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An artificial intelligence system for predicting the deterioration
of COVID-19 patients in the emergency department
Farah E. Shamout1,9, Yiqiu Shen2,9, Nan Wu2,9, Aakash Kaku2,9, Jungkyu Park3,4,9, Taro Makino 2,3,9, Stanisław Jastrzębski2,3,5,
Jan Witowski 3,5, Duo Wang6, Ben Zhang6, Siddhant Dogra 3, Meng Cao7, Narges Razavian2,3,6, David Kudlowitz7, Lea Azour 3,
William Moore3, Yvonne W. Lui 3,5, Yindalon Aphinyanaphongs 6, Carlos Fernandez-Granda 2,8 and Krzysztof J. Geras 2,3,5✉

During the coronavirus disease 2019 (COVID-19) pandemic, rapid and accurate triage of patients at the emergency department is
critical to inform decision-making. We propose a data-driven approach for automatic prediction of deterioration risk using a deep
neural network that learns from chest X-ray images and a gradient boosting model that learns from routine clinical variables. Our AI
prognosis system, trained using data from 3661 patients, achieves an area under the receiver operating characteristic curve (AUC)
of 0.786 (95% CI: 0.745–0.830) when predicting deterioration within 96 hours. The deep neural network extracts informative areas of
chest X-ray images to assist clinicians in interpreting the predictions and performs comparably to two radiologists in a reader study.
In order to verify performance in a real clinical setting, we silently deployed a preliminary version of the deep neural network at
New York University Langone Health during the first wave of the pandemic, which produced accurate predictions in real-time.
In summary, our findings demonstrate the potential of the proposed system for assisting front-line physicians in the triage of
COVID-19 patients.
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INTRODUCTION
In recent months, there has been a surge in patients presenting to
the emergency department (ED) with respiratory illnesses
associated with the coronavirus disease 2019 (COVID-19)1,2.
Evaluating the risk of deterioration of these patients to perform
triage is crucial for clinical decision-making and resource
allocation3. While ED triage is difficult under normal circum-
stances4,5, during a pandemic, strained hospital resources increase
the challenge2,6. This is compounded by our incomplete under-
standing of COVID-19. Data-driven risk evaluation based on
artificial intelligence (AI) could, therefore, play an important role
in streamlining ED triage.
As the primary complication of COVID-19 is pulmonary disease,

such as pneumonia7, chest X-ray imaging is a first-line triage tool
for COVID-19 patients8. Although other imaging modalities, such
as computed tomography (CT), provide higher resolution, chest
X-ray imaging is less costly, inflicts a lower radiation dose, and is
easier to obtain without incurring the risk of contaminating
imaging equipment and disrupting radiologic services9. In
addition, abnormalities in the chest X-ray images of COVID-19
patients have been found to mirror abnormalities in CT scans10.
Although the knowledge of the disease is rapidly evolving, the
understanding of the correlation between pulmonary parenchy-
mal patterns visible in the chest X-ray images and clinical
deterioration remains limited. This motivates the use of machine
learning approaches for risk stratification using chest X-ray
imaging, which may be able to learn such correlations auto-
matically from data.
The majority of related previous work using imaging data of

COVID-19 patients focus more on diagnosis than prognosis11–18.

Prognostic models used for predicting mortality, morbidity and
other outcomes related to the disease course have a number of
potential real-life applications, such as: consistently defining and
triaging sick patients, alerting bed management teams on
expected demands, providing situational awareness across teams
of individual patients, and more general resource allocation11.
Prior methodology for prognosis of COVID-19 patients via
machine learning mainly use routinely collected clinical vari-
ables2,19 such as vital signs and laboratory tests, which have long
been established as strong predictors of deterioration20,21. Some
studies have proposed scoring systems for chest X-ray images to
assess the severity and progression of lung involvement using
deep learning22, or more commonly, through manual clinical
evaluation7,23,24. In general, the role of deep learning for the
prognosis of COVID-19 patients using chest X-ray imaging has not
yet been fully established. Using both the images and the clinical
variables in a single AI system also has not been studied before.
We show that they both contain complimentary information,
which opens a new perspective on building prognostic AI systems
for COVID-19.
In this retrospective study, we develop an AI system that

performs an automatic evaluation of deterioration risk, based on
chest X-ray imaging, combined with other routinely collected non-
imaging clinical variables. An overview of the system is shown in
Fig. 1a. The goal is to provide support for critical clinical decision-
making involving patients arriving at the ED in need of immediate
care2,25, based on the need for efficient patient triage. The system
is based on chest X-ray imaging, while also incorporating other
routinely collected non-imaging clinical variables that are known
to be strong predictors of deterioration.
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Our AI system uses deep convolutional neural networks to
perform risk evaluation from chest X-ray images. In particular, we
designed our imaging-based classifier based on the Globally-
Aware Multiple Instance Classifier (GMIC)26,27, denoted as COVID-
GMIC, aiming for accurate performance and interpretability (see
Fig. 1b). The system also learns from routinely collected clinical

variables using a gradient boosting model (GBM)28, denoted as
COVID-GBM. Both models were trained using a dataset of 3661
patients admitted to NYU Langone Health between March 3, 2020,
and May 13, 2020. To learn from both modalities, we combined
the output predictions of COVID-GMIC and COVID-GBM to predict
each patient’s overall risk of deterioration over different time
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horizons, ranging from 24 to 96 h. In addition, the system includes
a model that predicts how the risk of deterioration is expected to
evolve over time by computing deterioration risk curves (DRC), in
the spirit of survival analysis29, denoted as COVID-GMIC-DRC.
Our system is able to accurately predict the deterioration risk on

a test set of new patients. It achieves an area under the receiver
operating characteristic curve (AUC) of 0.786 (95% CI:
0.745–0.830), and an area under the precision-recall curve (PR
AUC) of 0.517 (95% CI: 0.429–0.600) for prediction of deterioration
within 96 h. Additionally, its estimated probability of the temporal
risk evolution discriminates effectively between patients, and is
well-calibrated. The imaging-based model achieves a comparable
AUC to two experienced chest radiologists in a reader study,
highlighting the potential of our data-driven approach. In order to
verify our system’s performance in a real clinical setting, we
silently deployed a preliminary version of it at NYU Langone
Health during the first wave of the pandemic, demonstrating
that it can produce accurate predictions in real-time. Overall, these
results strongly suggest that our system is a viable and valuable
tool to inform triage of COVID-19 patients. For reproducibility,

we published our code and the trained models at https://github.
com/nyukat/COVID-19_prognosis.

RESULTS
Dataset
Our AI system was developed and evaluated using a dataset of
19,957 chest X-ray exams collected from 4,722 patients at NYU
Langone Health between March 3, 2020 and May 13, 2020. The
dataset consists of chest X-ray images collected from patients who
tested positive for COVID-19 using the polymerase chain reaction
(PCR) test, along with the clinical variables recorded closest to the
time of image acquisition (e.g., vital signs, laboratory test results,
and patient characteristics). Figure 2a shows examples of chest
X-ray images collected from different patients. We applied
inclusion and exclusion criteria that were defined in collaboration
with clinical experts, as shown in Fig. 2b. The training set
consisting of 2943 patients and 5617 chest X-ray images was used
for model development and hyperparameter tuning using Monte
Carlo cross-validation, where 20% of the training set was used for

Fig. 1 Overview of the AI system and the architecture of its deep learning component. a Overview of the AI system that assesses the
patient’s risk of deterioration every time a chest X-ray image is collected in the ED. We design two different models to process the chest X-ray
images, both based on the GMIC neural network architecture26,27. The first model, COVID-GMIC, predicts the overall risk of deterioration
within 24, 48, 72, and 96 h, and computes saliency maps that highlight the regions of the image that most informed its predictions. The
predictions of COVID-GMIC are combined with predictions of a gradient boosting model28 that learns from routinely collected clinical
variables, referred to as COVID-GBM. The second model, COVID-GMIC-DRC, predicts how the patient’s risk of deterioration evolves over time in
the form of deterioration risk curves. b Architecture of COVID-GMIC. First, COVID-GMIC utilizes the global network to generate four saliency
maps that highlight the regions on the X-ray image that are predictive of the onset of adverse events within 24, 48, 72, and 96 h, respectively.
COVID-GMIC then applies a local network to extract fine-grained visual details from these regions. Finally, it employs a fusion module that
aggregates information from both the global context and local details to make a holistic diagnosis.

Example 1 Example 3Example 2

Example 4 Example 6Example 5

Raw dataset
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Chest X-ray images linked to radiology 
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Fig. 2 Illustrations of the dataset and the dataset flowchart. a Examples of chest X-ray images in our dataset. Example 1: Patient was
discharged and experienced no adverse events (44 years old male). Example 2: Patient was transferred to the ICU after 95 h (71 years old
male). Example 3: Patient was intubated after 72 h (66 years old male). Example 4: Patient was transferred to the ICU after 48 h (99 years
old female). Example 5: Patient was intubated after 24 h (74 years old male). Example 6: Patient was transferred to the ICU in 30min (73 years
old female). It is important to note that the extent of parenchymal disease does not necessarily have a direct correlation with deterioration
time. For example, Example 5 has less severe parenchymal findings than Examples 3 and 4, but deteriorated faster. b Flowchart showing how
the inclusion and exclusion criteria were applied to obtain the final training and test sets, where n represents the number of chest X-ray
exams, and p represents the number of unique patients. Specifically, we excluded 783 exams that were not linked to any radiology report,
nine exams that had missing encounter information, and 5213 exams from patients who were still hospitalized by May 13, 2020. To ensure
that our system predicts deterioration prior to its occurrence, we excluded 6260 exams that were collected after an adverse event and 187
exams of already intubated patients. The final dataset consisted of 7502 chest X-ray exams corresponding to 4204 unique patients. We split
the dataset at the patient level such that exams from the same patient exclusively appear either in the training or test set. In the training set,
we included exams that were collected both in the ED and during inpatient encounters. Since the intended clinical use of our model is in the
ED, the test set only includes exams collected in the ED and hence we excluded 543 patients who did not have exams collected in the ED. This
resulted in 5224 exams (5617 images) in the training set and 770 exams (832 images) in the test set. We included both frontal and lateral
images, however there were less than 50 lateral images in the entire dataset.
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model validation for each hyperparameter configuration. The test
set consisting of 718 patients and 832 images was used to report
the final results and was not used during training. The training and
the test sets were disjoint, with no patient overlap. Table 1
summarizes the overall demographics and characteristics of the
patient cohort in the training and test sets, including distributions
of the included clinical variables. The raw laboratory test variables
were further processed to extract the minimum and maximum
statistics.

Ground-truth labels
We define deterioration, the target to be predicted by our models,
as the composite outcome of one of three adverse events:
intubation, admission to the intensive care unit (ICU), and
in-hospital mortality. If multiple adverse events occurred, we only
consider the time of the first event.

Evaluation metrics
Throughout the paper we used AUC (area under the receiver
operating characteristic curve) and PR AUC (area under the precision-
recall curve), which offer a complimentary view on the performance
of our models. We additionally computed positive predictive values
(PPV) and negative predictive values (NPV) for each of 24, 48, 72, 96 h
tasks. We dichotomized the probabilistic predictions to reflect the
class distribution in the training set. These metrics integrate the
performance of the evaluated models over all possible thresholds for
predictions to be considered positive. As there are no available
guidelines on how to select the threshold, we prefer these metrics to
metrics that are computed for a fixed threshold (i.e., F1 score or
classification accuracy). We also computed 95% confidence intervals
estimated by 1000 iterations of the bootstrap method30.

Model performance
Table 2 summarizes the performance of all the models in terms of
the AUC and PR AUC for the prediction of deterioration within 24,
48, 72, and 96 h from the time of the chest X-ray exam. The
receiver operating characteristic curves and precision-recall curves
can be found in Supplementary Fig. 1. The clinical variables only
model (COVID-GBM) achieves a better performance than a logistic
regression baseline across all time windows. We trained a logistic
regression model utilizing only clinical variables achieved 0.698,
0.699, 0.712, and 0.728 AUC and 0.214, 0.266, 0.339, and 0.436 PR
AUC across the 24, 48, 72, and 96 h windows, respectively. It is not
possible to directly compare the performance of COVID-GBM and
COVID-GMIC in the current setting since they model different
training and test sets, although they rely on the same patient-level
data splits. We reported the NPVs and PPVs of COVID-GMIC,
COVID-GBM, and the ensemble of the two in Supplementary Table
1. We also show examples that were incorrectly classified (false
positives and false negatives) in Supplementary Fig. 2.
However, the performance of the ensemble model consisting of

COVID-GMIC and COVID-GBM achieves an improved AUC and PR
AUC across all time windows compared to the COVID-GMIC
baseline. This highlights the complementary role of chest X-ray
images and routine clinical variables in predicting deterioration.
The weighting of the predictions of COVID-GMIC and COVID-GBM
was optimized on the validation set, as shown in Supplementary
Fig. 3b. The consistent advantage of the ensemble model in our
results is especially encouraging. Investigating more complex
strategies for fusion of information from these two modalities
could further improve the results and this will be a subject of our
future research. Sample learning curves of COVID-GMIC are shown
in Supplementary Fig. 4 for reference.
To illustrate the interpretability of COVID-GMIC, we show in

Fig. 3 the saliency maps for all time windows (24, 48, 72, and 96 h)
computed for four examples from the test set. Across all four

Table 1. Description of the characteristics of the patient cohort included
in the training and test sets and the mean and interquartile range statistics
of the raw vital signs and laboratory test results used for COVID-GBM.

Characteristic Training set Test set

Patients, n 2943 718

Admissions, n 3175 764

Sex (females), n (%) 1206 (41.0) 305 (42.5)

Age (years)*, mean (SD) 61.9 (17.6) 64.7 (17.4)

BMI (kg/m2), mean (SD) 29.6 (6.7) 29.4 (7.3)

Weight (kg), mean (SD) 83.1 (22.2) 82.2 (23.1)

Survived 2405 559

Adverse events, n 1311 369

Intubation, n (%) 386 (29.4) 97 (26.3)

ICU admission, n (%) 387 (29.5) 113 (30.6)

Mortality, n (%) 538 (41.0) 159 (43.1)

Chest X-ray exams, n 5224 770

Composite outcome within 24 h, n (%) 349 (6.7) 74 (9.6)

Composite outcome within 48 h, n (%) 553 (10.6) 101 (13.1)

Composite outcome within 72 h, n (%) 735 (14.1) 130 (16.9)

Composite outcome within 96 h, n (%) 876 (16.8) 156 (20.3)

Total number of images, n 5617 832

Vital signs feature sets, n units 10,640 2776

Heart rate, beats per minute 93.7 (25.0) 93.5 (27.0)

Respiratory rate*, breaths per minute 22.4 (7.0) 23.4 (7.0)

Temperature, ∘F 99.4 (1.9) 99.4 (1.9)

Systolic blood pressure, mmHg 130.7 (30.0) 129.8 (29.3)

Diastolic blood pressure, mmHg 75.9 (17.0) 76.0 (18.0)

Oxygen saturation*, % 94.1 (4.0) 93.8 (5.0)

Provision of supplemental oxygen*,
n (%)

3970 (37.3) 1166 (42.0)

Raw laboratory test results, units

Albumin, g/dL 3.5 (0.9) 3.5 (0.9)

Alanine transaminase, U/L 49.8 (32.0) 52.2 (36.0)

Aspartate aminotransferase, U/L 67.3 (37.0) 69.7 (43.0)

Total bilirubin, mg/dL 0.7 (0.4) 0.7 (0.4)

Blood urea nitrogen, mg/dL 25.9 (17.0) 26.4 (18.0)

Calcium, mg/dL 8.7 (0.8) 8.7 (0.8)

Chloride, mEq/L 101.1 (7.0) 101.6 (7.0)

Creatinine, mg/dL 1.6 (0.7) 1.6 (0.7)

D-dimer, ng/mL 1321.6 (535.5) 1146.3 (618.5)

Eosinophils, % 0.4 (0.0) 0.4 (0.0)

Eosinophils, n 0.03 (0.00) 0.03 (0.00)

Hematocrit, % 38.9 (7.3) 38.9 (7.5)

Lactate dehydrogenase, U/L 412.8 (207.0) 404.0 (213.0)

Lymphocytes, % 14.1 (10.0) 14.9 (11.0)

Lymphocytes, n 1.0 (0.7) 1.0 (0.7)

Platelet volume, fL 10.6 (1.4) 10.6 (1.4)

Neutrophils, n 6.4 (4.0) 6.3 (3.8)

Neutrophils, % 76.6 (14.0) 75.9 (13.0)

Platelet, n 226.1 (114.0) 223.7 (103.0)

Potassium, mmol/L 4.2 (0.8) 4.2 (0.8)

Procalcitonin, ng/mL 1.9 (0.3) 1.9 (0.4)

Total protein, g/dL 7.1 (1.1) 7.2 (1.0)

Sodium, mmol/L 136.2 (6.0) 136.6 (7.0)

Troponin, ng/mL 0.2 (0.1) 0.2 (0.1)

Note that n represents a counting unit. The asterisk (*) denotes statistically
significant difference with p < 0.01 between the training and test sets. We
used the two-sided t-test to compare continuous variables (age, BMI,
weight, vital signs, and laboratory tests) and a 2-sample z-test to compare
the proportions of categorical variables (sex and provision of supplemental
oxygen).
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examples, the saliency maps highlight regions that contain visual
patterns such as airspace opacities and consolidation, which are
correlated with clinical deterioration22,24. These saliency maps are
utilized to guide the extraction of six regions of interest (ROI)
patches cropped from the entire image, which are then associated
with a score that indicates its relevance to the prediction task. We
also note that in the last example, the saliency maps highlight
right mid to lower paramediastinal and left mid-lung periphery.
The dense consolidation in the periphery of the right upper lobe is
highlighted by ROI patch 4. It might also be useful to enhance
GMIC through a classifier agnostic mechanism31, which finds all
the useful evidence in the image, instead of solely the most
discriminative part. We leave this for future work.
The most predictive features (top 10) of COVID-GBM are shown

in Supplementary Fig. 3a. Temperature was ranked among the top
two predictive features and age was ranked among the top four
predictive features across all time windows.

Comparison to radiologists
We compared the performance of COVID-GMIC with two chest
radiologists from NYU Langone Health (with 3 and 17 years of
experience) in a reader study with a sample of 200 frontal chest

X-ray exams from the test set. We used stratified sampling to
improve the representation of patients with a negative outcome in
the reader study dataset. Specifically, we randomly sampled the first
100 exams from patients that had an adverse event in the next 96 h
from the time the exam was taken. The remaining 100 exams came
from the complement of the test set. We describe the design of the
reader study in more detail in the Methods section.
As shown in Table 2, our main finding is that COVID-GMIC

achieves a comparable performance to radiologists across all time
windows in terms of AUC and PR AUC, and outperforms
radiologists for 48, 72, and 96 h. For example, COVID-GMIC
achieves AUC of 0.808 (95% CI, 0.746–0.866) compared to AUC
of 0.741 average AUC of both radiologists in the 96 h prediction
task. We hypothesize that COVID-GMIC outperforms radiologists
on this task due to the currently limited clinical understanding of
which pulmonary parenchymal patterns predict clinical deteriora-
tion, rather than the severity of lung involvement24. Supplemen-
tary Fig. 5 shows AUC and PR AUC curves across all time windows.

Deterioration risk curves
We use a modified version of COVID-GMIC, referred to hereafter as
COVID-GMIC-DRC, to generate discretized deterioration risk curves

Table 2. Performance of the outcome classification task on the held-out test set, and on the subset of the test set used in the reader study (n
represents the number of images).

Test set (n= 832)

AUC PR AUC

24 h 48 h 72 h 96 h 24 h 48 h 72 h 96 h

COVID-GBM 0.747 0.739 0.750 0.770 0.230 0.325 0.408 0.523

(0.698, 0.802) (0.69, 0.795) (0.703, 0.799) (0.727, 0.813) (0.139, 0.296) (0.229, 0.396) (0.317, 0.479) (0.433, 0.6)

COVID-GMIC 0.695 0.716 0.717 0.738 0.200 0.302 0.374 0.439

(0.636, 0.763) (0.666, 0.771) (0.668, 0.773) (0.695, 0.785) (0.119, 0.260) (0.209, 0.379) (0.283, 0.452) (0.346, 0.515)

COVID-GBM + 0.765 0.749 0.769 0.786 0.243 0.332 0.439 0.517

COVID-GMIC (0.712, 0.817) (0.700, 0.798) (0.724, 0.818) (0.745, 0.830) (0.150, 0.299) (0.237, 0.41) (0.345, 0.527) (0.429, 0.600)

Reader study dataset (n= 200)

AUC PR AUC

24 h 48 h 72 h 96 h 24 h 48 h 72 h 96 h

Radiologist A 0.613 0.645 0.691 0.740 0.346 0.490 0.640 0.742

(0.519, 0.705) (0.571, 0.731) (0.618, 0.77) (0.674, 0.814) (0.217, 0.441) (0.367, 0.599) (0.536, 0.745) (0.657, 0.834)

Radiologist B 0.637 0.636 0.658 0.713 0.365 0.460 0.590 0.704

(0.547, 0.73) (0.552, 0.716) (0.588, 0.738) (0.649, 0.786) (0.229, 0.462) (0.335, 0.56) (0.492, 0.701) (0.616, 0.805)

Radiologist A + 0.642 0.663 0.692 0.741 0.403 0.499 0.609 0.740

Radiologist B (0.555, 0.729) (0.589, 0.746) (0.621, 0.766) (0.678, 0.809) (0.272, 0.52) (0.380, 0.613) (0.492, 0.711) (0.650, 0.831)

COVID-GMIC 0.642 0.701 0.751 0.808 0.381 0.546 0.676 0.789

(0.554, 0.734) (0.627, 0.781) (0.685, 0.821) (0.75, 0.87) (0.235, 0.480) (0.421, 0.657) (0.564, 0.780) (0.699, 0.880)

COVID-GBM 0.704 0.719 0.750 0.787 0.411 0.537 0.668 0.804

(0.632, 0.784) (0.648, 0.794) (0.684, 0.821) (0.727, 0.850) (0.259, 0.518) (0.394, 0.64) (0.558, 0.77) (0.738, 0.884)

COVID-GBM + 0.708 0.702 0.778 0.819 0.411 0.500 0.705 0.808

COVID-GMIC (0.637, 0.799) (0.633, 0.775) (0.719, 0.851) (0.763, 0.885) (0.279, 0.517) (0.364, 0.601) (0.599, 0.806) (0.735, 0.898)

We include 95% confidence intervals estimated by 1000 iterations of the bootstrap method30. The optimal weights assigned to the COVID-GMIC prediction in the
COVID-GMIC and COVID-GBM ensemble were derived through optimizing the AUC on the validation set as described in Supplementary Fig. 3b. The ensemble of
COVID-GMIC and COVID-GBM, denoted as ‘COVID-GMIC + COVID-GBM’, achieves the best performance across all time windows in terms of the AUC and PRAUC,
except for the PR AUC in the 96 h task. In the reader study, our main finding is that COVID-GMIC outperforms radiologists A & B across time windows longer than
24 h, with 3 and 17 years of experience, respectively. Note that the radiologists did not have access to clinical variables and as such their performance is not
directly comparable to the COVID-GBM model; we include it only for reference. The area under the precision-recall curve is sensitive to class distribution, which
explains the large differences between the scores on the test set and the reader study subset. Best performance per metric is shown in bold.
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(DRCs) which predict the evaluation of the deterioration risk based
on chest X-ray images. Figure 4a shows the DRCs for all the
patients in the test set. The DRC represents the probability that the
first adverse event occurs before time t, where t is equal to 3, 12,
24, 48, 72, 96, 144, and 192 h. The mean DRCs of patients who
deteriorate (red bold line) is significantly higher than the mean
DRCs of patients who are discharged without experiencing any
adverse events (blue bold line). We evaluate the performance of
the model using the concordance index, which is computed on
patients in the test set who experienced adverse events. For a
fixed time t the index equals the fraction of pairs of patients in the
test data for which the patient with the higher DRC value at
t experiences an adverse event earlier. For t equal to 96 h, the
concordance index is 0.713 (95% CI: 0.682–0.747), which
demonstrates that COVID-GMIC-DRC can effectively discriminate
between patients. Other values of t yield similar results, as
reported in Supplementary Table 2. Sample learning curves of
COVID-GMIC-DRC are shown in Supplementary Fig. 6 for reference.
Figure 4b shows a reliability plot, which evaluates the

calibration of the probabilities encoded in the DRCs. The diagram
compares the values of the estimated DRCs for the patients in the
test set with empirical probabilities that represent the true
frequency of adverse events. To compute the empirical prob-
abilities, we divided the patients into deciles according to the
value of the DRC at each time t. We then computed the fraction of
patients in each decile that suffered adverse events up to t. The
fraction is plotted against the mean DRC of the patients in
the decile. The diagram shows that these values are similar across
the different values of t, meaning the model is well-calibrated (for

comparison, perfect calibration would correspond to the diagonal
black dashed line).

Prospective silent validation in a clinical setting
Our long-term goal is to deploy our system in existing clinical
workflows to assist clinicians. The clinical implementation of
machine learning models is a very challenging process, both from
technical and organizational standpoints32. To test the feasibility
of deploying the AI system in the hospital, we silently deployed a
preliminary version of our AI system in the hospital system and let
it operate in real-time beginning on May 22, 2020. The deployed
version includes 15 models that are based on DenseNet-121
architectures, and use only chest X-ray images. The models were
developed to predict deterioration within 96 h using a subset of
our data collected prior to deployment from 3425 patients. The
models were serialized and served with TensorFlow Serving
components33 on an Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz;
no GPUs were used. Images are preprocessed as explained in the
Methods section. Our system produces predictions essentially in
real-time - it takes ~2 s to extract an image from the PACS system,
apply the image preprocessing steps, and get the prediction of a
model as a TensorFlow33 output.
A total of 375 exams were collected between May 22, 2020 and

June 24, 2020. Of the 375 exams collected between May 22, 2020
and June 24, 2020, 38 exams (10.1%) were associated with a
positive 96 h deterioration outcome, compared to 20.3% in the
retrospective test set. When we compare the composition of types
of events between the two cohorts, we can observe a significant
difference. Mortality within 96 h is the most prevalent event in the

Fig. 3 Explainability of COVID-GMIC. From left to right: the original X-ray image, saliency maps for clinical deterioration within 24, 48, 72, and
96 h, locations of region-of-interest (ROI) patches, and ROI patches with their associated attention scores. All four patients were admitted to
the intensive care unit and were intubated within 48 h. In the first example, there are diffuse airspace opacities, though the saliency maps
primarily highlight the medial right basal and peripheral left basal opacities. Similarly, the two ROI patches (1 and 2) on the basal region
demonstrate comparable attention values, 0.49 and 0.46, respectively. In the second example, the extensive left mid to upper-lung
abnormality (ROI patch 1) is highlighted, which correlates with the most extensive area of parenchymal consolidation. In the third example,
the saliency maps highlight the left mid lung (ROI patch 1) and right hilar/infrahilar regions (ROI patch 2) which show groundglass opacities. In
the last example, the saliency maps highlight the right infrahilar region (ROI patch 1) and the left mid lung periphery (ROI patch 2). The ROI
patch 4 is also assigned the highest attention score as a predictive region of clinical deterioration, which corresponds to dense peripheral
right upper lobe consolidation.
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retrospective cohort (43.1%), while ICU admission within 96 h is
the most prevalent event in the silent evaluation cohort (65.8%).
Additionally, mortality constitutes 18.4% of adverse events and
intubation constitutes 15.8% of events in the silent cohort. An
ensemble of the deployed models, obtained by averaging their
predictions, achieved an AUC of 0.717 (95% CI: 0.622–0.801) and a
PR AUC of 0.289 (95% CI: 0.181–0.465). These results are
comparable to those obtained on a retrospective test set used
for evaluation before deployment, which are 0.748 (95% CI:
0.708–0.790) AUC and 0.365 (95% CI: 0.313–0.465) PR AUC. The
decrease in accuracy is expected and may indicate changes in the
patient population, increased class imbalance, and treatment
guidelines as the pandemic progressed. When practically
deployed, our system would still need periodical retraining with
the latest data.

DISCUSSION
In this work, we present an AI system that is able to predict
deterioration of COVID-19 patients presenting to the ED, where
deterioration is defined as the composite outcome of mortality,
intubation, or ICU admission. The system aims to provide clinicians
with a quantitative estimate of the risk of deterioration, and how it
is expected to evolve over time, in order to enable efficient triage
and prioritization of patients at the high risk of deterioration. The
tool may be of particular interest for pandemic hotspots where
triage at admission is critical to allocate limited resources such as
hospital beds.
Recent studies have shown that chest X-ray images are useful

for the diagnosis of COVID-1912,13,15,19,34. Our work supplements
those studies by demonstrating the significance of this imaging
modality for COVID-19 prognosis. Additionally, our results suggest
that chest X-ray images and routinely collected clinical variables
contain complementary information, and that it is best to use both
to predict clinical deterioration. This builds upon existing
prognostic research, which typically focuses on developing risk
prediction models using non-imaging variables extracted from
electronic health records19,35. In Supplementary Table 3, we
demonstrate that our models’ performance can be improved by
increasing the dataset size. The current dearth of prognosis
models that use both imaging and clinical variables may partly be
due to the limited availability of large-scale datasets including
both data types and outcome labels, which is a key strength of our
study. In order to assess the clinical benefits of our approach, we
conducted a reader study, and the results indicate that
the proposed system can perform comparably to radiologists.

This highlights the potential of data-driven tools for assisting the
interpretation of X-ray images.
The proposed deep learning model, COVID-GMIC, provides

visually intuitive saliency maps to help clinicians interpret the
model predictions36. Existing work on COVID-19 often use external
gradient-based algorithms, such as gradCAM37, to interpret deep
neural network classifiers38–40. However, visualizations generated
by gradient-based methods are sensitive to minor perturbation in
input images, and could yield misleading interpretations41. In
contrast, COVID-GMIC has an inherently interpretable architecture
that better retains localization information of the more informative
regions in the input images. We assessed the model’s interpret-
ability qualitatively due to the difficulty in obtaining ground-truth
segmentation labels from radiologists during the pandemic.
Assessing the interpretability of GMIC quantitatively, by measuring
its ability to indicate the same areas in the images as the
radiologists indicate, is an area of future work.
We performed prospective validation of an early version of our

system through silent deployment in an NYU Langone Health
hospital. The results suggest that the implementation of our AI
system in the existing clinical workflows is feasible. Our model
does not incur any overhead operational costs on data collection,
since chest X-ray images are routinely collected from COVID-19
patients. Additionally, the model can process the image efficiently
in real-time, without requiring extensive computational resources
such as GPUs. This is an important strength of our study, since very
few studies have implemented and prospectively validated risk
prediction models in general42. Our approach has some limitations
that will be addressed in future work. Our deep neural network
considers a single chest X-ray image as an input and does not
consider longitudinal changes in consecutive images. This is
primarily due to our focus on emergency department triage,
where the patient typically gets only one or a few scans. Another
limitation is that the silent deployment was based only on the
model that processes chest X-ray exams, and did not include
routine clinical variables, nor any interventions. The COVID-GMIC-
DRC model also did not incorporate any clinical variables. This is
because the computation of the deterioration risk curves heavily
depends on model calibration. Gradient boosting models are
generally not as well calibrated as neural networks. Therefore,
incorporating the clinical variables within the DRC model requires
more extensive calibration analysis and/or the design of an
additional neural network for clinical variables. We developed the
DRC model to meet a secondary objective of our study, which is to
assess whether chest X-rays contain useful information for survival
analysis. Our future work will focus on calibration in the context of

Fig. 4 Deterioration risk curves (DRCs) and reliability plot for COVID-GMIC-DRC. a DRCs generated by the COVID-GMIC-DRC model for
patients in the test set with (faded red lines) and without adverse events (faded blue lines). The mean DRC for patients with adverse events
(red dashed line) is higher than the DRC for patients without adverse events (blue dashed line) at all times. The graph also includes the
ground-truth population DRC (black dashed line) computed from the test data. b Reliability plot of the DRCs generated by the COVID-GMIC-
DRC model for patients in the test set. The empirical probabilities are computed by dividing the patients into deciles according to the value of
the DRC at each time t. The empirical probability equals the fraction of patients in each decile that suffered adverse events up to t. This is
plotted against the predicted probability, which equals the mean DRC of the patients in the decile. Perfect calibration is indicated by the
diagonal black dashed line.
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multi-modal learning for survival analysis. In addition, an inherent
limitation of the type of our study, an internal retrospective and
prospective validation, is that the system’s performance measures
may be affected when COVID-19 outcomes have a different
prevalence compared to at the height of the pandemic or when
different imaging protocols are used. Therefore, further validation
is required to assess whether the system can improve key
performance measures, such as patient outcomes, through
prospective and external validation across different hospitals
and electronic health records systems.
Our system currently considers two data types, which are chest

X-ray images and clinical variables. The multi-modal system
adopts a late fusion strategy to combine the predictions of
COVID-GMIC and COVID-GBM. Future work should investigate
more sophisticated multi-modal learning strategies that cross-
transfer information between the two modalities to improve
performance and understanding of the utility of clinical data.
Incorporating additional data from patient health records may also
further improve its performance. For example, the inclusion of
presenting symptoms using natural language processing has been
shown to improve the performance of a risk prediction model in
the ED25. Although we focus on chest X-ray images because
pulmonary disease is the main complication associated with
COVID-19, COVID-19 patients may also suffer poor outcomes due
to non-pulmonary complications such as: non-pulmonary throm-
boembolic events, stroke, and pediatric inflammatory syn-
dromes43–45. This could explain some of the false negatives
incurred by our system; therefore, incorporating other types of
data that reflect non-pulmonary complications may also improve
prognostic accuracy.
Our system was developed and evaluated using data collected

from the NYU Langone Health in New York, USA. Therefore, it is
possible that our models overfit to the patient demographics and
specific configurations in the imaging acquisition devices of our
dataset.
Our findings show the promise of data-driven AI systems in

predicting the risk of deterioration for COVID-19 patients, and
highlights the importance of designing multi-modal AI systems
capable of processing different types of data. We anticipate that
such tools will play an increasingly important role in supporting
clinical decision-making in the future.

METHODS
Ethics
This study was approved by the NYU Langone Health Institutional Review
Board (IRB), with ID# i20-00858. A waiver for informed consent was granted
by the IRB, since the study presents no more than minimal risk.

Outline
In this section, we first introduce our image preprocessing pipeline then
formulate the adverse event prediction task and present our multi-modal
approach which utilizes both chest X-ray images and clinical variables.
Next, we formally define deterioration risk curve (DRC) and introduce our
X-ray image-based approach to estimate DRC. Subsequently, we summar-
ize the technical details of model training and implementation. Lastly, we
describe the design of the reader study.

Image preprocessing
After extracting the images from DICOM files, we applied the following
preprocessing procedure. We first thresholded and normalized pixel
values, and then cropped the images to remove any zero-valued pixels
surrounding the image. Then, we unified the dimensions of all images by
cropping the images outside the center and rescaling. We performed data
augmentation by applying random horizontal flipping (p= 0.5), random
rotation (−45° to 45°), and random translation. Supplementary Fig. 7 shows
the distribution of the size of the images prior to data augmentation, as
well as examples of images before and after preprocessing.

Adverse event prediction
Our main goal is to predict clinical deterioration within four time windows
of 24, 48, 72, and 96 h. We frame this as a multi-label classification task with
binary labels y= [y24, y48, y72, y96] indicating clinical deterioration of a
patient within the four time windows. The probability of deterioration is
estimated using two types of data associated with the patient: a chest
X-ray image, and routine clinical variables. We use two different machine
learning models for this task: COVID-GMIC to process chest X-ray images,
and COVID-GBM to process clinical variables. For each time window
t 2 Ta ¼ f24; 48; 72; 96g, both models produce probability estimates of
clinical deterioration, ŷtCOVID�GMIC ; ŷ

t
COVID�GBM 2 ½0; 1�.

In order to combine the predictions from COVID-GMIC and COVID-GBM,
we employ the technique of model ensembling46. Specifically, for each
example, we compute a multi-modal prediction ŷENSEMBLE as a linear
combination of ŷCOVID�GMIC and ŷCOVID�GBM:

ŷENSEMBLE ¼ λŷCOVID�GMIC þ ð1� λÞŷCOVID�GBM; (1)

where λ∈ [0, 1] is a hyperparameter. We selected the best λ by optimizing
the average of the AUC and PR AUC on the validation set. In
Supplementary Fig. 3b, we show the validation performance of ŷENSEMBLE
for varying λ.

Clinical variables model
The goal of the clinical variables model is to predict the risk of
deterioration when the patient’s vital signs are measured. Thus, each
prediction was computed using a set of vital sign measurements, in
addition to the patient’s most recent laboratory test results, age, weight,
and body mass index (BMI). The vital signs (7 in total) were heart rate,
respiratory rate, temperature, systolic blood pressure, diastolic blood
pressure, oxygen saturation, and the provision of supplemental oxygen.
The laboratory test measurements (24 in total) were albumin, alanine
transaminase, aspartate aminotransferase, total bilirubin, blood urea
nitrogen, calcium, chloride, creatinine, d-dimer, eosinophils count,
eosinophils percentage, hematocrit, lactate dehydrogenase, lymphocytes
count, lympocytes percentage, platelet volume, neutrophils count,
neutrophils percentage, platelet, potassium, procalcitonin, total protein,
sodium, and troponin. The laboratory test features were further
represented as maximum and minimum statistics of any results collected
within 12 h prior to the time of the vital sign measurement, leading to 48
processed features in total. The feature sets of age, weight, BMI, vital signs
and processed laboratory tests (58 input features in total) were then
processed using a gradient boosting model28 which we refer to as COVID-
GBM. In cases where a patient had a missing vital sign or laboratory test
measurement, we carried forward the most recently recorded measure-
ment. If there were no recent measurements, then the value was left as
missing since GBM can handle missing values. For the final ensemble
prediction, ŷENSEMBLE, we combined the COVID-GMIC prediction with the
COVID-GBM prediction computed using the most recently collected clinical
variables prior to the chest X-ray exam. In cases where there were no
clinical variables collected prior to the chest X-ray (i.e., missing clinical
variables), we performed a mean imputation of the predictions assigned to
the validation set.

Chest X-ray image model
We process chest X-ray images using a deep convolutional neural network
model, which we call COVID-GMIC, based on the GMIC model26,27. COVID-
GMIC has two desirable properties. First, COVID-GMIC generates inter-
pretable saliency maps that highlight regions in the X-ray images that
correlate with clinical deterioration. Second, it possesses a local module
that is able to utilize high-resolution information in a memory-efficient
manner. This avoids aggressive downsampling of the input image, a
technique that is commonly used on natural images47,48, which may distort
and blur informative visual patterns in chest X-ray images such as basilar
opacities and pulmonary consolidation. In Supplementary Table 4, we
demonstrate that COVID-GMIC achieves comparable results to DenseNet-
121, a neural network model that is not interpretable by design, but is
commonly used for chest X-ray analysis49–52.
The architecture of COVID-GMIC is schematically depicted in Fig. 1b.

COVID-GMIC processes an X-ray image x 2 RH;W (H and W denote the
height and width) in three steps. First, the global module helps COVID-
GMIC learn an overall view of the X-ray image. Within this module, COVID-
GMIC utilizes a global network fg to extract feature maps hg 2 Rh;w;n,
where h, w, and n denote the height, width, and number of channels of the
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feature maps. The resolution of the feature maps is chosen to be coarser
than the resolution of the input image. For each time window t 2 Ta , we
apply a 1 × 1 convolution layer with sigmoid activation to transform hg into
a saliency map At 2 Rh;w that highlights regions on the X-ray image which
correlate with clinical deterioration. For visualization purposes, we apply
nearest neighbor interpolation to upsample the saliency maps to match
the resolution of the original image. Each element At

i;j 2 ½0; 1� represents
the contribution of the spatial location (i, j) in predicting the onset of
adverse events within time window t. In order to train fg, we use an
aggregation function f agg : Rh;w 7!½0; 1� to transform all saliency maps At

for all time windows t into classification predictions ŷglobal:

f aggðAtÞ ¼ 1
jHþj

X

ði;jÞ2Hþ
At
i;j ; (2)

where H+ denotes the set containing the locations of the r% largest values
in At, and r is a hyperparameter.
The local module enables COVID-GMIC to selectively focus on a small set

of informative regions. As shown in Fig. 1, COVID-GMIC utilizes the saliency
maps, which contain the approximate locations of informative regions, to
retrieve six image patches from the input X-ray image, which we call
region-of-interest (ROI) patches. We refer the readers to Supplementary
Note 5 for more details about the ROI retrieval algorithm. Figure 3 shows
some examples of ROI patches. To utilize high-resolution information
within each ROI patch ~x 2 R224;224, COVID-GMIC applies a local network fl,
parameterized as a ResNet-1847, which produces a feature vector ~hk 2
R512 from each ROI patch. The predictive value of each ROI patch might
vary significantly. Therefore, we utilize the gated attention mechanism53 to
compute an attention score αk∈ [0, 1] that indicates the relevance of each
ROI patch ~x for the prediction task. To aggregate information from all ROI
patches, we compute an attention-weighted representation:

z ¼
X6

k¼1

αk~hk : (3)

The representation z is then passed into a fully connected layer with
sigmoid activation to generate a prediction ŷlocal. We refer the readers to
Shen et al.27 for further details.
The fusion module combines both global and local information to

compute a final prediction. We apply global max pooling to hg, and
concatenate it with z to combine information from both saliency maps and
ROI patches. The concatenated representation is then fed into a fully
connected layer with sigmoid activation to produce the final prediction
ŷfusion.
In our experiments, we chose H=W= 1024. Supplementary Table 4

shows that COVID-GMIC achieves the best validation performance for this
resolution. We parameterize fg as a ResNet-1847 which yields feature maps
hg with resolution h=w= 32, and number of channels n= 512. During
training, we optimize the loss function:

lðy; ŷglobal; ŷlocal; ŷfusionÞ ¼
1

jTaj
X

t2Ta

BCE ðyt; ŷtglobalÞ þ BCE ðyt ; ŷtlocalÞ

þ BCE ðyt ; ŷtfusionÞ þ βjAtj;
(4)

where BCE denotes binary cross-entropy and β is a hyperparameter
representing the relative weights on an ℓ1-norm regularization term that
promotes sparsity of the saliency maps. During inference, we use ŷfusion as
the final prediction generated by the model.

Estimation of deterioration risk curves
The deterioration risk curve (DRC) represents the evolution of the
deterioration risk over time for each patient. Let T denote the time of
the first adverse event. The DRC is defined as a discretized curve that
equals the probability P(T ≤ ti) of the first adverse event occurring before
time ti∈ {ti∣1 ≤ i ≤ 8}, where t1= 3, t2= 12, t3= 24, t4= 48, t5= 72, t6= 96,
t7= 144, t8= 192 (all times are in hours).
Following recent work on survival analysis via deep learning54, we

parameterize the DRC using a vector of conditional probabilities p̂ 2 R8.
The ith entry of this vector, p̂i , is equal to the conditional probability of the
adverse event happening before time ti given that no adverse event
occurred before time ti−1, that is:

p̂i ¼
PðT � t1Þ; i ¼ 1;

PðT � ti j T > ti�1Þ; 2 � i � 8:

�
(5)

The parameters in our implementation are the complementary

probabilities q̂ ¼ 1� p̂, which is a mathematically equivalent parameter-
ization. We also include an additional parameter to account for patients
whose first adverse event occurs after 192 h. Given an estimate of p̂, the
DRC can be computed applying the chain rule:

DRC ðtiÞ ¼ PðT � tiÞ
¼ 1� PðT > tiÞ

¼ 1� Qi

j¼1
PðT > tj j T > tj�1Þ

¼ 1� Qi

j¼1
ð1� p̂jÞ:

(6)

We use the GMIC model to estimate the conditional probabilities p̂ from
chest X-ray images. We refer to this model as COVID-GMIC-DRC. As
explained in the previous section, the GMIC model has three different
outputs corresponding to the global module, local module and fusion
module. When estimating conditional probabilities for the eight time
intervals, we denote these outputs by p̂global, p̂local, and p̂fusion. During
inference, we use the output of the fusion module, p̂fusion, as the final
prediction of the conditional-probability vector p̂. We use an input
resolution of H=W= 512 and parameterize fg as ResNet-3447. The
resulting feature maps hg have resolution h=w= 16 and number of
channels n= 512. The results of an ablation study that evaluates the
impact of input resolution and compares COVID-GMIC-DRC to a model
based on the Densenet-121 architecture, are shown in the Supplementary
Fig. 8 and Supplementary Tables 2 and 4. During training, we minimize the
following loss function defined on a single example:

lðT ; p̂global; p̂local; p̂fusionÞ ¼ lsðT ; p̂globalÞ þ lsðT ; p̂localÞ þ lsðT ; p̂fusionÞ þ
X8

m¼0

βjAmj;

(7)

where ls is the negative log-likelihood of the conditional probabilities. For a
patient who had an adverse event between ti−1 and ti (where t0= 0), this
negative log-likelihood is given by

lsðT ; p̂Þ ¼ �ln Pðti�1 � T � tiÞ

¼ �ln
Qi�1

j¼1
PðT>tj j T > tj�1ÞPðT � tj j T > ti�1Þ

¼ �Pi�1

j¼1
ln ð1� p̂jÞ � ln p̂i :

(8)

The framework can easily incorporate censored data corresponding to
patients whose information is not available after a certain point. The
negative log-likelihood corresponding to a patient, who has no informa-
tion after ti and no adverse events before ti, equals

lsðT ; p̂Þ ¼ �ln PðT > tiÞ

¼ �ln
Qi

j¼1
PðT > tj j T > tj�1Þ

¼ �Pi

j¼1
ln ð1� p̂jÞ:

(9)

Note that each p̂i is estimated only using patients that have data available
up to ti. The total negative log-likelihood of the training set is equal to the
sum of the individual negative log-likelihoods corresponding to each
patient, which makes it possible to perform minimization efficiently via
stochastic gradient descent. In contrast, deep learning models for survival
analysis based on Cox proportional hazards regression55 require using the
whole dataset to perform model updates56–58, which is computationally
infeasible when processing large image datasets.

Model training and selection
In this section, we discuss the experimental setup used for COVID-GMIC,
COVID-GMIC-DRC, and COVID-GBM. We initialized the weights of COVID-
GMIC and COVID-GMIC-DRC by pretraining them on the ChestX-ray14
dataset59 (Supplementary Table 5 compares the performance of different
initialization strategies). We used Adam60 with a minibatch size of eight to
train the models on our data. During the training and test stages, we
applied a set of data transformations to the inputs in order to make the
model more robust to rotation and spatial translation. During the test
stage, we applied ten different augmentations to each image and used the
average of their predictions in order to further improve performance.

F.E. Shamout et al.

9

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2021) 80



We did not apply any data augmentation during the validation stage since
it introduces randomness, which can be confounding when determining
whether or not validation performance is improving.
We optimized the hyperparameters using random search61. For COVID-

GMIC, we searched for the learning rate η∈ 10[−6,−4] on a logarithmic
scale, the regularization hyperparameter β∈ 4 × 10[−6,−3] on a logarithmic
scale, and the pooling threshold r∈ [0.2, 0.8] on a linear scale. For COVID-
GMIC-DRC, based on the preliminary experiments, we fixed the learning
rate to 1.25 × 10−4. We searched for the regularization hyperparameter,
β∈ 10[−6,−4] on a logarithmic scale, and the pooling threshold r∈ {0.2, 0.5,
0.8}. For COVID-GBM, we searched for the learning rate η∈ 10[−2,−1] on a
logarithmic scale, the number of estimators e∈ 10[2, 3] on a logarithmic
scale, and the number of leaves l∈ [5, 15] on a linear scale. For each
hyperparameter configuration, we performed Monte Carlo cross-
validation62 (we sampled 80% of the data for training and 20% of the
data was used for validation). We performed cross-validation using
three different random splits for each hyperparameter configuration.
We then selected the top three hyperparameter configurations based on
the average validation performance across the three splits. Finally, we
combined the nine models from the top three hyperparameter config-
urations by averaging their predictions on the held-out test set to evaluate
the performance. This procedure is formally described in Supplementary
Algorithm 1.

Software
The chest X-ray image models were implemented in PyTorch63 and trained
using NVIDIA Tesla V100 GPUs. The clinical variables models were
implemented using the Python library LightGBM28.

Design of the reader study
The reader study consists of 200 frontal chest X-ray exams from the test
set. We selected one exam per patient to increase the diversity of exams.
We used stratified sampling to ensure that a sufficient number of exams in
the study corresponded to the least common outcome (patients with
adverse outcomes in the next 24 h). In more detail, we oversampled exams
of patients who developed an adverse event by sampling the first 100
exams only from patients from the test set that had an adverse outcome
within the first 96 h. The remaining 100 exams came from the remaining
patients in the test set. The radiologists were asked to assign the overall
probability of deterioration to each scan across all time windows of
evaluation.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The ImageNet dataset is available at http://www.image-net.org/. The ChestX-ray8
dataset is available at https://nihcc.app.box.com/v/ChestXray-NIHCC. The COVID-19
X-ray images and associated clinical variables from NYU Langone Health are not
publicly available, but we provide sample patients in our source code repository.

CODE AVAILABILITY
The code of the models in this study, along with their trained weights, are available at
https://github.com/nyukat/COVID-19_prognosis.
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