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Abstract
In the last few years, deep learning classifiers have shown promising results in image-based medical
diagnosis. However, interpreting the outputs of these models remains a challenge. In cancer diag-
nosis, interpretability can be achieved by localizing the region of the input image responsible for the
output, i.e. the location of a lesion. Alternatively, segmentation or detection models can be trained
with pixel-wise annotations indicating the locations of malignant lesions. Unfortunately, acquiring
such labels is labor-intensive and requires medical expertise. To overcome this difficulty, weakly-
supervised localization can be utilized. These methods allow neural network classifiers to output
saliency maps highlighting the regions of the input most relevant to the classification task (e.g. ma-
lignant lesions in mammograms) using only image-level labels (e.g. whether the patient has cancer
or not) during training. When applied to high-resolution images, existing methods produce low-
resolution saliency maps. This is problematic in applications in which suspicious lesions are small
in relation to the image size. In this work, we introduce a novel neural network architecture to per-
form weakly-supervised segmentation of high-resolution images. The proposed model selects re-
gions of interest via coarse-level localization, and then performs fine-grained segmentation of those
regions. We apply this model to breast cancer diagnosis with screening mammography, and validate
it on a large clinically-realistic dataset. Measured by Dice similarity score, our approach outper-
forms existing methods by a large margin in terms of localization performance of benign and ma-
lignant lesions, relatively improving the performance by 39.6% and 20.0%, respectively. Code and
the weights of some of the models are available at https://github.com/nyukat/GLAM.
Keywords: weakly supervised learning, high-resolution medical images, breast cancer screening

1. Introduction

Convolutional neural networks (CNNs) have revolutionized medical image analysis (Bekkers et al.,
2018; Ching et al., 2018; Topol, 2019; Prevedello et al., 2019; Lutnick et al., 2019; Karimi et al.,
2020; Gaonkar et al., 2021). These networks achieve impressive results, but their outputs are often
difficult to interpret, which is problematic for clinical decision making (Yao et al., 2018). Designing

* Contributed equally
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explainable classification models is a challenge. In some applications, such as cancer diagnosis,
interpretability can be achieved by localizing the regions of the input image that determine the out-
put of the model (Shen et al., 2021). Alternatively, detection and segmentation networks, such as
U-Net (Ronneberger et al., 2015) and Faster R-CNN (Ren et al., 2016) can be trained with anno-
tations indicating regions relevant to diagnosis. Unfortunately, acquiring such annotations is labor-
intensive, and requires medical expertise. Moreover, learning under such supervision might bias the
network to ignore lesions occult to radiologists, which a neural network can still identify.

Given the above obstacle, weakly-supervised localization (WSL) has recently become an area
of active research (Diba et al., 2017; Singh and Lee, 2017; Zhang et al., 2018a,b; Cui et al., 2019).
These approaches aim to identify image regions relevant to classification utilizing only image-level
labels during training, based upon the observation that feature maps in the final convolutional layers
of CNNs reveal the most influential regions of the input image (Oquab et al., 2015; Zhou et al.,
2016). These methods are usually designed for natural images and applying them to medical images
is challenging due to their unique characteristics. For example, mammography images have a much
higher resolution (∼ 107 pixels) than natural images (∼ 105 pixels) in most benchmark datasets,
such as ImageNet (Deng et al., 2009). Because of this, when applied to medical images, CNNs
often aggressively downsample the input image (Shen et al., 2019, 2021) to accommodate GPU
memory constraints, making the resulting localization too coarse. This is a crucial limitation for
many medical diagnosis tasks, where regions of interest (ROIs) are often small (e.g. ≤ 1% pixels).

Input Ground Truth CAM GMIC GLAM (proposed)
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0.415
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0.671
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0.382
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0.250
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Figure 1: Comparison of saliency maps generated by CAM (Zhou et al., 2016), GMIC (Shen et al.,
2021), and the proposed method on a mammography image containing a malignant lesion
(first row, red) and a benign lesion (second row, green). Both CAM and GMIC produce
coarse saliency maps that fail to localize the lesion accurately. The proposed method
generates a high-resolution saliency map that precisely localizes the lesions.

In this work, we propose GLAM (Global-Local Activation Maps), a novel framework to gen-
erate fine-grained segmentation using only image-level labels. The proposed model processes high
resolution medical images in a memory-efficient way. The main idea behind GLAM is to select in-
formative regions (patches) that may contain ROIs via coarse-level localization and then to perform
segmentation on selected patches rather than the entire image in a weakly supervised manner. We
train and evaluate GLAM on a dataset containing more than one million mammography images.
We demonstrate that the model outperforms existing baselines in segmentation of both benign and
malignant lesions, improving the Dice similarity score relatively by 39.6% and 20%, respectively,
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while preserving classification accuracy. To achieve that, GLAM produces fine-grained saliency
maps with a 300 times higher resolution than previous works (Shen et al., 2021) (736× 480 pixels
for 2944 × 1920 pixels input images). In Figure 1, we illustrate how the saliency maps generated
by GLAM enable high-resolution segmentation of lesions relevant to breast cancer diagnosis.

2. Background

WSL is the task of learning to locate ROIs (i.e. the objects) in an image when only image-level
labels are available during training. WSL methods are usually based on CNNs that produce saliency
maps encoding the location of ROIs. To train the whole system using only image-level labels, the
saliency maps are collapsed to predictions indicating the presence of each class using a pooling
function. Once the CNN is trained, the saliency map can be used for localization (Oquab et al.,
2015; Zhou et al., 2016). WSL has been applied in a wide range of medical-imaging applications,
including the detection of lung disease in chest X-ray images (Wang et al., 2017; Yao et al., 2018;
Tang et al., 2018; Ma et al., 2019; Liu et al., 2019; Guan et al., 2018), diagnosis of injuries from
pelvic X-ray images (Wang et al., 2019), brain lesion segmentation (Wu et al., 2019a), breast MRI
analysis (Luo et al., 2019), cancer detection in lung CT images (Feng et al., 2017; Schlemper et al.,
2018), and scan-plane detection in ultrasound (Schlemper et al., 2018; Baumgartner et al., 2017).

The majority of these works focus on images that have relatively low resolution, that is, 512 ×
512 pixels or less. Only a few works have considered higher resolution images, which are standard
in some imaging procedures such as screening mammography (Shen et al., 2019, 2021).

In this work we focus on the diagnosis of breast cancer from screening mammography images.
Breast cancer is the second leading cause of cancer-related deaths among women (Bray et al., 2018)
and screening mammography is the main tool for its early detection (Marmot et al., 2013). CNN
classifiers have shown promise in diagnosis from mammograms (Zhu et al., 2017; Kim et al., 2018;
Ribli et al., 2018; Wu et al., 2019b; Geras et al., 2019; McKinney et al., 2020; Shen et al., 2019,
2021). Accurate localization of suspicious lesions is crucial to aid clinicians in interpreting model
outputs, and can provide guidance for future diagnostic procedures. However, existing methods that
explain their predictions, e.g. Shen et al. (2019, 2021), offer only coarse localization. GLAM is
inspired by recent works (Yao et al., 2018; Shen et al., 2019, 2021; Shamout et al., 2020), which
improve classification accuracy by processing image patches selected from coarse saliency maps.
The main innovation of GLAM with respect to these works is that it generates a a high-resolution
saliency map from the selected patches, which significantly improves lesion segmentation accuracy.

3. Proposed Approach

Our goal is to generate fine-grained saliency maps that localize objects of interest in high-resolution
images using only image-level labels during training. We start this section by describing the infer-
ence pipeline of our approach in Section 3.1. We then describe each module in detail in Section 3.2.
Finally, we explain the training strategy in Section 3.3.

3.1. Inference pipeline

As illustrated in Figure 2, during inference, our system processes an input x ∈ RH,W as follows:

1. The image x is fed into the global module, a memory-efficient CNN denoted by fg, to produce
an image-level coarse saliency map Sg and an image-level class prediction ŷg.
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Figure 2: Inference pipeline of GLAM. 1) The global network fg is applied to the whole image
x to obtain a coarse image-level segmentation map Sg. 2) Based on this coarse-level
segmentation, several patches are extracted from the input image. 3) The local network
fl processes these patches to generate a high-resolution saliency map Sl.

2. We select M patches from x based on Sg. To do that, we greedily select the patches for which
the sum of the entries in Sg is the largest (see Algorithm 1 for a detailed description).

3. We feed the selected patches x̃1, . . . , x̃M to the local module fl, another CNN which produces
a fine-grained saliency map associated with each patch. We then remap the patch-level saliency
maps back to their location in the original input image. We denote the saliency map obtained
through this procedure by Sl.

GLAM produces an image-level saliency map Sg and a fine-grained multi-patch saliency map Sl.
These maps are aggregated through averaging to produce the final saliency map Sc = (Sg + Sl)/2.
In addition, GLAM generates a classification output, which is produced by the global module (as
this yields the best classification accuracy).

3.2. Module parameterization

Global module The architecture of fg is based on the design of Shen et al. (2019, 2021), which is
similar to ResNet (He et al., 2016) with a reduced number of channels for memory efficiency. The
main difference between fg and the global module of Shen et al. (2019, 2021) is that we combine
saliency maps at different scales to generate the global saliency map, inspired by Sedai et al. (2018)
who observed that using convolutional feature maps extracted only from the last layer of a CNN
may be suboptimal in localization of small objects. We generate saliency maps at different scales
(S0, S1 and S2) using a pyramidal hierarchy of feature maps (see Figure 6 in Appendix B). Our
image-level saliency map Sg is obtained by averaging them. For each Sn (n ∈ {0, 1, 2}), we obtain
a classification prediction ỹn associated with Sn using top t% pooling (see Appendix B), where t
is a hyperparameter. The image-level classification prediction ŷg is calculated by averaging ỹ0, ỹ1,
and ỹ2. Additionally, we output a representation vector zg to feed it into a fusion module (described
below) to enable joint training with the local module. See Appendix B for more details.

Local module Our local module is based on ResNet-34 with a reduced stride in the residual
blocks to maintain a higher resolution. We replace the global average pooling and the last fully
connected layer by a 1×1 convolution layer followed by a sigmoid non-linearity. The local module
is applied to each of the selected patches x̃k (k ∈ 1, . . . ,K) to extract a patch-level saliency map
Ak. As we only have image-level labels, we need to train the patch-level network without patch-
level labels. To address this challenge, we combine insights from weakly-supervised localization
and multiple-instance learning to train the patch-level saliency maps hierarchically. In multiple
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Figure 3: Proposed training strategy. 1) Train the global module and select the best segmentation
model. 2) Freeze the global module and use it to extract input patches for the local
module. 3) Train the local module on the selected patches. 4) Joint training with the
fusion module. We use BCE loss and sparsity loss to train the system.

instance learning (Maron and Lozano-Pérez, 1998) the labels are associated with bags of instances
(the label is negative if all instances in a bag are negative, and positive otherwise). In our case each
instance is a patch, and the patches from an image form a bag. We use a patch aggregation function
fp to combine the information across all patches and form an image-level prediction ŷl. Formally,
we have ŷl = fp(A1, . . . ,Ak). We propose two different patch aggregation functions.

• Concatenation-based aggregation: We concatenate the saliency maps spatially and apply pooling
function fagg (i.e. top t% pooling). The prediction is thus given by ŷl = fagg(concat(A1, . . . ,AK)).

• Attention-based aggregation: top t% pooling is applied to Ak to obtain a patch-level prediction
ŷk. Additionally, we output a representation vector zk for each patch, which will be aggregated
to zl and fed into the fusion module. We use the Gated Attention Mechanism ((Ilse et al., 2018))
to combine the prediction and the representation vectors using attention weights αi ∈ [0, 1]. The
prediction is given by ŷl =

∑K
i=1 αiŷi, and the representation vector by zl =

∑K
i=1 αizi.

Section 3.3 explains when we use each aggregation method. Refer to Appendix C for more details.

Fusion module In order to jointly optimize the parameters of the global and local modules, we
incorporate a fusion module consisting of one fully connected layer that combines the representation
vectors from the global (zg) and local modules (zl) to produce a fusion prediction ŷf . Formally,
ŷf = sigmoid(wf [zg, zl]

T ), where wf is a vector of learnable parameters.

3.3. Training strategy

The training strategy that achieves the best experimental performance for GLAM is sequential. We
first train the global module, then we train the local module and finally we train both together. This
makes sense because in order to train the local module fl effectively, we need to select meaningful
input patches. Since the selection relies on the global saliency map, this requires pretraining the
global module. Our training strategy is as follows (see also Figure 3).

1. Train the global module with the loss function Lg =
∑

n∈{0,1,2}(BCE(y, ỹn) + λ
∑

(i,j) |Sn(i, j)|)
using the whole training set. Here, BCE(y, ỹn) is the binary cross-entropy loss and

∑
(i,j) |Sn(i, j)|

is an `1 regularization enforcing sparsity of the saliency map. The hyperparameter λ balances
the two terms. The model is selected based on segmentation performance on the validation set.
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2. Create training data for the local module. To produce negative examples, we select K patches
randomly from images with negative labels. The positive examples are generated by selecting
K patches from images with positive labels using Algorithm 1 applied to the saliency maps
produced by the pretrained global module.

3. Train the local module minimizing the cost function Ll = BCE(y, ŷl)+λ
∑

(i,j) |Sl(i, j)|. Here
we apply the concatenation-based aggregation described in Section 3.2 because it yields the best
results experimentally and speeds up training.

4. Train the global and local modules jointly with the fusion module. Here we use the attention-
based aggregation in the local module. The fusion module outputs a fusion prediction ŷf . The
loss function for joint training is Lt = Lg + Ll + Lf , where Lf = BCE(y, ŷf ).

Note that the number of patches selected as input to the local module during training (K) and
inference (M ) do not need to be the same. In fact, we find empirically that it is beneficial to useK as
large as possible (within the constraints imposed by GPU memory), which is consistent with Shen
et al. (2021). However, choosing a large M increases the false positive rate. We used K = 6 and
M = 1, based on experiments reported in Appendix G.4 and G.5.

4. Experiments

4.1. Dataset and evaluation metrics

We trained and evaluated the proposed model on the NYU Breast Cancer Screening Dataset v1.0 (Wu
et al., 2019c) that includes 229,426 exams (1,001,093 images) from 141,472 patients. Each exam
contains at least four images with a resolution of 2944×1920 pixels, corresponding to the four stan-
dard views used in screening mammography: R-CC (right craniocaudal), L-CC (left craniocaudal),
R-MLO (right mediolateral oblique) and L-MLO (left mediolateral oblique). The dataset is divided
into disjoint training (186,816), validation (28,462) and test (14,148) sets, ensuring that each patient
only belongs to one of the sets. Each breast has two binary labels indicating whether malignant or
benign lesions are present. A subset of the images with lesions have pixel-level annotations pro-
vided by radiologists, which indicate the position of the lesions. Note that the dataset (458,852
breasts) contains more exams without lesions (452,311 compared to 5,556 with benign lesions, and
985 with malignant lesions). To account for this imbalance when training our models, at each epoch
we use all exams with lesions and an equal number of randomly-sampled exams without lesions.

To measure classification performance, we report the area under the ROC curve (AUC) for
identifying breasts with both malignant and benign lesions. To evaluate localization ability, we use
the Dice similarity coefficient and pixel average precision (PxAP) (Choe et al., 2020). PxAP is the
average of the area under the precision-recall curve for each pixel. The threshold to compute the
precision and recall is either chosen for each image (image-level PxAP) or fixed for the whole test
set (dataset-level PxAP). These metrics are described in more detail in Appendix E.

4.2. Comparison to baselines

We compare GLAM to two baselines: GMIC (Shen et al., 2021), a WSOL method specifically de-
signed for high-resolution medical images, and CAM (Zhou et al., 2016), one of the most popular
WSOL methods for natural images. We use the same backbone architecture for the two baselines
and the global module of GLAM. The same hyperparameter tuning is applied to all models to ensure
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a fair comparison, as described in Appendix F. The models are selected based on segmentation per-
formance, which is not necessarily equivalent to selection based on classification performance (see
Appendix D for further discussion). We also compare to a U-Net (Ronneberger et al., 2015) trained
with strong supervision using the pixel-level annotations. This provides an upper bound for the seg-
mentation performance of the WSL methods. In Table 1, we report the performance of GLAM and
the baselines. GLAM outperforms both GMIC and CAM in all segmentation evaluation metrics by
a large margin, while achieving very similar classification accuracy. We observe a performance gap
between GLAM and the strongly supervised U-Net model trained with ground-truth segmentation
annotations, which indicates that there is room for further improvement.

Table 1: Segmentation performance of our method (GLAM) and several baselines evaluated in
terms of Dice (mean and standard deviation over the test set), image-level PxAP and
dataset-level PxAP for malignant and benign lesions. We also report the classification
AUC achieved by each model. GLAM outperforms the baselines, while achieving very
similar classification accuracy. The performance of a model (U-Net) trained with segmen-
tation annotations is also included for comparison.

Dice image-level PxAP dataset-level PxAP classification AUC
Malignant Benign Malignant Benign Malignant Benign Malignant Benign

GLAM (proposed) 0.390 ± 0.253 0.335 ± 0.259 0.461 ± 0.296 0.396 ± 0.315 0.341 0.215 0.882 0.770
GMIC 0.325 ± 0.231 0.240 ± 0.175 0.396 ± 0.275 0.283 ± 0.244 0.295 0.112 0.886 0.780
CAM 0.250 ± 0.221 0.207 ± 0.180 0.279 ± 0.240 0.222 ± 0.210 0.226 0.084 0.894 0.770
U-Net (fully supervised) 0.504 ± 0.283 0.412 ± 0.316 0.589 ± 0.329 0.498 ± 0.357 0.452 0.265 - -

4.3. Ablation study

We analyze different design choices in GLAM through an extensive ablation study. Due to space
constraints, here we only discuss the advantages of training the global and local modules jointly, and
the segmentation properties of the global and local saliency maps. We defer results on the following
choices to the appendices: design of the global module (Appendix G.1), selection of training data
for the local module (Appendix G.2), design of the local module (Appendix G.3), number of input
patches used by the local module during training (Appendix G.4) and inference (Appendix G.5), the
fusion module (Appendix G.6), and hyper-parameter selection: (Appendix G.7, G.8 and G.9).

Joint training of local and global modules. Here we compare the GLAM saliency map Sc−joint
obtained via joint training as described in Section 3.3 with (1) the global saliency map Sg from the
global module pretrained in isolation, (2) the local saliency map Sl for the local module trained using
patches selected using a frozen global module, (3) a saliency map Sc−sep obtained by averaging Sg

and Sl. The results reported in Table 2 show that Sc−sep is superior to Sg and Sl, but joint training
achieves better performance across all metrics.

Segmentation properties of the global and local saliency maps In Figure 4, we plot the Dice
scores of the global (Sg) and local (Sl) saliency maps generated by GLAM for 400 randomly se-
lected examples from the validation set. Each saliency map has different strengths and weaknesses.
Sl fails completely for a subset of examples, this is because the patch-selection procedure did not
select the correct patches (lower row in Figure 5). On the remaining examples, Sl tends to out-
perform Sg because it has a much higher resolution. However, in some cases it underperforms
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Table 2: Segmentation performance of the GLAM saliency map Sc−joint, the global (Sg) and local
saliency (Sl) maps trained separately, and the average of Sg and Sl with (Sc−joint) and
without (Sc−sep) joint training. Averaging helps, joint training further improves.

Dice image-level PxAP dataset-level PxAP
Malignant Benign Malignant Benign Malignant Benign

Sg 0.325 ± 0.239 0.261 ± 0.185 0.363 ± 0.276 0.302 ± 0.266 0.324 0.140
Sl 0.343 ± 0.283 0.297 ± 0.287 0.444 ± 0.337 0.337 ± 0.310 0.207 0.126
Sc−sep 0.375 ± 0.264 0.318 ± 0.243 0.449 ± 0.319 0.382 ± 0.317 0.340 0.191
Sc−joint 0.390 ± 0.253 0.335 ± 0.259 0.461 ± 0.296 0.396 ± 0.315 0.341 0.215

Sg, often in cases where the ground-truth segmentation is larger than the size of the patch (upper
row in Figure 5). Averaging Sl and Sg (our strategy of choice in GLAM) achieves high-resolution
segmentation, while hedging against the failure of the local module.
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Figure 4: Scatter plot of Dice score of the
global Sg and local Sl modules
for 400 validation examples. Sl

outperforms Sg for most small le-
sions, but may miss some larger le-
sions and fails entirely if the wrong
patches are selected as input.

Ground Truth Sg Patch Map Sl

Figure 5: Two failure cases of the local module.
(Top) The lesion is larger than the in-
put patch, so Sl only captures it par-
tially. (Bottom) The input patches to Sl

(in blue) do not cover the lesion.

5. Conclusion

In this work, we propose a novel framework to perform weakly-supervised segmentation of images
with very high resolution, which outperforms existing methods. Our results suggest that the general
principle underlying GLAM (hierarchical selection of saliency maps) could be effective in other
applications involving high-resolution images and videos. Another interesting question for future
research is how to extend this principle to settings where high-resolution segmentation is desired,
but (in contrast to breast cancer) the regions of interest do not tend to be small.
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The appendices contain the following supplementary information:

1. A description of the patch selection algorithm in Appendix A.

2. Additional details on the global module in Appendix B.

3. Additional details on the local module in Appendix C.

4. A discussion on the relationship between the localization and classification performance in
Appendix D.

5. A detailed description of the evaluation metrics in Appendix E

6. A description of the hyperparameter tuning procedure in Appendix F.

7. A description of additional ablation studies in Appendix G.

Appendix A. Patch selection algorithm

Algorithm 1 Patch selection algorithm: x denotes the input image, S denotes the saliency map that
the patch selection method is based on (in our case of interest, this is the saliency map Sg from
the global module). x̃k denotes the selected patches cropped from the original image. K is the
predefined number of selected patches.

Require: x ∈ RH,W ,S ∈ Rh,w,|C|,K
Ensure: O =

{
x̃k | x̃k ∈ Rhc,wc

}
1: O = ∅
2: for each class c ∈ C do
3: S̃c = min−max− normalization (Sc)
4: end for
5: Ŝ =

∑
c∈C S̃c

6: l denotes an arbitrary hc h
H × wc

w
W

rectangular patch on Ŝ

7: fc(l, Ŝ) =
∑

(i,j)∈l Ŝ[i, j]
8: for each 1, 2, . . . ,K do
9: l∗ = argmaxl fc(l, Ŝ)
10: L = position of l∗ in x
11: O = O ∪ {L}
12: Ŝ[i, j] = 0, ∀(i, j) ∈ l∗
13: end for
14: return O

We perform patch selection using the same greedy algorithm (Algorithm 1) as in GMIC (Shen et al.,
2021). In each iteration, we select the rectangular region in the coarse saliency map generated by
the global module, which has the largest average intensity (see line 7 of Algorithm 1). Then the
region is interpolated so that it maps to the corresponding location on the input image. Line 12
ensures that the extracted ROI patches do not significantly overlap with each other.

It is worth noting that we do not assume that all patches extracted from a positive example
contain tumors: only some of the K patches extracted by the global module will. This is accounted
for by the patch aggregation function in the local module, which produces a single classification
output for the K aggregated patches. A problem arises if the patch-selection algorithm fails to
select any patches containing lesions for a positive example. This is why it is beneficial to use a
larger number of patches during training (see Appendix H.4). It is worth noting, however, that this
situation does not arise often in our experiments. In order to verify this, we used a set of images with
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lesions from the validation set, and checked the three first patches extracted by the global module.
These patches did not contain any lesions only in 40 out of 300 images with benign lesions (13%)
and in 6 out of 75 images with malignant lesions (8%).

Appendix B. Global module
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Figure 6: Architecture of the global module. Both high-level (h2 ∈ R46×30×256) and low-level
feature maps (h0 ∈ R184×120×64, h1 ∈ R92×60×128) are utilized to obtain multi-scale
saliency maps (S0 ∈ R184×120×2, S1 ∈ R92×60×2 and S2 ∈ R46×30×2). For each
scale n ∈ {0, 1, 2}, we use top t% pooling to transform saliency maps Sn into class
predictions ỹn. A combined cross-entropy loss from the three scales is used for training.
We compute the global saliency map Sg by combining the individual saliency maps from
three scales (S0, S1 and S2). We apply maximum pooling on the spatial dimension of
h2 ∈ R46×30×256 to obtain the representation vector zg ∈ R256, which is fed to the fusion
module during joint training.

As shown in Figure 6, the global module provides a multi-scale pyramidal hierarchy of feature
maps (h0,h1,h2) when processing an input image. The feature map corresponding to the deepest
layer (h2) has low resolution due to downsampling and therefore has limited localization ability.
However, it is useful for classification, because it aggregates information from the whole image.
Sedai et al. (2018) found that using only the deepest feature maps can negatively influence the
localization of small objects. This motivates combining feature maps at several layers (in our case
h0,h1,h2) to produce saliency maps (Feng et al., 2017; Sedai et al., 2018; Yao et al., 2018). To
do this, we use a training loss that includes classification estimates obtained from the three feature
maps (see Eq. (1) below).

As shown in Figure 6, given a gray-scale input image of x ∈ R2944×1920 pixels, we have
feature maps in three scales (h0 ∈ R184×120×64, h1 ∈ R92×60×128 and h2 ∈ R46×30×256). For
each feature map hn of scale n, we use 1 × 1 convolution followed by a sigmoid function to
transform hn to a saliency map Sn ∈ [0, 1]h×w×|C|, where C = {malignant, benign}. Each
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element of Sn, Sn
c(i, j), represents the contribution of a spatial location (i, j) towards classifying

the input as class c ∈ C. We apply top t% pooling (Shen et al., 2021) as an aggregation function
fagg(Sn

c) : Rh,w 7→ [0, 1] to transform Sn
c to the image-level class prediction for class c. Formally,

ỹcn = fagg(Sn
c) = 1

|H+|
∑

(i,j)∈H+ Sn
c(i, j), where H+ denotes the set containing the locations of

the top t% values in Sn
c, where t is a hyperparameter. During training we minimize a sum of the

cross-entropy losses between the image-level label y and ỹn for the three scales (n ∈ {0, 1, 2}). The
training loss function of the global module is the following:

Lg =
∑

n∈{0,1,2}

BCE(y, ỹn) + λ
∑
(i,j)

|Sn(i, j)|

 . (1)

Here, BCE(y, ỹn) is the cross-entropy loss,
∑

(i,j) |Sn(i, j)| is a `1 regularization term enforc-
ing sparsity of the saliency map (Shen et al., 2021) and λ is a hyperparameter to balance the two
loss terms.

We obtain the global module prediction ŷg by taking the average of the class prediction across
the levels ŷg = (ỹ0 + ỹ1 + ỹ2)/3. We obtain the global module saliency map Sg by combining
S0, S1 and S2. Note that the resolutions of S0, S1 and S2 are different (S0 ∈ R184×120×2, S1 ∈
R92×60×2 and S2 ∈ R46×30×2). In order to combine them, we upsample S0 and S1 to match the
resolution of the S2 using nearest-neighbor interpolation. Then, we compute the global module
saliency map as Sg = γ0S0 + γ1S1 + γ2S2. Here γ0, γ1 and γ2 are hyperparameters that can be
tuned on the validation set. They should satisfy the conditions: γ0+γ1+γ2 = 1 and γ0 ≥ 0, γ1 ≥ 0,
γ2 ≥ 0. We set γ0 = 0.2, γ1 = 0.6, γ3 = 0.2 according to the Dice score on the validation set. We
apply maximum pooling on the spatial dimension of h2 ∈ R46×30×256 to obtain a representation
vector for the global module zg ∈ R256, which is fed into the fusion module during joint training of
the global and local modules.

Utilizing multi-scale feature maps improves the segmentation performance of Sg. As a result,
we obtain a better feature map Sc. This is demonstrated empirically in the ablation study reported
in Appendix G.1.

Appendix C. Local module

We design the local module in order to preserve as much spatial resolution as possible. The resolu-
tion of the global saliency map is only 184 × 120 pixels. Therefore, the global module backbone is
not suitable as a local module backbone. Typical classification networks also do not suit our needs.
In our case, the size of the patches that are processed by the local module is 512 × 512. For such
input resolution, the size of the saliency map produced by ResNet-34 is only 28 × 28 pixels. In
order to preserve spatial resolution, we build the backbone for the local module by reducing the
stride in all ResNet blocks of the ResNet-34 network to 1. When operating on an input patch with
size 512 × 512 pixels, the resulting network outputs a saliency map with a resolution of 127 × 127
pixels. Note that we use ResNet-34 rather than ResNet-18 because it has a larger receptive field,
which compensates for the reduced receptive field due to the reduced stride. We provide an ablation
study of different choices for the local-module backbone architecture in Appendix G.3.

Architecture of the backbone of the local module is described in the left panel of Figure 7. In
the right panel, we show two patch-aggregation strategies. We report an ablation study on the value
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Figure 7: Architecture of the local module. The backbone network (left) is applied to each of the
selected patches x̃k (k ∈ 1, . . . ,K) to extract a patch-level saliency map Ak and a fea-
ture map hk. The patch-level saliency maps can be combined using two aggregation
strategies: (1) Concatenation-based aggregation (top right), where we concatenate the
saliency maps spatially and apply top t% pooling. (2) Attention-based aggregation (bot-
tom right), where top t% pooling is used to obtain patch-level predictions ŷk from each
patch, which are then combined using attention weights αi ∈ [0, 1] computed by the gated
attention mechanism (Ilse et al., 2018). That is, the classification prediction is computed
as ŷl =

∑K
i=1 αiŷi, and the representation vector as zl =

∑K
i=1 αizi.

of t in the top t% pooling step in Appendix G.7. The selected value for both aggregation strategies
is 20.

Appendix D. Localization and classification

A few works (Choe et al., 2020; Choe and Shim, 2019; Singh and Lee, 2017; Yao et al., 2018) ob-
served that localization and classification accuracy of weakly-supervised models are not perfectly
correlated. An empirical study by Choe et al. (2020) suggested that the best localization perfor-
mance is usually achieved at early epochs of training, when the classifier is not fully trained. Fur-
thermore, it has been observed that classification performance does not necessarily correlate with
the localization performance across different architectures (Choe et al., 2020). We made similar
observations in our work. Our local module reduces the stride of the convolution kernel to preserve
more spatial resolution, which results in a smaller receptive field and has some adversarial effects
for classification performance. Therefore, only the global module classification prediction is used
as the classification result for our system. We provide the segmentation and classification results of
different local module architectures in Appendix G.3.

17



WEAKLY-SUPERVISED HIGH-RESOLUTION SEGMENTATION OF MAMMOGRAPHY IMAGES

Appendix E. Evaluation metrics

Dice The Dice similarity coefficient is computed as Dice = (2× S×G)/(S2 +G2), where S is
the saliency map produced by the model, and G is the ground truth binary mask.

PxAP We measure the pixel-wise precision and recall using the pixel average precision (PxAP)
metric introduced by Choe et al. (2020). PxAP is the area under the pixel precision-recall curve, as
we vary a threshold τ that determines precision-recall trade-off. We define the pixel precision and
recall at threshold τ as:

PxPrec(τ) =
|{Sc(i, j) ≥ τ} ∩ {Gc(i, j) = 1}|

|{Sc(i, j) ≥ τ}|

PxRec(τ) =
|{Sc(i, j) ≥ τ} ∩ {Gc(i, j) = 1}|

|{Gc(i, j) = 1}|
,

where Sc is the saliency map produced by the model, Gc is the ground truth binary mask, i, j are
the spatial indices, and c is the class. PxAP is defined as:

PxAP :=
∑
l

PxPrec (τl) (PxRec (τl)− PxRec (τl−1)).

PxAP can be computed in two ways:

1. Image-level PxAP: We compute PxAP for each image separately, then we compute the mean
and standard deviation over all images. The advantage of this metric is that we put the same
emphasis on the images with large lesions and the images with small lesions.

2. Dataset-level PxAP: We aggregate the pixels from all images to obtain a single dataset pixel
precision-recall curve and compute a single PxAP. Since the threshold to compute the preci-
sion and recall is applied to the whole dataset, the advantage is that it can help users to choose
the preferred operating threshold τ that provides the best precision-recall trade-off for their
downstream applications.

Appendix F. Hyperparameter tuning

To compare fairly between model architectures, we follow a similar hyperparameter tuning proce-
dure as Shen et al. (2021). We optimize the hyperparameters with random search (Bergstra and
Bengio, 2012) for both baselines and for GLAM. We search for the learning rate η ∈ 10[−5.5,−4]

on a logarithmic scale. We also search for the regularization weight λ ∈ 10[−5.5,−3.5] on a logarith-
mic scale. We search for the pooling threshold t ∈ {1%, 2%, 3%, 5%, 10%, 20%} for GMIC (Shen
et al., 2021) and for GLAM. The pooling function in the original CAM (Zhou et al., 2016) is global
average pooling, which is an extreme version of top t%, where t = 100%. In order to provide a fair
comparision, we also tune the pooling threshold t ∈ {1%, 2%, 3%, 5%, 10%, 20%, 100%} for this
model.

In all cases, we train 30 separate models using hyperparameters randomly sampled from the
ranges described above. We train the models (the competing methods and our global module)
for 50 epochs and select the weights from the training epoch that achieves the highest validation
segmentation performance based on Dice score. We then fix the global module and conduct the
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local module training based on the patch proposals selected according to the global module. The
local module converges faster, so we train the local model for 20 epochs and select the weights from
the training epoch that achieves the highest validation segmentation performance according to Dice
score. Based on the trained global and local module, the joint training takes less than 5 epochs.
All experiments are conducted on an NVIDIA Tesla V100 GPUs. The global module takes about 2
days to train and the local module takes about 4 days.

Appendix G. Ablation studies

G.1. Importance of using multiple-scale feature maps in the global module

In the following table, we compare the performance of the individual saliency maps of the global
module with the combined saliency map Sg (see Appendix B). The latter has much better segmen-
tation performance.

Dice image-level PxAP dataset-level PxAP
Saliency map Malignant Benign Malignant Benign Malignant Benign

Sg 0.325 ± 0.239 0.261 ± 0.185 0.363 ± 0.276 0.302 ± 0.266 0.324 0.140
S0 0.155 ± 0.192 0.130 ± 0.108 0.139 ± 0.184 0.121 ± 0.175 0.117 0.049
S1 0.319 ± 0.238 0.240 ± 0.190 0.318 ± 0.257 0.269 ± 0.258 0.254 0.113
S2 0.213 ± 0.209 0.157 ± 0.150 0.220 ± 0.211 0.113 ± 0.149 0.224 0.060

G.2. Selection of training data for the local module

In order to generate the training data for the local module, we use patches containing lesions (posi-
tive examples), which are obtained from the global module, and patches that do not contain lesions
(negative examples), which are randomly sampled from images that do not contain lesions. Alter-
natively, one could generate negative examples by using the output patches generated by the global
module from scans without lesions. The following table shows that this results in significantly worse
performance.

Dice image-level PxAP dataset-level PxAP
Random sampling negative examples Malignant Benign Malignant Benign Malignant Benign

No 0.184 ± 0.192 0.188 ± 0.205 0.282 ± 0.230 0.187 ± 0.202 0.126 0.064
Yes 0.343 ± 0.283 0.297 ± 0.287 0.444 ± 0.337 0.337 ± 0.310 0.207 0.126

G.3. Architecture of the local module

In this ablation study, we investigate the influence of the design of the local module on its segmenta-
tion and classification performance. We compare Resnet-34, a ResNet-18 with reduced stride in the
residual blocks (ResNet-18-HR) and the proposed local module, which consists of a Resnet-34 with
reduced stride in the residual blocks (Resnet-34-HR). Recall that the motivation to reduce the stride
is to produce a saliency map with higher resolution, as explained in Appendix C. The results are
shown in the following table. We see that carefully selecting the backbone architecture is crucial to
ensure a good segmentation performance of the local module. It is worth mentioning that reducing
the stride decreases the classification performance of the local module (which is why we do not use
its output to perform classification).
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Dice image-level PxAP dataset-level PxAP classification AUC
Network Architecture Malignant Benign Malignant Benign Malignant Benign Malignant Benign

ResNet-34 0.163 ± 0.224 0.218 ± 0.249 0.272 ± 0.257 0.256 ± 0.268 0.097 0.067 0.826 0.705
ResNet-18-HR 0.226 ± 0.243 0.172 ± 0.235 0.330 ± 0.301 0.208 ± 0.260 0.137 0.077 0.706 0.657
ResNet-34-HR 0.343 ± 0.283 0.297 ± 0.287 0.444 ± 0.337 0.337 ± 0.310 0.207 0.126 0.747 0.682

G.4. Number of patches used in the local module during training

To study the impact of the number of patches used in the local module for training. We freeze the
global module and train three models where the local module receives one, three or six patches
respectively.1 The performance of these models is shown in the following table. The local module
achieves better segmentation performance when more patches are used during training, which is
consistent with results reported by Shen et al. (2021).

Dice image-level PxAP dataset-level PxAP
patch number Malignant Benign Malignant Benign Malignant Benign

1 0.268 ± 0.229 0.280 ± 0.267 0.365 ± 0.280 0.237 ± 0.239 0.153 0.107
3 0.320 ± 0.269 0.285 ± 0.282 0.420 ± 0.318 0.283 ± 0.276 0.197 0.111
6 0.343 ± 0.283 0.297 ± 0.287 0.444 ± 0.337 0.337 ± 0.310 0.207 0.126

G.5. Number of patches used in the local module during inference

In this ablation study we use the model trained with six patches and evaluate its performance when
using different numbers of patches during inference. The scatter plot in Figure 8 compares the
segmentation performance when using one patch and when using three patches for 400 example
images from the validation set. Using one patch leads to better performance for most of the images,
but completely fails for some. Failure may occur when the patch selected by the global module
for the positive example does not contain lesions. For our dataset, using one patch produces better
segmentation performance overall, but this may not be the case for other applications (e.g. if there
are a large number of lesions in each image).

G.6. Fusion module

In this ablation study, we compare the proposed model to two different models without fusion
modules. In Model 1 the local module is trained using concatenation-based aggregation, in Model
2 it is trained with attention-based aggregation (see Section 3.2). To ensure a fair comparison, the
models are obtained by jointly training the same pretrained global and local modules. We report
the results in the following table. Sfull denotes the combined saliency map from the proposed
model. Sa1 denotes the saliency map from Model 1. Sa2 denotes the saliency map from Model 2.
Incorporating a fusion module results in better localization performance.

Dice image-level PxAP dataset-level PxAP
Malignant Benign Malignant Benign Malignant Benign

Sfull 0.390 ± 0.253 0.335 ± 0.259 0.461 ± 0.296 0.396 ± 0.315 0.341 0.215
Sa1 0.318 ± 0.252 0.324 ± 0.263 0.447 ± 0.298 0.373 ± 0.306 0.308 0.197
Sa2 0.376 ± 0.259 0.335 ± 0.260 0.459 ± 0.297 0.393 ± 0.313 0.331 0.210

1. Due to GPU memory constraints, the maximum number of patches we are able to train with is six.
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Figure 8: Dice score of the local module when using one or three patches as its input during infer-
ence. The results correspond to 400 examples from the validation set. Using one patch
leads to better performance for most of the images, but completely fails for a some. Fail-
ure may occur when the patch selected by the global module for the positive example
does not contain lesions.

G.7. Impact of top t% pooling

As already shown by Shen et al. (2021), the choice of pooling hyperparameter has a significant
impact on localization performance. In order to study how this hyperparameter influences the
localization ability of the local module, we experimented with five choices of top t% pooling:
t ∈ {10, 15, 20, 30, 60}. For all of them, we use the same trained global module, and train the local
module without joint training. In the following table, we report the segmentation score achieved by
each value of t on the test set. The results indicate that the pooling hyperparameter has a significant
impact on the localization performance of the patch-level network (i.e. the local module), and the
optimal t may be different for different classes.

Dice image-level PxAP dataset-level PxAP
top t% Malignant Benign Malignant Benign Malignant Benign

0.1 0.280 ± 0.268 0.284 ± 0.279 0.419 ± 0.325 0.319 ± 0.297 0.169 0.106
0.15 0.314 ± 0.269 0.290 ± 0.283 0.408 ± 0.315 0.300 ± 0.284 0.158 0.113
0.2 0.343 ± 0.283 0.297 ± 0.287 0.444 ± 0.337 0.337 ± 0.310 0.207 0.126
0.3 0.353 ± 0.277 0.281 ± 0.280 0.425 ± 0.319 0.310 ± 0.297 0.212 0.113
0.6 0.307 ± 0.259 0.260 ± 0.269 0.408 ± 0.314 0.334 ± 0.316 0.221 0.114

G.8. Impact of the λ hyperparameter associated with `1 regularization

To investigate the influence of the λ hyperparameter associated with `1 regularization, we con-
duct the following experiments for the global module. We fixed all other hyper-parameter to
the same values as used in the optimal model. To keep the comparison scenario simple, the

21



WEAKLY-SUPERVISED HIGH-RESOLUTION SEGMENTATION OF MAMMOGRAPHY IMAGES

saliency map of the global module is computed as Sg = S0+S1+S2
3 . λ is randomly selected

from 10[−5.5,−3.5] on a logarithmic scale during hyper-parameter searching for training, we take
the following samples of λ for ablation study by randomly selection within the searching space:
10−3.00, 10−3.53, 10−3.81, 10−4.24, 10−4.73 and report their Dice score on the test set. From the fol-
lowing table, we see that the performance of the saliency map is stable within the range of our
hyper-parameter search space.

Dice
log λ Malignant Benign
-3.00 0.294 ± 0.202 0.197 ± 0.124
-3.53 0.255 ± 0.209 0.211 ± 0.143
-3.81 0.286 ± 0.207 0.215 ± 0.141
-4.24 0.279 ± 0.225 0.240 ± 0.160
-4.73 0.304 ± 0.211 0.246 ± 0.163

G.9. An alternative approach to aggregating local and global saliency maps

For simplicity, in GLAM we set Sc = (Sg + Sl)/2. Here, we investigate applying a weighted
average Sc = γcSg + (1 − γc)Sl, with an additional hyperparameter γc ∈ [0, 1]. The results in the
following table show that this may slightly improve performance for some metrics.

Dice image-level PxAP dataset-level PxAP
γc Malignant Benign Malignant Benign Malignant Benign

0 0.406 ± 0.266 0.297 ± 0.270 0.451 ± 0.306 0.318 ± 0.282 0.269 0.158
0.1 0.410 ± 0.266 0.310 ± 0.272 0.470 ± 0.300 0.390 ± 0.310 0.321 0.202
0.2 0.411 ± 0.265 0.322 ± 0.272 0.469 ± 0.300 0.391 ± 0.210 0.331 0.208
0.3 0.408 ± 0.263 0.330 ± 0.270 0.467 ± 0.299 0.393 ± 0.311 0.336 0.212
0.4 0.401 ± 0.258 0.335 ± 0.265 0.465 ± 0.298 0.393 ± 0.312 0.340 0.214
0.5 0.390 ± 0.253 0.335 ± 0.259 0.461 ± 0.296 0.396 ± 0.315 0.341 0.215
0.6 0.373 ± 0.246 0.332 ± 0.251 0.447 ± 0.291 0.390 ± 0.312 0.336 0.207
0.7 0.351 ± 0.239 0.320 ± 0.242 0.434 ± 0.286 0.380 ± 0.307 0.329 0.198
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