization w.r.t. regularizers

The minimization of the augmented Lagrangian for each of the
regularized variables involving the �1-norms of N and T is identical,
though the input changes. The minimization problem can be written
using a stand-in variable ri,

arg min
ri

f (ri) + ρri

2
‖ri − r̃i‖2

2 , (17)

when posing r̃i = Z − Yri/ρri . This is as a MAP problem, solvable
by proximal operators. A proximal operator allows the minimization
to be replaced with analytic functions that can be evaluated quickly
within the ADMM loop, e.g. the proximal operator for the �1-norm
is known as soft-thresholding (Donoho 1995). The solution to the
minimization is the projection

r+
i = sgn (r̃i) max

(
|r̃i | − μr

ρr

, 0

)
. (18)

Though the projection is identical, the input for the projected solution
for T must include the gradient. So that for T, r̃T = ∇Z − YT/ρT.
In practice, the projection relating to negative values r̃i ≤ −μr/ρr in
the VDM are rejected as an additional enforcement of positivity.

Similarly, for the positivity regularizer, equation (17) holds and
only the projection changes. Where the projection is simply

P+ = max

(
0,Z − YP

ρP

)
. (19)

In effect, the proximal operator for positivity simply rejects values
where Z < YP

ρP
.

5.4 Minimization w.r.t. Z

To find the analytical solution for Z, the same procedure as used
for the minimization of X is used. Begin by taking the derivative of

equation (13) with respect to Z, set equal to zero and solve for Z.
Yielding,

Zk+1 = (
(ρX + ρP + ρN ) I + ρT ∇�∇)−1(

YX + ρXX + YP + ρPP + YN + ρNN + ∇�YT + ρT ∇�T
)
.

(20)

The minimization w.r.t. Z benefits from the lack of spectral de-
pendence in the solution. In its implemented form, Z is calculated
very quickly as matrix multiplication with fast Fourier transforms to
handle the gradients. Implementing the forward difference gradient
operators as an implementation of the convolution theorem allows
the Z update step to be calculated by only multiplication. Note also,
that the inversion used is a constant, meaning that the Z update step
is extremely fast.

5.5 Convergence testing

In TLDR, convergence testing is carried out as outlined in Boyd
et al. (2011, section 3.3.1). At each iteration k, we define the primal
residual rk , dual residual sk , and their tolerances εpri and εdual as

rk =
(
Xk − Zk,Nk − Zk,Pk − Zk,

1

2

(
Tk − ∇Zk

))
(21)

sk = (
ρX

(
Zk − Zk−1

)
, ρN

(
Zk − Zk−1

)
,

ρP

(
Zk − Zk−1

)
, ρT

(
Zk − Zk−1

))
(22)

εpri = εabs + εrel max
{∥∥Xk

∥∥
2
,
∥∥Nk

∥∥
2
,
∥∥Pk

∥∥
2
,

1

2

∥∥Tk
∥∥

2
,
∥∥Zk

∥∥
2

}
, (23)

and

εdual = εabs + εrel max
{∥∥YX

k
∥∥

2
,
∥∥YN

k
∥∥

2
,
∥∥YP

k
∥∥

2
,

1

2

∥∥∇�YT
k
∥∥

2
,

}
, (24)

where εpri and εdual are the global tolerances on the primal and dual
residuals respectively.

TLDR is said to have converged when both the norm of the primal
residual and norm of the dual residual have dropped below their
respective tolerances εpri and εdual. Which is to say, TLDR has
converged when

∥∥rk
∥∥

2
≤ εpri and

∥∥sk∥∥
2

≤ εdual. These parameters
can be tuned to get the desired convergence behaviour. Should
the convergence criterion not be met, TLDR will terminate after
maximum number of iterations set by the user.

5.6 Input data

Intended as a flexible method for reconstructing VDMs from RM
data, TLDR makes minimal assumptions of the data provided to.
As mentioned in Section 2, the continuum data must exist on an
appropriate grid of times corresponding to the sample times of the
spectral data and the delay times in the VDM to be reconstructed. In
order to guarantee proper construction of the convolution operator
TLDR applies a linear interpolation to the continuum data, but does
not consider the uncertainty on the continuum. This is the only
processing applied to continuum data by TLDR. Should continuum
data be modelled at the appropriate times before being passed to
TLDR, this linear interpolation will not affect the data in any way.
Additionally, TLDR makes no assumptions on the spectral data
provided to it. The option to model either the continuum data, or
the spectra data is left to the user as data preparation.

MNRAS 505, 2903–2912 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/505/2/2903/6278211 by G
eorgia State U

niversity user on 15 July 2021



2908 M. D. Anderson, F. Baron and M. C. Bentz

While TLDR does not require modelled data to be provided to it,
modelling of both continuum data and spectral data prior is strongly
recommended prior to reconstructing a VDM. As TLDR does not
consider uncertainties on continuum data, modelling the continuum
allows these uncertainties and large gaps in observations to be consid-
ered before any VDM is reconstructed, as well as providing a reliable
method for interpolating the light curve. Gaussian process modelling,
previously adopted for regularized linear inversion (Skielboe et al.
2015), and damped random walk models, as implemented in the
JAVELIN code (Zu et al. 2011), have successfully been used for
modelling continuum light curves for RM. For a fast Gaussian
process modelling method easily applied to RM data, see Foreman-
Mackey et al. (2017). Similarly, modelling of spectral data with
software such as PrepSPEC can isolate and remove constant spectral
components, allowing TLDR to reconstruct a VDM based on only the
broad-line variations in the data. A recent discussion of the PrepSPEC
software’s spectral decomposition method can be found in Horne
et al. (2021).

5.7 Additional TLDR notes

In order to streamline the use of TLDR and ease frustrations that
arise due to the sensitivity of the algorithm to the selection of the
penalty parameters, three strategies for automatically adapting the
penalty parameters were tested. Unfortunately, the simple strategy
in Boyd et al. (2011, section 3.4.1), the more advanced residual
balancing scheme described in Wohlberg (2017), and the adaptive
consensus ADMM (ACADMM) strategy of Xu et al. (2017) resulted
in instabilities in the algorithm. These instabilities arise out of the
proximal projections used in TLDR, though they worked quite well
when these terms were not used. As such, TLDR does not have a
method of automatically selecting penalty parameters. This means
that TLDR contains seven individual parameters that must be tuned
by the user, which can be an arduous process for the user.

Tuning can be broken down into two categories: the penalty
parameters (ρX, ρP, ρN, ρT) and regularization hyperparameters (μ�2 ,
μ�1 , μT). Increasing the magnitude of the penalty parameters reduces
the number of iterations required before convergence. Varying the
ratio between the various penalty parameters changes the relative
importance of the different regularizers. Changing the regularization
hyperparameters increases the amount of smoothness or sparsity in
the final VDM.

While tuning the various parameters for TLDR can be difficult,
experience with the algorithm has revealed a general strategy. As
a first step, set the penalty parameters to the same value and scale
that value until TLDR converges in approximately 5000 iterations.
Second, tune the regularization hyperparameters. Beginning with
each regularization parameter set to 1.0, tuning should be carried out
one regularizer at a time with quadratic smoothing μ�2 first, sparsity
μ�1 second, and TV μT last. Increase the value of the regularization
parameter until the final reduced-χ2 reaches an inflection point and
repeat for the next regularizer. Third, tune the relative ratio of the
penalty parameters to move the final reduced-χ2 towards unity.
Generally, this step has required increasing the penalty parameter
for positivity more than anything else. It is likely that the user will
need to iterate on the second and third steps to achieve a satisfactory
result.

The TLDR algorithm is written in the Julia programming language
(Bezanson et al. 2017). For ease and functionality, regularization
variables exist as data structures within the algorithm’s code. This
allows the variables associated with each term to be stored and passed

in the algorithm as a part of the regularization variable to which they
belong.

6 TESTING

In order to test TLDR, synthetic emission line data have been created
using a number of model VDMs convolved with a continuum light
curve. To generate the synthetic emission line data the Johnson
B band continuum light curve for Arp 151 from the Lick AGN
Monitoring Project (LAMP) is adopted, the complete discussion
of the photometric observing campaign and data reduction can be
found in Walsh et al. (2009). Observations of Arp 151 took place
between 2008 February 10 and May 16 and the resulting data were
calibrated via differential photometry. The original continuum data
have further been reduced by binning any observations made within
0.1 d. The resulting light curve consists of 66 observations with a
median sampling frequency of 1.02 d, mean sampling frequency of
1.5 d, mean flux of <f > =0.93 mJy with a standard deviation of
0.15 mJy, and flux ratio fmax/fmin = 1.8. The light curve has an excess
variance of Fvar = 0.16 calculated as

Fvar =
√

σ 2 − δ2

〈f 〉 , (25)

where σ 2 is the variance of the flux and δ2 is the mean square of
the uncertainties of the flux. The continuum light curve is linearly
interpolated on to a grid based on the date of spectroscopic obser-
vation and delay sample times. The dates used for the spectroscopic
observations are those from the spectroscopic monitoring of Arp
151 from the LAMP campaign which range from 2008 March 25
to May 21 with a median sampling of 1.02 d and a mean sampling
of 1.4 d, the full description of the spectroscopic observations and
data reduction are provided in Bentz et al. (2009). For all tests a
delay sampling time of 1.0 d was used for the reconstruction. From
the interpolated continuum light curve the convolution operator is
created. Synthetic emission line data is then generated and Gaussian
noise is added,

Lsynthetic = HXsynthetic + n. (26)

The continuum data used to generate all synthetic emission line
data used for testing are shown in the top plot in Fig. 5 where the black
circles represent the continuum observations of Arp 151 with error
bars included and the black line represents the linear interpolation
of those observations. By feeding the synthetic emission line data
and the real continuum data into TLDR, the synthetic VDM is
reconstructed. This provides a measure of the reconstructive efficacy
of TLDR. Using the continuum data and sampling dates from actual
observations of Arp 151 in the creation of the artificial emission
line data creates a data set with realistic cadences, but none of the
following tests are intended to be compared to any reconstruction of
the VDM for the Arp 151 data set.

6.1 Basic tests

In order to test the behaviour of the TLDR algorithm a number of
simple VDMs were used. Each test VDM consists of a 10 × 10 pixel
matrix with signal values ranging between a minimum of 0.0 and
a maximum of 1.0. The test data sets were prepared with emission
line errors yielding an SNR of 50.0. These test VDMs and their
reconstructions shown in Fig. 2 where the original VDM appears
on the left of each pair with the reconstruction on the right. On the
far right is the colour map used for all of the test reconstructions,
this colour map was specifically chosen to emphasize deviations
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TLDR: time lag/delay reconstructor 2909

Figure 2. Reconstruction of 10 × 10 pixel test VDMs with signal values ranging from 0.0 to 1.0 and a signal-to-noise ratio of 50 in the synthetic emission
lines. In each pair, the left plot shows the test VDM and the right plot shows the reconstructed VDM. Beneath each pair is the PSNR value of the reconstructed
VDM in decibels. On the far right is the colour map used for each inset plot which emphasizes deviations from the extrema of the test VDMs making problem
areas in the reconstructed VDMs stand out.

from the expected values in the VDMs. Below each pair the peak
signal-to-noise ratio (PSNR) of the reconstructed VDM is displayed
providing a measure of the reconstruction fidelity. Where the PSNR
is calculated in the usual way with

PSNR = 20 · log10

(
1√

MSE

)
(27)

and

MSE = 1

N

N∑
i=1

(
Xi − Xtrue,i

)2
. (28)

The geometries were chosen to test the ability of TLDR to recover
characteristics which may be encountered in real data. Clearly, the
algorithm excels at reconstructions of smooth gradients and places
where test VDMs have continuous values across their cross-sections.
This is unsurprising as the majority of the regularizers used in
TLDR promote smoothness. The algorithm has some difficulty when
the VDM being reconstructed contains abrupt signal change as in
the Checkerboard, Box, Circle, Ring, and Diagonal test VDMs.
Unsurprisingly, TLDR struggles most when reconstructing a VDM
consisting purely of random noise.

6.2 Synthetic VDM of Keplerian disc

In order to test TLDR with a more complicated VDM than those
used in Section 6.1, a synthetic VDM was created using a simple
flat Keplerian disc toy model of the BLR. This synthetic VDM
was generated from an array of 1 million randomly situated points
arranged in a flat disc about a central point corresponding to the
location of an SMBH with mass 7 × 106 M� with an inner radius of
1.0 and an outer radius of 5.0 light-days.

As demonstrated in other work on RM (Welsh & Horne 1991;
Peterson & Horne 2004), the line-of-sight velocities v and delay
times τ for particles in an edge-on circular disc i = 90 are easily
found from the geometry and the orbital velocity V at radius r, where
the angle φ is the azimuth angle in the plane of the disc starting from
zero at the line of sight to the observer.

v (r, φ) = V (r) sin (φ) (29)

and

τ (r, φ) = r

c
(1 − cos (φ)) . (30)

After calculating the line-of-sight velocities and delays for all of the
points in the simulated disc, the points are projected on to the VDM

seen in Fig. 3 middle panel. The VDM is then binned along both
delay time and velocity (Fig. 3 lower panel) with the delay times
scaled to a maximum of 50.0 light-days. The signal value of each
pixel is normalized and scaled by counting the number of points that
lie within a given pixel, normalizing to the maximum number of
points found in a single pixel, and scaling the normalized array to the
desired maximum value. Finally, each pixel is scaled by the ratio of
its delay to the maximum delay to enhance the structure that appears
in the VDM. In this case, the VDM was binned with 50 pixels of 1.0
light-day along the temporal axis and 20 pixels on the spectral axis
which happen to be 597 km s−1 wide, with a maximum signal value
of 0.1.

This toy model is oversimplified in that the binned flux does not ac-
count for the relative flux difference in different delays corresponding
to the light-travel differences. Furthermore, the scaling and binning
used for the reconstruction change the physicality of the model.
Similarly, the use of a flat Keplerian disc is simplistic. The goal
in generating this synthetic VDM is to provide a test case showing
the algorithm’s capability for recovering complicated signals that
mimic those recovered by other methods. This synthetic VDM is
not intended as a realistic model of the BLR. Furthermore, despite
borrowing much from the Arp 151 data set to create this synthetic
line emission data, this toy model is not intended to provide any
physical comparison to any reconstruction of a VDM for the Arp
151 data set.

The synthetic VDM was used to create synthetic spectra according
to equation (26) with a fractional uncertainty of 1.5 per cent matching
the mean fractional error from the real Arp 151 data set (Bentz
et al. 2009) and then reconstructed using TLDR. The reconstructed
synthetic VDM generated from the Keplerian disc model and Arp 151
continuum is shown alongside the original synthetic VDM in Fig. 4.
Comparing the reconstructed Keplerian disc VDM to the original
shows that the algorithm is providing an excellent reconstruction.
There is some noisy distortion apparent at longer delay times and
some loss of fine detail near the edges of the VDM, but with a PSNR
of 45.0 dB the details of the VDM are well reconstructed.

The reconstruction can be further evaluated by looking at a sample
of the light curves from the reconstruction shown in Fig. 5. The
top plot is simply the continuum light curve used to generate the
synthetic emission line data (i.e. the original Arp 151 continuum
data) shown by black circles with error bars slightly larger than the
markers and the interpolated data shown as the black solid line. The
bottom four rows show the spectral light curves from the data at
20 per cent (−1196 km s−1), 40 per cent (−2394 km s−1), 60 per cent
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Figure 3. Top: Overview of the simulated flat Keplerian disc showing 10 000
particles in the same two-dimensional isodelay surface as Fig. 1. The size
of the markers shows relative delay and colour indicates redshift/blueshift
due to rotational velocity. Middle: Projected VDM of the particles in the
simulation, again colour indicates redshift/blueshift. Bottom: Binned VDM
of the simulated data.

Figure 4. Synthetic VDM of a Keplerian disc (left) and the recovered VDM
(right). Recovered VDM shows much of the detail of the synthetic VDM,
with some artefacting visible in the recovered VDM.

(−3591 km s−1), and 80 per cent (−4789 km s−1) of the maximum
line-of-sight rotational velocity of the model. Each shows the
response function on the left with the true response as the grey dashed
line and the reconstructed response as the green solid line. On the
right each shows the spectral light curve with the noiseless light curve
shown as a black dashed line, the noisy spectral light curve input as
the blue circles, and the recovered spectral light curve as the red solid
line. Each also contains the line’s reduced χ2 value. While in each
case, the recovered spectral line closely matches the noiseless true
spectral line, they all show deviation from the true response function
in the recovered response functions. The second row showing the
curves for the −1196 km s−1 cross-section shows a very good
recovery of the response function and spectral light curve. The
bottom three rows, showing the −2394, −3591, and −4789 km s−1

lines, contain oversmoothed responses where the signals assume
the general shape expected but are suppressed in the regions of
maximum response value. It would likely be possible to achieve
a better fit across all lines by using a different set of regularization
hyperparameters for each line, but this would further complicate what
can already be an arduous parameter selection process, a trade-off
which must be considered for any image reconstruction process.

7 PRELIMINARY RECONSTRUCTION OF ARP
151 Hβ

As a final indication of the utility of TLDR, an initial reconstruction
of the VDM for the Hβ feature of Arp 151 from LAMP (Bentz
et al. 2009) is provided. Using the continuum subtracted model
spectra and the Johnson B continuum data used in for the maximum
entropy method reconstruction presented in Bentz et al. (2010), an
initial VDM was calculated in accordance with Section 5.1 with
a smoothing hyperparameter of 2.0 × 106. The VDM was set up
with the pixel spectral width matching the 2.0 Å steps of the original
spectral observations and a temporal width of 1.0 d matching the
global average sampling frequency of the continuum and spectral
observations. For this reconstruction, TLDR was run for 3.0 × 104

iterations with the parameters listed in Table 2, selected from a grid
of possible regularization hyperparameters by proximity to χ2 = 1.0.
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Figure 5. Sample light curves from the reconstruction of the Keplerian disc.
Top: Continuum light curve where the black circles show the original sample
data with error bar and the black solid line shows the linear interpolation of
the original data. Bottom four rows: On the left, response function where
the grey dashed line is the true function and the green solid line is the
recovered function. On the right: Noiseless spectral light curve shown by
the black dashed line, the noisy spectral light curve shown as the blue
circles, and the recovered spectral light curve as the red solid line. The lines
shown represent 20 per cent (−1196 km s−1), 40 per cent (−2394 km s−1),
60 per cent (−3591 km s−1), and 80 per cent (−4789 km s−1) the maximum
line-of-sight rotational velocity of the Keplerian disc model used to generate
these emission line data.

Table 2. Reconstruction Parameters used in the reconstruction of the Hβ

feature of Arp 151.

Regularizer Hyperparameter μ Penalty parameter ρ

Smoothing X 2.0 × 106 1.0
Positivity P N/A 100.0
Sparsity N 10.0 1.2
Total variation T 1.75 1.2

The reconstruction terminated with a reduced χ2 of 1.02, yielding
the VDM shown in Fig. 6. Visual comparison between the VDM
reconstructed with TLDR and those recovered by the maximum
entropy method (Bentz et al. 2010) and regularized linear inversion
(Skielboe et al. 2015) largely agree. In each case, the overall shape
of the response in the VDM appears to match with asymmetries
appearing in similar locations. However, to make any substantive
comparison between results a thorough comparative analysis would
be necessary.

Figure 6. Reconstructed TDF of the Hβ feature of Arp 151 from the LAMP
RM project.

8 CONCLUSION

The TLDR algorithm provides an additional tool for RM, that can be
used in concert with existing tools or independently, to reconstruct
VDMs from RM data. The regularization scheme implemented
within TLDR provides a flexible platform for reconstruction of
VDMs. With numerous recent and ongoing RM campaigns (De
Rosa et al. 2015; Shen et al. 2016; LAMP2016 Collaboration 2017),
interest in using RM to study AGNs is high. With high interest, and a
growing number of data sets, TLDR should be able to make a sizable
contribution to the RM field.

Future work on TLDR will include applying the algorithm to a
number of the well-studied data sets from the LAMP (Bentz et al.
2009). The data contained in the LAMP data release have been
studied by all of the RM algorithms currently in use, including
the maximum entropy method (Bentz et al. 2010), regularized
linear inversion (Skielboe et al. 2015), as well as direct modelling
(Pancoast et al. 2014). This will provide a way to directly evaluate the
performance of TLDR and compare the different methods currently
available.
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Opt. Soc. Am. A, 31, 2334

Schutz A., Ferrari A., Mary D., Thiébaut É., Soulez F., 2015, in EU-
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Thiébaut E., 2006, in Foy R., Foy F. C., eds, Optics in Astrophysics, NATO

Science Series II: Mathematics, Physics and Chemistry, 198. Springer,
Dordrecht, p. 397

Thiebaut E., Giovannelli J.-F., 2010, IEEE Signal Process. Mag., 27, 97
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