

Contents lists available at ScienceDirect

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

On odd rainbow cycles in edge-colored graphs

Andrzej Czygrinow ^{a,1}, Theodore Molla ^{b,2}, Brendan Nagle ^{b,3},
Roy Oursler ^a^a School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85281, USA^b Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620, USA

ARTICLE INFO

Article history:

Received 30 August 2019

Accepted 20 January 2021

Available online 23 February 2021

ABSTRACT

Let $G = (V, E)$ be an n -vertex edge-colored graph. In 2013, H. Li proved that if every vertex $v \in V$ is incident to at least $(n+1)/2$ distinctly colored edges, then G admits a rainbow triangle. We prove that the same hypothesis ensures a rainbow ℓ -cycle C_ℓ whenever $n \geq 432\ell$. This result is sharp for all odd integers $\ell \geq 3$, and extends earlier work of the authors for when ℓ is even.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

An *edge-colored graph* is a pair (G, c) , where $G = (V, E)$ is a graph and $c : E \rightarrow P$ is a function mapping edges to some palette of colors P . A subgraph $H \subseteq G$ is a *rainbow subgraph* if the edges of H are distinctly colored by c . Rainbow subgraph problems are a well-studied area of graph theory (see, e.g., [1–13,16], and Section 1.1 below). Here, we consider degree conditions on (G, c) ensuring the existence of rainbow cycles C_ℓ of fixed length $\ell \geq 3$. To that end, a vertex $v \in V$ in an edge-colored graph (G, c) has c -degree $\deg_G^c(v)$ given by the number of distinct colors assigned by c to the edges $\{v, w\} \in E$. We set $\delta^c(G) = \min_{v \in V} \deg_G^c(v)$ for the minimum c -degree in G . The following result of H. Li [10] motivates our current work.

Theorem 1.1 (H. Li [10], 2013). *Let (G, c) be an n -vertex edge-colored graph. If $\delta^c(G) \geq (n+1)/2$, then (G, c) admits a rainbow 3-cycle C_3 .*

E-mail addresses: aczygri@asu.edu (A. Czygrinow), molla@usf.edu (T. Molla), bnagle@usf.edu (B. Nagle), Roy.Oursler@asu.edu (R. Oursler).

¹ The first author was partially supported by Simons Foundation, USA Grant #521777.² The second author was partially supported by National Science Foundation, USA Grants DMS 1500121 and DMS 1800761.³ The third author was partially supported by National Science Foundation, USA Grant DMS 1700280.

A rainbow $K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil}$ establishes that [Theorem 1.1](#) is best possible.

We prove an analogue of [Theorem 1.1](#) for ℓ -cycles C_ℓ of fixed arbitrary length.

Theorem 1.2. *For every integer $\ell \geq 3$, every edge-colored graph (G, c) on $n \geq n_0(\ell)$ many vertices satisfying $\delta^c(G) \geq (n+1)/2$ admits a rainbow ℓ -cycle C_ℓ .*

A rainbow $K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil}$ also establishes that [Theorem 1.2](#) is best possible for all odd integers ℓ . For even integers $\ell \geq 4$, the authors earlier proved in [4] a stronger form of [Theorem 1.2](#).

Theorem 1.3 (Czygrinow et al. [4]). *For every even integer $\ell \geq 4$, every edge-colored graph (G, c) on $n \geq N_0(\ell)$ many vertices satisfying $\delta^c(G) \geq (n+5)/3$ admits a rainbow ℓ -cycle C_ℓ .*

It was shown in [4] that [Theorem 1.3](#) is best possible for every even $\ell \not\equiv 0 \pmod{3}$.

[Theorem 1.1](#) holds non-vacuously when $n \geq 3$, and one may seek to quantify $n_0(\ell)$ and $N_0(\ell)$ in [Theorems 1.2](#) and [1.3](#). The proof of [Theorem 1.3](#) depends on an application of the Szemerédi Regularity Lemma [14,15], and therefore gives very poor bounds on $N_0(\ell)$. Our proof of [Theorem 1.2](#) is elementary, and easily provides $n_0(\ell) = O(\ell^2)$. For the interested Reader, we provide a more detailed analysis in our final section which establishes that $n_0(\ell)$ is linear in ℓ .

Theorem 1.4. *The function $n_0(\ell)$ in [Theorem 1.2](#) satisfies $n_0(\ell) \leq 432\ell$.*

The remainder of this paper is organized as follows. In Section 1.1, we discuss further results and context regarding rainbow cycle problems. In Section 2, we sketch Li's proof [10] of [Theorem 1.1](#) and note the elements there which provide a basis for our approach here. In Section 3, we extend this proof to develop several tools useful for proving [Theorems 1.2](#) and [1.4](#). In Section 4, we prove [Theorem 1.2](#), and in Section 5, we prove [Theorem 1.4](#). In the entirety of this paper, we employ the following observations.

Remark 1.5. We say that an edge-colored graph (G, c) is *edge-minimal* when every $e \in E(G)$ satisfies $\delta^c(G - e) < \delta^c(G)$. Every edge-colored graph (G, c) admits an edge-minimal spanning subgraph $H \subseteq G$ satisfying $\delta^c(G) = \delta^c(H)$, so in [Theorems 1.1–1.4](#) it suffices to assume that (G, c) is already edge-minimal. As such, (G, c) admits no three commonly colored edges $\{u, v\}, \{v, w\}, \{w, x\} \in E(G)$, as removing $\{v, w\} \in E(G)$ violates edge-minimality. \square

1.1. Rainbow cycles and anti-Ramsey theory

Li et al. [11] extended [Theorem 1.1](#) as follows: if the average c -degree $\alpha^c(G) = (1/n) \sum_{v \in V} \deg_G^c(v)$ satisfies $\alpha^c(G) \geq (n+1)/2$, then (G, c) admits a rainbow C_3 ; if the number of colors $|c(E)|$ used on $G = (V, E)$ satisfies $|E| + |c(E)| \geq \binom{n}{2}$, then (G, c) admits a rainbow C_3 . These extensions relate to a classical anti-Ramsey⁴ result of Erdős et al. [5] that any edge-coloring of $G = K_n$ with n colors admits a rainbow C_3 . More generally, the following holds.

Theorem 1.6 (Montellano-Ballesteros and Neumann-Lara [13]). *For every integer $\ell \geq 3$, every edge-colored complete graph (K_n, c) satisfying*

$$|c(E(K_n))| \geq \left(\frac{\ell-2}{2} + \frac{1}{\ell-1} \right) n + O(1)$$

admits a rainbow C_ℓ .

[Theorem 1.6](#) confirmed a conjecture in [5] whose sharpness was already noted there: let $n = q(\ell-1) + r$ for $q, r \in \mathbb{Z}$ satisfying $0 \leq r < \ell-1$; let $V(K_n) = V_1 \dot{\cup} \dots \dot{\cup} V_{q+1}$ be a partition satisfying $|V_1| = \dots = |V_q| = \ell-1$ and $|V_{q+1}| = r$; let all pairs of $\bigcup_{1 \leq i \leq q+1} \binom{V_i}{2}$ be given distinct colors; let all pairs crossing V_i and $V_{i+1} \dot{\cup} \dots \dot{\cup} V_{q+1}$ be given a new color ξ_i , where $1 \leq i \leq q$. This coloring is

⁴ For a comprehensive survey of anti-Ramsey theory, see [7].

locally imbalanced, so one may seek bounds on $\delta^c(K_n)$ ensuring a rainbow C_ℓ in (K_n, c) . For fixed $\ell \geq 3$, Axenovich et al. [2] proved that $\delta^c(K_n) \geq (1 + o(1))n/2$ ensures a rainbow C_ℓ , but that for $\ell = 3$ the bound $\delta^c(K_n) \geq (1 + o(1))\log_2 n$ already suffices (where $\log_2 n$ is necessary). Thus, replacing K_n with an n -vertex host $G = (V, E)$ (see [Theorem 1.1](#)) significantly changes the nature of the problem.

2. Proof of [Theorem 1.1](#)

We recall Li's proof [10] of [Theorem 1.1](#). Let (G, c) be an n -vertex edge-colored and edge-minimal graph with no rainbow triangle C_3 . We show that $\delta^c(G) \leq n/2$. To that end, for a color $\alpha \in c(E)$ and a vertex $v \in V$, we define the α -neighborhood

$$N_\alpha(v) = \{u \in N(v) : c(\{u, v\}) = \alpha\},$$

where $N(v) = N_G(v) = \{u \in V : \{u, v\} \in E\}$ is the usual neighborhood of v in G , and $N[v] = \{v\} \cup N(v)$ is the closed neighborhood of v in G . We define

$$N_!(v) = \bigcup_{\alpha \in c(E)} \{N_\alpha(v) : |N_\alpha(v)| = 1\}$$

for the set of neighbors $u \in N(v)$ for which $c(\{u, v\})$ appears uniquely among $\{v, w\} \in E$. We define the replication number $R = R(G, c)$ of (G, c) by

$$R = R(G, c) = \max_{v \in V} \max_{\alpha \in c(E)} |N_\alpha(v)|. \quad (1)$$

For $v \in V$ and $U \subseteq V$, we denote by $\deg_G^c(v, U)$ the number of colors $c(\{u, v\})$ among $u \in N(v) \cap U$.

Fix $(z, \zeta) \in V \times c(E)$ for which $|N_\zeta(z)| = R$ (cf. (1)). If $N_!(z) = \emptyset$, then each color incident to z appears at least twice, so $\delta^c(G) \leq \deg_G^c(z) \leq (n-1)/2$ follows. Henceforth, we assume $N_!(z) \neq \emptyset$, and we define the directed graph $D = (V_D, \vec{E}_D)$ on vertex set $V_D = N(z)$ by putting, for each edge $\{x, y\} \in E(G[N(z)])$, the arc $(x, y) \in \vec{E}_D$ if, and only if, $y \in N_!(z)$ and $c(\{x, y\}) = c(\{x, z\})$. Then

$$|V_D| = \deg_G(z) \geq \deg_G^c(z) + R - 1, \quad \text{and} \quad |\vec{E}_D| = \sum_{y \in N_!(z)} \deg_D^-(y) = \sum_{x \in N(z)} \deg_D^+(x), \quad (2)$$

where $\deg_D^+(x)$ denotes the out-degree of a vertex $x \in V_D$ in D , and $\deg_D^-(x)$ denotes the corresponding in-degree. We make three observations on D :

- (i) Each $(x, y) \in \vec{E}_D$ places $x \in N_!(z)$, lest some $x \neq x' \in N(z) \setminus N_!(z)$ gives $c(\{x', z\}) = c(\{x, z\}) = c(\{x, y\})$ (cf. [Remark 1.5](#));
- (ii) Each $x \in N_!(z)$ with $\alpha = c(\{x, z\})$ satisfies $\deg_D^+(x) = |N_\alpha(x) \cap N_!(z)| \leq R - 1$ (cf. (1));
- (iii) Each $y \in N_!(z)$ has $\deg_G^c(y, N[z]) \leq 1 + \deg_D^-(y)$, as $c(\{x, y\}) = \beta \neq \alpha = c(\{y, z\})$ for $x \in N(z)$ puts $(x, y) \in \vec{E}_D$, since $c(\{x, z\}) \neq \alpha$ by $y \in N_!(z)$ and $c(\{x, z\}) = \beta$ lest $\{x, y, z\}$ is rainbow.

Thus,

$$\sum_{y \in N_!(z)} (\deg_G^c(y, N[z]) - 1) \stackrel{(iii)}{\leq} \sum_{y \in N_!(z)} \deg_D^-(y) \stackrel{(2)}{=} \sum_{x \in N(z)} \deg_D^+(x) \stackrel{(i)}{=} \sum_{x \in N_!(z)} \deg_D^+(x) \stackrel{(ii)}{\leq} |N_!(z)|(R - 1).$$

Averaging over $N_!(z)$ guarantees a vertex $y_0 \in N_!(z)$ for which

$$\deg_G^c(y_0, N[z]) \leq R. \quad (3)$$

Since $\deg_G^c(y_0, V \setminus N[z]) \geq \deg_G^c(y_0) - \deg_G^c(y_0, N[z])$, we conclude

$$\begin{aligned} n - 1 - \deg_G(z) &= n - |N[z]| \geq \deg_G^c(y_0, V \setminus N[z]) \\ &\geq \deg_G^c(y_0) - \deg_G^c(y_0, N[z]) \stackrel{(3)}{\geq} \deg_G^c(y_0) - R \\ &\stackrel{(2)}{\implies} n - 1 \geq \deg_G(z) + \deg_G^c(y_0) - R \geq \deg_G^c(z) + R - 1 + \deg_G^c(y_0) - R \end{aligned}$$

from which $2\delta^c(G) \leq \deg_G^c(z) + \deg_G^c(y_0) \leq n$ and $\delta^c(G) \leq n/2$ follow. \square

3. Tools for proving Theorem 1.2

All tools of this section depend on the following concepts of *separation* and *restriction*.

Definition 3.1 (*Separates/restricts*). Let (G, c) be an edge-colored graph, and fix $v \in V = V(G)$ and $X \subseteq N(v)$. We say a color $\alpha \in c(E)$ will X -separate a vertex $y \in V$ from v when some $x \in N(y) \cap X$ satisfies $\alpha = c(\{x, y\}) \neq c(\{v, x\})$. If, additionally, $\alpha \neq c(\{w, y\})$ for all $w \in N(y) \setminus X$, then we say that (v, X) restricts the color α for y . We denote by $\sigma_{v,X}(y)$ the number of colors $\alpha \in c(E)$ which X -separate y from v , and we denote by $\rho_{v,X}(y)$ the number of colors $\alpha \in c(E)$ restricted for y by (v, X) .

Every color $\alpha \in c(E)$ restricted for y by (v, X) also X -separates y from v , so $\sigma_{v,X}(y) \geq \rho_{v,X}(y)$ holds. The next result formally extends [Theorem 1.1](#) (see [Remark 3.3](#)) by averaging these numbers.

Proposition 3.2. *Let (G, c) be an n -vertex edge-colored and edge-minimal (cf. [Remark 1.5](#)) graph with $R = R(G, c)$ from [\(1\)](#), and fix $v \in V$, $X \subseteq N(v)$, and $\emptyset \neq Y \subseteq V \setminus \{v\}$. Then*

$$\frac{1}{|Y|} \sum_{y \in Y} \sigma_{v,X}(y) \geq \frac{1}{|Y|} \sum_{y \in Y} \rho_{v,X}(y) \geq \delta^c(G) + |X| - n - (R - 1) \frac{|X \cap N_!(v)|}{|Y|}.$$

Proof of Proposition 3.2. Let (G, c) , R , v , X and Y be given as above, where it suffices to prove the rightmost inequality for $X \neq \emptyset$. Define the directed graph $D = (V_D, \vec{E}_D)$ on vertex set $V_D = X \cup Y$ by putting, for each edge $\{x, y\} \in E$ with $x \in X$ and $y \in Y$, the arc $(x, y) \in \vec{E}_D$ if, and only if, $c(\{x, y\}) = c(\{v, x\})$. Similarly to (i) and (ii) of [Section 2](#), each $(x, y) \in \vec{E}_D$ gives $x \in N_!(v)$ and $\deg_D^+(x) \leq R - 1$, so

$$\sum_{y \in Y} \deg_D^-(y) = |\vec{E}_D| = \sum_{x \in X} \deg_D^+(x) = \sum_{x \in X \cap N_!(v)} \deg_D^+(x) \leq (R - 1)|X \cap N_!(v)|. \quad (4)$$

Similarly to (iii) of [Section 2](#), each $y \in Y$ admits at most $\deg_D^-(y) + \rho_{v,X}(y)$ many colors $\alpha \in c(E)$:

- (a) $\alpha = c(\{x, y\})$ for some $x \in N(y) \cap X$;
- (b) $\alpha \neq c(\{w, y\})$ for all $w \in N(y) \setminus X$.

Indeed, let $\alpha = c(\{x, y\})$ be such a color. If $\alpha = c(\{x, y\}) = c(\{v, x\})$, then $(x, y) \in \vec{E}_D$, and otherwise (v, X) restricts $\alpha = c(\{x, y\}) \neq c(\{v, x\})$ for y (cf. [Definition 3.1](#)). Consequently,

$$\begin{aligned} n - |X| &\geq \deg_G^c(y, V \setminus X) \geq \deg_G^c(y) - \deg_D^-(y) - \rho_{v,X}(y) \\ \implies \deg_D^-(y) &\geq \deg_G^c(y) - \rho_{v,X}(y) + |X| - n \geq \delta^c(G) - \rho_{v,X}(y) + |X| - n. \end{aligned} \quad (5)$$

Applying (5) to (4) renders the desired result. \square

Remark 3.3. [Proposition 3.2](#) implies [Theorem 1.1](#): Let (G, c) be edge-minimal with no rainbow C_3 , and fix (z, ζ) with $|N_\zeta(z)| = R$, $x \in N(z) = X$, and (if possible) $y \in N_!(z) = Y$. Then $\rho_{z,X}(y) = 0$ as $c(\{x, y\}) \neq c(\{x, z\})$ gives $c(\{y, z\}) = c(\{x, y\})$ with $z \notin X$, since $\{x, y, z\}$ is not rainbow and $c(\{y, z\}) = c(\{x, z\})$ violates $y \in N_!(z)$. Now, $\delta^c(G) \leq n - |X| + R - 1 \leq n - \delta^c(G)$ so $\delta^c(G) \leq n/2$. \square

For (v, X) fixed, [Proposition 3.2](#) shows that some vertices $y \in V$ may admit many colors which X -separate y from v . For relevant (G, c) , [Proposition 3.4](#) finds vertices $y \in V$ with few such colors.

Proposition 3.4. *Fix an integer $\ell \geq 3$, and let (G, c) be an edge-colored and edge-minimal⁵ graph with no rainbow ℓ -cycle C_ℓ . Fix $v \in V = V(G)$ and $X \subseteq N(v)$, and let $C_{\text{rep}} = C_{\text{rep}}(v, X)$ be the colors that repeat on the edges between v and X . Let $Y = Y(v, C_{\text{rep}})$ be the vertices $y \in V$ to which there is an $(\ell - 1)$ -vertex rainbow path P_{vy} from v , none of whose edges has a color in C_{rep} . Then every $y \in Y$ satisfies $\sigma_{v,X}(y) \leq 3\ell$.*

⁵ Recall again [Remark 1.5](#).

Proof of Proposition 3.4. Let (G, c) , $v, X, C_{\text{rep}}, y \in Y$, and P_{vy} be given as above. For a vertex $x \in N(y) \cap X$, the subgraph $P_{vy} + \{x, y\} + \{v, x\}$ is a rainbow ℓ -cycle in (G, c) unless:

- (A) $x \in V(P_{vy})$;
- (B) $c(\{x, y\}) \in c(E(P_{vy}))$;
- (C) $c(\{v, x\}) \in c(E(P_{vy}))$;
- or (D) $c(\{x, y\}) = c(\{v, x\})$.

At most $|N(y) \cap X \cap V(P_{vy})| \leq \ell - 3$ colors $c(\{x, y\})$ are given by a vertex $x \in N(y) \cap X \cap V(P_{vy})$ satisfying (A) and at most $|E(P_{vy})| \leq \ell - 2$ colors $c(\{x, y\})$ satisfy (B). At most $|E(P_{vy})| \leq \ell - 2$ colors $c(\{x, y\})$ satisfy (C) because $c(\{v, x\}) \notin C_{\text{rep}}$. All remaining $c(\{x, y\})$ over $x \in N(y) \cap X$ satisfy (D), lest (G, c) admits a rainbow ℓ -cycle C_ℓ . \square

3.1. Some corollaries

We now consider several useful corollaries of [Propositions 3.2](#) and [3.4](#).

Corollary 3.5. Fix an integer $\ell \geq 3$, and let (G, c) be an n -vertex edge-colored and edge-minimal graph with no rainbow ℓ -cycle C_ℓ . Let $(z, \zeta) \in V \times c(E)$ satisfy $|N_\zeta(z)| = R$ (cf. [\(1\)](#)), and let $Y = Y(z, \zeta) \subseteq V$ be the vertices $y \in V$ to which there is an $(\ell - 1)$ -vertex rainbow path P_{zy} from z , none of whose edges is colored ζ . If $Y \neq \emptyset$,

$$\delta^c(G) \leq \frac{n}{2} + \max \left\{ 0, 3\ell + (R - 1) \left(\frac{n + 1}{2|Y|} - 1 \right) \right\}.$$

Proof of Corollary 3.5. Let (G, c) , z, ζ, R and $Y = Y(z, \zeta) \neq \emptyset$ be given as above, where for the sake of an argument we assume $\delta^c(G) > n/2$. Let $X \subseteq N(z)$ satisfy that $|X| = \lceil n/2 \rceil$, that $\zeta = c(\{x_0, z\})$ for some $x_0 \in X$, and that all $\{x, z\}$ with $x \in X$ are colored distinctly. Set $X^+ = X \cup N_\zeta(z)$, and set $C_{\text{rep}} = C_{\text{rep}}(z, X^+)$ to be the colors $\alpha = c(\{x, z\})$ repeating among $x \in X^+$. Then $C_{\text{rep}} \subseteq \{\zeta\}$, which by hypothesis is forbidden on the path P_{zy} ending in $y \in Y = Y(z, \zeta)$. [Proposition 3.4](#) guarantees that $\sigma_{z, X^+}(y) \leq 3\ell$ holds for each $y \in Y$, and [Proposition 3.2](#) then renders

$$3\ell \geq \frac{1}{|Y|} \sum_{y \in Y} \sigma_{z, X^+}(y) \geq \delta^c(G) + |X^+| - n - \frac{(R - 1)|X^+ \cap N_!(z)|}{|Y|},$$

and using $|X^+| = |X| + R - 1$ and $\lceil n/2 \rceil = |X| \geq |N_!(z) \cap X^+|$ completes the proof. \square

In practice, the set $Y = Y(z, \zeta)$ in [Corollary 3.5](#) will be large, and will guarantee the following result.

Corollary 3.6. Fix an integer $\ell \geq 3$, and let (G, c) be an n -vertex edge-colored graph with no rainbow ℓ -cycle C_ℓ . Then $\delta^c(G) \leq (n/2) + 3\ell$.

Proof of Corollary 3.6. Let (G, c) be given as above. For the sake of an argument, we assume $\delta^c(G) \geq (n/2) + 2\ell - 5$, and w.l.o.g. we assume (G, c) is edge-minimal. Let $(z, \zeta) \in V \times c(E)$ satisfy that $|N_\zeta(z)| = R$ (cf. [\(1\)](#)). For $1 \leq i \leq \ell - 1$, let $Y_i = Y_i(z, \zeta)$ be the set of vertices $y_i \in V$ to which there is an i -vertex rainbow path P_{zy_i} from z , none of whose edges is colored ζ . Inductively, these sets are non-empty as $Y_1 = \{z\}$, and for some $1 \leq j \leq \ell - 2$, a fixed $y_j \in Y_j$ and corresponding path P_{zy_j} provide

$$|Y_{j+1}| \geq \deg_G^c(y_j) - 1 - |E(P_{zy_j})| - (|V(P_{zy_j})| - 2) \geq \delta^c(G) - 2j + 2 \geq \delta^c(G) - 2\ell + 6 \geq \frac{n+1}{2} \quad (6)$$

with $\delta^c(G) \geq (n/2) + 2\ell - 5$. [Corollary 3.5](#) now guarantees

$$\delta^c(G) \leq \frac{n}{2} + 3\ell + (R - 1) \left(\frac{n + 1}{2|Y_{\ell-1}|} - 1 \right) \stackrel{(6)}{\leq} \frac{n}{2} + 3\ell,$$

as desired. \square

The following corollary describes sets similar to $Y(z, \zeta)$ which are also large.

Corollary 3.7. Fix an integer $\ell \geq 3$, and let (G, c) be an edge-colored and edge-minimal graph with no rainbow ℓ -cycle C_ℓ . Let T be a triangle in G , let $v \in V(T)$, and let $\mathcal{C}_T \subseteq c(E)$ satisfy $\mathcal{C}_T \cap c(E(T)) = \emptyset$. Let $Y = Y(v, \mathcal{C}_T) = Y_{\ell-1}(v, \mathcal{C}_T)$ be the vertices $y \in Y$ to which there is an $(\ell - 1)$ -vertex rainbow path P_{vy} from v , none of whose edges has a color in \mathcal{C}_T . Then $|Y| \geq (3/2)(\delta^c(G) - |\mathcal{C}_T| - 4\ell)$.

Proof of Corollary 3.7. Let (G, c) , T , v and \mathcal{C}_T be given as above, where for sake of argument we assume $\delta^c(G) \geq |\mathcal{C}_T| + 4\ell + 1$, and where we set $\hat{\mathcal{C}}_T = \mathcal{C}_T \cup c(E(T))$. Since T is not monochromatic (cf. Remark 1.5), we label $V(T) = \{v, x_1, x_2\}$ with $c(\{v, x_2\}) \neq c(\{x_1, x_2\})$. For $1 \leq i \leq \ell - 1$, let $W_i = W_i(x_1, \hat{\mathcal{C}}_T)$ be the set of vertices $w_i \in V$ to which there is an i -vertex rainbow path $P_{x_1 w_i}$ from x_1 , none of whose edges has a color in $\hat{\mathcal{C}}_T$, and whose vertices meet $V(T)$ only in x_1 . Inductively, these sets are non-empty as $W_1 = \{x_1\}$, and for some $1 \leq j \leq \ell - 2$, a fixed $w_j \in W_j$ and corresponding path $P_{x_1 w_j}$ provide that

$$|W_{j+1}| \geq \deg_G^c(w_j) - |\hat{\mathcal{C}}_T| - |E(P_{x_1 w_j})| - (|V(P_{x_1 w_j})| - 2) - |\{v, x_2\}| \geq \deg_G^c(w_j) - 2(j+1) - |\mathcal{C}_T| \quad (7)$$

is positive from $\delta^c(G) \geq |\mathcal{C}_T| + 4\ell + 1$. It is easy to see that

$$W_{\ell-3}(x_1, \hat{\mathcal{C}}_T) \cup W_{\ell-2}(x_1, \hat{\mathcal{C}}_T) = W_{\ell-3} \cup W_{\ell-2} \subseteq Y = Y_{\ell-1}(v, \mathcal{C}_T). \quad (8)$$

Indeed, if $w_{\ell-3} \in W_{\ell-3}$ is given by $P_{x_1 w_{\ell-3}}$, then the path $P_{x_1 w_{\ell-3}} + \{v, x_2\} + \{x_1, x_2\}$ places $w_{\ell-3} \in Y$, and if $w_{\ell-2} \in W_{\ell-2}$ is given by $P_{x_1 w_{\ell-2}}$, then the path $P_{x_1 w_{\ell-2}} + \{v, x_1\}$ places $w_{\ell-2} \in Y$. We bound (8) as follows. Let $\Gamma = G[W_{\ell-3}]$ be the edge-colored subgraph of G induced on $W_{\ell-3}$. Then Γ admits no rainbow ℓ -cycles C_ℓ , whence Corollary 3.6 guarantees a vertex $w_{\ell-3} \in W_{\ell-3}$ for which $\deg_\Gamma^c(w_{\ell-3}) \leq (1/2)|W_{\ell-3}| + 3\ell$. As such (see the last inequality of (7) to bound $|W_{\ell-2}|$),

$$|W_{\ell-2} \setminus W_{\ell-3}| \geq \deg_G^c(w_{\ell-3}) - 2(\ell - 2) - |\mathcal{C}_T| - \deg_\Gamma^c(w_{\ell-3}) \geq \delta^c(G) - \frac{1}{2}|W_{\ell-3}| - 5\ell - |\mathcal{C}_T|, \quad (9)$$

and so

$$\begin{aligned} |Y| &\stackrel{(8)}{\geq} |W_{\ell-2} \cup W_{\ell-3}| = |W_{\ell-2} \setminus W_{\ell-3}| + |W_{\ell-3}| \stackrel{(9)}{\geq} \delta^c(G) + \frac{1}{2}|W_{\ell-3}| - 5\ell - |\mathcal{C}_T| \\ &\stackrel{(7)}{\geq} \frac{3}{2}\delta^c(G) - 6\ell - \frac{3}{2}|\mathcal{C}_T|, \end{aligned}$$

as promised. \square

4. Proof of Theorem 1.2

Fix an integer⁶ $\ell \geq 3$. Let (G, c) be an n -vertex edge-colored and edge-minimal graph (cf. Remark 1.5) satisfying $\delta^c(G) \geq (n + 1)/2$. We assume that (G, c) admits no rainbow ℓ -cycle C_ℓ , and we bound $n \leq n_0(\ell)$ from above in the course of this proof. Fix $(z, \zeta) \in V \times c(E)$ with $|N_\zeta(z)| = R$ (cf. (1)). Let $X \subset N(z)$ satisfy that $|X| = \delta^c(G) - 1$ and that $c(\{x, z\}) \neq \zeta$ are distinct among $x \in X$. We distinguish two cases.

Case 1 ($\exists e_0 \in E(G[X]) : c(e_0) \neq \zeta$). By our choice of X , the following hold:

- (I) ζ does not appear on the triangle $T = \{z\} \cup e_0$;
- (II) ζ is the only color possibly repeating among $c(\{x, z\})$ for $x \in X^+ = X \cup N_\zeta(z)$.

As such, we set $\mathcal{C}_{\text{rep}} = \mathcal{C}_T \subseteq \{\zeta\}$ so that the set $Y = Y(z, \mathcal{C}_{\text{rep}}) = Y(z, \zeta) = Y(z, \mathcal{C}_T)$ commonly featured in each of Proposition 3.4 and Corollaries 3.5 and 3.7 has size, by the last of these,

$$|Y| \geq \frac{3}{2}(\delta^c(G) - 1 - 4\ell) \geq \frac{3}{2}\left(\frac{n+1}{2} - 1 - 4\ell\right) \stackrel{*}{\geq} \frac{2}{3}(n + 1), \quad (10)$$

where $*$ holds when $n \geq 78\ell$, which we assume for the sake of an argument. Corollary 3.5 then yields

$$\frac{n+1}{2} \leq \delta^c(G) \leq \frac{n}{2} + 3\ell + (R-1) \left(\frac{n+1}{2|Y|} - 1 \right) \stackrel{(10)}{\leq} \frac{n}{2} + 3\ell - \frac{1}{4}(R-1) \implies R \leq 12\ell. \quad (11)$$

⁶ By Theorem 1.3, it suffices to prove Theorem 1.2 for odd integers ℓ . However, most of the current argument is independent of parity considerations, so we make no distinction now.

Now, define the directed graph $F = (V, \vec{E}_F)$ on vertex set $V = V(G)$, where

$$\vec{E}_F = \{(x, y) \in X^+ \times V : \{x, y\} \in E = E(G) \text{ and } c(\{x, y\}) \neq c(\{x, z\})\}.$$

Note that for every $(x, y) \in \vec{E}_F$, the color $c(\{x, y\})$ does X^+ -separate y from z (cf. [Definition 3.1](#)). On the one hand, every $x \in X^+$ clearly satisfies $\deg_F^+(x) \geq \deg_G^c(x) - 1$, and so

$$|\vec{E}_F| = \sum_{x \in X^+} \deg_F^+(x) \geq \sum_{x \in X^+} (\deg_G^c(x) - 1) \geq |X^+|(\delta^c(G) - 1). \quad (12)$$

On the other hand, with Y defined above,

$$|\vec{E}_F| = \sum_{y \in V} \deg_F^-(y) = \sum_{y \in V \setminus Y} \deg_F^-(y) + \sum_{y \in Y} \deg_F^-(y) \leq (n - |Y|)|X^+| + \sum_{y \in Y} \deg_F^-(y). \quad (13)$$

For a fixed $y \in Y$, we bound

$$\begin{aligned} \deg_F^-(y) &= |\{x \in N(y) \cap X^+ : c(\{x, y\}) \neq c(\{x, z\})\}| \\ &= \sum_{\alpha \in c(E)} |\{x \in N_\alpha(y) \cap X^+ : c(\{x, z\}) \neq \alpha\}|. \end{aligned}$$

Let $\mathcal{A} = \mathcal{A}_y$ be these colors $\alpha \in c(E)$ admitting some $x \in N_\alpha(y) \cap X^+$ with $c(\{x, z\}) \neq \alpha$ (where $\alpha = c(\{x, y\})$ from $x \in N_\alpha(y)$). Then \mathcal{A} is precisely the set of colors which X^+ -separate y from z , so $|\mathcal{A}| = \sigma_{z, X^+}(y)$ holds by [Definition 3.1](#). Then

$$\deg_F^-(y) = \sum_{\alpha \in \mathcal{A}} |\{x \in N_\alpha(y) \cap X^+ : \alpha \neq c(\{x, z\})\}| \leq \sum_{\alpha \in \mathcal{A}} |N_\alpha(y) \cap X^+| \leq \sum_{\alpha \in \mathcal{A}} |N_\alpha(y)| \stackrel{(1)}{\leq} |\mathcal{A}|R. \quad (14)$$

Since $y \in Y = Y(z, \mathcal{C}_{\text{rep}})$, [Proposition 3.4](#) guarantees that $|\mathcal{A}| = \sigma_{z, X^+}(y) \leq 3\ell$, and so

$$\deg_F^-(y) \stackrel{(14)}{\leq} |\mathcal{A}|R = \sigma_{z, X^+}(y) \cdot R \stackrel{\text{Prop. 3.4}}{\leq} 3\ell R \stackrel{(11)}{\leq} 36\ell^2. \quad (15)$$

Applying (15) to (13) yields

$$|\vec{E}_F| \leq (n - |Y|)|X^+| + \sum_{y \in Y} \deg_F^-(y) \leq (n - |Y|)|X^+| + 36\ell^2|Y|. \quad (16)$$

Comparing (12) and (16) yields $|X^+|(\delta^c(G) - 1) \leq (n - |Y|)|X^+| + 36\ell^2|Y|$, or equivalently,

$$n \geq \delta^c(G) - 1 + \left(1 - \frac{36\ell^2}{|X^+|}\right)|Y|.$$

Using $|X^+| = \delta^c(G) - 1 + R \geq \delta^c(G) \geq (n + 1)/2$, we infer

$$\frac{1}{2}(n + 1) \geq n - \delta^c(G) + 1 \geq \left(1 - \frac{72\ell^2}{n+1}\right)|Y| \stackrel{(10)}{\geq} \left(1 - \frac{72\ell^2}{n+1}\right) \times \frac{2}{3}(n + 1), \quad (17)$$

which implies $n \leq 288\ell^2 - 1$. \square

Case 2 ($\forall e \in E(G[X])$, $c(e) = \zeta$). Set $Y = V \setminus (\{z\} \cup X)$. We first observe

$$\delta^c(G) - 2 \leq |Y| \leq \delta^c(G) - 1 \quad \text{and} \quad \frac{1}{2}(n - 1) \leq \delta^c(G) - 1 = |X| \leq \frac{1}{2}(n + 1). \quad (18)$$

Indeed, $|Y| = n - 1 - |X| = n - \delta^c(G) \leq \delta^c(G) - 1$ holds from $|X| = \delta^c(G) - 1 \geq (1/2)(n - 1)$. Now, fix $x \in X$ and $\{x, y\} \in E$ where $c(\{x, y\}) \neq \zeta$ and $c(\{x, y\}) \neq c(\{x, z\})$. Then $y \in Y$ and there are at least $\deg_G^c(x) - 2$ many such edges. Thus, $|Y| \geq \deg_G^c(x) - 2 \geq \delta^c(G) - 2$ holds and $|X| \leq (1/2)(n + 1)$ follows.

We now define two subsets of Y that we wish to later avoid. For that, let $H = G[X, Y]$ be the bipartite subgraph of G induced by the bipartition $X \cup Y$, and let D be the subgraph of H consisting of edges $\{x, y\} \in E(H)$ with $x \in X$, $y \in Y$, and $c(\{x, y\}) = c(\{x, z\})$. Let Y_H be the vertices $y \in Y$ sending

$\deg_H^c(y) \leq (5/2)\ell$ many distinct colors to X , and let Y_D be the vertices $y \in Y$ sending $\deg_D(y) \geq 2$ many D -edges to X .

Claim 4.1. $|Y_H| \leq 11\ell$ and $|Y_D| \leq |X|/2$.

Proof of Claim 4.1. Let $\Gamma = G[A]$ be the edge-colored subgraph of G induced on $A = Y_H$. Since $G[A]$ has no rainbow ℓ -cycles C_ℓ , Corollary 3.6 guarantees $a \in A$ with $\deg_\Gamma^c(a) \leq (1/2)|A| + 3\ell$. Since a sends at most $(5/2)\ell + 1$ distinct colors to $\{z\} \cup X$ and at most $|Y| - |A|$ distinct colors to $Y \setminus A$, we see

$$\frac{1}{2}|A| + 3\ell \geq \deg_\Gamma^c(a) \geq \deg_G^c(a) - \frac{5}{2}\ell - 1 - |Y| + |A| \stackrel{(18)}{\geq} |A| - \frac{5}{2}\ell \implies |Y_H| = |A| \leq 11\ell.$$

Since each $x \in X$ sends to Y precisely $\deg_D(x)$ many D -edges and $\geq \deg_G^c(x) - 2$ many ζ -free $H \setminus D$ -edges,

$$\begin{aligned} \deg_D(x) + \deg_G^c(x) - 2 &\leq \deg_H(x) \leq |Y| \stackrel{(18)}{\leq} \delta^c(G) - 1 \implies \deg_D(x) \leq 1 \\ \implies 2|Y_D| &\leq \sum_{y \in Y_D} \deg_D(y) \leq \sum_{y \in Y} \deg_D(y) = |E(D)| = \sum_{x \in X} \deg_D(x) \leq |X|, \end{aligned}$$

and so $|Y_D| \leq |X|/2$ follows. \square

Continuing with Case 2, set $Y_0 = Y \setminus (Y_H \cup Y_D)$, set $H[X, Y_0] = G[X, Y_0]$ to be the bipartite subgraph of H induced by the bipartition $X \cup Y_0$, and set $H_0 = H[X, Y_0] \setminus D$. For each $x \in X$, we already observed (cf. (18)) that x sends at least $\deg_G^c(x) - 2$ many non- ζ , non- $c(\{x, z\})$ colors into Y , and so

$$\forall x \in X, \quad \deg_{H_0}^c(x) \geq \deg_G^c(x) - 2 - |Y \setminus Y_0| \stackrel{\text{Clm. 4.1}}{\geq} \delta^c(G) - 2 - 11\ell - \frac{1}{2}|X| \stackrel{(18)}{\geq} \frac{1}{4}(n+1) - 11\ell - 2. \quad (19)$$

To X , each $y \in Y_0$ sends $\deg_H^c(y) \geq (5/2)\ell + 1$ many colors and $\deg_D(y) \leq 1$ many D -edges, and so

$$\forall y \in Y_0, \quad \deg_{H_0}^c(y) \geq \frac{5}{2}\ell. \quad (20)$$

To conclude Case 2, it is convenient to now distinguish between $\ell \pmod{2}$.

Case 2A (ℓ is odd). With (z, ζ) fixed at the start, fix $y_0 \in N_\zeta(z)$ arbitrarily, where necessarily $y_0 \in Y$. The number of non- ζ colors that y_0 sends to X is at least $\deg_G^c(y_0) - 1 - (|Y| - 1) \geq \delta^c(G) - |Y| \geq 1$ by (18), so fix $x_1 \in X \cap N(y_0)$ to satisfy $c(\{x_1, y_0\}) \neq \zeta$. For an even integer $k \geq 2$, let $Q_{k-1} = (z, y_0, x_1, y_2, \dots, x_{k-1})$ be a rainbow path, where $x_1, \dots, x_{k-1} \in X$ and $y_2, \dots, y_{k-2} \in Y_0$. Then Q_{k-1} would be extended to a rainbow path $Q_k = (z, y_0, \dots, x_{k-1}, y_k)$ along at least

$$\deg_{H_0}^c(x_{k-1}) - |E(Q_{k-1})| - |\{y_0, \dots, y_{k-2}\}| = \deg_{H_0}^c(x_{k-1}) - k - \frac{k}{2} \stackrel{(19)}{\geq} \frac{1}{4}(n+1) - 11\ell - 2 - \frac{3}{2}k \quad (21)$$

many $y_k \in Y_0 \setminus \{y_0, \dots, y_{k-2}\}$, and Q_k would be extended to a rainbow path $Q_{k+1} = (z, y_0, \dots, y_k, x_{k+1})$ along at least

$$\deg_{H_0}^c(y_k) - |E(Q_k)| - |\{x_1, \dots, x_{k-1}\}| = \deg_{H_0}^c(y_k) - (k+1) - (k/2)$$

many $x_{k+1} \in X \setminus \{x_1, \dots, x_{k-1}\}$. More strongly, X was chosen with $c(\{x, z\})$ distinct among $x \in X$, so Q_k would be extended to a rainbow path $Q_{k+1} = (z, y_0, \dots, y_k, x_{k+1})$ along at least

$$\deg_{H_0}^c(y_k) - 2(k+1) - (k/2) \stackrel{(20)}{\geq} \frac{5}{2}(\ell - k - (4/5)) \quad (22)$$

many $x_{k+1} \in X \setminus \{x_1, \dots, x_{k-1}\}$ where additionally $c(\{x_{k+1}, z\}) \notin c(E(Q_k))$. Then Q_{k+1} bears the rainbow $(k+3)$ -cycle $(z, y_0, x_1, \dots, y_k, x_{k+1}, z)$ since $c(\{x_{k+1}, z\}) \notin c(E(Q_k))$ holds and since $c(\{x_{k+1}, y_k\}) \neq c(\{x_{k+1}, z\})$ holds from $\{x_{k+1}, y_k\} \notin E(D)$. Since (G, c) has no rainbow ℓ -cycles C_ℓ , it

must be that $k+3 \leq \ell-1$. Since (22) is positive with $k=\ell-4$, (21) must be non-positive, whence $n \leq 50\ell$. \square

Case 2B (ℓ is even). The argument above slightly simplifies. Choose $x_1 \in X$ arbitrarily. As before, we extend a rainbow path $\hat{Q}_{k-1} = (z, x_1, y_2, \dots, x_{k-1})$ with $x_1, \dots, x_{k-1} \in X$ and $y_2, \dots, y_{k-2} \in Y_0$ to rainbow paths $\hat{Q}_k = (z, x_1, \dots, x_{k-1}, y_k)$ and $\hat{Q}_{k+1} = (z, x_1, \dots, y_k, x_{k+1})$ where $y_k \in Y_0 \setminus \{y_2, \dots, y_{k-2}\}$ and $x_{k+1} \in X \setminus \{x_1, \dots, x_{k-1}\}$, and where $c(\{x_{k+1}, z\}) \notin c(E(\hat{Q}_k))$. The paths \hat{Q}_k and \hat{Q}_{k+1} are respectively shorter than Q_k and Q_{k+1} above, so inequalities analogous to those in (21) and (22) still hold, and with $k+1 < \ell-1$, we similarly conclude $n \leq 50\ell$. \square

5. Proof of Theorem 1.4

Our proof of [Theorem 1.4](#) follows that of [Theorem 1.2](#), where we also use the following corollary of [Propositions 3.2](#) and [3.4](#) from Section 3.

Corollary 5.1. *Fix an integer $\ell \geq 3$, and let (G, c) be an n -vertex edge-colored and edge-minimal graph with no rainbow ℓ -cycle C_ℓ and with $\delta^c(G) \geq 5R + 27\ell$ (cf. (1)). Then $\delta^c(G) < n/2$ or $\Delta(G) < \delta^c(G) + 4R + 3\ell$.*

Proof of Corollary 5.1. Let (G, c) be given as above. Assume for a contradiction that $\delta^c(G) \geq n/2$ and that some $v \in V = V(G)$ has $\deg_G(v) \geq \delta^c(G) + 4R + 3\ell$. Then $\deg_G(v) \geq (n+1)/2$ whence v is incident to some triangle $T = T_v$ in G , where we set⁷ $c(E(T)) = \{\alpha, \beta, \gamma\}$. Since $|N_\alpha(v) \cup N_\beta(v) \cup N_\gamma(v)| \leq 3R$, some $X \subseteq N(v)$ has size $|X| = \delta^c(G) + R + 3\ell$, where at least $\delta^c(G)$ of the colors $c(\{v, x\})$ are distinct among $x \in X$, and where $|N_\alpha(v) \cap X|, |N_\beta(v) \cap X|, |N_\gamma(v) \cap X| \leq 1$. Let $\mathcal{C}_T = \mathcal{C}_{\text{rep}}$ be the $\leq R + 3\ell$ colors $c(\{v, x\})$ repeating among $x \in X$, where $\mathcal{C}_T \cap c(E(T)) = \emptyset$. Let $Y = Y(v, \mathcal{C}_{\text{rep}}) = Y(v, \mathcal{C}_T)$ be the set commonly featured in each of [Proposition 3.4](#) and [Corollary 3.7](#). [Corollary 3.7](#) guarantees

$$\begin{aligned} |Y| &\geq \frac{3}{2}(\delta^c(G) - |\mathcal{C}_T| - 4\ell) \geq \frac{3}{2}(\delta^c(G) - R - 7\ell) = \delta^c(G) + \frac{1}{2}\delta^c(G) - \frac{3}{2}(R + 7\ell) \\ &\geq \delta^c(G) + \frac{1}{2}(5R + 27\ell) - \frac{3}{2}(R + 7\ell) = \delta^c(G) + R + 3\ell = |X|. \end{aligned} \quad (23)$$

[Proposition 3.2](#) then guarantees

$$\begin{aligned} \frac{1}{|Y|} \sum_{y \in Y} \sigma_{v, X}(y) &\geq \delta^c(G) + |X| - n - (R - 1) \frac{|X \cap N_!(v)|}{|Y|} \\ &\stackrel{(23)}{\geq} \delta^c(G) + |X| - n - (R - 1) = 2\delta^c(G) + R + 3\ell - n - (R - 1) \geq 3\ell + 1, \end{aligned} \quad (24)$$

which with $Y = Y(v, \mathcal{C}_{\text{rep}})$ contradicts [Proposition 3.4](#). \square

5.1. Proof of Theorem 1.4

Let $(G, c), (z, \zeta)$, and $X \subset N(z)$ be given as in Section 4. In Case 2, we proved that $n \leq 50\ell$, but in Case 1 we proved only that $n \leq 288\ell^2$, which we now improve to $n \leq 432\ell - 1$. The bottleneck of Case 1 arises in (15), where a fixed $y \in Y$ satisfies $\deg_F^-(y) \leq 3\ell R \leq 36\ell^2$ (cf. (11)). We claim that

$$\deg_F^-(y) \leq 4R + 6\ell \stackrel{(11)}{\leq} 54\ell, \quad (25)$$

which if true updates (17) to say

$$\frac{1}{2}(n+1) \geq \left(1 - \frac{108\ell}{n+1}\right) \times \frac{2}{3}(n+1),$$

⁷ The colors α, β, γ are not identical by [Remark 1.5](#), but they need not all be distinct. These considerations, however, play no role in the current context.

which gives $n \leq 432\ell - 1$. To see (25), recall from (14) that

$$\deg_F^-(y) \leq \sum_{\alpha \in \mathcal{A}} |N_\alpha(y)|, \quad (26)$$

where $\mathcal{A} = \mathcal{A}_y$ is the set of colors $\alpha \in c(E)$ where some $x \in X^+$ satisfies $\alpha = c(\{x, y\}) \neq c(\{x, z\})$. In particular, \mathcal{A} is precisely the set of colors which X^+ -separate y from z , so $|\mathcal{A}| = \sigma_{z, X^+}(y)$ holds by Definition 3.1. Moreover, recall (cf. (15)) that Proposition 3.4 guarantees $|\mathcal{A}| = \sigma_{z, X^+}(y) \leq 3\ell$. Now, let $\mathcal{B} = \mathcal{B}_y$ consist of all non- \mathcal{A} colors incident to y , in which case

$$\sum_{\beta \in \mathcal{B}} |N_\beta(y)| \geq |\mathcal{B}| = \deg_G^c(y) - |\mathcal{A}| = \deg_G^c(y) - \sigma_{z, X^+}(y) \stackrel{\text{Prop. 3.4}}{\geq} \deg_G^c(y) - 3\ell \geq \delta^c(G) - 3\ell. \quad (27)$$

Then

$$\Delta(G) \geq \deg_G^c(y) = \sum_{\alpha \in \mathcal{A}} |N_\alpha(y)| + \sum_{\beta \in \mathcal{B}} |N_\beta(y)| \stackrel{(26)}{\geq} \deg_F^-(y) + \sum_{\beta \in \mathcal{B}} |N_\beta(y)| \stackrel{(27)}{\geq} \deg_F^-(y) + \delta^c(G) - 3\ell.$$

Corollary 5.1 concludes the proof: since $\delta^c(G) \geq (n + 1)/2$ holds by hypothesis, $\Delta(G)$ must satisfy

$$\deg_F^-(y) \leq \Delta(G) - \delta^c(G) + 3\ell \stackrel{\text{Cor. 5.1}}{<} \delta^c(G) + 4R + 3\ell - \delta^c(G) + 3\ell \leq 4R + 6\ell.$$

References

- [1] N. Alon, A. Pokrovskiy, B. Sudakov, Random subgraphs of properly edge-coloured complete graphs and long rainbow cycles, *Israel J. Math.* 222 (1) (2017) 317–331.
- [2] M. Axenovich, T. Jiang, Zs. Tuza, Local anti-Ramsey numbers of graphs, *Special issue on Ramsey theory, Combin. Probab. Comput.* 12 (2003) 495–511.
- [3] H. Chen, Long rainbow paths and rainbow cycles in edge colored graphs - A survey, *Appl. Math. Comput.* 317 (15) (2018) 187–192.
- [4] A. Czygrinow, T. Molla, B. Nagle, R. Oursler, On even rainbow or nontriangular directed cycles, *J. Comb.* (2021) in press.
- [5] P. Erdős, M. Simonovits, V.T. Sós, *Infinite and Finite Sets*, Vol. II, Colloq. Keszthely, 1973; Dedicated to P. Erdős on his 60th birthday, in: *Colloq. Math. Soc. János Bolyai*, vol. 10, North-Holland, Amsterdam, 1975, pp. 633–643.
- [6] P. Erdős, Zs. Tuza, Rainbow subgraphs in edge-colorings of complete graphs, *Ann. Discrete Math.* 55 (1993) 81–88.
- [7] S. Fujita, C. Magnant, K. Ozeki, Rainbow generalizations of Ramsey theory: a survey, *Graphs Combin.* 26 (2010) 1–30.
- [8] P. Keevash, D. Mubayi, B. Sudakov, J. Verstraëte, Rainbow Turán problems, *Combin. Probab. Comput.* 16 (1) (2007) 109–126.
- [9] J. Kim, D. Kühn, A. Kupavskii, D. Osthus, Rainbow structures in locally bounded colourings of graphs, *Random Structures Algorithms* 56 (2020) 1171–1204.
- [10] H. Li, Rainbow C_3 's and C_4 's in edge-colored graphs, *Discrete Math.* 313 (19) (2013) 1893–1896.
- [11] B. Li, B. Ning, C. Xu, S. Zhang, Rainbow triangles in edge-colored graphs, *European J. Combin.* 36 (2014) 453–459.
- [12] H. Li, G. Wang, Color degree and heterochromatic cycles in edge-colored graphs, *European J. Combin.* 33 (8) (2012) 1958–1964.
- [13] J.J. Montellano-Ballesteros, V. Neumann-Lara, An anti-Ramsey theorem on cycles, *Graphs Combin.* 21 (3) (2005) 343–354.
- [14] E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, *Acta Arith.* 27 (1975) 199–245.
- [15] E. Szemerédi, Regular partitions of graphs, in: J.-C. Bermon, J.-C. Fournier, M. Las Vergnas, D. Sotteau (Eds.), *Problèmes en Combinatoire et Théorie des Graphes*, in: *Proc. Colloque Intern., CNRS*, 1978, pp. 399–401.
- [16] R. Čada, A. Kaneko, Z. Ryjáček, K. Yoshimoto, Rainbow cycles in edge-colored graphs, *Discrete Math.* 339 (4) (2016) 1387–1392.