
The Treatment of Uncertainty and
Learning in the Economics of Natural
Resource and Environmental
Management

Jacob LaRiviere*, David Kling†, James N. Sanchirico‡,
Charles Sims§, and Michael Springbornk

Introduction

Uncertainty permeates the economics of natural resource and environmental management.

Well-known examples include the uncertain damages from pollution, asymmetric informa-

tion regarding firms’ abatement costs, random variation in resource growth (i.e., stochas-

ticity), imperfectly observed resource stock abundance, and uncertainty regarding the

functional relationship that determines how quickly pollution leaves a system (i.e., decay

rates). The economic significance of uncertainty in most environmental and resource man-

agement problems raises two important questions for researchers: (1) what types of uncer-

tainty are relevant for the problem being studied and (2) how transferable are insights from

studying one type of environmental problem and one type of uncertainty to other settings
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(e.g., different environmental problems with similar uncertainty or similar environmental

problems with different types of uncertainty)?

The current economics literature on resource and environmental management models

several different classes of uncertainty, ways to reduce that uncertainty through learning, and

technical solution methods to provide policy insights. This article seeks to help researchers

and policymakers distinguish between these broad classes of uncertainty, learning, technical

solution methods and the policy insights derived from them in this (sometimes confusing)

literature. First, we introduce a simple model of optimal dynamic management to examine

each type of uncertainty and learning using the model as a common framework. The frame-

work takes the perspective of a social planner seeking to maximize the expected net present

value of a generic environmental or resource stock.1 Second, we define several forms of

uncertainty in addition to stochasticity in the context of the model.2 In doing so, we explicitly

examine various ways regulators can learn about and reduce uncertainty. Third, we use the

framework to evaluate four hypotheses associated with the policy implications of uncertainty

and learning that have been discussed in the literature and policy circles: (1) greater levels of

uncertainty result in more precautionary management (e.g., Gollier, Jullien, and Treich

2000), (2) reductions in environmental uncertainty have greater value than reductions in

economic uncertainty (e.g., Sethi et al. 2005), (3) management strategies with active learning

about an economic or ecological system lead to substantially higher welfare than those with

passive learning (e.g., Bond and Loomis 2009), and (4) managers who try to actively learn do

so faster than those who passively learn (e.g., Springborn and Sanchirico 2013). Our evalu-

ation of these “hypotheses” is the primary contribution of this article. Most importantly, we

find that while each of the hypotheses has some degree of validity, they either break down or,

although true, have limited applicability across environmental or resource management

contexts or different forms of uncertainty. We conclude with a discussion of promising

opportunities for further research in this area.

Modeling Environmental Management Problems

Most resource or environmental management problems involve multiple types of uncer-

tainty. To anchor our discussion and distinguish among different types of uncertainty, we

first introduce a simple modeling framework of a management problem with a single decision

maker whom we call the manager.3

The manager’s goal is to maximize the expected net present value (NPV) of a stream of

benefits (e.g., the discounted flow of rents from resource extraction or health improvements

from pollution abatement). With this in mind, we will frame much of our discussion in the

1This simple model can be extended to examine common second-best management problems (e.g., profit
maximization subject to minimum extinction risk or maximum allowable pollution levels). Due to space
limitations we focus on models grounded in subjective expected utility theory (SEU), by far the dominant
analytical framework in economics and allied quantitative disciplines (Shaw and Woodward 2008; Gilboa
2009).

2We follow the decomposition approach of Walters and Hilborn (1976) and Charles (1998). Fackler (2014)
also notes these approaches and presents alternative ways to discuss uncertainty. For a more complete
treatment of risk for policy, we refer readers to Morgan and Henrion (1990) and Pindyck (2007).

3Modeling a single decision maker is the traditional first step in analyzing dynamic environmental and
resource economic problems (Clark 1990).
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context of two classic renewable resource management problems: (1) maximizing the

expected discounted flow of rents from a harvested stock of fish and (2) minimizing the

expected discounted flow of damages and control costs from a stock (ambient concentration)

of pollution like sulfur dioxide.

In the model, the manager decides in each period how much to manipulate a physical state

variable (e.g., the stock of fish) by selecting the value of a control variable she dictates (e.g.,

total harvest or fishing effort in a year). For the pollution management problem, the control

variable could be pollution emissions in a period, with the state variable being the stock of the

pollutant.4 The manager has a within-period reward function (e.g., industry fishing profits,

monetized health benefits from pollution abatement) and future rewards are downweighted

using a discount factor.

These models are made both interesting and complicated by how the state variable and

control variable jointly determine benefits from management through the within-period

reward function and the evolution of the state variable through the state equation. The

transition of the state variable to the next period is a function of the current state and control

variables. We assume that the next period’s state is a function of parameters given by nature.

For a fish harvest problem, these parameters could include the natural environment’s car-

rying capacity and the intrinsic growth rate for a fish species. For a stock pollutant, these

parameters would include the pollutant’s decay rate. In general, the state equation is often

nonlinear or features a spatial or multistate structure that adds considerable complexity to the

manager’s problem. For example, in the absence of fishing, a relatively large breeding stock of

fish may grow more slowly than a relatively smaller breeding stock due to food abundance.

Types of Uncertainty

Next, in the context of an optimal dynamic management framework, we define four types of

uncertainty common in management problems that have received significant attention in

the literature: stochasticity, parametric uncertainty, model uncertainty, and state

uncertainty.5

4Formally, the manager’s problem is

maxfutgE
X1

t¼0
dtpðxt ; ut ; �pt ;Hp

t Þ
h i

(1)

subject to

xtþ1 ¼ f xt ; ut ; �
f
t ;H

f
t

� �
;

where t is the time period, xt is the physical state variable, ut is the control variable, and �t ¼ ð�pt ; �
f
t Þ is a

vector of stochastic terms that operate on the objective function (e.g., stochastic output prices) or the state
equation (e.g., stochastic shocks to the resource stock). The variable Ht ¼ ðHp

t ;H
f
t Þ is a set of economic

and biophysical parameters, p( ) is the within-period reward benefit, and d is the discount factor. When the
manager’s problem involves minimization, it may be converted to a mathematically equivalent maximi-
zation problem after making the sign of p( ) negative.

5Indeed, all four types of uncertainty may be simultaneously present in a single management problem.
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Stochasticity

Natural resource and environmental management often deals with dynamic processes

that are influenced by stochasticity, which is often defined as intrinsic variability, shocks,

risk, or “noise.”6 In our model, stochasticity is represented by a random vector, and both

within-period outcomes (e.g., economic rewards change with stochastic output or input

prices) and state dynamics (e.g., excess wind leading to a lot of pollution dissipation) can

be stochastic. Stochastic terms are typically drawn from a known distribution (Reed

1979).7 The parameters dictating the stochastic component are generally fixed over

time, but more complex time-dependent relationships are possible.8

Even within a short time scale, it is rarely technically feasible (much less cost effective) to

perfectly forecast state variables because sources of natural variability (e.g., ocean upwelling

anomalies, droughts) are difficult to predict. Moreover, there are a variety of sources of

economic variability, such as resource commodity prices (Pindyck 1984). To capture natural

and economic variability and account for the challenge of prediction, researchers often in-

clude irreducible stochasticity in the models (i.e., it cannot be resolved through learning prior

to a decision period). When uncertainty is limited to stochasticity in a resource or environ-

mental management model, the modeler implicitly assumes the manager knows all functions/

distributions of stochastic variables and the manager plans as if these functional relationships

precisely describe the dynamics of the management problem (Shaw and Woodward 2008).9

In stochastic models, managers may still have an incentive to obtain new information

because of option value (Arrow and Fisher 1974; Dixit and Pindyck 1994). The concept of

option value establishes that merely accounting for new information about the outcome of an

uncertain stochastic shock tends to increase the value of delaying an irreversible action

(Pindyck 2007). Irreversibility may represent harvesting below the minimum viable popu-

lation of a renewable resource at which the resource goes extinct or incurring sunk costs to

enact a policy that would preserve the resource (Sims et al. 2017). When management actions

today limit the manager’s options for action in the future, there is an opportunity cost of

irreversible deviations from the status quo, through either forgone information value or the

forfeiture of the option to react to future realizations of the random variable (Conrad 1980). In

a sense, option value is the value of having a less restrictive control space—that is, more

flexibility in management choices in the face of an uncertain future. Hence resolution of

stochasticity is valuable, but we do not view it as learning.

6Unless stated otherwise, we generally consider “greater levels of uncertainty” to be a mean preserving spread
in the stochastic process.

7This is specified in our model by the parameters in Ht .
8In keeping with standard practice in the literature, we restrict our discussion to stochastic models that are
Markov processes, which means that conditional on the current state and the manager’s chosen control,
next period’s state is independent of states and control choices that occurred prior to the current period. In
addition, the appropriate distributional assumption for the stochastic component is often context depen-
dent. For example, a lognormal distribution may be appropriate if stochasticity is to be modeled
multiplicatively.

9In SEU theory, a decision maker assigns probability distributions to stochastic events even when she does
not know the distribution precisely and then plans as if those distributions are correct and known (Shaw and
Woodward 2008). To simplify our discussion and draw a clear distinction between stochasticity and other
forms of uncertainty, we focus on stochasticity characterized by distributions that the manager either knows
or assumes but does not learn about over time.
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Parametric Uncertainty

Thus far we have assumed that although the reward function or state equation is stochastic,

the manager knows the parameters of each with certainty, up to a multiplicative or additive

stochastic component. Under parameter (or parametric) uncertainty, the manager plans

without precise knowledge of one or more components of the system. For example, a fishery

manager may specify regulations like catch limits for a stock without knowing the stock’s

precise intrinsic growth rate (Springborn and Sanchirico 2013), or an environmental man-

ager may be uncertain about pollution transfer coefficients (Fowlie and Mueller 2013; Carson

and LaRiviere 2017). Unlike stochasticity, parametric uncertainty (along with other types of

uncertainty) is reducible through learning, at least conceptually. However, if such learning is

not feasible or simply not pursued, then parameters are typically modeled as random draws.

In either case, parametric uncertainty could lead to a less “predictable” system when com-

bined with a purely stochastic state equation.

Model Uncertainty

Model uncertainty differs from parametric uncertainty in that the manager does not precisely

know the true functional forms of one or more equations that characterize the management

problem. For example, a fishery manager may be uncertain as to which of two possible state

equations—one that features a population collapse threshold and one that does not—

describes stock dynamics. In the case of air quality, there could be competing nonlinear

models that dictate the formation and decay of secondary particulates like ozone.

State Uncertainty

State uncertainty arises when a physical state variable is observed imperfectly (e.g., when the

precise value of the state variable is unknown). This typically occurs when the true state is

difficult to measure (e.g., wild species populations or pollution conditions over space) and

assessments are imperfect (e.g., when estimating fish stocks or observing coarse air quality

data). State uncertainty is conceptually different from parametric and model uncertainty

because the latter two typically involve uncertainty about a fixed object (e.g., the true pa-

rameter value) while state uncertainty centers on an unknown value that is changing over

time at least in part due to management choices. Furthermore, when economists develop

models with parameter and model uncertainty, any prediction errors by the manager con-

cerning stock dynamics do not compound over time because the manager will observe the

state variable perfectly at some point in each period in the economic model. With state

uncertainty, prediction errors can compound over time.

Modeling Learning

In the context of resource and environmental management, although stochasticity is irre-

ducible, parameter, model, and state uncertainty can often be reduced over time through

learning. Modeling the costs and benefits of learning has a long history in the economics

literature (Blackwell 1951; Marschak and Miyasawa 1968). For example, an air quality
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manager may learn from observing how reductions in emissions affect ambient pollution

levels. A fisheries manager may learn about stock dynamics after a temporary fishery closure.

It is important to identify and understand differences in models of learning because man-

agement incentives—and the technical solution method to the models themselves—depend

on how learning is modeled.

The traditional approach to modeling learning is to introduce a parameterized distribution

that characterizes the manager’s beliefs over the true value or functional form of an uncertain

model component, such as a Bayesian prior.10 For example, beliefs might capture uncertainty

over the true value of a parameter governing air pollution dissipation.11

Uncertainty may also be reduced by investing in direct learning. For example, the manager

can monitor to reduce stock uncertainty. In the fishery management case, the manager could

pay for stock assessments. Similarly, the manager could hire additional ecologists to refine

parametric uncertainty. These investments need not be mutually exclusive: an investment in

stock assessment could also reduce uncertainty about parameters in the state equation.

Characterizing How Learning Occurs

We next examine how the manager’s strategy for maximizing the expected NPV of benefits is

shaped by the modeler’s assumption about how learning occurs. These three modeling

approaches fall into two general categories, whereby there is either no learning (i.e., non-

adaptive management) or learning is explicitly allowed and modeled (i.e., adaptive manage-

ment). Within the adaptive management approach, there are two types of learning, which

depend on how the manager’s choices are modeled.

Nonadaptive Management

Under nonadaptive management (NAM), the decision maker treats beliefs as fixed both when

determining optimal policy and when stepping forward in time. All uncertainty is treated as if

it is irreducible, even if learning is technically feasible.

When all sources of uncertainty are treated as irreducible, any uncertain components are

captured by fixed parameters that describe the irreducible uncertainty (rather than by param-

eters that change over time). Thus there is no need to introduce belief parameters. This means

10Formally, let the parameters of the distribution summarizing the state of beliefs in a period be given by bt ,
with information dynamics given by

btþ1 ¼ g btÞ:ð

The function g( ) captures how the manager changes his/her beliefs about a system over time. Beliefs are
usually assumed to be a Bayesian update performed using observed state variable dynamics in response to a
management action (e.g., the chosen control variable). The updating process is usually modeled iteratively
after a period’s stochastic outcomes are observed and before the manager makes the next period’s decisions.

11Since state variables are inherently dynamic (whereas parameters and models of the state equation are more
often fixed), updating beliefs about an unknown state must account for both stochastic state dynamics and
learning about the level of an uncertain state variable at a given point in time. Thus information dynamics
are unlikely to be captured by simple Bayesian updating, which makes state uncertainty problems involving
realistic models (i.e., beyond a handful of possible discrete states) computationally challenging.
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that the stochastic dynamic programming problem for the nonadaptive manager is techni-

cally straightforward to solve: a NAM policy is solely a function of the current state variable.

Although future management actions will be based on new realizations of a state variable,

learning to reduce uncertainty does not occur. Rather, the regulator observes realizations of a

stochastic random variable.

Adaptive Management

Under the adaptive management (AM) approach, beliefs are updated over time. This updat-

ing depends on a set of system characteristics, such as the history of management actions,

observed state variables, and observed rewards. However, there are two ways to implement

AM, which are based on whether learning is included in the identification of the optimal

policy.

Passive adaptive management

In the simplest case, called passive adaptive management (PAM), the manager treats beliefs as

fixed, which means that from the manager’s perspective, the arrival of information is exog-

enous. Therefore, PAM ignores the fact that choices about the management action (e.g., the

control variable) might lead to more or less learning. This means that conditional on a given

set of information, the PAM and NAM policy solutions are identical. However, over time, the

PAM manager updates his/her beliefs. Thus, in the long run, we would expect the PAM

approach to outperform the NAM approach because PAM will become more predictable

from the manager’s perspective (i.e., updated beliefs more closely approximate the true

underlying model).

Active adaptive management

In contrast to the PAM approach, an active adaptive management (AAM) decision maker

accounts for learning when making management decisions. This means that AAM decisions

will deviate from PAM/NAM decisions when the expected benefits of learning outweigh the

opportunity cost of forgoing the optimal policy when current beliefs are held fixed due to the

“explore versus exploit” trade-off (Nicol and Chadès 2012; Fackler 2014; Springborn 2014).

Thus, in the short term, active learning under AAM can be viewed as a “costly” investment

relative to PAM.

Alternatives for characterizing uncertainty and learning

Table 1 presents one way for modelers and real-world managers to consider stochasticity,

uncertainty, and learning. The table identifies ten different ways in which uncertainty and

learning can manifest in an environmental or resource management problem. The four

different forms of uncertainty (columns) are matched with a sample of methods for dealing

with uncertainty (rows). Since no learning occurs in a stochastic problem, the PAM and AAM

learning approaches are not feasible for that type of uncertainty.12

12See the online supplementary materials for a discussion of how even this characterization of stochasticity,
uncertainty, and learning is in some ways incomplete and an illustration of how PAM and AAM problems
have fundamentally different solution methods.
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In the next four sections we examine whether and how the four general environmental and

resource management “hypotheses” apply to the different uncertainties and characterizations

of learning in table 1.

Hypothesis 1: Greater Levels of Uncertainty Result in More
Precautionary Management

One management method for dealing with uncertainty is precaution. Examples of precaution-

ary management include delaying action in anticipation of learning, waiting for resolution of

stochasticity, or forgoing an action that increases the likelihood of an undesirable outcome

above some well-defined level (Gollier and Treich 2003). Exercising more or less precaution

implies deviating from some baseline management action specifically because of uncertainty.

For the purposes of the discussion here, we define precaution as a change in management

strategy that is aimed at avoiding bad outcomes, which means that our interpretation aligns

most closely with a “strong” form of precaution discussed in the literature (Morris 2000; Foster

et. al. 2000).13 An example would be an air quality management plan that maximizes the NPV of

benefits, subject to pollution levels not exceeding some maximum level more than 3 days per

year (as opposed to an unconstrained maximization of the NPV of benefits). If more uncer-

tainty in the pollution levels leads to more stringent regulation, we call it precaution. Thus, to

evaluate Hypothesis 1, we examine how greater uncertainty affects the behavior of the manager

in models of optimal environmental and resource management and then assess qualitatively

whether the change in behavior is characterized by precaution. We first examine stochasticity

and then evaluate uncertainty, paying attention to nuances within and between them.

Stochasticity and Precaution

Greater levels of uncertainty may—but not always—induce policies that could be interpreted

as precautionary.14 For example, if precaution is defined by lower permitted levels of

Table 1 Characterization of possible uncertainties matched with potential solution methods/character-

izations of learning in a resource manager’s problem

Solution/learning Uncertainty

Stochasticity Parameter State Model

Nonadaptive NAM-Stoch NAM-P NAM-S NAM-M

Passive n.a. PAM-P PAM-S PAM-M

Active n.a. AAM-P AAM-S AAM-M

Notes: AAM ¼ active adaptive management; n.a. ¼ not applicable; NAM ¼ nonadaptive management; PAM ¼ passive adaptive

management.

13Weak precaution is like a management strategy that seeks to maximize expected NPV. In that sense,
learning in an AAM framework fits more naturally within a weak precaution framework because it is
less constraining on the manager, whereas strong precaution limits management activities which could
harm humans or the environment.

14We restrict the discussion here to traditional models with “thin” rather than “fat” tails and acknowledge
that some of these results might not carry through to uncertainties that arise in some environmental
problems, such as climate change (see Weitzman 2009).
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pollution emissions or resource exploitation compared with a less volatile evolution of the

state variable (e.g., pollution or the resource stock), then the general relationship between

stochasticity and precaution is indeterminate (Pindyck 1984).15 We highlight two ways in

which such a result can occur.

Level of stochasticity

Consider harvesting a species to extinction: will greater stochasticity in annual growth rates

lead to more precautionary management? Not necessarily. An example of less precaution

resulting from greater stochasticity occurs in Olson and Roy (2000), whose model of renew-

able resource consumption features a nonconcave growth function and nonconsumptive

utility from the standing stock. They show that introducing growth stochasticity with a

distribution specified to make the stock more productive can lead to a harvest policy that

is nearly guaranteed to cause extinction.16

Irreversible outcomes

When a bad outcome is irreversible, precaution takes on a more explicit temporal dimension.

More specifically, quasi-option value (Arrow and Fisher 1974), which typically focuses on the

flexibility lost from irreversible environmental degradation (e.g., the regulator loses previ-

ously available policy options), is used to argue for delaying activities that degrade the envi-

ronment or overexploit resources and thus can motivate precaution. In contrast, option value

(Dixit and Pindyck 1994) typically focuses on flexibility lost due to sunk costs. Option value is

used to argue for delaying environmental degradation or overexploitation of resources when

they specifically involve sunk costs (Conrad 2000). Insofar as irreversible environmental

damage is an example of a sunk cost, both option value and quasi-option value can be

used to argue for delayed intervention due to precaution (Pindyck 2000, 2002). Similarly,

when both the timing and magnitude of resource exploitation or conservation can be selected

(see the optimal stopping literature [Hanemann 1989]), there is a trade-off between precau-

tion in terms of more immediate conservation and precaution in terms of less exploitation

(Sims and Finnoff 2013).

Uncertainty and Precaution

Precautionary policies are sometimes justified on the grounds that it is prudent to delay action

that carries a risk of harm until uncertainty is resolved. When uncertainty is reducible through

either active or passive learning, is decision making generally characterized by precaution?

Parameter uncertainty

Under parameter uncertainty, the clear answer is no. A common feature of optimal policy in

the AM literature is using policy tools to “explore” or “probe” for information about

15Note that the relationship can also be nonmonotonic, that is, small increases in the volatility of the
evolution of the state variable can lead to more precaution but large increases can lead to less precaution
(Saphores 2003).

16Note that here the increase in stochasticity is not mean-preserving. Extinction can be optimal in this model
as well.
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underlying parameters governing resource dynamics. Smith and Walters (1981) show that

such probing may involve a decreasing resource harvest in a way that resembles precaution.

On the other hand, probing may involve a more intensive harvest when parametric uncer-

tainty is high due to a history of stock management that implemented low levels of exploi-

tation. Using an AAM fishery management model, Springborn and Sanchirico (2013) find

that greater uncertainty over a stock productivity parameter may lead to a greater harvest for

reasons other than learning; this is because when uncertainty increases around a low point

estimate of stock productivity, the decision maker may place more weight on the possibility

that the true productivity is higher, which drives up the harvest.

Interaction of parameter uncertainty and stochasticity

Precautionary behavior may depend on the source of stochasticity and whether there is more

than one form of stochasticity. If there are two sources of stochasticity (e.g., in resource

dynamics and policy implementation), more stochasticity can lead to a faster reduction in

polluting activities or resource exploitation (e.g., Carpenter, Ludwig, and Brock 1999;

Polasky, de Zeeuw, and Wagener 2011). For example, in an analysis of fishery management

decisions, Sethi et al. (2005) find that large increases in the volatility of either stock growth or

implementation error do not by themselves qualitatively alter the harvest rule when both

growth stochasticity and uncertainty about the resource stock level are low. However, when

uncertainty about the resource stock level is high, the harvest policy may be less precaution-

ary, involving a greater harvest over a range of possible stock levels.

Thresholds

One important type of parameter uncertainty occurs when unknown discrete thresholds

divide relatively good and bad outcomes (e.g., a threshold level of atmospheric carbon

dioxide concentrations leading to runaway climate change, in which case the threshold level

is the parameter and atmospheric carbon dioxide concentrations are the state variable).

Models of optimal management provide qualified support for a precautionary approach to

this class of problems. For example, Lemoine and Traeger (2014) study optimal carbon

taxation given the ability to learn about the location of a temperature threshold beyond

which climate system dynamics become sharply less favorable. The existence of this threshold

increases the optimal carbon tax. The authors find that when there is learning, the optimal tax

is initially lower than when there is no learning, but that the learning policy ramps up the tax

faster and eventually sets it higher than the no-learning policy as temperatures increase and

approach the threshold. Thresholds can also occur directly with a control variable (e.g., how

much use of sonar disturbs wildlife) and, in contrast to precautionary behavior, this involves

setting the activity within a “risky” range of levels in order to learn (Groeneveld, Springborn,

and Costello 2014).

Irreversible decisions

When decisions are irreversible, greater uncertainty often but not always leads to more pre-

cautionary optimal management. Here the manager’s objective function can matter. Gollier,

Jullien, and Treich (2000) show that when utility from consumption exhibits hyperbolic
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absolute risk aversion, and “prudence” (e.g., the propensity to forgo consumption to hedge

against future risk) is sufficiently large, irreversibility does decrease first-period consumption

as long as the rate of learning is high. However, the converse is also true: if learning is slow it

might not be optimal to forgo consumption. As a result, the precise nature of the problem (in

this case, the interaction of preferences and rates of learning) can be important.

Evaluating Hypothesis 1

Do greater levels of uncertainty result in more precautionary management? To summarize,

stochasticity (irreducible uncertainty) has an ambiguous effect on the incentives for precau-

tionary management (Pindyck 1984; Olson and Roy 2000; Saphores 2003). Under parameter

uncertainty, optimal management may involve manipulating a state variable in order to learn

more quickly (Smith and Walters 1981; Springborn and Sanchirico 2013). Such “probing”

behavior may also run counter to precaution.17 When state variable outcomes are irrevers-

ible, optimal management is more likely to be precautionary (Gollier, Jullien, and Treich

2000). In contrast, when decisions are irreversible, they are more likely to be delayed, which

may suggest less precaution. Thus “greater levels of uncertainty” is actually a misnomer: the

precise form of uncertainty (e.g., parameter, state, stochasticity) is what matters in deter-

mining whether greater uncertainty leads to more precaution.

Hypothesis 2: Reductions in Environmental Uncertainty Have
Greater Value Than Reductions in Economic Uncertainty

Uncertainty can enter a management problem through at least two channels: economic

parameters such as the costs or benefits of different actions/outcomes (e.g., resource extrac-

tion, pollution reduction) and economic states (e.g., downstream market structure) or en-

vironmental parameters (e.g., growth rates) and environmental states (e.g., resource stock

levels). While the environmental and resource economics literature on environmental un-

certainty is vast, there has been less work on reductions in economic uncertainty. This

suggests that reductions in environmental uncertainty are viewed in the literature as having

greater value than reductions in economic uncertainty. In this section we examine how

reductions in economic versus environmental uncertainty affect both optimal management

actions and benefits from optimal management. We first investigate the mechanics of reduc-

ing the stochasticity of environmental and resource management problems generally and

then consider reductions in environmental and economic uncertainty more specifically.

General Mechanics of Reducing Stochasticity

Reductions in economic sources of stochasticity can take several forms. For example, futures

markets hedge price uncertainty and the form of input (e.g., labor) contracts in resource

industries can spread exposure to market fluctuations (Plourde and Smith 1989; McConnell

and Price 2006). Crop, flood, and other types of insurance reduce exposure to risk and are

17In an article that does not consider theoretical results from economics, Doremus (2007) makes this point
while advocating for “learning while doing” in resource management.
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often subsidized by governments (Coble and Barnett 2013). Similarly, reductions in envi-

ronmental stochasticity can result from management practices such as maintaining larger

standing resource stocks (Melbourne and Hastings 2008).

The impact of reductions in stochasticity on expected profits depends on the curvature of

the objective function and state equation and how stochasticity is modeled. To the first point,

if profits are concave in the environmental variable, then reductions in uncertainty have value

(i.e., they result in smaller reductions in expected profits), but the magnitude of this value

depends on the curvature of the profit function. If the profit function is more curved in an

economic state variable, then economic uncertainty will have a larger impact on expected

profits ceteris parabis, and vice versa. The ceteris parabis assumption assumes that changes in

uncertainty have no impact on the optimal level of the control variable.18 To the second point,

if the state equation is nonlinear or stochasticity enters the state equation multiplicatively,

then optimal management actions depend on the volatility of the random variable (Hoel and

Karp 2001). Therefore the solution to the manager’s problem and the value of stochasticity

reductions depend on whether stochasticity enters a linear–quadratic control problem

additively.

One general finding in the literature that arises from the curvature of the profit function is

that more stochasticity, regardless of whether its source is economic or environmental, always

increases the conditional value of information. That is, the value of information is conditional

on being able to react to that information.19 This means that if deviations from the status quo

are irreversible because of sunk costs or regime shifts, these actions have an opportunity cost

that reflects (in part) the forfeited value of information. The value of reacting to new infor-

mation has implications for a variety of problems characterized by economic and environ-

mental stochasticity, including invasive species control where future species spread and

invasion damages are stochastic (Sims and Finnoff 2013); control of a stock pollutant where

pollution concentrations and damages are stochastic (Pindyck 2000, 2002); fisheries man-

agement with stochastic price and stock dynamics (Nøstbakken 2006); species conservation

with stochastic species value and density (Sims et al. 2017); and exhaustible resource extrac-

tion with stochastic prices and reserve size (Almansour and Insley 2013).

Reductions in Environmental Uncertainty

Reductions in environmental uncertainty can occur through learning more about the true

value of an environmental parameter, a stock level, or the model summarizing an environ-

mental process. Valuing learning—through either PAM or AAM—offers a straightforward

way to value reductions in environmental uncertainty.20 Regardless of the particular mech-

anism for learning, reductions in uncertainty reflect better predictions of the future stock or

parameters (Costello, Polasky, and Solow 2001; Kennedy and Barbier 2013). Furthermore,

18This will be the case for a linear–quadratic control problem if stochasticity enters the state equation
additively (Newell and Pizer 2003).

19Note that the conditional value of information is not simply the expected value of information gained by
avoiding an irreversibility (Conrad 1980).

20This type of learning is very different from the options literature, which sometimes refers to learning that
involves observing a stochastic environmental event but not updating beliefs about true parameters, stocks,
or models. Such models have no prior distribution to be updated.

The Treatment of Uncertainty and Learning 103

Deleted Text: 1) 
Deleted Text: 2) 
Deleted Text: l
Deleted Text: ,
Deleted Text: -
Deleted Text:  
Deleted Text:  - 
Deleted Text:  &ndash; 
Deleted Text:  
Deleted Text: -
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text:  


valuing reductions in uncertainty through learning maps directly to being able to directly

invest in uncertainty reduction (e.g., paying for better monitoring).

Stock uncertainty’s impact on the benefits and costs of management actions (e.g., how

uncertain pollution levels map to damages or how uncertain resource stocks map to benefits)

is a very common form of environmental uncertainty in the literature. In an extension of

Roughgarden and Smith (1996), Sethi et al. (2005) identify the optimal solution to the fishery

manager’s problem when facing three sources of uncertainty: environmental variability in

fish growth (stochasticity), fish stock measurement error (stock uncertainty), and inaccurate

implementation of harvest quotas (a different form of stock uncertainty due to uncertain

escapement). The manager must choose a fishing quota at each point in time to maximize the

discounted value of harvest subject to fish stock dynamics and each type of uncertainty. They

find that an increase in stock uncertainty through measurement error has the largest impact

on the propensity to close a fishery, profits, and extinction risk. However, increases in

stochasticity have little impact on policy, expected profits, and extinction risk even when

these sources of uncertainty are large. Thus, relative to stochasticity, environmental stock

uncertainty can have a large impact on management actions and welfare.

It is important to distinguish between uncertainty that leads to changes in welfare and

uncertainty that leads to changes in optimal management actions. Allowing prices and re-

source stock growth to evolve stochastically, Hanson and Ryan (1998) find that reductions in

price uncertainty affect the level of welfare. However, reductions in environmental uncer-

tainty influence both the level of welfare and the solution to the manager’s problem.

Furthermore, if price uncertainty and environmental uncertainty are correlated or the envi-

ronmental uncertainty is sufficiently complex, optimal management (e.g., choice of a tax or

quota to correct an externality) depends on the structure of the correlation or the nature of

the complexity (Stavins 1996; Jensen and Vestergaard 2003; Kennedy and Barbier 2015).

Reductions in environmental uncertainty can be valued based on the conditional value of

information. Assessing the value of learning is a natural way to put a price on the conditional

value of information. Reductions in uncertainty matter for both welfare and optimal man-

agement, especially when there is a correlation between economic uncertainty or complex

environmental processes.

Reductions in Economic Uncertainty

Economic uncertainty is often modeled as uncertainty in resource demand or the benefits of

pollution reduction, both of which have explicit prices in a manager’s objective function (e.g.,

price of fish, costs of health care due to pollution, adaption to climate change).21 In the

manager’s profit function or net benefit function, prices often enter the objective function

linearly while costs often enter either linearly or subject to a convex function. When they enter

linearly, price or cost stochasticity leads to a vertical shift in the marginal benefit or cost of a

management action (Weitzman 1974; Reed 1979). Thus the level of stochasticity tends not to

matter as much as how benefits change in response to management decisions (e.g., the slope

21Although compliance cost uncertainty is prevalent in the economics of second-best policies under uncer-
tainty (Weitzman 1974; Stavins 1996; Pizer 2002), we do not directly address this issue here. Goulder and
Parry (2008) and Shogren and Taylor (2008) partially address this topic. We also do not address the issue of
regulatory uncertainty.
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of benefit or cost curves [see Weitzman 1974]). Golosov et al. (2014) show that optimal

carbon taxes (the management action or “control variable”) are only a function of discount

rates, marginal costs of pollution, and pollution decay rates rather than stochastic output

levels or prices.

Costs are often modeled as a nonlinear function of the control variable (Hanson and Ryan

1998). If costs are convex, the impacts of uncertainty are different than if the costs are linear.

For example, fluctuations in available fishing technologies cause the costs of fishing to be

stochastic as vessels decide how to fish (Squires and Vestergaard 2013). Thus economic

uncertainty can affect welfare levels.

There is also evidence that output market fluctuations can affect optimal management. In

an extension of a fisheries model in Weitzman (2002), Hannesson and Kennedy (2005) find

that if profits vary with fishery stock size, taxes generally dominate quotas, but if profits are

roughly constant over different stock sizes (e.g., for schooling fish), then quotas dominate

when either economic uncertainty or resource growth stochasticity is sufficiently large.

Evaluating Hypothesis 2

Although in many circumstances both price and cost uncertainty appear to have second-

order impacts, there are several specific situations in which they do qualitatively change the

manager’s problem. First-order impacts in both welfare and optimal management can arise

when economic uncertainty enters nonlinearly in the objective function—either directly or

indirectly. Thus, while reducing environmental uncertainty is certainly of first-order impor-

tance, there are cases in which reducing economic uncertainty is also of first-order

importance.

Hypothesis 3: Management Strategies with Active Learning
Lead to Substantially HigherWelfareThanThosewith Passive
Learning

The third hypothesis concerns the relative increases in welfare from two types of learning

about uncertainty in resource and environmental management: AAM and PAM. As discussed

earlier, the key distinction between these two types of learning is that under AAM, the reg-

ulator considers costly actions to enhance learning and considers how management decisions

can affect beliefs about a parameter, state, or model. In contrast, under PAM, the optimal

policy maximizes expected welfare under the assumption that the regulator’s information

regarding the system’s parameters or structure cannot be improved.22 Deviating from the

PAM policy (i.e., using an AAM strategy) may be optimal if the expected gains from making

more informed decisions in the future outweigh the costs of forgoing the higher immediate

expected profits of the PAM action. From the economic modeler’s perspective, some amount

of learning and updating is expected under both PAM and AAM. However, the AAM regu-

lator recognizes that different actions lead to different amounts of learning, while the PAM

regulator does not. Intuitively, AAM offers welfare improvements relative to PAM because

22However, PAM is still adaptive because the regulator assimilates new information ex post.
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the regulator has a larger set of options to consider. How much and in what ways AAM

improves welfare relative to PAM is, however, an empirical question.

The net payoffs from taking an active versus passive approach to learning have been studied

most intensely in the context of parametric uncertainty, with net improvements in expected

welfare under AAM with parametric uncertainty often found to be modest. Using simulation

approaches, Bond and Loomis (2009), Rout, Hauser, and Possingham (2009), Springborn

and Sanchirico (2013), and Fackler (2014) all find that the expected welfare gains from AAM

relative to PAM are relatively small, in the range of 0.1 percent to 3 percent of welfare. The

likely reason is that in those models, AAM policies often lead not to fundamentally different

information, but rather to faster acquisition, which generates a modest net payoff.23

It may well be that rather than expecting AAM policies to improve expected welfare relative

to PAM policies, an active learning approach (i.e., AAM) should be viewed as a form of

insurance. For example, although Springborn (2014) found that in the context of invasive

species management, the most common effect of a shift from PAM to AAM was a small

welfare loss, in the smaller (but nontrivial) share of cases in which initial beliefs were a poor

reflection of reality, exploration under AAM uncovered the error and actually protected

against large negative welfare impacts. Thus, not surprisingly, Springborn (2014) showed

that the relative value of AAM can be much higher under risk aversion.

Evaluating Hypothesis 3

We find that AAM leads to expected welfare gains in almost all cases. However, the expected

welfare gains are often small or modest (Springborn and Sanchirico 2013). Nevertheless,

AAM seems to mitigate large losses relative to PAM and thus can be very useful when the

regulator is risk averse (Springborn 2014).

Hypothesis 4: Managers Who Try to Actively Learn Do So
Faster Than Those Who Passively Learn

The fourth hypothesis considers whether the rate of learning is faster in AAM than in PAM.

With parametric, model, or state uncertainty, the key difference between AAM and PAM

learning is that under AAM, the manager can choose to deviate from the PAM path with the

intention of learning. Because the benefit of learning in both PAM and AAM is related to the

background stochasticity in a system, we start there.24

Optimal learning is very much related to the level of stochasticity in the system (Hausser

and Possingham 2008; Rout, Hauser, and Possingham 2009; Springborn and Sanchirico

2013). If there is no stochasticity in an environment or resource problem, the regulator

can often learn everything there is to know about the system. Thus, if learning is important

in a management problem, stochasticity must also be present.

23For example, Springborn and Sanchirico (2013) show that additional returns from an exploratory AAM
fisheries policy are small unless departing from the PAM policy is required to facilitate learning.

24Karp and Zhang (2006) note that if the regulator anticipates exogenous learning, it leads to less precau-
tionary behavior from the manager because the manager knows that future information will allow him/her
to make better decisions. We do not consider exogenous learning rates here.
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Adding uncertainty to a stochastic system effectively increases the “randomness” of future

states of the world from a regulator’s perspective (e.g., more uncertain fish stocks). In a PAM

framework, by definition, there is no investment in learning. Rather, the regulator passively

incorporates new information about a system to make better decisions. Conversely, in an

AAM framework, the regulator acknowledges that each management action can affect the

current and future periods’ randomness through reductions in uncertainty. For example, a

fishery manager could choose to drive a fish stock down close to zero, thereby decreasing the

chance of an unexpectedly large stock.

The key insight from both the PAM and AAM frameworks is that observed responses to

different management actions lead to learning. Some management actions might put the

resource in a state in which learning occurs quickly (e.g., harvesting a resource intensely to

measure growth rates). Those management actions have a large “signal strength” and lead to

fast learning. Therefore, using AAM implies that more learning ought to occur because there

is an incentive to perform management actions that have a high signal strength. However,

Hausser and Possingham (2008) and Springborn and Sanchirico (2013)show that an AAM

framework with parametric uncertainty can actually lead to less learning than a PAM ap-

proach if stochasticity is relatively large. The precise cause of this result is an open question in

the environmental and resource literature.

Early theoretical work of Bar-Shalom (1981) offers a nice framework to evaluate what

might lead to this result. More specifically, Bar-Shalom (1981) evaluates how a value function

(e.g., welfare from resource management) could change when a decision maker learns more

about the decision environment. The study decomposes the value of learning into three

components, which is a very useful framework for evaluating this hypothesis. The three

components, renamed here using terminology intuitive for adaptive resource and environ-

mental management, are deterministic, stochastic, and experimentation. The deterministic

component refers to the value when all uncertainties are ignored. The stochastic component

describes all randomness, which is assumed to be irreducible. The experimentation compo-

nent captures the expected future value of information. The PAM decision maker accounts

for only the first two components, while the AAM decision maker considers all three

components.

All else being equal, the experimentation effect will drive decisions with great signal

strength under AAM. However, all else is not equal: there can be an interaction between

the stochastic and experimentation components, because learning changes beliefs. For

example, decreasing parametric or model uncertainty reduces the stochastic component

associated with management outcomes. Similarly, the stochastic effect can drive changes

in optimal management. For example, changes in the stochastic effect can enhance pre-

cautionary action when negative stochastic outcomes matter for welfare more than pos-

itive ones (e.g., random decreases in food leading to population collapse). Thus, even

though the experimentation effect drives more “informative” management actions under

AAM, anticipation of changes in the stochastic effect due to learning can either increase or

decrease the value of “probing” management actions that have a greater signal strength. If

the counteraction is strong enough, the PAM policy may actually result in greater

learning.
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Tol (2014) examines these competing effects as part of an analysis of the effect of learning

about damages on optimal climate policy. He finds that accounting for uncertainty results in

more stringent policy if the manager is risk averse and there is a greater likelihood of a

negative rather than a positive surprise (e.g., more damages than expected from a given

management action). The effect of irreversibility is not immediately clear since there are

two key irreversibilities that have competing effects: the prospect of being locked into a

particular level of climate change supports greater stringency, while being locked into en-

ergy/transportation capital supports less stringency. Without learning, the former effect

dominates—irreversibility motivates more stringency. However, the effect of learning results

in less stringency because there is less need to “hedge” against policy mistakes. Of the 17

studies on the impact of future learning on optimal short-run policy stringency reviewed by

Tol (2014), one finds that learning enhances stringency, two find almost no effect, and the

remaining fourteen find that optimal stringency decreases.

Evaluating Hypothesis 4

In general, we find that AAM does not always lead to increased learning relative to PAM

(Hausser and Possingham 2008; Springborn and Sanchirico 2013). While the precise reason

for this result is unclear, Bar-Shalom (1981) offers a potentially useful framework for inves-

tigation. Moreover, Tol (2014) suggests that accounting for learning rates can be important

for policy.

Conclusions and Research Opportunities

This article has examined several different forms of uncertainty, stochasticity, and learning

in resource and environmental management that have thus far been explored only in more

technical surveys (e.g., Fackler 2014) and evaluated four “hypotheses” associated with un-

certainty and learning in environmental management. Overall, we find that there are im-

portant differences across stochasticity and uncertainty with respect to optimal

management. Management insights from the literature for different forms of uncertainty

are somewhat transferable to different contexts, but it is important to be clear about the

nature of the uncertainty investigated. Economic uncertainty can be first-order important,

especially when it enters the objective function nonlinearly. Consistent with hypothesis 3,

using AAM increases welfare, but inconsistent with hypothesis 4, it does not necessarily

increase the rate of learning.25 Our review of the economics literature has characterized

several types of uncertainty (e.g., stochasticity, parameter, state, and model) and different

ways to learn (e.g., PAM and AAM). However, both researchers and managers should be

careful about applying general rules of thumb for “uncertainty” because the applicability of

a particular management rule (e.g., precaution or importance of environmental uncer-

tainty) depends on the specific types of uncertainty, stochasticity, and learning that char-

acterize a particular problem.

25These results are also summarized in the online supplementary materials.
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We conclude by identifying several topics that would benefit from further research:

1. State uncertainty: The economics literature regarding the welfare gains from learning

with state uncertainty is less developed than the literature on parametric uncertainty,

most likely because it is technically a harder problem to address.26 One line of research

has studied this issue in some depth by borrowing tools from artificial intelligence (AI)

and computer science (Chadès et al. 2008, 2012; Regan, Chadès, and Possingham 2011).

Tools used in AI such as partially observable Markov decision process (POMDP) so-

lution methods (Fackler and Haight 2014) appear to offer a promising approach for

addressing this issue technically.27 Economists are increasingly using this tool to evaluate

policy, but state uncertainty is more poorly understood than parameter uncertainty

(Haight and Polasky 2010; Fackler and Haight 2014; Baggio and Fackler 2016;

MacLachlan, Springborn, and Fackler 2016; Kling, Sanchirico, and Fackler 2017).

2. Passive learning: In the past 10 years, most research on adaptive management and optimal

learning on the part of a regulator/manager has been in the context of natural resource

management. While learning has already been examined in the environmental economics

literature, insights could likely be gained from applying recent advances from that literature

to, for example, the regulator’s problem of imperfect knowledge of abatement costs in

pollution control or imperfect knowledge of health, environmental costs, or adaption costs.

3. Dynamic decentralized learning: Environmental and natural resource management issues

are often characterized by hierarchical or adjoining regulators. For example, because many

natural resources are transboundary, multiple regulatory agencies must interact in order

to maximize overall welfare. While interaction among agents under uncertainty is central

to many high-profile resource and environmental management problems, with some

notable exceptions (e.g., Hoel and Karp 2001; Dijkstra and Fredriksson 2010), there has

been insufficient development of fully dynamic multiagent models. An important area of

economics that would benefit from advancement on this front is environmental feder-

alism (Baumol and Oates 1988). Dynamic multiagent analysis may help shed light on

apparently unresolved tensions in this influential area of theory. For example, which

regulatory arrangement is more efficient for a transboundary pollution problem with

uncertainty but where learning is feasible: multiple nimble regulators highly informed

about local context but burdened by costly coordination, or a slower federal regulator with

coarser local knowledge and authority to act over a larger jurisdictional scale?
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