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a b s t r a c t

Let G = (V , E) be an n-vertex edge-colored graph. In 2013, H. Li
proved that if every vertex v ∈ V is incident to at least (n+1)/2
distinctly colored edges, then G admits a rainbow triangle. We
prove that the same hypothesis ensures a rainbow ℓ-cycle Cℓ

whenever n ≥ 432ℓ. This result is sharp for all odd integers
ℓ ≥ 3, and extends earlier work of the authors for when ℓ is
even.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

An edge-colored graph is a pair (G, c), where G = (V , E) is a graph and c : E → P is a function
mapping edges to some palette of colors P . A subgraph H ⊆ G is a rainbow subgraph if the edges of H
are distinctly colored by c. Rainbow subgraph problems are a well-studied area of graph theory (see,
e.g., [1–13,16], and Section 1.1 below). Here, we consider degree conditions on (G, c) ensuring the
existence of rainbow cycles Cℓ of fixed length ℓ ≥ 3. To that end, a vertex v ∈ V in an edge-colored
graph (G, c) has c-degree degcG(v) given by the number of distinct colors assigned by c to the edges
{v, w} ∈ E. We set δc(G) = minv∈V degcG(v) for the minimum c-degree in G. The following result of
H. Li [10] motivates our current work.

Theorem 1.1 (H. Li [10], 2013). Let (G, c) be an n-vertex edge-colored graph. If δc(G) ≥ (n+1)/2, then
(G, c) admits a rainbow 3-cycle C3.
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A rainbow K⌊n/2⌋,⌈n/2⌉ establishes that Theorem 1.1 is best possible.
We prove an analogue of Theorem 1.1 for ℓ-cycles Cℓ of fixed arbitrary length.

Theorem 1.2. For every integer ℓ ≥ 3, every edge-colored graph (G, c) on n ≥ n0(ℓ) many vertices

satisfying δc(G) ≥ (n + 1)/2 admits a rainbow ℓ-cycle Cℓ.

A rainbow K⌊n/2⌋,⌈n/2⌉ also establishes that Theorem 1.2 is best possible for all odd integers ℓ.
For even integers ℓ ≥ 4, the authors earlier proved in [4] a stronger form of Theorem 1.2.

Theorem 1.3 (Czygrinow et al. [4]). For every even integer ℓ ≥ 4, every edge-colored graph (G, c) on
n ≥ N0(ℓ) many vertices satisfying δc(G) ≥ (n + 5)/3 admits a rainbow ℓ-cycle Cℓ.

It was shown in [4] that Theorem 1.3 is best possible for every even ℓ ̸≡ 0 (mod 3).
Theorem 1.1 holds non-vacuously when n ≥ 3, and one may seek to quantify n0(ℓ) and N0(ℓ)

in Theorems 1.2 and 1.3. The proof of Theorem 1.3 depends on an application of the Szemerédi
Regularity Lemma [14,15], and therefore gives very poor bounds on N0(ℓ). Our proof of Theorem 1.2
is elementary, and easily provides n0(ℓ) = O(ℓ2). For the interested Reader, we provide a more
detailed analysis in our final section which establishes that n0(ℓ) is linear in ℓ.

Theorem 1.4. The function n0(ℓ) in Theorem 1.2 satisfies n0(ℓ) ≤ 432ℓ.

The remainder of this paper is organized as follows. In Section 1.1, we discuss further results and
context regarding rainbow cycle problems. In Section 2, we sketch Li’s proof [10] of Theorem 1.1
and note the elements there which provide a basis for our approach here. In Section 3, we extend
this proof to develop several tools useful for proving Theorems 1.2 and 1.4. In Section 4, we prove
Theorem 1.2, and in Section 5, we prove Theorem 1.4. In the entirety of this paper, we employ the
following observations.

Remark 1.5. We say that an edge-colored graph (G, c) is edge-minimal when every e ∈ E(G) satisfies
δc(G − e) < δc(G). Every edge-colored graph (G, c) admits an edge-minimal spanning subgraph
H ⊆ G satisfying δc(G) = δc(H), so in Theorems 1.1–1.4 it suffices to assume that (G, c) is already
edge-minimal. As such, (G, c) admits no three commonly colored edges {u, v}, {v, w}, {w, x} ∈ E(G),
as removing {v, w} ∈ E(G) violates edge-minimality. □

1.1. Rainbow cycles and anti-Ramsey theory

Li et al. [11] extended Theorem 1.1 as follows: if the average c-degree αc(G) = (1/n)
∑

v∈V degcG(v) satisfies αc(G) ≥ (n + 1)/2, then (G, c) admits a rainbow C3; if the number of colors
|c(E)| used on G = (V , E) satisfies |E|+|c(E)| ≥

(

n

2

)

, then (G, c) admits a rainbow C3. These extensions
relate to a classical anti-Ramsey4 result of Erdős et al. [5] that any edge-coloring of G = Kn with n

colors admits a rainbow C3. More generally, the following holds.

Theorem 1.6 (Montellano-Ballesteros and Neumann-Lara [13]). For every integer ℓ ≥ 3, every

edge-colored complete graph (Kn, c) satisfying

|c(E(Kn))| ≥

(

ℓ − 2

2
+

1

ℓ − 1

)

n + O(1)

admits a rainbow Cℓ.

Theorem 1.6 confirmed a conjecture in [5] whose sharpness was already noted there: let n =
q(ℓ−1)+ r for q, r ∈ Z satisfying 0 ≤ r < ℓ−1; let V (Kn) = V1∪̇ . . . ∪̇Vq+1 be a partition satisfying
|V1| = · · · = |Vq| = ℓ − 1 and |Vq+1| = r; let all pairs of

⋃

1≤i≤q+1

(

Vi
2

)

be given distinct colors; let
all pairs crossing Vi and Vi+1∪̇ . . . ∪̇Vq+1 be given a new color ξi, where 1 ≤ i ≤ q. This coloring is

4 For a comprehensive survey of anti-Ramsey theory, see [7].
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locally imbalanced, so one may seek bounds on δc(Kn) ensuring a rainbow Cℓ in (Kn, c). For fixed
ℓ ≥ 3, Axenovich et al. [2] proved that δc(Kn) ≥ (1 + o(1))n/2 ensures a rainbow Cℓ, but that
for ℓ = 3 the bound δc(Kn) ≥ (1 + o(1)) log2 n already suffices (where log2 n is necessary). Thus,
replacing Kn with an n-vertex host G = (V , E) (see Theorem 1.1) significantly changes the nature of
the problem.

2. Proof of Theorem 1.1

We recall Li’s proof [10] of Theorem 1.1. Let (G, c) be an n-vertex edge-colored and edge-minimal
graph with no rainbow triangle C3. We show that δc(G) ≤ n/2. To that end, for a color α ∈ c(E) and
a vertex v ∈ V , we define the α-neighborhood

Nα(v) = {u ∈ N(v) : c({u, v}) = α} ,

where N(v) = NG(v) = {u ∈ V : {u, v} ∈ E} is the usual neighborhood of v in G, and
N[v] = {v} ∪ N(v) is the closed neighborhood of v in G. We define

N!(v) =
⋃

α∈c(E)

{Nα(v) : |Nα(v)| = 1}

for the set of neighbors u ∈ N(v) for which c({u, v}) appears uniquely among {v, w} ∈ E. We define
the replication number R = R(G, c) of (G, c) by

R = R(G, c) = max
v∈V

max
α∈c(E)

|Nα(v)|. (1)

For v ∈ V and U ⊆ V , we denote by degcG(v,U) the number of colors c({u, v}) among u ∈ N(v)∩U .
Fix (z, ζ ) ∈ V × c(E) for which |Nζ (z)| = R (cf. (1)). If N!(z) = ∅, then each color incident to z

appears at least twice, so δc(G) ≤ degcG(z) ≤ (n − 1)/2 follows. Henceforth, we assume N!(z) ̸= ∅,
and we define the directed graph D = (VD, E⃗D) on vertex set VD = N(z) by putting, for each edge
{x, y} ∈ E(G[N(z)]), the arc (x, y) ∈ E⃗D if, and only if, y ∈ N!(z) and c({x, z}) = c({x, y}). Then

|VD| = degG(z) ≥ degcG(z) + R − 1, and |E⃗D| =
∑

y∈N!(z)

deg−
D (y) =

∑

x∈N(z)

deg+
D (x), (2)

where deg+
D (x) denotes the out-degree of a vertex x ∈ VD in D, and deg−

D (x) denotes the correspond-
ing in-degree. We make three observations on D:

(i) Each (x, y) ∈ E⃗D places x ∈ N!(z), lest some x ̸= x′ ∈ N(z) \ N!(z) gives c({x′, z}) = c({x, z}) =
c({x, y}) (cf. Remark 1.5);

(ii) Each x ∈ N!(z) with α = c({x, z}) satisfies deg+
D (x) = |Nα(x) ∩ N!(z)| ≤ R − 1 (cf. (1));

(iii) Each y ∈ N!(z) has degcG(y,N[z]) ≤ 1 + deg−
D (y), as c({x, y}) = β ̸= α = c({y, z}) for x ∈ N(z)

puts (x, y) ∈ E⃗D, since c({x, z}) ̸= α by y ∈ N!(z) and c({x, z}) = β lest {x, y, z} is rainbow.

Thus,
∑

y∈N!(z)

(degcG(y,N[z]) − 1)
(iii)
≤

∑

y∈N!(z)

deg−
D (y)

(2)
=

∑

x∈N(z)

deg+
D (x)

(i)
=

∑

x∈N!(z)

deg+
D (x)

(ii)
≤ |N!(z)|(R − 1) .

Averaging over N!(z) guarantees a vertex y0 ∈ N!(z) for which

degcG(y0,N[z]) ≤ R. (3)

Since degcG(y0, V \ N[z]) ≥ degcG(y0) − degcG(y0,N[z]), we conclude

n − 1 − degG(z) = n − |N[z]| ≥ degcG(y0, V \ N[z])

≥ degcG(y0) − degcG(y0,N[z])
(3)
≥ degcG(y0) − R

H⇒ n − 1 ≥ degG(z) + degcG(y0) − R
(2)
≥ degcG(z) + R − 1 + degcG(y0) − R

from which 2δc(G) ≤ degcG(z) + degcG(y0) ≤ n and δc(G) ≤ n/2 follow. □
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3. Tools for proving Theorem 1.2

All tools of this section depend on the following concepts of separation and restriction.

Definition 3.1 (Separates/restricts). Let (G, c) be an edge-colored graph, and fix v ∈ V = V (G) and
X ⊆ N(v). We say a color α ∈ c(E) will X-separate a vertex y ∈ V from v when some x ∈ N(y) ∩ X
satisfies α = c({x, y}) ̸= c({v, x}). If, additionally, α ̸= c({w, y}) for all w ∈ N(y) \ X , then we say
that (v, X) restricts the color α for y. We denote by σv,X (y) the number of colors α ∈ c(E) which
X-separate y from v, and we denote by ρv,X (y) the number of colors α ∈ c(E) restricted for y by
(v, X).

Every color α ∈ c(E) restricted for y by (v, X) also X-separates y from v, so σv,X (y) ≥ ρv,X (y)
holds. The next result formally extends Theorem 1.1 (see Remark 3.3) by averaging these numbers.

Proposition 3.2. Let (G, c) be an n-vertex edge-colored and edge-minimal (cf. Remark 1.5) graph with
R = R(G, c) from (1), and fix v ∈ V , X ⊆ N(v), and ∅ ̸= Y ⊆ V \ {v}. Then

1

|Y |

∑

y∈Y

σv,X (y) ≥
1

|Y |

∑

y∈Y

ρv,X (y) ≥ δc(G) + |X | − n − (R − 1)
|X ∩ N!(v)|

|Y |
.

Proof of Proposition 3.2. Let (G, c), R, v, X and Y be given as above, where it suffices to prove the
rightmost inequality for X ̸= ∅. Define the directed graph D = (VD, E⃗D) on vertex set VD = X ∪ Y

by putting, for each edge {x, y} ∈ E with x ∈ X and y ∈ Y , the arc (x, y) ∈ E⃗D if, and only if,
c({x, y}) = c({v, x}). Similarly to (i) and (ii) of Section 2, each (x, y) ∈ E⃗D gives x ∈ N!(v) and
deg+

D (x) ≤ R − 1, so
∑

y∈Y

deg−
D (y) = |E⃗D| =

∑

x∈X

deg+
D (x) =

∑

x∈X∩N!(v)

deg+
D (x) ≤ (R − 1)|X ∩ N!(v)|. (4)

Similarly to (iii) of Section 2, each y ∈ Y admits at most deg−
D (y) + ρv,X (y) many colors α ∈ c(E):

(a) α = c({x, y}) for some x ∈ N(y) ∩ X;
(b) α ̸= c({w, y}) for all w ∈ N(y) \ X .

Indeed, let α = c({x, y}) be such a color. If α = c({x, y}) = c({v, x}), then (x, y) ∈ E⃗D, and otherwise
(v, X) restricts α = c({x, y}) ̸= c({v, x}) for y (cf. Definition 3.1). Consequently,

n − |X | ≥ degcG(y, V \ X) ≥ degcG(y) − deg−
D (y) − ρv,X (y)

H⇒ deg−
D (y) ≥ degcG(y) − ρv,X (y) + |X | − n ≥ δc(G) − ρv,X (y) + |X | − n. (5)

Applying (5) to (4) renders the desired result. □

Remark 3.3. Proposition 3.2 implies Theorem 1.1: Let (G, c) be edge-minimal with no rainbow C3,
and fix (z, ζ ) with |Nζ (z)| = R, x ∈ N(z) = X , and (if possible) y ∈ N!(z) = Y . Then ρz,X (y) = 0
as c({x, y}) ̸= c({x, z}) gives c({y, z}) = c({x, y}) with z ̸∈ X , since {x, y, z} is not rainbow and
c({y, z}) = c({x, z}) violates y ∈ N!(z). Now, δc(G) ≤ n− |X | + R− 1 ≤ n− δc(G) so δc(G) ≤ n/2. □

For (v, X) fixed, Proposition 3.2 shows that some vertices y ∈ V may admit many colors which
X-separate y from v. For relevant (G, c), Proposition 3.4 finds vertices y ∈ V with few such colors.

Proposition 3.4. Fix an integer ℓ ≥ 3, and let (G, c) be an edge-colored and edge-minimal5 graph
with no rainbow ℓ-cycle Cℓ. Fix v ∈ V = V (G) and X ⊆ N(v), and let Crep = Crep(v, X) be the colors
that repeat on the edges between v and X. Let Y = Y (v, Crep) be the vertices y ∈ V to which there is
an (ℓ − 1)-vertex rainbow path Pvy from v, none of whose edges has a color in Crep. Then every y ∈ Y
satisfies σv,X (y) ≤ 3ℓ.

5 Recall again Remark 1.5.
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Proof of Proposition 3.4. Let (G, c), v, X , Crep, y ∈ Y , and Pvy be given as above. For a vertex
x ∈ N(y) ∩ X , the subgraph Pvy + {x, y} + {v, x} is a rainbow ℓ-cycle in (G, c) unless:

(A) x ∈ V (Pvy); (B) c({x, y}) ∈ c(E(Pvy));

(C) c({v, x}) ∈ c(E(Pvy)); or (D) c({x, y}) = c({v, x}).

At most |N(y) ∩ X ∩ V (Pvy)| ≤ ℓ − 3 colors c({x, y}) are given by a vertex x ∈ N(y) ∩ X ∩ V (Pvy)
satisfying (A) and at most |E(Pvy)| ≤ ℓ− 2 colors c({x, y}) satisfy (B). At most |E(Pvy)| ≤ ℓ− 2 colors
c({x, y}) satisfy (C) because c({v, x}) ̸∈ Crep. All remaining c({x, y}) over x ∈ N(y)∩X satisfy (D), lest
(G, c) admits a rainbow ℓ-cycle Cℓ. □

3.1. Some corollaries

We now consider several useful corollaries of Propositions 3.2 and 3.4.

Corollary 3.5. Fix an integer ℓ ≥ 3, and let (G, c) be an n-vertex edge-colored and edge-minimal graph
with no rainbow ℓ-cycle Cℓ. Let (z, ζ ) ∈ V × c(E) satisfy |Nζ (z)| = R (cf. (1)), and let Y = Y (z, ζ ) ⊆ V
be the vertices y ∈ V to which there is an (ℓ − 1)-vertex rainbow path Pzy from z, none of whose edges
is colored ζ . If Y ̸= ∅,

δc(G) ≤
n

2
+ max

{

0, 3ℓ + (R − 1)

(

n + 1

2|Y |
− 1

)}

.

Proof of Corollary 3.5. Let (G, c), z, ζ , R and Y = Y (z, ζ ) ̸= ∅ be given as above, where for the sake
of an argument we assume δc(G) > n/2. Let X ⊆ N(z) satisfy that |X | = ⌈n/2⌉, that ζ = c({x0, z})
for some x0 ∈ X , and that all {x, z} with x ∈ X are colored distinctly. Set X+ = X ∪ Nζ (z), and set
Crep = Crep(z, X+) to be the colors α = c({x, z}) repeating among x ∈ X+. Then Crep ⊆ {ζ }, which by
hypothesis is forbidden on the path Pzy ending in y ∈ Y = Y (z, ζ ). Proposition 3.4 guarantees that
σz,X+ (y) ≤ 3ℓ holds for each y ∈ Y , and Proposition 3.2 then renders

3ℓ ≥
1

|Y |

∑

y∈Y

σz,X+ (y) ≥ δc(G) + |X+| − n −
(R − 1)|X+ ∩ N!(z)|

|Y |
,

and using |X+| = |X | + R − 1 and ⌈n/2⌉ = |X | ≥ |N!(z) ∩ X+| completes the proof. □

In practice, the set Y = Y (z, ζ ) in Corollary 3.5 will be large, and will guarantee the following
result.

Corollary 3.6. Fix an integer ℓ ≥ 3, and let (G, c) be an n-vertex edge-colored graph with no rainbow
ℓ-cycle Cℓ. Then δc(G) ≤ (n/2) + 3ℓ.

Proof of Corollary 3.6. Let (G, c) be given as above. For the sake of an argument, we assume
δc(G) ≥ (n/2) + 2ℓ − 5, and w.l.o.g. we assume (G, c) is edge-minimal. Let (z, ζ ) ∈ V × c(E) satisfy
that |Nζ (z)| = R (cf. (1)). For 1 ≤ i ≤ ℓ − 1, let Yi = Yi(z, ζ ) be the set of vertices yi ∈ V to which
there is an i-vertex rainbow path Pzyi from z, none of whose edges is colored ζ . Inductively, these
sets are non-empty as Y1 = {z}, and for some 1 ≤ j ≤ ℓ − 2, a fixed yj ∈ Yj and corresponding path
Pzyj provide

|Yj+1| ≥ degcG(yj) − 1 − |E(Pzyj )| − (|V (Pzyj )| − 2) ≥ δc(G) − 2j + 2 ≥ δc(G) − 2ℓ + 6 ≥ n+1
2 (6)

with δc(G) ≥ (n/2) + 2ℓ − 5. Corollary 3.5 now guarantees

δc(G) ≤
n

2
+ 3ℓ + (R − 1)

(

n + 1

2|Yℓ−1|
− 1

)

(6)
≤

n

2
+ 3ℓ,

as desired. □

The following corollary describes sets similar to Y (z, ζ ) which are also large.
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Corollary 3.7. Fix an integer ℓ ≥ 3, and let (G, c) be an edge-colored and edge-minimal graph with no
rainbow ℓ-cycle Cℓ. Let T be a triangle in G, let v ∈ V (T ), and let CT ⊆ c(E) satisfy CT ∩ c(E(T )) = ∅.
Let Y = Y (v, CT ) = Yℓ−1(v, CT ) be the vertices y ∈ Y to which there is an (ℓ − 1)-vertex rainbow path
Pvy from v, none of whose edges has a color in CT . Then |Y | ≥ (3/2)(δc(G) − |CT | − 4ℓ).

Proof of Corollary 3.7. Let (G, c), T , v and CT be given as above, where for sake of argument we
assume δc(G) ≥ |CT | + 4ℓ + 1, and where we set ĈT = CT ∪ c(E(T )). Since T is not monochromatic
(cf. Remark 1.5), we label V (T ) = {v, x1, x2} with c({v, x2}) ̸= c({x1, x2}). For 1 ≤ i ≤ ℓ − 1, let
Wi = Wi(x1, ĈT ) be the set of vertices wi ∈ V to which there is an i-vertex rainbow path Px1wi

from
x1, none of whose edges has a color in ĈT , and whose vertices meet V (T ) only in x1. Inductively, these
sets are non-empty as W1 = {x1}, and for some 1 ≤ j ≤ ℓ − 2, a fixed wj ∈ Wj and corresponding
path Px1wj

provide that

|Wj+1| ≥ degcG(wj)−|ĈT |−|E(Px1wj
)|−(|V (Px1wj

)|−2)−|{v, x2}| ≥ degcG(wj)−2(j+1)−|CT | (7)

is positive from δc(G) ≥ |CT | + 4ℓ + 1. It is easy to see that

Wℓ−3(x1, ĈT ) ∪ Wℓ−2(x1, ĈT ) = Wℓ−3 ∪ Wℓ−2 ⊆ Y = Yℓ−1(v, CT ). (8)

Indeed, if wℓ−3 ∈ Wℓ−3 is given by Px1wℓ−3 , then the path Px1wℓ−3 +{v, x2}+{x1, x2} places wℓ−3 ∈ Y ,
and if wℓ−2 ∈ Wℓ−2 is given by Px1wℓ−2 , then the path Px1wℓ−2 + {v, x1} places wℓ−2 ∈ Y . We
bound (8) as follows. Let Γ = G[Wℓ−3] be the edge-colored subgraph of G induced on Wℓ−3. Then
Γ admits no rainbow ℓ-cycles Cℓ, whence Corollary 3.6 guarantees a vertex wℓ−3 ∈ Wℓ−3 for which
degcΓ (wℓ−3) ≤ (1/2)|Wℓ−3| + 3ℓ. As such (see the last inequality of (7) to bound |Wℓ−2|),

|Wℓ−2 \ Wℓ−3| ≥ degcG(wℓ−3)−2(ℓ−2)−|CT |−degcΓ (wℓ−3) ≥ δc(G)− 1
2 |Wℓ−3|−5ℓ−|CT |, (9)

and so

|Y |
(8)
≥ |Wℓ−2 ∪ Wℓ−3| = |Wℓ−2 \ Wℓ−3| + |Wℓ−3|

(9)
≥ δc(G) + 1

2 |Wℓ−3| − 5ℓ − |CT |

(7)
≥ 3

2δ
c(G) − 6ℓ − 3

2 |CT |,

as promised. □

4. Proof of Theorem 1.2

Fix an integer6 ℓ ≥ 3. Let (G, c) be an n-vertex edge-colored and edge-minimal graph (cf. Re-
mark 1.5) satisfying δc(G) ≥ (n + 1)/2. We assume that (G, c) admits no rainbow ℓ-cycle Cℓ, and
we bound n ≤ n0(ℓ) from above in the course of this proof. Fix (z, ζ ) ∈ V × c(E) with |Nζ (z)| = R
(cf. (1)). Let X ⊂ N(z) satisfy that |X | = δc(G) − 1 and that c({x, z}) ̸= ζ are distinct among x ∈ X .
We distinguish two cases.

Case 1 (∃ e0 ∈ E(G[X]) : c(e0) ̸= ζ ). By our choice of X , the following hold:

(I) ζ does not appear on the triangle T = {z} ∪ e0;
(II) ζ is the only color possibly repeating among c({x, z}) for x ∈ X+ = X ∪ Nζ (z).

As such, we set Crep = CT ⊆ {ζ } so that the set Y = Y (z, Crep) = Y (z, ζ ) = Y (z, CT ) commonly
featured in each of Proposition 3.4 and Corollaries 3.5 and 3.7 has size, by the last of these,

|Y | ≥ 3
2 (δ

c(G) − 1 − 4ℓ) ≥ 3
2

(

n+1
2 − 1 − 4ℓ

) ∗
≥ 2

3 (n + 1), (10)

where ∗ holds when n ≥ 78ℓ, which we assume for the sake of an argument. Corollary 3.5 then
yields

n + 1

2
≤ δc(G) ≤

n

2
+3ℓ+(R−1)

(

n + 1

2|Y |
− 1

)

(10)
≤

n

2
+3ℓ−

1

4
(R−1) H⇒ R ≤ 12ℓ. (11)

6 By Theorem 1.3, it suffices to prove Theorem 1.2 for odd integers ℓ. However, most of the current argument is
independent of parity considerations, so we make no distinction now.
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Now, define the directed graph F = (V , E⃗F ) on vertex set V = V (G), where

E⃗F =
{

(x, y) ∈ X+ × V : {x, y} ∈ E = E(G) and c({x, y}) ̸= c({x, z})
}

.

Note that for every (x, y) ∈ E⃗F , the color c({x, y}) does X+-separate y from z (cf. Definition 3.1). On
the one hand, every x ∈ X+ clearly satisfies deg+

F (x) ≥ degcG(x) − 1, and so

|E⃗F | =
∑

x∈X+

deg+
F (x) ≥

∑

x∈X+

(degcG(x) − 1) ≥ |X+|(δc(G) − 1). (12)

On the other hand, with Y defined above,

|E⃗F | =
∑

y∈V

deg−
F (y) =

∑

y∈V\Y

deg−
F (y) +

∑

y∈Y

deg−
F (y) ≤ (n − |Y |)|X+| +

∑

y∈Y

deg−
F (y). (13)

For a fixed y ∈ Y , we bound

deg−
F (y) =

⏐

⏐

{

x ∈ N(y) ∩ X+ : c({x, y}) ̸= c({x, z})
}⏐

⏐

=
∑

α∈c(E)

⏐

⏐

{

x ∈ Nα(y) ∩ X+ : c({x, z}) ̸= α
} ⏐

⏐.

Let A = Ay be these colors α ∈ c(E) admitting some x ∈ Nα(y) ∩ X+ with c({x, z}) ̸= α (where
α = c({x, y}) from x ∈ Nα(y)). Then A is precisely the set of colors which X+-separate y from z, so
|A| = σz,X+ (y) holds by Definition 3.1. Then

deg−
F (y) =

∑

α∈A

⏐

⏐

{

x ∈ Nα(y) ∩ X+ : α ̸= c({x, z})
} ⏐

⏐ ≤
∑

α∈A

⏐

⏐Nα(y) ∩ X+
⏐

⏐ ≤
∑

α∈A

|Nα(y)
⏐

⏐

(1)
≤ |A|R.

(14)

Since y ∈ Y = Y (z, Crep), Proposition 3.4 guarantees that |A| = σz,X+ (y) ≤ 3ℓ, and so

deg−
F (y)

(14)
≤ |A|R = σz,X+ (y) · R

Prop. 3.4
≤ 3ℓR

(11)
≤ 36ℓ2. (15)

Applying (15) to (13) yields

|E⃗F | ≤ (n − |Y |)|X+| +
∑

y∈Y

deg−
F (y) ≤ (n − |Y |)|X+| + 36ℓ2|Y |. (16)

Comparing (12) and (16) yields |X+|(δc(G) − 1) ≤ (n − |Y |)|X+| + 36ℓ2|Y |, or equivalently,

n ≥ δc(G) − 1 +

(

1 −
36ℓ2

|X+|

)

|Y |.

Using |X+| = δc(G) − 1 + R ≥ δc(G) ≥ (n + 1)/2, we infer

1
2 (n + 1) ≥ n − δc(G) + 1 ≥

(

1 − 72ℓ2

n+1

)

|Y |
(10)
≥

(

1 − 72ℓ2

n+1

)

× 2
3 (n + 1), (17)

which implies n ≤ 288ℓ2 − 1. □

Case 2 (∀e ∈ E(G[X]), c(e) = ζ ). Set Y = V \ ({z} ∪ X). We first observe

δc(G) − 2 ≤ |Y | ≤ δc(G) − 1 and 1
2 (n − 1) ≤ δc(G) − 1 = |X | ≤ 1

2 (n + 1). (18)

Indeed, |Y | = n − 1− |X | = n− δc(G) ≤ δc(G)− 1 holds from |X | = δc(G)− 1 ≥ (1/2)(n − 1). Now,
fix x ∈ X and {x, y} ∈ E where c({x, y}) ̸= ζ and c({x, y}) ̸= c({x, z}). Then y ∈ Y and there are at
least degcG(x)−2 many such edges. Thus, |Y | ≥ degcG(x)−2 ≥ δc(G)−2 holds and |X | ≤ (1/2)(n+1)
follows.

We now define two subsets of Y that we wish to later avoid. For that, let H = G[X, Y ] be the
bipartite subgraph of G induced by the bipartition X∪Y , and let D be the subgraph of H consisting of
edges {x, y} ∈ E(H) with x ∈ X , y ∈ Y , and c({x, y}) = c({x, z}). Let YH be the vertices y ∈ Y sending

7
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degcH (y) ≤ (5/2)ℓ many distinct colors to X , and let YD be the vertices y ∈ Y sending degD(y) ≥ 2
many D-edges to X .

Claim 4.1. |YH | ≤ 11ℓ and |YD| ≤ |X |/2.

Proof of Claim 4.1. Let Γ = G[A] be the edge-colored subgraph of G induced on A = YH . Since G[A]
has no rainbow ℓ-cycles Cℓ, Corollary 3.6 guarantees a ∈ A with degcΓ (a) ≤ (1/2)|A| + 3ℓ. Since a

sends at most (5/2)ℓ + 1 distinct colors to {z} ∪ X and at most |Y | − |A| distinct colors to Y \ A, we
see

1
2 |A|+3ℓ ≥ degcΓ (a) ≥ degcG(a)−

5
2ℓ−1−|Y |+|A|

(18)
≥ |A|− 5

2ℓ H⇒ |YH | = |A| ≤ 11ℓ.

Since each x ∈ X sends to Y precisely degD(x) many D-edges and ≥ degcG(x) − 2 many ζ -free
H \ D-edges,

degD(x) + degcG(x) − 2 ≤ degH (x) ≤ |Y |
(18)
≤ δc(G) − 1 H⇒ degD(x) ≤ 1

H⇒ 2|YD| ≤
∑

y∈YD

degD(y) ≤
∑

y∈Y

degD(y) = |E(D)| =
∑

x∈X

degD(x) ≤ |X |,

and so |YD| ≤ |X |/2 follows. □

Continuing with Case 2, set Y0 = Y \ (YH ∪ YD), set H[X, Y0] = G[X, Y0] to be the bipartite
subgraph of H induced by the bipartition X ∪ Y0, and set H0 = H[X, Y0] \ D. For each x ∈ X , we
already observed (cf. (18)) that x sends at least degcG(x)−2 many non-ζ , non-c({x, z}) colors into Y ,
and so

∀ x ∈ X, degcH0
(x) ≥ degcG(x)−2−|Y \ Y0|

Clm. 4.1
≥ δc(G)−2−11ℓ− 1

2 |X |
(18)
≥ 1

4 (n+1)−11ℓ−2.

(19)

To X , each y ∈ Y0 sends degcH (y) ≥ (5/2)ℓ + 1 many colors and degD(y) ≤ 1 many D-edges, and so

∀ y ∈ Y0, degcH0
(y) ≥ 5

2ℓ. (20)

To conclude Case 2, it is convenient to now distinguish between ℓ (mod 2).

Case 2A (ℓ is odd). With (z, ζ ) fixed at the start, fix y0 ∈ Nζ (z) arbitrarily, where necessarily y0 ∈ Y .
The number of non-ζ colors that y0 sends to X is at least degcG(y0)− 1− (|Y | − 1) ≥ δc(G)− |Y | ≥ 1
by (18), so fix x1 ∈ X ∩ N(y0) to satisfy c({x1, y0}) ̸= ζ . For an even integer k ≥ 2, let Qk−1 =
(z, y0, x1, y2, . . . , xk−1) be a rainbow path, where x1, . . . , xk−1 ∈ X and y2, . . . , yk−2 ∈ Y0. Then Qk−1

would be extended to a rainbow path Qk = (z, y0, . . . , xk−1, yk) along at least

degcH0
(xk−1)−|E(Qk−1)|−|{y0, . . . , yk−2}| = degcH0

(xk−1)−k− k
2

(19)
≥ 1

4 (n+1)−11ℓ−2− 3
2k (21)

many yk ∈ Y0 \ {y0, . . . , yk−2}, and Qk would be extended to a rainbow path Qk+1 = (z, y0, . . . , yk,
xk+1) along at least

degcH0
(yk) − |E(Qk)| − |{x1, . . . , xk−1}| = degcH0

(yk) − (k + 1) − (k/2)

many xk+1 ∈ X \ {x1, . . . , xk−1}. More strongly, X was chosen with c({x, z}) distinct among x ∈ X ,
so Qk would be extended to a rainbow path Qk+1 = (z, y0, . . . , yk, xk+1) along at least

degcH0
(yk) − 2(k + 1) − (k/2)

(20)
≥ 5

2 (ℓ − k − (4/5)) (22)

many xk+1 ∈ X \ {x1, . . . , xk−1} where additionally c({xk+1, z}) ̸∈ c(E(Qk)). Then Qk+1 bears
the rainbow (k + 3)-cycle (z, y0, x1, . . . , yk, xk+1, z) since c({xk+1, z}) ̸∈ c(E(Qk)) holds and since
c({xk+1, yk}) ̸= c({xk+1, z}) holds from {xk+1, yk} ̸∈ E(D). Since (G, c) has no rainbow ℓ-cycles Cℓ, it

8
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must be that k+3 ≤ ℓ−1. Since (22) is positive with k = ℓ−4, (21) must be non-positive, whence
n ≤ 50ℓ. □

Case 2B (ℓ is even). The argument above slightly simplifies. Choose x1 ∈ X arbitrarily. As before, we
extend a rainbow path Q̂k−1 = (z, x1, y2, . . . , xk−1) with x1, . . . , xk−1 ∈ X and y2, . . . , yk−2 ∈ Y0

to rainbow paths Q̂k = (z, x1, . . . , xk−1, yk) and Q̂k+1 = (z, x1, . . . , yk, xk+1) where yk ∈ Y0 \
{y2, . . . , yk−2} and xk+1 ∈ X \ {x1, . . . , xk−1}, and where c({xk+1, z}) ̸∈ c(E(Q̂k)). The paths Q̂k and
Q̂k+1 are respectively shorter than Qk and Qk+1 above, so inequalities analogous to those in (21) and
(22) still hold, and with k + 1 < ℓ − 1, we similarly conclude n ≤ 50ℓ. □

5. Proof of Theorem 1.4

Our proof of Theorem 1.4 follows that of Theorem 1.2, where we also use the following corollary
of Propositions 3.2 and 3.4 from Section 3.

Corollary 5.1. Fix an integer ℓ ≥ 3, and let (G, c) be an n-vertex edge-colored and edge-minimal

graph with no rainbow ℓ-cycle Cℓ and with δc(G) ≥ 5R + 27ℓ (cf. (1)). Then δc(G) < n/2 or

∆(G) < δc(G) + 4R + 3ℓ.

Proof of Corollary 5.1. Let (G, c) be given as above. Assume for a contradiction that δc(G) ≥ n/2 and
that some v ∈ V = V (G) has degG(v) ≥ δc(G)+4R+3ℓ. Then degG(v) ≥ (n+1)/2 whence v is incident
to some triangle T = Tv in G, where we set7 c(E(T )) = {α, β, γ }. Since |Nα(v) ∪ Nβ (v) ∪ Nγ (v)| ≤ 3R,
some X ⊆ N(v) has size |X | = δc(G)+R+3ℓ, where at least δc(G) of the colors c({v, x}) are distinct
among x ∈ X , and where |Nα(v) ∩ X |, |Nβ (v) ∩ X |, |Nγ (v) ∩ X | ≤ 1. Let CT = Crep be the ≤ R + 3ℓ
colors c({v, x}) repeating among x ∈ X , where CT ∩ c(E(T )) = ∅. Let Y = Y (v, Crep) = Y (v, CT ) be
the set commonly featured in each of Proposition 3.4 and Corollary 3.7. Corollary 3.7 guarantees

|Y | ≥ 3
2 (δ

c(G) − |CT | − 4ℓ) ≥ 3
2 (δ

c(G) − R − 7ℓ) = δc(G) + 1
2δ

c(G) − 3
2 (R + 7ℓ)

≥ δc(G) + 1
2 (5R + 27ℓ) − 3

2 (R + 7ℓ) = δc(G) + R + 3ℓ = |X |. (23)

Proposition 3.2 then guarantees

1

|Y |

∑

y∈Y

σv,X (y) ≥ δc(G) + |X | − n − (R − 1)
|X ∩ N!(v)|

|Y |

(23)
≥ δc(G) + |X | − n − (R − 1) = 2δc(G) + R + 3ℓ − n − (R − 1) ≥ 3ℓ + 1, (24)

which with Y = Y (v, Crep) contradicts Proposition 3.4. □

5.1. Proof of Theorem 1.4

Let (G, c), (z, ζ ), and X ⊂ N(z) be given as in Section 4. In Case 2, we proved that n ≤ 50ℓ, but
in Case 1 we proved only that n ≤ 288ℓ2, which we now improve to n ≤ 432ℓ − 1. The bottleneck
of Case 1 arises in (15), where a fixed y ∈ Y satisfies deg−

F (y) ≤ 3ℓR ≤ 36ℓ2 (cf. (11)). We claim
that

deg−
F (y) ≤ 4R + 6ℓ

(11)
≤ 54ℓ, (25)

which if true updates (17) to say

1
2 (n + 1) ≥

(

1 − 108ℓ
n+1

)

× 2
3 (n + 1),

7 The colors α, β , γ are not identical by Remark 1.5, but they need not all be distinct. These considerations, however,
play no role in the current context.
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which gives n ≤ 432ℓ − 1. To see (25), recall from (14) that

deg−
F (y) ≤

∑

α∈A

|Nα(y)|, (26)

where A = Ay is the set of colors α ∈ c(E) where some x ∈ X+ satisfies α = c({x, y}) ̸= c({x, z}). In
particular, A is precisely the set of colors which X+-separate y from z, so |A| = σz,X+ (y) holds by
Definition 3.1. Moreover, recall (cf. (15)) that Proposition 3.4 guarantees |A| = σz,X+ (y) ≤ 3ℓ. Now,
let B = By consist of all non-A colors incident to y, in which case

∑

β∈B

|Nβ (y)| ≥ |B| = degcG(y)−|A| = degcG(y)−σz,X+ (y)
Prop. 3.4

≥ degcG(y)−3ℓ ≥ δc(G)−3ℓ. (27)

Then

∆(G) ≥ degG(y) =
∑

α∈A

|Nα(y)|+
∑

β∈B

|Nβ (y)|
(26)
≥ deg−

F (y)+
∑

β∈B

|Nβ (y)|
(27)
≥ deg−

F (y)+δc(G)−3ℓ.

Corollary 5.1 concludes the proof: since δc(G) ≥ (n + 1)/2 holds by hypothesis, ∆(G) must satisfy

deg−
F (y) ≤ ∆(G) − δc(G) + 3ℓ

Cor. 5.1
< δc(G) + 4R + 3ℓ − δc(G) + 3ℓ ≤ 4R + 6ℓ.
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