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1. Introduction

An edge-colored graph is a pair (G, c), where G = (V,E) is a graph and ¢ : E — P is a function
mapping edges to some palette of colors P. A subgraph H C G is a rainbow subgraph if the edges of H
are distinctly colored by c. Rainbow subgraph problems are a well-studied area of graph theory (see,
e.g.,, [1-13,16], and Section 1.1 below). Here, we consider degree conditions on (G, ¢) ensuring the
existence of rainbow cycles C, of fixed length £ > 3. To that end, a vertex v € V in an edge-colored
graph (G, c) has c-degree degf(v) given by the number of distinct colors assigned by c to the edges
{v, w} € E. We set §(G) = min,ey deg¢(v) for the minimum c-degree in G. The following result of
H. Li [10] motivates our current work.

Theorem 1.1 (H. Li [10], 2013). Let (G, c) be an n-vertex edge-colored graph. If §°(G) > (n+1)/2, then
(G, c) admits a rainbow 3-cycle Cs.
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A rainbow K|,z 1n/27 establishes that Theorem 1.1 is best possible.
We prove an analogue of Theorem 1.1 for £-cycles C, of fixed arbitrary length.

Theorem 1.2. For every integer £ > 3, every edge-colored graph (G, c) on n > ng(£) many vertices
satisfying 6°(G) > (n + 1)/2 admits a rainbow £-cycle C,.

A rainbow K|;/2 n/21 also establishes that Theorem 1.2 is best possible for all odd integers £.
For even integers ¢ > 4, the authors earlier proved in [4] a stronger form of Theorem 1.2.

Theorem 1.3 (Czygrinow et al. [4]). For every even integer £ > 4, every edge-colored graph (G, c) on
n > No(€) many vertices satisfying §°(G) > (n + 5)/3 admits a rainbow £-cycle C,.

It was shown in [4] that Theorem 1.3 is best possible for every even ¢ # 0 (mod 3).

Theorem 1.1 holds non-vacuously when n > 3, and one may seek to quantify ng(£) and No(£)
in Theorems 1.2 and 1.3. The proof of Theorem 1.3 depends on an application of the Szemerédi
Regularity Lemma [14,15], and therefore gives very poor bounds on Ny(£). Our proof of Theorem 1.2
is elementary, and easily provides ng(£) = 0(¢?). For the interested Reader, we provide a more
detailed analysis in our final section which establishes that ng(¢) is linear in £.

Theorem 1.4. The function ng(£) in Theorem 1.2 satisfies no(£) < 432¢.

The remainder of this paper is organized as follows. In Section 1.1, we discuss further results and
context regarding rainbow cycle problems. In Section 2, we sketch Li’s proof [10] of Theorem 1.1
and note the elements there which provide a basis for our approach here. In Section 3, we extend
this proof to develop several tools useful for proving Theorems 1.2 and 1.4. In Section 4, we prove
Theorem 1.2, and in Section 5, we prove Theorem 1.4. In the entirety of this paper, we employ the
following observations.

Remark 1.5. We say that an edge-colored graph (G, c) is edge-minimal when every e € E(G) satisfies
8°(G — e) < 8°G). Every edge-colored graph (G, ¢) admits an edge-minimal spanning subgraph
H C G satisfying §°(G) = §°(H), so in Theorems 1.1-1.4 it suffices to assume that (G, c) is already
edge-minimal. As such, (G, ¢) admits no three commonly colored edges {u, v}, {v, w}, {w, x} € E(G),
as removing {v, w} € E(G) violates edge-minimality. O

1.1. Rainbow cycles and anti-Ramsey theory

Li et al. [11] extended Theorem 1.1 as follows: if the average c-degree «(G) = (1/n)
> ey degg(v) satisfies «°(G) > (n+ 1)/2, then (G, ¢) admits a rainbow Cs; if the number of colors
|c(E)| used on G = (V, E) satisfies |E|+|c(E)| > (g) then (G, ¢) admits a rainbow Cs. These extensions
relate to a classical anti-Ramsey” result of Erdés et al. [5] that any edge-coloring of G = K, with n
colors admits a rainbow C3. More generally, the following holds.

Theorem 1.6 (Montellano-Ballesteros and Neumann-Lara [13]). For every integer £ > 3, every
edge-colored complete graph (K, c) satisfying
C(EK)| = (@ " L) n+0(1)
2 -1
admits a rainbow C,.

Theorem 1.6 confirmed a conjecture in [5] whose sharpness was already noted there: let n =
q(¢ —1)+r forq,r € Z satisfying 0 <r < £—1; let V(K,) = V1U... UV, be a partition satisfying
Vi = -+ = [Vgl = € — 1and [Vgy4| = r; let all pairs of ( J;_;_,., (%) be given distinct colors; let
all pairs crossing V; and Vi 1U. ..UV, be given a new color &;, where 1 < i < q. This coloring is

4 For a comprehensive survey of anti-Ramsey theory, see [7].
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locally imbalanced, so one may seek bounds on §°(K;,) ensuring a rainbow C; in (K, c). For fixed
¢ > 3, Axenovich et al. [2] proved that §°(K;) > (1 + o(1))n/2 ensures a rainbow C,, but that
for £ = 3 the bound 6°(K,) > (1 + o(1))log, n already suffices (where log, n is necessary). Thus,
replacing K, with an n-vertex host G = (V, E) (see Theorem 1.1) significantly changes the nature of
the problem.

2. Proof of Theorem 1.1

We recall Li’s proof [ 10] of Theorem 1.1. Let (G, ¢) be an n-vertex edge-colored and edge-minimal
graph with no rainbow triangle Cs. We show that §(G) < n/2. To that end, for a color @ € c(E) and
a vertex v € V, we define the «-neighborhood

No(v) = {u € N(v) : c({u, v}) = o},

where N(v) = Ng(v) = {u € V : {u,v} € E} is the usual neighborhood of v in G, and
N[v] = {v} UN(v) is the closed neighborhood of v in G. We define

= J Ne(v): IN,) = 1)
aec(E)

for the set of neighbors u € N(v) for which c({u, v}) appears uniquely among {v, w} € E. We define
the replication number R = R(G, c) of (G, c) by

R = R(G, ¢) = max max |Ny(v)|. @))

veV aec(E)
For v € V and U C V, we denote by degg(v, U) the number of colors c({u, v}) among u € N(v)NU.
Fix (z,{) € V x c(E) for which |N,(z)| = R (cf. (1)). If Ni(z) = 9, then each color incident to z
appears at least twice, so §°(G) < degg(z) 5#(11 — 1)/2 follows. Henceforth, we assume N(z) # 0,

and we define the directed graph D = (Vp, Ep) on vertex set Vp = N(z) by putting, for each edge
{x,y} € E(G[N(z)]), the arc (x,y) € Ep if, and only if, y € N\(z) and c({x, z}) = c({x, y}). Then

Vol = degg(z) > degi(z) + R—1, and  [Ep|= ) degy(y)= ) degj(x),  (2)
YeN(z) XeN(z)

where degg(x) denotes the out-degree of a vertex x € Vp in D, and deg, (x) denotes the correspond-
ing in-degree. We make three observations on D:

(i) Each (x,y) € E‘D places x € Ni(z), lest some x # X' € N(z) \ Ni(z) gives c({X', z}) = c({x, z}) =
c({x,y}) (cf. Remark 1.5);
(ii) Each x € Ny(z) with « = c({x, z}) satisfies degz,“(x) = |No(x) N Ny(z)| <R — 1 (cf. (1));
(iii) Each y € Ni(z) has degi(y, N[z]) < 1+ degy(y), as c({x,y}) = B # o = c({y, z}) for x € N(z)
puts (x,y) € ED, since c({x, z}) # « by y € Ni(z) and c({x, z}) = B lest {x, y, z} is rainbow.

Thus,
3 egr NzZD-1D'E Y degs 2 Y degh0 L Y degi(0) € INGIR - 1).
yeN(z) yeN(z) xeN(z) xeNy(z)
Averaging over N,(z) guarantees a vertex yo € N,(z) for which
degg(vo. N[z]) < R. (3)
Since degf(yo, V \ N[z]) > degf(yo) — deg&(vo, N[z]), we conclude
n—1—degg(z) =n — [N[z]| > deg¢(yo, V \ Nlz])

(3)
> degg(yo) — degg(vo, N[z]) > degg(vo) — R

(2)
= n— 1> degg(z) + degg(yo) — R > degg(z) + R — 1+ degt(vo) —
from which 26°(G) < degc(z) + degg(yo) < n and §°(G) < n/2 follow. O
3
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3. Tools for proving Theorem 1.2
All tools of this section depend on the following concepts of separation and restriction.

Definition 3.1 (Separates/restricts). Let (G, c) be an edge-colored graph, and fix v € V = V(G) and
X C N(v). We say a color @ € c(E) will X-separate a vertex y € V from v when some x € N(y) N X
satisfies @ = c({x, y}) # c({v, x}). If, additionally, @ # c({w, y}) for all w € N(y) \ X, then we say
that (v, X) restricts the color « for y. We denote by o, x(y) the number of colors « € c(E) which
X-separate y from v, and we denote by p, x(y) the number of colors @ € c(E) restricted for y by
(v, X).

Every color o € c(E) restricted for y by (v, X) also X-separates y from v, so o, x(¥) = pyx(¥)
holds. The next result formally extends Theorem 1.1 (see Remark 3.3) by averaging these numbers.

Proposition 3.2. Let (G, c) be an n-vertex edge-colored and edge-minimal (cf. Remark 1.5) graph with
R =R(G,c)from(1),and fixveV,X CN(w), and @ #Y C V\ {v}. Then

k X AN)
|y|2 |y|y€Zvax(y G)—HX'—H_(R_UT'

Proof of Proposition 3.2. Let (G, ¢), R, v, X and Y be given as above, where it suffices to prove the
rightmost inequality for X # @. Define the directed graph D = (Vp, Ep) on vertex set Vp = X UY
by putting, for each edge {x,y} € E with x € X and y € Y, the arc (x,y) € Ep if, and only if,
c({x,y}) = c({v, x}). Similarly to (i) and (ii) of Section 2, each (x,y) € Ep gives x € N,(v) and
degi(x) <R—1,s0

Y degy(y)=IEp| = ) degf(x)= ) degD R—1DIX N Ni(v)]. (4)

yeY xeX xeXNNy (v

Similarly to (iii) of Section 2, each y € Y admits at most deg, (y) + o, x(¥) many colors o € c(E):

(a) @ = c({x, y}) for some x € N(y) N X;
(b) @ # c({w, y}) for all w € N(y) \ X.

Indeed, let @ = c({x, y}) be such a color. If « = c({x, y}) = c({v, x}), then (x,y) € E"D, and otherwise
(v, X) restricts o = c({x, y}) # c({v, x}) for y (cf. Definition 3.1). Consequently,

n—|X| > degc(y, V \ X) > degg(y) — deg, (¥) — pux(¥)
= deg,, () > degc(y) — pux(y) + IX| —n = 6°(G) — pux(y) + IX] — n. (5)
Applying (5) to (4) renders the desired result. O

Remark 3.3. Proposition 3.2 implies Theorem 1.1: Let (G, c) be edge-minimal with no rainbow Cs,
and fix (z, ¢) with |N,(z)] = R, x € N(z) = X, and (if possible) y € Ni(z) = Y. Then p, x(y) = 0
as c({x,y}) # c({x, z}) gives c({y,z}) = c({x,y}) with z ¢ X, since {x,y, z} is not rainbow and
c({y, z}) = c({x, z}) violates y € Ny(z). Now, §°(G) <n—|X|+R—1<n—38°G)so §(G) <n/2. O

For (v, X) fixed, Proposition 3.2 shows that some vertices y € V may admit many colors which
X-separate y from v. For relevant (G, c), Proposition 3.4 finds vertices y € V with few such colors.

Proposition 3.4. Fix an integer £ > 3, and let (G, c) be an edge-colored and edge-minimal® graph
with no rainbow £-cycle C,. Fix v € V = V(G) and X € N(v), and let Crep = Crep(v, X) be the colors
that repeat on the edges between v and X. Let Y = Y(v, Crep) be the vertices y € V to which there is
an (£ — 1)-vertex rainbow path P, from v, none of whose edges has a color in Crep. Then everyy € Y
satisfies o, x(y) < 3¢.

5 Recall again Remark 1.5.
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Proof of Proposition 3.4. Let (G, c), v, X, Crep, ¥ € Y, and P,y be given as above. For a vertex
x € N(y) N X, the subgraph P,, + {x, ¥} + {v, x} is a rainbow £-cycle in (G, c) unless:

(A)x € V(Pyy);  (B) c({x,¥}) € c(E(Pwy));

(C) c({v, x}) € c(E(Pyy)); or (D) c({x,y}) = c({v, x}).
At most [N(y) N X NV(P,)| < £ — 3 colors c({x, y}) are given by a vertex x € N(y) N X N V(P,y)
satisfying (A) and at most |E(P,y)| < £ —2 colors c({x, y}) satisfy (B). At most |E(P,y)| < £ —2 colors

c({x, y}) satisfy (C) because c({v, x}) & Crep. All remaining c({x, y}) over x € N(y) N X satisfy (D), lest
(G, c¢) admits a rainbow ¢-cycle C,. O

3.1. Some corollaries
We now consider several useful corollaries of Propositions 3.2 and 3.4.

Corollary 3.5. Fix an integer £ > 3, and let (G, ¢) be an n-vertex edge-colored and edge-minimal graph
with no rainbow £-cycle C. Let (z, ¢) € V x c(E) satisfy [N;(z)] =R (cf. (1)), and let Y =Y(z,£) SV
be the vertices y € V to which there is an (£ — 1)-vertex rainbow path Py, from z, none of whose edges
is colored ¢. If Y # 0,

¢ n n+1
S(G)fi—i-max{o, 3K+(R—l)<2|YI —1)}.

Proof of Corollary 3.5. Let (G,c),z,¢,Rand Y = Y(z, ¢) # @ be given as above, where for the sake
of an argument we assume §°(G) > n/2. Let X € N(z) satisfy that |X| = [n/2], that ¢ = c({xo, z})
for some xp € X, and that all {x, z} with x € X are colored distinctly. Set X* = X U N,(z), and set
Crep = Crep(z, X™) to be the colors o = c({x, z}) repeating among x € X*. Then Crep < {¢}, which by
hypothesis is forbidden on the path P,, ending iny € Y = Y(z, ¢). Proposition 3.4 guarantees that
o0, x+(y) < 3¢ holds for each y € Y, and Proposition 3.2 then renders

1 R—1DIXTNN(z
302 30 ) 2 56) + ] - DR AN
yey

)

and using [X*| = |X| + R— 1 and [n/2] = |X| > |N\(z) N X™| completes the proof. O

In practice, the set Y = Y(z, ¢) in Corollary 3.5 will be large, and will guarantee the following
result.

Corollary 3.6. Fix an integer £ > 3, and let (G, c) be an n-vertex edge-colored graph with no rainbow
£-cycle Cy. Then §°(G) < (n/2) + 3¢.

Proof of Corollary 3.6. Let (G, c) be given as above. For the sake of an argument, we assume
8¢(G) = (n/2)+ 2¢ — 5, and w.l.o.g. we assume (G, c) is edge-minimal. Let (z, ) € V x c(E) satisfy
that [N;(z)| = R (cf. (1)). For 1 <i < £ — 1, let Y; = Yj(z, ¢) be the set of vertices y; € V to which
there is an i-vertex rainbow path P, from z, none of whose edges is colored ¢. Inductively, these
sets are non-empty as Y; = {z}, and for some 1 <j < £ — 2, a fixed y; € Y; and corresponding path
P,y, provide

|Yj41] > degf(y;) — 1= [E(Py;)| — (IV(Py,)l —2) = 89(G) — 2j+2 > 8°(G) — 2¢ + 6 = 21 (6)
with §(G) > (n/2) 4+ 2¢ — 5. Corollary 3.5 now guarantees

n+1 6) n
+ - 1) < -4+ 3¢,
2|Ye_1]

mmgg+u+m—n<

as desired. O
The following corollary describes sets similar to Y(z, ¢) which are also large.

5
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Corollary 3.7. Fix an integer £ > 3, and let (G, c) be an edge-colored and edge-minimal graph with no
rainbow £-cycle Cy. Let T be a triangle in G, let v € V(T), and let Cr C c(E) satisfy Cr N c(E(T)) = @.
Let Y = Y(v, Cr) = Yi—1(v, Cr) be the vertices y € Y to which there is an (£ — 1)-vertex rainbow path
P,y from v, none of whose edges has a color in Cr. Then |Y| > (3/2)(6°(G) — |Cr| — 4¢).

Proof of Corollary 3.7. Let (G,c), T, v and Cr be given as above, where for sake of argument we
assume 8°(G) > |Cr| + 4£ + 1, and where we set Cr = Cp U c(E(T)). Since T is not monochromatic
(cf. Remark 1.5), we label V(T) = {v, x1, x2} with c({v, x2}) # c({x1,x2}). For 1 <i < £ — 1, let
W; = Wi(x1, ér) be the set of vertices w; € V to which there is an i-vertex rainbow path Py, from
x1, none of whose edges has a color in Cr, and whose vertices meet V(T) only in x;. Inductively, these
sets are non-empty as W; = {x;}, and for some 1 <j < ¢ — 2, a fixed w; € W; and corresponding
path Pyyuy provide that

|Wjs1] > degg(w;)—1Cr| — E(Pyyuy )l — (IV (Peyuy)l —2)— {v, X2}| > degg(w;)—2(+1)—(Cr| (7)
is positive from §°(G) > |Cr| + 4¢ + 1. It is easy to see that
Wi_3(x1, Cr) U Wy_a(x1, Cr) = Wy_3 UWy2 €Y = Y,_4(v, Cr). (8)

Indeed, if we_3 € Wy_3 is given by Py, ., ,, then the path Py,,, , +{v, X2} +{x1, X2} places w,_3 €Y,
and if w,_, € W,_, is given by Py, ,, then the path Py, , + {v, X1} places w,_, € Y. We
bound (8) as follows. Let I" = G[W,_3] be the edge-colored subgraph of G induced on W,_3. Then
I' admits no rainbow ¢-cycles C;, whence Corollary 3.6 guarantees a vertex w,_3 € W,_3 for which
degf(we—3) < (1/2)|W,_3| + 3£. As such (see the last inequality of (7) to bound |W,_,]),

|We—a \ We_3| > degf(we—3)—2(¢ —2)— |Cr| — degf-(wy—3) > 8°(G)— 3|W,_3| =5 —[Crl, (9)

and so

(8) 9)
Y] > [We_p UW,_s| = W \ We_s| + [We_3| = 6°(G) + 3|W,—3] — 5¢ — |cr]

%S

36°(G) — 6 — 3crl,
as promised. O

4. Proof of Theorem 1.2

Fix an integer® ¢ > 3. Let (G, ¢) be an n-vertex edge-colored and edge-minimal graph (cf. Re-
mark 1.5) satisfying §(G) > (n + 1)/2. We assume that (G, ¢) admits no rainbow ¢-cycle C,, and
we bound n < ny(£) from above in the course of this proof. Fix (z, ¢) € V x c(E) with |[N;(z)| =R
(cf. (1)). Let X C N(z) satisfy that |X| = §°(G) — 1 and that c({x, z}) # ¢ are distinct among x € X.
We distinguish two cases.

Case 1 (Jey € E(G[X]) : c(eg) # ¢). By our choice of X, the following hold:

(I) ¢ does not appear on the triangle T = {z} U eg;
(II) ¢ is the only color possibly repeating among c({x, z}) for x € X* = X U N,(z).

As such, we set Crep = Cr C {¢} so that the set Y = Y(z, Crep) = Y(z,¢) = Y(z, Cr) commonly
featured in each of Proposition 3.4 and Corollaries 3.5 and 3.7 has size, by the last of these,

V] > 3(5°G) — 1— 46) > 3 (%! —1—4€) = 2(n+ 1), (10)

where * holds when n > 78¢, which we assume for the sake of an argument. Corollary 3.5 then
yields
n+1
2

1 (10) 1
< 5°G) < g+3e+(R—1)(%—1> < E+3E—Z(R—l) —  R<12¢ (11)

6 By Theorem 1.3, it suffices to prove Theorem 1.2 for odd integers ¢. However, most of the current argument is
independent of parity considerations, so we make no distinction now.

6
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Now, define the directed graph F = (V, EF) on vertex set V = V(G), where
Er={(xy) € X" x V: {x,y} € E=E(G) and c({x, y}) # c({x, 2})} .

Note that for every (x,y) € E‘F, the color c({x, y}) does X" -separate y from z (cf. Definition 3.1). On
the one hand, every x € X™ clearly satisfies deg;’(x) > degg(x) — 1, and so

|Er| = ) degf(x) > Y _(degi(x)— 1) > [X*|(5°(G) — 1). (12)
xeXt xeXt
On the other hand, with Y defined above,
|Er| =) degr(y)= > deg;(y)+ Y degr(y) < (n—|YDXT|+ )  deg;(y) (13)
yev yeVv\Y yey yey

For a fixed y € Y, we bound
degz (v) = | {x € NO) N X* : c({x.y}) # c({x, 2D}
Z [ {x e No) N X" c({x, 2}) # e} |.

aec(E

Let A = A, be these colors « € c(E) admitting some x € N,(y) N Xt with c({x, z}) # o (where
a = c({x,y}) from x € N,(y)). Then A is precisely the set of colors which X*-separate y from z, so
|A] = o, x+(¥) holds by Definition 3.1. Then

degr ()= 3 | (x e Ne) X" 1 0 £ et 2D} | = 3 [Ne) N XF| = T INO)| £ AR

acA acA acA
(14)
Since y € Y = Y(z, Crep), Proposition 3.4 guarantees that |A| = o, x+(¥) < 3¢, and so
_, 4 Prop. 3.4 (11) )
deg; (y) < |[AlR=o0,x+(¥y)-R =< 3¢R < 36¢°. (15)
Applying (15) to (13) yields
Er| < (n— |YDIXT|+ ) degp(y) < (n— [YDIXH| + 36¢2|Y]. (16)
yey
Comparing (12) and (16) yields [XT|(6°(G) — 1) < (n — |Y|)|XT| + 36£2|Y|, or equivalently,
n>80G) —-1+(1 366° Y|
- IX*] '
Using |XT| = 86°(G) — 1+ R > §°G) > (n+ 1)/2, we infer
(10)
n+1)>n—38GC) +1> (1 - %) Y| > (1 - %) x 2(n+1), (17)

which implies n < 288¢2 — 1. O
Case 2 (Ve € E(G[X]), c(e) =¢)- Set Y =V \ ({z} U X). We first observe
8(G)—2<|Y|<8(G)—1  and  J(n—1)<8(G)—1=X| < 3(n+1). (18)

Indeed, |Y| =n—1—|X| =n—§(G) < §(G)— 1 holds from |X| = §(G) — 1 > (1/2)(n — 1). Now,
fix x € X and {x, y} € E where c({x,y}) # ¢ and c({x,y}) # c({x,z}). Then y € Y and there are at
least deg((x) —2 many such edges. Thus, |Y| > degf(x)—2 > §°(G)—2 holds and |X| < (1/2)(n+1)
follows.

We now define two subsets of Y that we wish to later avoid. For that, let H = G[X, Y] be the
bipartite subgraph of G induced by the bipartition XUY, and let D be the subgraph of H consisting of
edges {x,y} € E(H) withx € X,y € Y, and c({x, y}) = c({x, z}). Let Yy be the vertices y € Y sending
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deg,(y) < (5/2)¢ many distinct colors to X, and let Yp be the vertices y € Y sending degp(y) > 2
many D-edges to X.

Claim 4.1. |Yy| < 11¢ and |Yp| < |X]/2.

Proof of Claim 4.1. Let I = G[A] be the edge-colored subgraph of G induced on A = Yy. Since G[A]
has no rainbow ¢-cycles C,, Corollary 3.6 guarantees a € A with deg$-(a) < (1/2)|A| + 3¢. Since a
sends at most (5/2)¢ 4 1 distinct colors to {z} UX and at most |Y| — |A| distinct colors to Y \ A, we
see
(18)

3|A14-3¢ > degf.(a) > degf(a)—3£—1—|Y|+|A| > |A|—3¢ = Y| = Al < 114,
Since each x € X sends to Y precisely degp(x) many D-edges and > degg(x) — 2 many ¢-free
H \ D-edges,

(18)
degp(x) + degg(x) — 2 < degy(x) < |Y| < 6°(GC)—1 == degp(x) <1
= 2|Vp| < ) degy(y) < Y _degp(y) = [E(D)| = )  degy(x) < |XI,

yeYp yeY xeX

and so |Yp| < |X|/2 follows. O

Continuing with Case 2, set Yo = Y \ (Yy U Yp), set H[X, Yo] = GIX, Yo] to be the bipartite
subgraph of H induced by the bipartition X U Yy, and set Hy = H[X, Yo] \ D. For each x € X, we
already observed (cf. (18)) that x sends at least degf.(x) — 2 many non-¢, non-c({x, z}) colors into Y,
and so

. c Cm. 4.1 1 (18) 4
VxeX, degHO(x) > deg(x)—2—|Y \Yo| = &%(G)—2-114—3|X| = Z(n+1)—11£-2.
(19)
To X, each y € Y sends degj,(y) > (5/2)¢ + 1 many colors and degp(y) < 1 many D-edges, and so
Vy €Yo, deg(y)= 3¢ (20)
To conclude Case 2, it is convenient to now distinguish between ¢ (mod 2).

Case 2A (¢ is odd). With (z, ¢) fixed at the start, fix yo € N,(z) arbitrarily, where necessarily yo € Y.
The number of non-¢ colors that yo sends to X is at least degg(yo)— 1—(|Y|—1) > 8(G)— Y| > 1
by (18), so fix x; € X N N(yo) to satisfy c({x1, yo}) # ¢. For an even integer k > 2, let Qx_1 =
(z, Y0, X1, Y2, . - . » Xk—1) be a rainbow path, where x1,...,x,_; € X and y, ..., Yx_2 € Yo. Then Q1
would be extended to a rainbow path Q, = (z, yo, ..., Xk—1, k) along at least

(19)
degf;, (%-1)—1E(Qe-1)| = Yo, - .., Y2} = degfy (k1) —k—5 = F(n+1)—116-2—3k (21)

many y, € Yo \ {¥o, --.,Yk—2}, and Q; would be extended to a rainbow path Qi1 = (z, Yo, - - -, Yk»
Xp+1) along at least

degy (Vi) — [E(Qu)l — I{x1, .. ., X1} = degy (i) — (k+ 1) — (k/2)

many Xg+1 € X \ {X1, ..., Xk—1}. More strongly, X was chosen with c({x, z}) distinct among x € X,
so Qx would be extended to a rainbow path Q11 = (2, Yo, - - -, Yk, Xk+1) along at least
(20)
degg, (Vi) — 2(k + 1) — (k/2) = 3(€ —k —(4/5)) (22)

many X 1 € X \ {X1,...,X—1} where additionally c({xxs+1,z}) & c(E(Qx)). Then Qi bears
the rainbow (k + 3)-cycle (z, yo, X1, . . ., Yk» Xk+1, Z) since c({xy+1,2}) &€ c(E(Qx)) holds and since
c({Xk+1, Yx}) # c({Xk+1, z}) holds from {xx,1, Yk} & E(D). Since (G, ¢) has no rainbow £-cycles Cy, it

8
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must be that k+3 < £ — 1. Since (22) is positive with k = £ — 4, (21) must be non-positive, whence
n <500 0O

Case 2B (¢ is even). The argument above slightly simplifies. Choose x; € X arbitrarily. As before, we
extend a rainbow Qath Q1 = (z2,X1,¥2, - - .,xk,1lwith X1,...,X1 € Xand y2,..., Yk 2 € Yo
to rainbow paths Qx = (z,x1,...,Xk—1,Yx) and Qxrq = (2,%1, - -+, Yis Xkg1) Where yp € Yo \
Lyz, v, Yi—2} and xgq € X\ {X1, ..., Xk—1}, and where c({Xy+1,z}) & c(E(Qx)). The paths Qi and
Qg1 are respectively shorter than Q, and Q1 above, so inequalities analogous to those in (21) and

(22) still hold, and with k + 1 < £ — 1, we similarly conclude n < 50¢. O

5. Proof of Theorem 1.4

Our proof of Theorem 1.4 follows that of Theorem 1.2, where we also use the following corollary
of Propositions 3.2 and 3.4 from Section 3.

Corollary 5.1. Fix an integer £ > 3, and let (G, c) be an n-vertex edge-colored and edge-minimal
graph with no rainbow £-cycle C, and with §°(G) > 5R + 27¢ (cf. (1)). Then §°(G) < n/2 or
A(G) < §°(G)+ 4R + 3¢

Proof of Corollary 5.1. Let (G, c) be given as above. Assume for a contradiction that §°(G) > n/2 and
that some v € V = V(G) has deg.(v) > §°(G)+4R+3¢. Then deg;(v) > (n+1)/2 whence v is incident
to some triangle T = T, in G, where we set’ ¢(E(T)) = {a, B, y}.Since [Ny (v) U Ng(v) UN, (v)] < 3R,
some X C N(v) has size |X| = §°(G) + R+ 3¢, where at least §°(G) of the colors c({v, x}) are distinct
among x € X, and where |[N,(v) NX], INg(v) NX], IN,(v)NX]| < 1. Let C; = Cyep be the < R+ 3¢
colors c({v, x}) repeating among x € X, where Cr N c(E(T)) = @. Let Y = Y(v, Crep) = Y(v, Cr) be
the set commonly featured in each of Proposition 3.4 and Corollary 3.7. Corollary 3.7 guarantees

Y] = 3(5°(G) — Ier| — 4€) = 3(5°(G) = R— 7€) = 5°(G) + 35°(G) — 3(R+7¢)

> 8(G) + %(SR +27¢) — %(R +7€) =8(G)+ R+ 3¢ = |X|. (23)
Proposition 3.2 then guarantees
1 X N Ny(v
Y o) 2 56 + X1 —n - (R - O
Yl & Y]
23)
> 8G)+1X|-n—(R—1)=28(G)+R+3¢—n—(R—1)>3¢+1, (24)

which with Y = Y (v, Crep) contradicts Proposition 3.4. O

5.1. Proof of Theorem 1.4

Let (G, c), (z, ¢), and X C N(z) be given as in Section 4. In Case 2, we proved that n < 50¢, but
in Case 1 we proved only that n < 288¢2, which we now improve to n < 432¢ — 1. The bottleneck
of Case 1 arises in (15), where a fixed y € Y satisfies deg, (y) < 3¢R < 3602 (cf. (11)). We claim
that

(11)
deg. (y) <4R+6¢ < 54¢, (25)
which if true updates (17) to say

sn+1) = (1—158) x 2(n+ 1),

7 The colors «, B, y are not identical by Remark 1.5, but they need not all be distinct. These considerations, however,
play no role in the current context.
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which gives n < 432¢ — 1. To see (25), recall from (14) that
degr (v) < ) INaY), (26)

acA

where A = A, is the set of colors « € c(E) where some x € X satisfies « = c({x, y}) # c({x, z}). In
particular, A is precisely the set of colors which X*-separate y from z, so |A| = o, x+(y) holds by
Definition 3.1. Moreover, recall (cf. (15)) that Proposition 3.4 guarantees |A| = o, x+(y) < 3¢. Now,
let B = B, consist of all non-A colors incident to y, in which case

Prop. 3.4
Z INs(V)| = |B] = degg(y)—|Al = degg(y)—o, x+(y) = degg(y)—3¢ > §°(G)—3¢. (27)
penB

Then

AG) = degey) = S INUWI+ 3 INs) 2 degr 1)+ 3 INyWI 2 degr (v)+8(G) — 3¢.
acA peB peB

Corollary 5.1 concludes the proof: since §°(G) > (n + 1)/2 holds by hypothesis, A(G) must satisfy

deg; (y) < A(G) — 85(G) + 3¢ ="' 6°(G) + 4R + 3¢ — 6°(G) + 3¢ < 4R + 6.
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