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Abstract

Identifying epileptic seizures through analysis of the electroencephalography (EEG) signal becomes a standard method for the diag-
nosis of epilepsy. Manual seizure identification on EEG by trained neurologists is time-consuming, labor-intensive and error-prone,
and a reliable automatic seizure/non-seizure classification method is needed. One of the challenges in automatic seizure/non-seizure
classification is that seizure morphologies exhibit considerable variabilities. In order to capture essential seizure patterns, this pa-
per leverages an attention mechanism and a bidirectional long short-term memory (BiLSTM) to exploit both spatial and temporal
discriminating features and overcome seizure variabilities. The attention mechanism is to capture spatial features according to
the contributions of different brain regions to seizures. The BiLSTM is to extract discriminating temporal features in the forward
and the backward directions. Cross-validation experiments and cross-patient experiments over the noisy data of CHB-MIT are
performed to evaluate our proposed approach. The obtained average sensitivity of 87.30%, specificity of 88.30% and precision of
88.29% in cross-validation experiments are higher than using the current state-of-the-art methods, and the standard deviations of
our approach are lower. The evaluation results of cross-patient experiments indicate that, our approach has good performance in

comparisons with the current state-of-the-art methods and is more robust across patients.
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1. Introduction

More than 50 million people in the world suffer from epilep-
sy [1]. Epilepsy is a central nervous system disorder, in which
brain activity becomes abnormal, causing seizures or periods
of unusual behaviors, sensations, and sometimes loss of aware-
ness. An important technique to diagnose epilepsy is electroen-
cephalography (EEG). An EEG signal records the electrical ac-
tivities of the brain, and may reveal patterns of normal or ab-
normal brain electrical activities. In current clinical practices,
EEG signals are collected from the brains by making use of
either non-intrusive or implanted devices. The collected off-
line EEG signals are then reviewed and analyzed by trained
neurologists to identify characteristic patterns of the disease,
such as pre-ictal spikes and seizures (A seizure is a sudden,
uncontrolled electrical disturbance in the brain, which signifies
epilepsy.), and to capture disease information, like seizure fre-
quency, seizure type, etc. The obtained disease information is
to provide supports for therapeutic decisions. This manual way
of reviewing and analyzing is labor-intensive and error-prone,
for it usually takes several hours for a well-trained expert to
analyze one-day of recordings from one patient [2, 3, 4, 5, 6].
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These limitations have motivated researchers to develop auto-
mated techniques to recognize seizure. In this paper, we fo-
cus on developing an automatic approach to classifying seizure
signal segments and non-seizure segments from off-line EEG
signals for assisting neurologists to make diagnosis.

One of critical challenges in the seizure/non-seizure classifi-
cation is that seizure morphologies exhibit considerable inter-
patient and intra-patient variabilities. Different machine learn-
ing methods and computational technologies have been applied
to address this challenge. Seizure detection is often converted
into a problem of seizure/non-seizure classification but more
of a real-time flavor. Extensive studies have been conduct-
ed for constructing patient-specific detectors capable of de-
tecting seizures [6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. In ear-
ly studies, hand-crafted features are usually used as charac-
teristics of seizure manifestations in EEG. More recent stud-
ies focus on applying deep learning models to seizure detection
[4, 13, 16, 17, 18, 19]. Most of these studies adopt interesting
technologies to help extracting seizure features. For example,
signal processing techniques are used to filter the data; certain
modules need to be pre-trained; multiple channels are utilized
to extract spatial features, attention mechanisms are leveraged
to learn channel-specific information, and temporal features are
extracted by the sliding windows. However, to the best of our
knowledge, either that channels are not differentiated, or that
the attention mechanism is deployed after finishing local fea-
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ture extraction. In the dynamic brain activities, spatial structure
in a brain is relatively stable. It is better that the spatial fea-
ture extraction is conducted before temporal feature extraction.
Such an order could reduce needless information or artifacts.
About extracting temporal features, most studies only work in
the forward direction. In fact, for seizure/non-seizure classifi-
cation, the EEG signals can potentially provide some additional
information in the backward direction [13].

Different brain regions are likely to have different contribu-
tions to the seizure. The characteristics of EEG data for epilep-
sy at different brain regions are different. The features of EEG
signals at a time point are correlated with the past data and
the future data. Besides, though EEG signals are in general
dynamic and non-linear, during a sufficiently small time pe-
riod, the signal may be considered to be stationary. For ex-
ample, a signal with a duration of 1/256 seconds in the EEG
data set CHB-MIT could be static. It only contains one da-
ta point. Based on the above three observations and inspired
by an architecture in [20], we design a new approach by us-
ing bidirectional long short-term memory (BiLSTM) integrat-
ed with an attention mechanism. Firstly, we introduce an at-
tention mechanism over EEG channels. Different weights are
automatically assigned to signal channels at different brain re-
gions according to how much they would affect the seizures.
Secondly, the bidirectional long short-term memory technique
is adopted to extract temporal features of EEG signals in both
the forward and the backward directions. Thirdly, output se-
quences of the BILSTM module are split into no-overlap patch-
es in the time order. Each patch only contains a data point
in the output sequences. All the patches are separately pro-
cessed to extract features. With these three new ideas, we de-
velop a novel approach for seizure/non-seizure classification in
EEG signals. Cross-validation and cross-patient experiments
are performed on the EEG data set CHB-MIT using the pro-
posed approach. Signals on 17 common channels in the data set
are selected and each signal is segmented according to a dura-
tion of 23 seconds. In the cross-validation experiments, we ob-
tain the average sensitivity, specificity and precision of 87.3%,
88.3% and 88.29%, respectively, and the corresponding stan-
dard deviations of 0.0287, 0.0316 and 0.0265, respectively. For
the cross-patient experiments, the average sensitivity, specifici-
ty and precision of 83.72%, 84.06% and 85.36% are respective-
ly achieved, and the standard deviations being 0.1349, 0.1379
and 0.1020, respectively. These results exceed the current state-
of-the-art performances on the noisy data of CHB-MIT in [17],
[20] and [4]. The extensive experimental results show that the
performance of the proposed new approach is promising and
has high stability, with smaller variations compared to existing
methods.

In brief, the main novelties of our paper include the follow-
ing:

(1) An attention mechanism is utilized to capture spatial fea-
tures of seizure. It distinguishes EEG signals from differ-
ent brain regions and generates different attention weight-
s for EEG data over different channels. The attention
weights are explained by using EEG data segment exam-

ples.

(2) Bidirectional long short-term memory is combined with
attention mechanism to extract temporal features. At each
time step, the past spatially-weighted data and the future
spatially-weighted data are analyzed.

(3) Experimental results on the noisy EEG data of CHB-
MIT demonstrate that, the new approach can capture
more robust seizure patterns than current state-of-the-art
deep learning approaches, and overcome the inter-patient
seizure variations better.

The rest of this paper is organized as follows. Section 2 de-
scribes related research work on automatic seizure/non-seizure
classification. Section 3 presents our designed approach of BiL.-
STM with attention. In Section 4, evaluation of the proposed
approach is performed in cross-validation and cross-patient ex-
periments. Section 5 explains the attention mechanism and val-
idates main modules in the proposed approach. Section 6 dis-
cusses the approach of BiLSTM with attention. Conclusions
and future work are described in Section 7.

2. Related work

There is extensive research for seizure/non-seizure classifi-
cation, which distinguishes seizure segments from non-seizure
segments. Seizure detection, which is often of a real-time fla-
vor, is often viewed as the seizure/non-seizure classification
problem. The study of seizure detection can be divided in-
to three categories. One category is using traditional machine
learning methods [7, 8, 10, 11, 12, 21, 22, 23, 24, 25]. The sec-
ond category is about signal processing methods and network
techniques [6, 9, 15, 26, 27, 28, 29]. And the third category is
using deep learning methods [4, 13, 16, 17, 18, 20, 30, 31, 32].

2.1. Work based on machine learning methods

With traditional machine learning methods, many previous
works focus on developing patient-specific seizure detection
methods [7, 8, 10, 11, 12, 24, 33].

Shoeb and Guttag proposed a patient-specific seizure detec-
tion method by using the support vector machine (SVM) [7].
The method leverages filters to extract spectral features over
each channel, and then concatenate the feature vectors accord-
ing to a fixed time length. Then, train the SVM model with the
obtained feature vectors as the input. The method achieved a
sensitivity of 96%, a median detection delay of 3 seconds and a
median false detection rate of 2 per 24 hours. The sensitivity re-
sult is often used as a benchmark for patient-specific seizure de-
tection on the data set CHB-MIT. The authors observed that the
identity of channels could help differentiate between the seizure
and the non-seizure activity.

Amin and Kamboh [8] designed an algorithm RUSBoost to
process imbalanced seizure/non-seizure data, and used RUS-
Boost and the decision tree classifier to conduct patient-specific
experiments with the CHB-MIT data set. The method was fast
in training and achieved good performance with seizure detec-
tion accuracy of 97% and false detection rate of 0.08 per hour.



Table 1
Summary of existing EEG-based seizure detection methods.

Reference EEG type No. of subjects No. of seizures Patient-specific Split data for training Sens. Spec. Accu. FAR

Acharya et al. [17] scalp 10 n/a no 70% 95% 90% 88.67% n/a

Hussein et al. [20] scalp 10 n/a no 10-folds CV 100% 100% 100% n/a

Shoeb and Guttag [7] scalp 23 198 yes Leave-one-out CV 96% n/a n/a 2 per 24 hours
Thodoroff et al. [4] scalp 23 198 no n/a 85% n/a n/a 0.8 per hour
Fergus et al. [21] scalp 23 198 no 80% 88% 88% n/a n/a

Amin and Kamboh [8] scalp 23 198 yes 50% 88% n/a n/a 0.0831 per hour
Yuan et al. [32] scalp 23 198 no 5-folds CV n/a n/a 94.37% n/a

Zandi et al. [6] scalp 14 63 yes Leave-one-out CV 90.5% n/a n/a 0.51 per hour
Saab and Gotman [27] scalp 44 195 no 64% 76% n/a n/a 0.34 per hour
Kuhlmann et al. [28] scalp 21 88 no 70% 81% n/a n/a 0.6 per hour
Wang et al. [29] scalp 10 44 yes 5-folds CV 91.44% 99.34% 98.3% n/a

Truong et al. [12] intracranial 12 n/a yes Leave-one-out CV 89.4% 89.24% n/a n/a

Kharbouch et al. [24] intracranial 10 67 yes Leave-one-out CV 97% n/a n/a 0.6 per 24 hours

Sens. is an abbreviation for Sensitivity, Spec. for Specificity, Accu. for Accuracy, FAR for False Alarm Rate. These abbreviations are also used

in Tables 3,4, 5, 6 and 7.

Hunyadi et al. [10] presented seizure detection algorithm,
which uses a nuclear norm regularization to convey spatial dis-
tribution information of ictal patterns. The algorithm extracted
features from each channel, and then stacked them to analyze
as one entity.

Truong et al. [12] proposed a automatic seizure detection
method over intracranial electroencephalography (iEEG) data.
First, supervised classifiers were used to select those channels
that contribute the most to seizures. Features in the frequen-
cy and time domains were extracted, including spectral power
and correlations between channel pairs. Then, Random Forest
classifier was utilized for classification. This method has the
state-of-the-art computational efficiency while maintaining the
accuracy. In this method, selecting channels that contribute the
most to seizures is to reduce the number of channels, thereby
improving the computational efficiency.

The work in [7, 8, 10, 12] used data over multiple channels to
extract spatial features. However, they did not apply different
processing ways to the data with different channels.

Esbroeck et al. [11] proposed a multi-task learning frame-
work to detect patient-specific seizure onset in the presence
of intra-patient variability in seizure morphology. They con-
sidered distinguishing the windows of each seizure from non-
seizure data as a separate task and treating the individual-
seizure discrimination as another task. Compared to the stan-
dard SVM, testing results of the CHB-MIT data set indicated
that their approach performed better in most cases.

Kiranyaz et al. [33] presented a systematic approach for
patient-specific classification of long-term EEG. In the ap-
proach, EEG data were processed through band-pass filtering,
feature extraction, epileptic seizures aggregation and morpho-
logic filtering. Results of the data processing were input into
collective network of binary classifiers to classify signal from
each channel. Then, initial classification results over each chan-
nel were further learned and weighted by a dedicated classifier
which makes final classification decision of each EEG frame.
Over the CHB-MIT data set, [33] achieved an average sensi-
tivity of 89.01% and an average specificity of 94.71%. High
number of classifiers increased computational complexity of the
approach.

In the patient-specific case, the data have no variations
caused by different subjects. The performances of the patient-
specific seizure/non-seizure classifiers are better than 90%.
However, the patient-specific classifiers have a limitation of
poor generalizability.

In [21], Fergus et al. presented a method for seizure detec-
tion across subjects based on traditional machine learning tech-
niques, and obtained 88% in Sensitivity and 88% in Specifici-
ty over the CHB-MIT data set by selecting features in multi-
ple brain regions. The method mainly consists of four step-
s, which are data filtering, feature extraction, feature selection
and training classifiers. In cross-validation experiments, EEG
signals in CHB-MIT were segmented according to a segment
length 60 seconds, one seizure segment was truncated for each
seizure, non-seizure segments were extracted from non-seizure
EEG records as many as seizure segments. The produced exper-
iment data consist of 171 seizure segments and 171 non-seizure
segments. On the average, each seizure segment contains 40s
seizure data. Additionally, after segmenting EEG signals [21]
used a bandpass filter and second order butterworth filters to
extract the EEG data in the bandwidth 0.5Hz-30Hz.

2.2. Work based on signal processing and network techniques

Based on signal processing techniques, Zandi et al. proposed
a wavelet-based algorithm for real-time detection of epileptic
seizures using scalp EEG [6]. In this algorithm, the EEG from
each channel was decomposed by wavelet packet transform,
and a patient-specific measure was developed by using wavelet
coefficients to separate the seizure and non-seizure states. U-
tilizing the measure, a combined seizure index was derived for
each epoch of every EEG channel. Appropriate channel alarms
were generated by inspecting the combined seizure index.

Acharya et al. [26] presented a method for the automatic
detection of normal, pre-ictal, and ictal conditions from EEG
signals. Four entropy features, including approximate entropy,
sample entropy, and two phase entropies, were extracted. The
extracted features were input into the classifier to do classifica-
tion. Over the EEG data set provided by University of Bonn,
seven classifiers were fed with extracted entropies to show the
effectiveness of the features.



In [27], Saab and Gotman developed an online seizure alert
system, which employed a wavelet decomposition module, fea-
ture extraction module and data segmentation module to com-
pute a probability of that a seizure activity happens. The system
was trained using 652 h of scalp EEG data. And it was tested on
a separate EEG dataset including 360 h of scalp EEG data. A
sensitivity of 76.0% and a false detection rate of 0.34 per hour
were obtained.

Kuhlmann et al. [28] analyzed seizure detection features and
their combinations using a probability-based seizure detection
framework designed by [27]. The experiments for the analy-
ses were performed on 525 h of scalp EEG data. Experimental
results showed that, a detector based on a combination of fea-
tures achieved a sensitivity of 81%, false positive rate of 0.60
per hour, and median detection delay of 16.9 s.

Wang et al. [29] presented a new approach based on par-
tial directed coherence (PDC) analysis to detect seizure inter-
vals of epilepsy patients. The PDC analysis was utilized as a
mechanism to extract features, such as the direction and inten-
sity of information flow related to EEG channels. Features of
the outflow information were fed to a support vector machine
classifier for discriminating interictal periods and ictal periods.
The presented method was evaluated on a scalp EEG data set
which included ten patients and 88 seizures. For each patien-
t, 5-fold cross-validation was performed. Experimental results
showed an average sensitivity of 91.44%, average specificity of
99.34%, and average accuracy of 98.30%.

Zhou et al. [15] proposed a seizure detection algorithm using
lacunarity and Bayesian linear discriminant analysis (BLDA).
In the algorithm, wavelet decomposition on EEGs was conduct-
ed with five scales, and the wavelet coefficients at scales 3, 4,
and 5 were selected. Features including lacunarity and fluctua-
tion index were extracted from the selected scales, and then they
were fed to the BLDA for training and classification. Patient-
specific experiments were performed on intracranial EEG data
from the Epilepsy Center of the University Hospital of Freiburg.
The obtained average sensitivity was 96.25%, with an average
false detection rate of 0.13 per hour and a mean delay time of
13.8s. The obtained precision results for eleven patients were
less than 50%.

By leveraging network technologies, Fan and Chou [9] u-
tilized a complex network model to represent EEG signals,
and integrated it with spectral graph theory to extract spatial-
temporal synchronization patterns for detecting seizure onsets
in real-time. The method was tested on 23 patients from the
CHB-MIT data set. The resulting patient-specific sensitivity
surpassed the benchmark methods.

2.3. Work based on deep learning methods

Recently, deep learning techniques have been developed
rapidly and applied to solve the seizure/non-seizure classifica-
tion problem.

Vidyaratne et al. [13] proposed a deep recurrent architec-
ture by combining Cellular Neural Network and Bidirectional
Recurrent Neural Network. The bidirectional recurrent neural
network was deployed into each cell in the cellular neural net-

work, and it was utilized to extract temporal features in the for-
ward and the backward directions. Each cell interacts with its
neighbor cells to extract local spatial-temporal features. The
computed results in the cellular neural network were output in-
to a multi-layered perceptron. In the perceptron, samples were
classified based on a trained threshold. In order to satisfy the
input requirements of cellular neural network, the authors pro-
posed a mapping which organizes EEG signals into a 2D grid
arrangement. Patient-specific experiments were conducted over
the EEG data of five patients from the CHB-MIT data set. The
obtained sensitivities were all 100% for the five patients. In
their experiments, the raw EEG data were preprocessed using
a bandpass filter between 3Hz and 30Hz in order to extract
seizure activity data.

Golmohammadi et al. [16] explored seizure-detection per-
formances of two neural networks over the data source of
TUH EEG Corpus introduced in [34]. Their experiment result-
s showed that the convolutional long short-term memory (L-
STM) network is better than the convolutional GRU network.
And also the impacts of initialization methods and regulariza-
tion methods over the performance were experimented. The
two models in [16] did not utilize attention mechanism.

Hussein et al. [20] designed a deep neural network for
seizure/non-seizure classification by using LSTM as a main
module. The approach extracts temporal features by using L-
STM. Evaluation was performed on the EEG data set provided
by University of Bonn. Testing results mostly reached 100%.
In [17], Acharya et al. presented a 13-layers deep neural net-
work for seizure/non-seizure classification by using convolu-
tional neural network (CNN). Over the Bonn EEG data set, the
obtained average sensitivity and specificity were 95% and 90%,
respectively. For the experiments in [20] and [17], the two ap-
proaches extracted seizure features from the data on one chan-
nel to conduct classification. Each record in the Bonn EEG data
set is the data from only one channel.

In [4], Thodoroff et al. designed a recurrent convolution-
al neural network to capture spectral, spatial and temporal pat-
terns of seizures. The EEG signals were firstly transformed into
images by using Polar Projection, cubic interpolation, and Fast
Fourier transform. The image-based representation of EEG sig-
nals was to exploit the spatial locality in seizures. Created im-
ages were fed to the convolution neural network. The output
vectors of the convolution neural network were organized to be
sequences in chronological order. The sequences were then in-
put into the bidirectional recurrent neural network to produce
classified seizure/non-seizure results. Both patient-specific ex-
periments and cross-patient experiments were performed. The
patient-specific experiment results were similar to the results in
[7]. And the cross-patient testing sensitivity was 85% on av-
erage. In the two kinds of experiments, the convolution neural
network was pre-trained alone. And the transfer learning tech-
nology was utilized to overcome the problem of small amount
of data in the patient-specific experiments. The proposed recur-
rent convolutional neural network in [4] is complicated.

Ansari et al. [30] aimed to automatically optimize feature se-
lection for seizure detection. They utilized deep CNN to extract
optimal features, and then fed the features to random forest to



do classification. In evaluation experiments, EEG recordings of
26 and 22 neonates were taken as training data and testing data,
respectively. A false alarm rate of 0.9 per hour and a sensi-
tivity of 77% were achieved. The proposed method needed no
predefined features, and surpassed three classic feature-based
approaches.

Yuan et al. [32] presented a unified multi-view deep learn-
ing framework to capture brain abnormalities associated with
seizures based on multi-channel scalp EEG signals. In the
framework, an autoencoder-based model was constructed to
learn inter and intra correlations of EEG channels. The learned
correlations were combined with features to detect seizures,
which were extracted in supervised learning via spectrogram
representation. In order to evaluate the proposed method, 5-
folds cross-validation experiments were performed. The per-
formances reach to accuracy of 94.37%, Fl-score of 85.34%,
and area under receiver operating characteristic curve (shortly,
AUC-ROC) of 95.72%.

In [18], Yuan et al. proposed a model ChannelAtt, an end-to-
end multi-view deep learning model with channel-aware atten-
tion mechanism, to detect seizures in EEG signals. The mod-
el employed a global-based attention, which can score contri-
butions of channels dynamically and capture relationships a-
mong channels. In the evaluation of the model, EEG signal
data from 9 patients in the EEG dataset CHB-MIT were taken
as experimental data, and hold-out validations were conducted.
Four metrics were used to measure the seizure-detection perfor-
mance, which include area under precision-recall curve (short-
ly, AUC-PR), AUC-ROC, Fl1-score, and Accuracy. Experimen-
tal results show AUC-PR of 0.9651, AUC-ROC of 0.9847, F1-
score of 97.85%, and Accuracy of 96.61%. The global-based
attention mechanism in the model ChannelAtt captures corre-
lations between individual EEG channel and the global state of
brain. The correlations is described to be weights. The weights
represent reflect contributions of channels to the brain activi-
ties. Features on channels are summed according to the weight-
s. The weighted sum is treated as local features, and is con-
catenated with the global features to discriminate seizures and
non-seizures. The model ChannelAtt is only evaluated on a part
of EEG data in the dataset CHB-MIT.

In [31], Yuan et al. explored another way to fuse global fea-
tures and local information in multi-channel biosignals. A deep
fusional attention network, namely FusionAtt, was develope-
d. In the model FusionAtt, two convolutional encoders and a
fusional attention mechanism are designed. The two convo-
lutional encoders are employed to extract global features and
channel-specific features. The attention mechanism is to assign
different attention energies to channels. Attention energies rep-
resent the importance to the target task. The model FusionAtt
is evaluated using two clinical tasks, including multi-channel
EEG seizure detection and multivariate PSG sleep stage classi-
fication. For the task of seizure detection, the proposed model
is tested on the EEG dataset CHB-MIT, and the performances
reach to AUC-ROC of 0.9556, AUC-PR of 0.9119, F1 score of
86.75%, and accuracy of 95.06%.

Zhang et al. [19] developed a new deep neural network mod-
el, which can learn seizure-specific representations from the

raw EEG signals to classify seizures and non-seizures. The
model extracts seizure features and patient information sepa-
rately through adversarial training. The extracted seizure fea-
tures are insensitive to the patient identity, and the extracted
patient information is insensitive to the seizure state. At the
mean time, an attention mechanism is designed to learn the im-
portance of each EEG channel and calculate attention weights.
The seizure features are combined with the attention weight-
s, and they are computed to detect seizures. On a EEG dataset
TUH corpus introduced in [34], the proposed method is evaluat-
ed in leave-one-out cross-validation experiments. A sensitivity
of 97.4% and specificity of 88.1% are achieved.

Attention mechanisms were developed separately in [18,
19, 31] to differentiate channels in multi-channel EEG data.
Channels were assigned different attention energies. The de-
signed attention mechanisms helped improve the performances
of models in [18, 19, 31]. There are differences among the at-
tention mechanisms. [18] utilized local information and con-
catenated information to calculate attention energies. In [31],
a gated function was leveraged to fuse the global and channel-
specific information for the attention energy assignment. And
[19] adopted a multiplication with local features to learn the
attention weights.

Subsections 2.1, 2.2, and 2.3 review seizures/non-seizures
classification research work according to the utilized EEG data
analysis technologies. Table 1 summarizes the reported perfor-
mances of existing EEG-based seizure detection methods in the
recent years. The summarized methods include traditional ma-
chine learning methods, signal processing methods, and deep
learning methods. They were evaluated in different validation
methods and on different EEG data sets, and will be made com-
parisons with our proposed approach in Subsection 4.3.

3. Methods

3.1. Model design

EEG signal data is an important modality for the diagnosis
of epilepsy. It is generally collected through placing electrodes
on the scalp. Each electrode records brain activities in its locat-
ed brain region. As different brain regions play different roles
in the seizure procedure, the data collected at different brain
regions record different characteristics of seizures. With the
observations in [7], differences between seizure data and non-
seizure data are related to channels. To exploit the differences
of signals from different brain regions, we will use an attention
mechanism to assign different weights to data from different
channels.

Brain activities are continuous, and EEG signals could be re-
garded as continuous records of brain activities when ignoring
the sampling effects. The brain activity at a time point is cor-
related with past signal data, and could also be analyzed from
future signal data. To leverage correlations from both direction-
s, we perform BiLSTM for analyzing EEG sequence data.

EEG signal is dynamic and non-linear. Due to the dynamic
nature, certain statistical characteristics of EEG signals change
over time. However, the EEG signal segments have similar s-
tatistical temporal and spectral features for a sufficiently small



time duration [20, 35]. A splitting operation is executed on
the output sequences of bidirectional processing. Each output
sequence is split into patches in the same order. Each patch
only contains one data point. The patches are further extract-
ed features through full connection operations separately and
concurrently.

Based on the above three ideas and inspired by [20], we de-
velop a new approach of BILSTM with attention (shortly, at-
tention BiLSTM) in order to classify seizure segments and non-
seizure segments. Raw EEG signals are split into data segments
according to a fixed time span. The split data segments are au-
tomatically weighted through an attention mechanism, i.e., for
each segment, signal data from different channels are multiplied
with different weights. In our attention mechanism, a fully con-
nected module and a non-linear function are employed to obtain
a matrix, in which each element is in an interval of [0, 1]. And
then, means of elements in the obtained matrix are calculated
along the second array dimension. The means are spatial fea-
tures of EEG signal segments, and they are treated as weights
on channels. A weight on a channel represents that, how re-
liable the characteristics of EEG signals in a brain region are
with respect to signifying seizures. After adding weights, the
data segments are fed to bidirectional LSTM module. The BiL-
STM module extracts features in both forward and backward
directions. For output sequences of BiLSTM, data at each time
step are separately input into a full connection module. Then,
the extracted features are averaged over all the time steps in or-
der to achieve global features of a segment. Finally, the labels
of data segments are calculated by a fully connected module
with the Softmax function.

3.2. Model architecture and algorithm

Our model architecture consists of five modules, includ-
ing attention layer, BILSTM module, time-distributed fully-
connected layer, pooling layer and fully-connected layer with
Softmax. The designed architecture is presented in Fig. 1.

3.2.1. Attention layer

The attention layer, shown in Fig. 2, is to generate attention
weights for each channel and then executes an element-wise
multiplication. The original data are input into a fully connect-
ed module with a nonlinear activation function. The outputs of
the fully connected module are averaged over all the time steps.
Then, the obtained average values are copied to be shared at all
time steps. In this way, an attention weight matrix is achieved.
Finally, the attention matrix is element-wisely multiplied with
the original inputs. The attention layer is computed using the
following equations:

Y1 = fre, (Xo) (1
Y, = oY1 *Wu +Ba) (2)
Y3 = fre, (12) 3
Yy = fun(¥3) 4
Ys = fey(Ya) 5
Yuy=Xo0Y;5 (6)
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Fig. 1. Architecture of the proposed approach. T7-P7, F3-C3, P4-02
and F8-T8 represent channels. Wi, W,, W3 and Wy are weights on the
four channels, respectively.

Here, Xy denotes an input tensor of size (ngn,nsp,ncn). Sym-
bols ngy, nsp, ne, represent the number of samples, the number
of time steps, and the number of signal channels, respectively.
Y| is a matrix of size (ng,nep), Ngs = Ngn * Ngp, Wy a weight
matrix of size (n.,ne), a bias matrix By of size (ngs,nep), and
Y, with size (ng,nq,). A symbol o(-) represents a non-linear
function, like softmax(-) and sigmoid(-). Y3 is a matrix of size
(Nsms Nspsch), Ya of size (ngm,nen), ¥s of size (mgn, ngp, nep), and
Y, an output matrix of attention layer with shape (ngn,nsp,nen).
Functions fr., (-) and f.,(-) are to reshape a matrix, fu,(-) is a
function of computing averages along with the second axis of
matrix, and f,(-) is an copying operation to share the averages
over all the time steps. The symbol ® means an element-wise
multiplication between matrices.

3.2.2. BiLSTM module

The BiLSTM module processes the input sequence sepa-
rately according to the forward order and the backward order,
and synthesize the forward outputs and the backward outputs
[36, 37]. Its main procedure is presented in Fig. 3. In either
forward order or backward order, the sequence is computed in
the same way as LSTM, in which the computation can be de-
scribed by using Eqs. (7)—(12) according to [38] and [39]. The
synthesizing operations can be concatenation or summation.
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Block input = QX" Weoe + Y % Ree+Bee) (7
Input gate G'$ = O'(X’"*Vlflg+1/, | *Ris + Big) 8
Forget gate fg =0(X" % Wrg + Y %Rrg+Brg)  (9)
Output gate  G7* = (X" % Wy + Y% % Rog +Bog) (10)
Cel C=C_6G*+CoG* (11)
Block output  ¥?° = yw(C;) © GY# (12)

Here, X/ is an input matrix of size (ng,,7,) at the time step ¢,
and Y an output matrix of size (ngu,ns.,) at the time step ,
where ny,, is a dimensionality of extracted feature space. Ma-

trices G, G/¢, G, C,, and C, represent input gate state, forget
gate state, output gate state, a block input, and cell state at the
time step ¢, respectively. Input weights matrices We,, Wi, Wy,
and W,,, are with shape (nen,n fer ). Recurrent weights matrices
Ree, Rig, Ryq, and R, are of size (nyf., ,ny,). Bias matrices
Bee, Big, Bf,, and B, are of size (ngn,nze, ). @(-), o(-), and
y/(+) are non-linear activation functions. The symbol ® means
element-wise multiplication.

For the output Y,; in the attention layer, it is split into ny),
components according to time steps, i.e., X;,Xo, - ,anp, with
each one being a matrix of size (rngy,ne,). These components
form a sequence of X; X, --- X, in a chronological orders. For
the sequence X;X; - -- X, ,, the variable X;,, in Eq. (7) has dif-
ferent values in the forward and the backward order. Its value
at the time step ¢ in the forward order is X;, and the value in
the backward order is X,,,—+1. Based on Egs. (7)—(12), a for-
ward output sequence %, is obtained in the forward order, and
a backward output sequence %}, for the backward order. We
use %;4(t) to denote the #-th item in the sequence %}, i.e., the
forward output at the time step ¢, and %},4(¢) for the backward
output at the time step 7. The two output sequences %7, and
%),q are then synthesized as follows:

%lm(t):q)(gfd(t)a%d(nsp*tﬂLl)) (13)

Here, t = 1,--- ,ny,. ®(-) means an operation, which has two
options, i.e., concatenation and summation. %}, represents
the synthesized sequence of the forward output sequence and
the backward output sequence, and %, (¢) of size (ngm,nfe,)
means the ¢-th item in the sequence %, i.e., the output of
BiLSTM module at the time step . ny,, is a dimensionality of
output space of BiLSTM module.

3.2.3. Time-distributed fully-connected layer

The time-distributed fully-connected layer is to further ex-
tract features at each time step. It executes fully-connected op-
erations separately and simultaneously for inputs at each time
step. And the fully-connected operations use linear functions
as activation functions. Time-distributed layer could help im-
prove executing efficiency when processing signal data with
high sampling frequency. At each time step, the computation
procedure is described as follows:

i (t) = Dpim(t) * War + By (14)

Here, t = 1,2,--- ,ng,. Matrix %;(t) of size (ngn,ny.,), is the
output at the time step ¢ in time-distributed fully-connected lay-
er, where ny,, is a dimensionality of extracted feature space in
the time-distributed layer. W;; denotes a weight matrix of size
(RfeysNfey), Bar @ bias matrix of size (ngu,nf.,). All the time-
step components {#;(t), t =1,--- , ng,} compose a matrix Yy
of size (ngn,ngp, N e, ) as the output of the time-distributed fully-
connected layer.

3.2.4. Pooling layer

The pooling layer in our architecture executes the average
pooling operation in order to extract global features of each
sample. The operation takes the output matrix Y; of size
(NsmsNspsNfey) from the time-distributed fully-connected lay-
er as inputs, computes a mean value of the time-step data for
each sample in the matrix Yy, and outputs a matrix Y, of size

(”sma Nfes ) .

3.2.5. Fully connected layer and Softmax layer
Fully connected layer executes a fully connected operation to
extract further features and to reduce the last dimension of input



matrix into number of classes. It does not use activation func-
tion. A matrix multiplication and a matrix addition are executed
in the fully connected layer according to Eq. (15). Computed
results from the fully connected layer are passed into the Soft-
max layer to calculate probabilities that each sample belongs to
a class. For the Softmax layer, its computation is described as
Eq. (16).

Yici =Yap*Wre + By (15)
Yy = softmax(Yye) (16)

Here, Wy and By denotes weights matrix of size (ny.,,n.)
and bias matrix of size (ngy,n.), respectively. n, is the number
of classes. Yy, is an output matrix of size (ngn,n.) in the fully-
connected layer. Function softmax(-) calculates probabilities
about each sample belonging to each class. Yy; is an output of
the Softmax layer.

The pseudo-codes of the proposed seizure/non-seizure clas-
sification approach of BiLSTM with attention are shown in Al-
gorithm 1.

Algorithm 1. Seizure/Non-seizure Classification over EEG
Data using the Attention BiLSTM Approach

Input: X, the matrix of EEG data segments
Output: Y., the matrix of classification results
1: Initialize matrices W, Byj, Wee, Wig, Wrg, Wog, Rees Rig, Rrg, Rogs
Bee, Big, Byg, Bog, War, Bar, Wycl, Byl
2: Compute the output matrix Y,; using the input Xy and Egs. (1)—(6)
3: Split ¥,; into ng, components {X;,X, -+, Xy, } according to time
steps, and compose a sequence X; X - - - Xy, in chronological order
4: Compute a forward output sequence %y, for the sequence
X1 X3 - -+ Xy, based on Egs. (7)—(12)
5: Compute a backward output sequence %;,; for the inverse se-
quence Xy, --- X2 X based on Egs. (7)—(12)
6: Synthesize sequences %, and %4 by using Eq. (13), and achieve
a sequence %,
7: Compute a sequence %; by using Eq. (14), and then compose a
matrix Y, according to time steps
8: Compute matrix Y, by averaging values over time steps for each
sample in Yy,
9: Compute matrix Y; according to Egs. (15) and (16)
10: Compute the column position of the maximal element in each row
of Y, and achieve classification results Y,,.¢
11: Return ¥yeq

4. Evaluation

In this section, we evaluate the approach of BILSTM with at-
tention by performing cross-validation experiments and cross-
patient experiments over the noisy scalp EEG data set of CHB-
MIT. Our evaluation mainly adopts three standard metrics, in-
cluding the sensitivity, the specificity and the precision. The
cross-validation experiment is that, data from all the patients
are randomly split into three mutually disjoint sets, i.e., training
set, validation set and testing set. The training set and validation
set are used to train a model, and the testing set is to assess the
ability of the trained model. To reduce variability, ten rounds

of cross-validation are performed for each seizure/non-seizure
classification approach in our experiments. Then, average val-
ues and standard deviations over results in the ten rounds are
calculated. In a cross-patient experiment, one patient is select-
ed as a testing subject, and all the other patients as training and
validation subjects. Data from the training and validation sub-
jects are to train a model, and data from the testing subject are
to test the trained model. In our cross-patient experiments, 23
patients in CHB-MIT are separately selected as test subject to
assess the performance of our proposed approach, and then the
overall performance over the 23 patients is analyzed.

4.1. Data
4.1.1. CHB-MIT data set

The data set CHB-MIT contains 686 EEG recordings from
23 patients of different ages ranging from 1.5 years to 22 years.
The recordings include 198 seizures. The used sampling fre-
quency is 256 Hz. Each recording contains a set of EEG signal-
s with different channels. Most recordings are one hour long,
and some are for two or four hours. The EEG recordings are
grouped into 24 cases and stored in EDF data files. Each EDF
file corresponds to an EEG recording. In each case, the signal
data were recorded from a single patient. Case Chb21 was ob-
tained 1.5 years after Case ChbO1 from the same patient. Each
data file contains data over 23 or more channels. There exist
data files in which the data over some channels were missing.
And some data files, for example, Chb12_27.edf, Chb12_28.edf
and Chb12_29.edf, have different channel montages from other
seizure files. In our experiments, we did not use the data in the
above three EDF files.

4.1.2. Data segmentation

In order to extract effective seizure features, 17 common
channels were selected, i.e., for each patient, the data of 17
common channels were used for seizure/non-seizure features
extraction. The 17 common channels were P4-O2, FP2-F4,
P7-01, C4-P4, F7-T7, C3-P3, FP1-F7, F8-T8, FZ-CZ, CZ-PZ,
F3-C3, T7-P7, P8-02, FP1-F3, F4-C4, FP2-F8, and P3-O1, re-
spectively. Each data record was split into data segments with
the length of 23 seconds from the beginning to the end with-
out overlapping. According to annotation files which mark the
starting time and the ending time of each seizure, it could be de-
termined whether a data segment contains a seizure or not. In
our experiments, if a segment contained a seizure, it was con-
sidered as a seizure segment; otherwise, it was a non-seizure
segment. In the seizure segments, the lengths of seizure data
varied from 1s to 23s, with the average length being 16.9s. A-
mong all seizure segments, the portion of the seizure signal less
than 7s was 14.7%, the part containing more than 10s account-
ed for 76.1%, and the part containing more than 17s accounted
for 59.8%.

As a result of the splitting, 665 seizure segments were ob-
tained. The 665 seizure data segments were taken as a part of
our experiment data. For evaluation over a balanced data, 665
non-seizure segments in each experiment were randomly se-
lected from all the non-seizure segments without using random
seed.



4.2. Cross-validation seizure/non-seizure classification

The deep learning approach in [20] uses LSTM as a main
module (shortly, LSTM approach) to detect seizures. The LST-
M approach is evaluated through cross-validation experiments
over the EEG data set from University of Bonn [40], show-
ing the state-of-the-art performance. We will compare our ap-
proach with the LSTM approach. And also our approach will
be compared with a convolutional neural network approach (for
short, CNN approach) in [17]. Since the data in Bonn EEG data
set is strictly processed, and does not contain any artifacts, and
is small in size, we choose to use the noisy CHB-MIT data set
for the cross-validation experiments.

The LSTM approach [20] and the CNN approach [17] do not
provide all the source codes. Thus, we implemented the two
approaches according to their descriptions. The implemented
LSTM approach and CNN approach were tested. For the bina-
ry classification of A-E in [20], three kinds of cross-validation
experiments were performed to evaluate our implemented LST-
M approach, including hold-out cross-validation, 10-fold cross-
validation, and leave-one-out cross-validation. In the hold-out
cross-validation for the A-E classification, a ratio between train-
ing data and testing data was set to be the corresponding ratio
in [20], i.e., 33.33% for training data, and 66.67% for testing
data. Our experimental results were sensitivity of 100.00%,
specificity of 100.00%, and accuracy of 100.00%. In the 10-
fold cross-validation for the A-E classification, the obtained
sensitivity was 99.00%, specificity of 100.00%, and accuracy
of 99.50%. In the leave-one-out cross-validation for the A-E
classification, the obtained sensitivity, specificity, and accuracy
were all 100.00%. For the binary classification of ABCD-E in
[20], we conducted hold-out cross-validation experiments using
the implemented LSTM approach according to the training-set-
size/testing-set-size ratio in [20]. With respect to the three met-
rics, i.e., sensitivity, specificity, and accuracy, our achieved re-
sults were all 100.00%. For the three-class classification prob-
lem of A-C-E in [20], a hold-out cross validation was performed
with the same data-splitting ratio as in [20]. The received result-
s using our implemented LSTM approach were as follows: av-
erage sensitivity of 98.65%, average specificity of 99.34%, and
average accuracy of 99.11%. The above experimental results
were reaching to or near the reported performances in [20]. By
using the same data set (i.e., Bonn EEG data set) and evalua-
tion method as in [17], 10-fold cross-validation was performed
for our implemented CNN approach. In the cross-validation ex-
periments, our obtained results were as follows: sensitivity of
99.00%, specificity of 98.50%, accuracy of 98.67%, and pre-
cision of 97.06% for normal segments; sensitivity of 98.00%,
specificity of 99.00%, accuracy of 98.67%, and precision of
98.00% for preictal segments; sensitivity of 97.00%, specificity
of 99.50%, accuracy of 98.67%, and precision of 98.98% for
seizure segments; average sensitivity of 98.00%, average speci-
ficity of 99.00%, average accuracy of 98.67%, and average pre-
cision of 98.01% for the above three classes of segments. The
results in our implemented CNN approach were a little better
than the reported results in [17]. Then based on the two im-
plementations, we experimented with the CHB-MIT data set to

compare them with our proposed approach of attention BiLST-
M.

In each cross-validation experiment, all the seizure segments
were utilized as a part of experiment data, and non-seizure seg-
ments with the same quantity were randomly selected. The
training set, validation set and testing set were obtained by ran-
domly splitting the experiment data set according to the ratio
70:15:15. We tuned and determined parameters to achieve the
best performance for the three approaches, including the LST-
M approach, the CNN approach, and our attention BiLSTM
approach. And for each approach, ten cross-validation experi-
ments were carried out based on the correspondingly well-tuned
parameters.

For cross-validation experiments using the LSTM approach,
our parameters were set as follows: The number of hidden s-
tates was 120 in the LSTM layer, that in the time-distributed
computing layer was 60, the optimizer was RMSprop, the learn-
ing rate was 0.0007, the batch size was 30, and the number
of epochs was 30. For the CNN approach in [17], it contain-
s five convolutional layers, five max pooling layers, and three
fully connected layers, and its parameters setting in our cross-
validation experiments was as follows: The number of hidden
states in the first two convolutional layers was 100, that in each
of the second two convolutional layers was 200, that in the fifth
convolutional layer was 260, that in the first fully connected
layer was 100, that in the second fully connected layer was
50, the parameter alpha was 0.01 in the LeakyReLU activa-
tion function, the optimizer was Adam, the learning rate was
0.001, the batch size was 30, and the number of epochs was
50. For the proposed approach of BiLSTM with attention, we
took a window size of 5888, tanh(-) as cell output activation
function, and sigmoid(+) as recurrent activation function. That
is, for the two functions ¢(-) and y(-) in Eqs.(7)-(12) their val-
ues were tanh(-), and sigmoid(-) as the value of o(-). When
tuning hyper-parameters for the proposed approach, we mainly
focused on two hyper-parameters, i.e., the number of epoch and
the learning rate. According to the training loss curve and the
validation loss curve in Fig. 4, we set the number of epoch as
35. For the learning rate, five different values were experiment-
ed, and their validation accuracy curves were presented in Fig.
5. The validation accuracy curve corresponding to the learn-
ing rate of 0.0013 show better accuracy trend. Our well-tuned
parameters in the cross-validation experiments of the proposed
approach were as follows: The number of hidden states in the
bidirectional LSTM layer was 140, that in the time-distributed
layer was 70, the merging mode in the bidirectional LSTM
was concatenation, the optimizer was RMSprop, the learning
rate was 0.0013, the batch size was 30, and the number of e-
pochs was 35. And the total number of trainable parameters is
197,078. Based on the above parameter settings and the data
segmentation on the data set CHB-MIT in Subsection 4.1.2, for
each batch of EEG segments, the size of input matrix is (30,
5888, 17) in our model, the attention layer outputs a matrix of
size (30, 5888, 17), the LSTM module in the BILSTM module
outputs a matrix of size (30, 5888, 140), the BiLSTM mod-
ules output matrix of size (30, 5888, 280), the time-distributed
fully-connected layers output matrix of size (30, 5888, 70), the



pooling layers output of size (30, 70), and the output matrix of
size (30, 2) for the last fully-connected layer.
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Fig. 4. Training loss curve and validation loss curve for the proposed
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Fig. 5. Validation accuracy trends in five learning rates for the
proposed approach.

The cross-validation results using the LSTM approach, in-
cluding Sensitivity, Specificity, F1 score, Precision, Accuracy,
AUC-ROC, the average and the standard deviation, are shown
in Table 2. And the results by using the CNN approach and our
approach of attention BiLSTM are presented in Tables 3 and 4,
respectively.

For the LSTM approach, the achieved average sensitivity, av-
erage specificity, average precision and average AUC-ROC are
respectively 84.00%, 84.30%, 84.62%, and 0.9151. By using
the approach of attention BiLSTM, the obtained average sen-
sitivity of 87.30%, average specificity of 88.30%, average pre-
cision of 88.29% and average AUC-ROC of 0.9470 are better

Table 2

Cross-validation results using the LSTM approach.

Iter. Sens. Spec. F1 Sco. Prec. Accu. AUC-ROC
1 0.8800 0.8700 0.8756 0.8713 0.8750 0.9492
2 0.8000 0.9300 0.8556 0.9195 0.8650 0.9158
3 0.8400 0.8600 0.8485 0.8571 0.8500 0.9054
4 0.7900 0.9000 0.8360 0.8876 0.8450 0.9341
5 0.8400 0.8600 0.8485 0.8571 0.8500 0.8982
6 0.8200 0.8800 0.8454 0.8723 0.8500 0.9091
7 0.8700 0.7700 0.8286 0.7909 0.8200 0.9277
8 0.8000 0.8100 0.8040 0.8081 0.8050 0.9074
9 0.8600 0.8300 0.8473 0.8350 0.8450 0.9189
10 0.9000 0.7200 0.8257 0.7627 0.8100 0.8852
Ave 0.8400 0.8430 0.8415 0.8462 0.8415 09151
Std. 0.0355 0.0593 0.0183 0.0450 0.0217 0.0175

Iter. is an abbreviation for Iteration, F1 Sco. for F1 Score, Prec. for
Precision, Ave. for Average, and Std. for Standard Deviation. These

abbreviations are also used in Tables 3, 4, 5, 6, and 7.

Table 3

Cross-validation results using the CNN approach.
Iter. Sens. Spec. F1 Sco. Prec. Accu. AUC-ROC
1 0.8900 0.7600 0.8357 0.7876 0.8250 0.9153
2 0.8300 0.9500 0.8830 0.9432 0.8900 0.9623
3 0.8700 0.7100 0.8056 0.7500 0.7900 0.8783
4 0.8300 0.8000 0.8177 0.8058 0.8150 0.8764
5 0.8200 0.8100 0.8159 0.8119 0.8150 0.8982
6 0.9000 0.7600 0.8411 0.7895 0.8300 0.9207
7 0.8200 0.8500 0.8325 0.8454 0.8350 0.8938
8 0.7700 0.9100 0.8280 0.8953 0.8400 0.9102
9 0.8100 0.9000 0.8482 0.8901 0.8550 0.9153
10 0.8900 0.6600 0.7982 0.7236 0.7750 0.8895
Ave 0.8430 0.8110 0.8306 0.8242 0.8270 0.9060
Std. 0.0403 0.0877 0.0229 0.0653 0.0306 0.0239
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than the LSTM approach. For the F1 score and accuracy, the ap-
proach of attention BiLSTM also exceeds the LSTM approach.
And the standard deviations of by the attention BiLSTM ap-
proach are mostly less than the LSTM approach. It can be seen
that the proposed approach of attention BiLSTM not only clas-
sifies seizures more accurately than the LSTM approach, but is
also more stable.

For the CNN approach, the obtained average sensitivity, av-
erage specificity, average precision and average AUC-ROC are
84.30%, 81.10%, 82.42% and 0.9060, respectively. Our mod-
el outperforms the CNN approach in sensitivity, specificity and
precision. For the average accuracy and the average F1 score,
our approach also has higher values than the CNN approach.
And the standard deviations in our method are smaller than the
CNN approach. These experimental results show that, the pro-
posed approach of attention BiLSTM has better performance in
the seizure/non-seizure classification than the CNN approach.

Ten receiver operating characteristic (ROC) curves are plot-
ted in Fig. 6 for the ten iterations in Table 2, Fig. 7 for the ten
iterations in Table 3, and Fig. 8 for the ten iterations in Table
4. The ROC curves in Fig. 8 are closer to the corresponding
left-hand borders than the ROC curves in Fig. 6 and in Fig. 7,
and also reach to the top borders faster. Our proposed approach
discriminates seizures and non-seizures better than the LSTM
approach and the CNN approach.



Table 4
Cross-validation results using the proposed approach.

Iter. Sens. Spec. F1 Sco. Prec. Accu. AUC-ROC
1 0.8700 0.8900 0.8788 0.8878 0.8800 0.9319
2 0.9300 0.8500 0.8942 0.8611 0.8900 0.9487
3 0.8800 0.9200 0.8980 0.9167 0.9000 0.9479
4 0.8500 0.9000 0.8718 0.8947 0.8750 0.9332
5 0.9100 0.8200 0.8708 0.8349 0.8650 0.9604
6 0.8500 0.9200 0.8808 0.9140 0.8850 0.9564
7 0.8800 0.8900 0.8844 0.8889 0.8850 0.9554
8 0.8300 0.8500 0.8384 0.8469 0.8400 0.9215
9 0.8800 0.9100 0.8934 0.9072 0.8950 0.9646
10 0.8500 0.8800 0.8629 0.8763 0.8650 0.9497
Ave. 0.8730 0.8830 0.8774 0.8829 0.8780 0.9470
Std. 0.0287 0.0316 0.0168 0.0265 0.0168 0.0131
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Fig. 6. Ten receiver operating characteristic curves for the ten
iterations in Table 2 (the LSTM approach).

4.3. Cross-patient seizure/non-seizure classification

For cross-patient seizure/non-seizure classification, each ex-
periment takes data of one patient as testing data, and other
patients’ data as training data and validation data according to
the ratio 85:15. Because the two cases Chb01 and Chb21 are
records from the same patient. The two cases were utilized
together either as testing data or training-validation data. In
each experiment, all the seizure data segments from each pa-
tient were utilized, and non-seizure data segments were ran-
domly selected with the same number of seizure segments. So,
the data was balanced in each experiment.

For each patient, we used her/his EEG data as testing data
and data of other patients as training-validation data, and ob-
tained the sensitivity, specificity, F1 score, precision, and accu-
racy. Separately using the LSTM approach, the CNN approach,
and the proposed approach, cross-patient experiments were per-
formed. The cross-patient results are listed in Table 5, Table 6,
and Table 7, respectively. The performance of the proposed
approach reached to an average sensitivity of 83.72%, average
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Fig. 7. Ten receiver operating characteristic curves for the ten
iterations in Table 3 (the CNN approach).

specificity of 84.06%, average F1 score of 83.63%, average pre-
cision of 85.36%, and average accuracy of 83.89%. The overall
performance of the proposed approach was better than the LST-
M approach and the CNN approach. Compared to the LSTM
approach, the average sensitivity and the average specificity of
the proposed approach improved with 4.72% and 3.74%, re-
spectively. In comparison with the CNN approach, although
the performance of the attention BiLSTM was worse over the
case Chb09 , it was better over the most of other 22 cases. The
average sensitivity and the average specificity of the attention
BiLSTM enhanced 1.79% and 6.63% separately. Also, the s-
tandard deviations of sensitivity, specificity, F1 score, precision,
and accuracy of the proposed approach were 0.1349, 0.1379,
0.0888, 0.1020, and 0.0833, respectively, which showed that
the attention BiLSTM approach was more stable than the two
approaches. Fig. 9 shows the sensitivities, the specificities and
the precisions in the form of bar chart.

In [4], Thodoroff et al. utilize a recurrent convolutional neu-
ral network (recurrent CNN) and obtain an average sensitivi-
ty 85% in cross-patient experiments over the CHB-MIT data
set. According to Fig. 7(a) and Fig. 7(c) in [4], for six cases
Chb06, Chb12, Chb13, Chb14, Chb15 and Chb16, the obtained
sensitivity results are not good, only around 20% for Chb06
and Chbl4. For other seventeen cases the sensitivity results
are mostly 100%. The two cases Chb01 and Chb21 are tested
separately for recurrent CNN. Our method achieved better sen-
sitivities in the above cases, all exceeding 50%, although the
sensitivity of the remaining cases were less than 100%. Fig.
10 presents the sensitivity comparisons between the method of
recurrent CNN and our approach of BiLSTM with attention
for the above six cases. And Fig. 11 shows sensitivities of
21 common-tested cases. The 21 cases do not contain ChbO1,
Chb21 and Chb24. Over the common-tested cases, our standard
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Fig. 9. (Color online) Bar chart illustations of cross-patient sensitivity,
specificity and precision over 24 cases for the attention BiILSTM.

deviations for sensitivity and specificity are 0.1374 and 0.1407,
respectively. The results indicated that our sensitivity results are
more concentrative, and in this sense, the proposed approach of
attention BiLSTM is more stable.

Table 1 summarizes existing EEG-based seizure detection
approaches, which were evaluated on different EEG data and
with different validation methods. The five approaches in Shoe-
b and Guttag [7], Thodoroff et al. [4], Fergus et al. [21],
Amin and Kamboh [8], and Yuan et al. [32], were evaluat-
ed on the scalp EEG data set CHB-MIT. [7] and [8] adopted
patient-specific validation method. [4], [21] and [32] utilized
non-patient-specific validation method. The developed model
in [4] is the recurrent CNN. In the above paragraph, we demon-
strate that the recurrent CNN is less stable than our proposed
approach. For the model in [21], its achieved performance is
88% sensitivity and 88% specificity. Our approach reaches to a
sensitivity of 87.3% and specificity of 88.3%, which are compa-
rable to the presented model in [21]. Yuan et al. [32] obtained

an accuracy of 94.37% which is greater than our accuracy re-

/ Table 5
Cross-patient experiment results using the LSTM approach.

Case Sens. Spec. F1 Sco. Prec. Accu.
Chb01,21 0.7692 0.8718 0.8108 0.8571 0.8205
Chb02 0.9000 0.9000 0.9000 0.9000 0.9000
Chb03 0.8462 0.9231 0.8800 0.9167 0.8846
Chb04 1.0000 0.8095 0.9130 0.8400 0.9048
Chb05 0.9643 0.1071 0.6750 0.5192 0.5357
Chb06 0.6875 0.9375 0.7857 0.9167 0.8125
Chb07 1.0000 0.8235 0.9189 0.8500 09118
Chb08 0.8444 0.7556 0.8085 0.7755 0.8000
Chb09 0.8750 0.7500 0.8235 0.7778 0.8125
Chb10 0.9200 1.0000 0.9583 1.0000 0.9600
Chbl1 0.9730 0.8378 09114 0.8571 0.9054
Chbl12 0.0845 0.9155 0.1446 0.5000 0.5000
Chbl13 0.3143 0.7143 0.3929 0.5238 0.5143
Chbl4 0.6429 0.2143 0.5294 0.4500 0.4286
Chbl5 0.7476 0.7184 0.7368 0.7264 0.7330
Chbl16 0.6250 0.6875 0.6452 0.6667 0.6562
Chbl7 1.0000 0.8750 0.9412 0.8889 0.9375
Chbl8 0.9000 0.9500 0.9231 0.9474 0.9250
Chb19 0.8571 0.9286 0.8889 0.9231 0.8929
Chb20 0.6818 1.0000 0.8108 1.0000 0.8409
Chb22 0.9167 0.9167 0.9167 0.9167 0.9167
Chb23 1.0000 1.0000 1.0000 1.0000 1.0000
Chb24 0.6216 0.8378 0.6970 0.7931 0.7297
Ave. 0.7900 0.8032 0.7831 0.8064 0.7966
Std. 0.2227 0.2185 0.1972 0.1638 0.1596

sults. Acharya et al. [17] developed the CNN approach, and
Hussein et al. [20] presented the LSTM approach. For the t-
wo approaches, Subsection 4.2 and Subsection 4.3 demonstrate
that our proposed approach outperforms them.

5. Model analysis

5.1. Interpretations of attention mechanism

Our attention mechanism is designed for distinguishing sig-
nals from different brain regions and produces different weights
for the signals. In the attention layer, a kernel matrix and a
bias matrix are needed, and they are trained together with other
modules in our model. Based on the two matrices, the weight-
s of channels, which correspond to different brain regions, are
calculated according to the input data. In fact, different epilep-
sy patients have different seizure patterns and EEG signal is
dynamic. For one patient, experienced seizures may have dif-
ferent types and may come from different brain regions. There-
fore, it is reasonable to calculate adaptively channel weights in

our attention mechanism. Fig. 12 and Fig. 13 show attention
weight distributions on 17 channels in two data segments from
two patients (i.e., Chbl1 and Chb03), which are computed by
the attention mechanism in the same trained model. These two
figures show that our attention mechanism can adaptively cal-
culate the channel weights of signal data from different patients.
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Table 6
Cross-patient experiment results using the CNN approach.

Table 7
Cross-patient experiment results using the proposed approach.

Case Sens. Spec. F1 Sco. Prec. Accu. Case Sens. Spec. F1 Sco. Prec. Accu.

Chb01,21 0.8205 0.8462 0.8312 0.8421 0.8333 Chb01,21 0.8974 0.7179 0.8235 0.7609 0.8077
Chb02 0.9000 0.9000 0.9000 0.9000 0.9000 Chb02 0.8000 1.0000 0.8889 1.0000 0.9000
Chb03 0.8846 0.9615 0.9200 0.9583 0.9231 Chb03 0.8846 0.9615 0.9200 0.9583 0.9231
Chb04 0.9524 0.9048 0.9302 0.9091 0.9286 Chb04 0.9524 0.8095 0.8889 0.8333 0.8810
Chb05 0.7143 0.8929 0.7843 0.8696 0.8036 Chb05 1.0000 0.4286 0.7778 0.6364 0.7143
Chb06 0.7500 0.8125 0.7742 0.8000 0.7812 Chb06 0.8125 0.7500 0.7879 0.7647 0.7813
Chb07 0.8235 1.0000 0.9032 1.0000 09118 Chb07 0.9412 0.8824 0.9143 0.8889 09118
Chb08 0.7778 0.9333 0.8434 0.9211 0.8556 Chb08 0.9556 0.7333 0.8600 0.7818 0.8444
Chb09 0.8750 0.9375 0.9032 0.9333 0.9062 Chb09 0.9375 0.6250 0.8108 0.7143 0.7813
Chb10 0.8800 0.9200 0.8980 0.9167 0.9000 Chb10 0.9600 0.8800 0.9231 0.8889 0.9200
Chbl1 0.9730 0.8919 0.9351 0.9000 0.9324 Chbll1 0.9730 0.8649 0.9231 0.8780 0.9189
Chb12 0.5211 0.4225 0.4966 0.4744 0.4718 Chbl12 0.5211 0.8451 0.6218 0.7708 0.6831
Chb13 0.6571 0.4286 0.5897 0.5349 0.5429 Chbl13 0.6000 0.8571 0.6885 0.8077 0.7286
Chb14 0.8571 0.5000 0.7273 0.6316 0.6786 Chbl4 0.6429 0.9286 0.7500 0.9000 0.7857
Chb15 0.9903 0.1456 0.6962 0.5368 0.5680 Chb15 0.7379 0.9223 0.8128 0.9048 0.8301
Chbl16 0.8125 0.5625 0.7222 0.6500 0.6875 Chbl16 0.6875 0.6250 0.6667 0.6471 0.6563
Chb17 0.8125 0.7500 0.7879 0.7647 0.7812 Chb17 1.0000 0.8125 0.9143 0.8421 0.9063
Chbl18 0.9000 0.6000 0.7826 0.6923 0.7500 Chbl8 0.9000 0.9000 0.9000 0.9000 0.9000
Chb19 0.8571 0.9286 0.8889 0.9231 0.8929 Chb19 0.7857 1.0000 0.8800 1.0000 0.8929
Chb20 0.6818 0.8636 0.7500 0.8333 0.7727 Chb20 0.7273 0.9545 0.8205 0.9412 0.8409
Chb22 0.8333 0.9167 0.8696 0.9091 0.8750 Chb22 0.9167 0.9167 0.9167 0.9167 0.9167
Chb23 0.8400 0.8800 0.8571 0.8750 0.8600 Chb23 0.9200 1.0000 0.9583 1.0000 0.9600
Chb24 0.7297 0.8108 0.7606 0.7941 0.7703 Chb24 0.7027 0.9189 0.7879 0.8966 0.8108
Ave. 0.8193 0.7743 0.8066 0.8074 0.7968 Ave. 0.8372 0.8406 0.8363 0.8536 0.8389
Std. 0.1059 0.2168 0.1088 0.1462 0.1276 Std. 0.1349 0.1379 0.0888 0.1020 0.0833

In some areas of the brain, EEG signals during seizures show
many differences with signals at non-seizures. The differences,
such as frequency and magnitude, could be used to indentify
seizure and non-seizure. The attention mechanism captures
signal characteristics and assigns large weight values to the
channels, which could distinguish seizure and non-seizure seg-
ments. In our experiments, it was observed that relatively large
weights were assigned to channels with great differences be-
tween seizure signals and non-seizure signals. An example of
attention weights of 17 channels for a seizure segment is shown
in Fig. 12; the channels of F8-T§, P3-O1 and FP2-F8 have
the large weights compared to other channels. In Fig. 14(a)
and Fig. 14(b), the actual signals over the above three chan-
nels change (i.e., six purple panels) much in the rate of change
of magnitude. For the actual signals over channels P4-O2 and
P8-O2 (i.e., four green panels), the differences of magnitude
change rate between Fig. 14(a) and Fig. 14(b) are relatively
small. A rate of change of amplitude is computed on 128 suc-
cessive data points in a signal on a channel, and it is a difference
between a maximal data point and a minimal data point divided
by a duration. In an average rate of change of amplitude, differ-
ences between seizure segment and non-seizure segment on five
channels in Fig. 14 are as follows: 396.84uV /s for Channel F8-
T8, 314.01uV /s for Channel P3-O1, 461.12uV /s for Channel
FP2-F8, 193.60uV /s for Channel P4-O2, and 182.01uV /s for
Channel P§-O2. As shown in Fig. 12, the assigned weights
over Channel P4-O2 and Channel P§8-O2 are small.
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The actual signals of the channel P4-O2 (i.e., two green pan-
els) in Fig. 15(a) and Fig. 15(b) manifest small differences in
magnitudes. A difference of rate of change of amplitude be-
tween seizure segment and non-seizure segment on Channel
P4-02 in Fig. 15 is 380.82uV /s. The attention mechanism
produces small weight for the channel P4-O2 so that the corre-
sponding signal data is not treated as critical evidences to classi-
fy seizure/non-seizure. The signals over channels T7-P7, FP2-
F8 and P3-0O1 (i.e., six purple panels) change a lot from the non-
seizure Fig. 15(a) to the seizure Fig. 15(b). Such changes could
differentiate seizure/non-seizure segments. With respect to the
rate of change of amplitude, differences between seizure seg-
ment and non-seizure segment on three channels in Fig. 15 are
as follows: 1075.52uV /s for Channel T7-P7, 748.561V /s for
Channel FP2-F8, and 427.38V /s for Channel P3-O1. So, the
three channels are assigned large attention weights, as shown in
Fig. 13.

5.2. Validations of BiLSTM and attention mechanism

The approach of attention BiLSTM is developed in the in-
spiration of the LSTM approach in [20]. In the development,
the performances of bidirectional LSTM and attention mech-
anism are separately explored. By using parameters with the
best performances in the tuning procedures, ten rounds of cross-
validation experiments are performed separately for testing the
two modules. When testing the module of bidirectional LSTM,
the parameters are set as follows: The learning rate is 0.001,



Table 8
Cross-validation results for modules in the attention BiLSTM approach.

Module Sensitivity Specificity

F1 Score Precision Accuracy

Bidirectional LSTM
Attention LSTM
Attention BiLSTM

0.8630+£0.06
0.8340+0.05
0.8730+0.0287

0.8280+0.05
0.8870+0.04
0.8830+0.0316

0.8477+0.01
0.8564+0.02
0.877440.0168

0.8373+0.03
0.8828+0.03
0.8829+0.0265

0.8455+0.01
0.8605+0.02
0.878010.0168
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Fig. 10. (Color online) Comparison of cross-patient sensitivity over 6
cases between attention BILSTM and recurrent CNN.
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Fig. 11. (Color online) Comparison of cross-patient sensitivity over
21 common cases between attention BiLSTM and recurrent CNN.

the number of hidden states in the bidirectional LSTM is 100,
that in time-distributed layer is 50, the optimizer is RMSprop,
batch size is 30, and the number of epochs is 30. For the test-
ing of attention mechanism, the parameters are: The learning
rate is 0.001, the number of hidden states in the module LST-
M is 100, that in time-distributed layer is 50, the optimizer is
RMSprop, batch size is 30, and the number of epochs is 25.
The obtained cross-validation results are shown in Table 8. The
results indicate that in comparisons with the LSTM approach
results in Table 2, the bidirectional LSTM obtains better sen-
sitivity but worse specificity, and the attention LSTM achieves
greater specificity but a little smaller sensitivity. Only using
the bidirectional LSTM module or the attention LSTM module
does not absolutely improve the performance. After combining
the two modules in the approach of attention BiLSTM, both
the sensitivity and the specificity are improved with 3.3% and
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Fig. 13. Attention weights on channels for a seizure segment in
Chb03.

4%, respectively. Thus, both bidirectional LSTM and attention
mechanism play important roles in the approach of attention
BiLSTM for seizure/non-seizure classification. They are not
redundant in the attention BILSTM. The bidirectional LSTM is
deployed to learn temporal information in the EEG data, and
the attention mechanism is to extract spatial information in the
multi-channel signal data.

6. Discussion

In this paper, we design a novel approach of BiLSTM with
attention for seizure/non-seizure classification in off-line EEG
data. Cross-patient and cross-validation experiments across pa-
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(b) Signals in a seizure segment from Chb11.

Fig. 14. (Color online) Visualization of signals on channels in a
non-seizure segment and a seizure segment from Chb11. Purple
panels represent channels with large signal changes, and green panels
for channels with small signal changes.

tients are separately applied to evaluations on the pediatric da-
ta set of CHB-MIT. When doing segmentation, a time length
of 23 seconds is selected by referring to the segment length in
Bonn EEG data set [40], and each data record in each case is
split from the beginning to the end without overlapping. As
a result, 665 seizure segments are obtained, and the lengths
of seizure data vary from 1s to 23s in seizure segments. The
length diversity of seizure data is aligned with a real-world
situation. In each experiment, the 665 seizure segments were
taken as a part of experimental data, and 665 non-seizure seg-
ments were randomly selected from the extracted non-seizure
segments. Its randomness and sparsity reduce temporal corre-
lations among non-seizure data segments, and avoid resulting in
overly optimistic specificity results [7]. The above segmenting-
data-record way and the selecting strategy of non-seizure seg-
ments make the evaluation of our approach be more reliable.

In the cross-validation experiments, the sensitivity, specifici-
ty and precision of our approach were better than the LSTM
approach in [20] and the CNN approach in [17]. The improve-
ments in the sensitivity, specificity, and precision over those t-
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(a) Signals in a non-seizure segment from Chb03.
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(b) Signals in a seizure segment from Chb03.

Fig. 15. (Color online) Visualization of signals on channels in a
non-seizure segment and a seizure segment from Chb03. The purple
panels and green panels have the same meanings as in Fig. 14.

wo state-of-the-art approaches were 3.3%, 4%, 3.67% and 3%,
7.2%, 5.87%, respectively, and the standard deviations were
less than the two approaches in comparison. As Table 8 shows,
the better performances of our approach are attributed to the at-
tention mechanism and the feature extraction in both forward
and backward directions.

Among cross-patient experiment results in Table 7, there ex-
ist gaps. Over the six patients, including Chb05, Chb09, Chb12,
Chb13, Chbl4, and Chbl16, either sensitivity or specificity were
less than 70%. For the seven patients, i.e., Chb03, Chb07,
Chb10, Chbl1, Chbl8, Chb22 and Chb23, all testing results
were over 85%. The possible reason is that, for a child, the
brain, meninges, skull, and head size change overtime [41].
Compared to the method of recurrent CNN proposed in [4], the
performances of our method BiLSTM with attention were more
stable. In [4], the convolution neural network module in recur-
rent CNN is pre-trained before training the whole model. Our
attention BiLSTM approach does not need pre-training, and it
directly processes raw data and extracts features. The REVEAL
algorithm proposed in [42] achieved an average sensitivity of
61%. [5] used the automatic seizure detection system EpiScan



on the CHB-MIT data set and obtained an average sensitivity
of 67%. The average sensitivity of our approach is much better
than REVEAL and EpiScan.

It was explored that whether increasing the number of seizure
segments by allowing overlaps among segments could help im-
prove the performance of seizures/non-seizures classification or
not. The EEG signals in the dataset CHB-MIT were segmented
according to a segment length of 23s and overlapping length of
5s. In such a segmentation way, 848 seizure segments were ob-
tained, which are more than the 665 seizure segments without
overlaps. In order to make evaluation on a balanced data set,
848 non-seizure segments were randomly selected. Over the
produced 1696 segments, cross-validation experiments were
performed by using our attention BiLSTM approach. After tun-
ing hyper-parameters well, ten cross-validations were conduct-
ed. The obtained results were an average sensitivity of 86.95%,
average specificity of 88.91%, average F1 score of 87.80%, av-
erage precision of 88.81%, average accuracy of 87.93%, and
average AUC-ROC of 0.9414. The improvements are few.
Maybe, there exist two possible reasons. One is that the EEG
data segments for the training are still not many enough to
achieve improvements. The other is that overlaps among seg-
ments could cause over-fitting problem such that the training
accuracy is excellent and the testing results are bad.

The application scenario of our approach is to automatical-
ly select all the seizure segments from the off-line EEG data
records for neurologists analyses and to remove non-seizure
segments from neurologists work. The automatic way aims to
help neurologists reduce workloads and increase their produc-
tivities. Because of the off-line EEG data segments, extracting
features in the forward direction and the backward direction and
performing analyses are feasible in practices. In the application,
those classified as seizure segments are sent to neurologists to
make analyses, and those classified as non-seizure segments are
out of neurologists analyses. The automatic classification of
true negative segments (i.e., true non-seizure segments) reduces
neurologists workloads. False negative segments (i.e., false
non-seizure segments) are removed from neurologists analysis
list, but this is not what neurologists expect. So, selecting as
many seizure segments as possible and as accurately as possi-
ble is the target in the application. Metrics, such as sensitiv-
ity, specificity, and precision, are used to measure the perfor-
mance of automatic seizure/non-seizure classification method
in the application. For the metric of temporal false alarm rate,
it means the number of samples that are falsely classified as be-
ing positive in a time unit. The time unit may be either one
hour or one day. Our application focuses on that how many
seizure segments are successfully selected and that how many
non-seizure segments are correctly classified in total. The false
seizure segments in the application do not increase neurologists
workloads essentially. For example, a model in the applica-
tion is with a false alarm rate of 10 per hour, a specificity of
80.00%, and a sensitivity of 80.00%. The example of mod-
el produces 240 false seizure segments one day, and can cor-
rectly select 80.00% non-seizure segments and 80.00% seizure
segments. Although the number of produced false seizure seg-
ments is large, the work of reviewing the 80.00% non-seizure
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segments is not needed. The reduced workloads are much more.
So in the application, the temporal false alarm rate is not taken
as a metric to evaluate the seizures/non-seizures classification
models.

Instead of directly training weights on channels, we utilize an
attention mechanism to generate weights. In the directly train-
ing way, the obtained weights on channels are the same for all
the patients. In fact, the seizure patterns of different patients are
different, and different types of seizures have different patterns,
and it is possible that one patient may have different types of
seizures. Therefore, for data segments from different patients,
the weights on channels, which describe the relative strength
that signals signify seizures, need be different. In our atten-
tion mechanism, a kernel matrix and a bias matrix are obtained
by training, and then the two trained matrices are performed
transformations by combining with data segments. The outputs
of transformations are attention weights for the data segments.
The attention mechanism produces different weights for data
segments from different patients. When evaluating our model
on the data set CHB-MIT, the function so ftmax(-) is adopted in
the attention mechanism, and the sum of weights on channels is
1 for each data segment. A channel weight represents relative
strength about that characteristics of signals on the correspond-
ing channel signifies seizures. A channel weight close to 0 in-
dicates that corresponding signal characteristics are relatively
weak to signify seizures. It does not imply that the channel has
no contribution to seizure.

When designing attention mechanism, we tried differen-
t ways: one way is adding different attention weights over time
steps, and another way is adding different attention weights
over time steps and over channels. Our experimental results
using the two ways were not good. One possible reason is that
the role of each brain region in the whole brain state is general-
ly stable in a short duration such as 23s. Finally, we choose to
apply attention mechanism to channels and share the attention
weights among time steps. Actually, different channels have
different contributions to a seizure, and the contributions turn
out to be correlated to the locations of brain regions, rather than
the time. In addition, we applied our method to single channel
data. The results with single channel data were not good. They
were in agreement with the observation in [7]; that is, for some
channels, the data morphology in seizure state is similar to that
in non-seizure state.

7. Conclusions

This paper focuses on the problem of automatic seizure/non-
seizure classification. Inspired by the architecture in [20], we
analyze both spatial and temporal characteristics of seizures,
and propose a novel deep learning-based approach by using the
model of BILSTM integrated with attention. The integration
of an attention mechanism is to capture spatial features better,
and the employment of the BILSTM model is to extract more
temporal features. The proposed approach is evaluated on the
noisy EEG data set of CHB-MIT. The evaluation is across mul-
tiple patients and uses data from multiple brain regions. In the
cross-validation experiments, we obtain sensitivity of 87.3%,



specificity of 88.3% and precision of 88.29%, which are better
than the LSTM approach in [20] and the CNN approach in [17].
In the cross-patient experiments, the testing results are 83.72%-
sensitivity, 84.06%-specificity and 85.35%-precision on aver-
age. Comparing to the model recurrent CNN in [4], our model
BiLSTM with attention is more stable.

In the approach of BiLSTM with attention, the pooling layer
adopts a globally-averaging way to extract holistic features of
data segments. The problem whether such a way is the best or
not for the seizure/non-seizure classification will be explored in
the future. And also we want to investigate whether the length
of data segments has effects on the sensitivity, the specificity
and the precision.
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