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A B S T R A C T

We study the problem of determining optimum policy for managing battery energy storage system (BESS) in
grid-connected photo-voltaic (PV) systems, where the stochastic electricity demands from the load are met from
three sources: grid, PV energy, and BESS. BESS is used either to store excess energy generated from PV systems
for later use, or to purchase energy from the grid when the time-of-use (TOU) pricing is lower. The objective is to
identify the optimum charging/discharging schedule of BESS so that the long-term cost of energy purchased
from the grid is minimized. The stochastic variabilities in loads and PV energy are captured by employing
probabilistic models of periodic stochastic process with parameters estimated using historical data. The opti-
mization problem is formulated under the framework of periodic discounted Markov decision process (MDP),
and the problem formulation includes the aging effects of batteries and solar panels. The online optimization
problem is solved by adopting a policy iteration approach tailored for periodic MDP. The proposed online
scheduling algorithm provides periodic policies for a period of 24-hour, where the system model is updated
every day based on load and PV energy from the previous day in a rolling horizon fashion. Simulation results
demonstrate that the proposed algorithm can achieve a 41.6% reduction in annual utility bills compared to
conventional systems without PV and BESS, thus ascertaining the values of installing BESS and PV systems.

1. Introduction

Grid-connected renewable energy systems, such as systems in-
tegrated with photo-voltaic (PV) and wind energy, are promising so-
lutions to meet the increasing electricity demands while reducing
greenhouse gas emissions and dependence on fossil fuels. Particularly,
PV energy is gaining more and more popularity among residential and
commercial users. With relatively low production and maintenance
cost, the installation of a PV system is expected to achieve significant
savings in energy cost. However, renewable energy sources like PV
energy are non-dispatchable sources that are both intermittent and ir-
regular in nature. These intermittent variations can pose significant
challenges in the operation of the power grid at large penetration levels.
However, the stochastic nature of renewable energy can be compen-
sated by integrating the PV system with battery energy storage system
(BESS) [1]. Energy storage technologies can address the challenges
imposed by intermittent variations of PV sources by decoupling the
time of energy generation and energy consumption, thus balance the
energy demands and supplies at different time periods.

Battery management strategies in grid-connected renewable energy
systems have been widely investigated in the literature with different

design objectives [1–13]. In [2], a predictive control system designed
with dynamic programming (DP) is proposed to perform peak shaving
by optimizing power flow management. Genetic algorithm (GA) is used
to develop BESS management policies in both [3] and [4]. The objec-
tives of [3] is to minimize the line loss of distribution systems, and that
of [4] is to minimize the household energy cost. In [5], optimal energy
management is performed for a grid-connected microgrid with a high
degree of uncertainties, where a scenario-based technique is proposed
in order to model the uncertainties in the output of PV generation, the
load demand forecasting error, and the market price of electricity. The
optimum design of BESS-assisted PV system is studied in Li and Wu [6],
where the size of PV panels, the capacity of BESS, and the BESS char-
ging/discharging scheduling are determined with the objective of
minimizing the long-term average cost, including both energy cost and
system cost. The optimization in Li and Wu [6] is performed in an
offline fashion with complete knowledge of PV energy and load profile
of an entire year. However, in order to capture the stochastic nature of
both PV energy and load profile and to include the sequential char-
acteristics of the decision problem, an online optimization approach is
needed to provide optimum energy management in real-time based
only on causal information of load profile and PV energy.
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Online optimization of energy system can be performed by using
stochastic dynamic programming approaches such as Markov decision
process (MDP) [14]. MDP is a method for modeling systems with both
probabilistic and non-deterministic behaviors, and it is widely used for
solving scheduling problems [1,7,12,13,15,16]. The problem of op-
timum energy storage management and sizing is formulated as a sto-
chastic dynamic program in Harsha and Dahleh [1], which aims at
minimizing the long-term average cost of electricity and storage in-
vestment. It is shown that the optimum storage management policy has
a dual-threshold structure under mild assumptions. Approximate dy-
namic programming (ADP) is adopted in Kwon et al. [7] to reduce the
computational complexity of BESS scheduling in large-scale energy
systems. In [12], a control policy using fitted Q-iteration algorithm is
proposed for BESS scheduling in order to maximize self-consumption of
local PV productions in a micro-grid. Periodic MDP is considered in Hu
and Defourny [13], where periodic policies using value-iteration algo-
rithm are proposed for grid-level storage management problem.

One of the important factors that can affect the scheduling perfor-
mance of the system is the age of the devices [6]. Most of the above-
mentioned works do not consider the aging effect of the devices, where
the capacities and/or efficiencies of both BESS and PV system degrade
gradually over time. Moreover, very few works consider the online
(real-time) battery charge scheduling problem that takes account of the
dynamic real-time system model. An online algorithm can provide
adaptive solution based on the dynamic model as opposed to the fixed
solution in offline optimization problems. To the best of our knowledge,
there is no work in the literature that investigates the problem of online
optimum battery charge scheduling in a grid-connected PV system
while considering the aging effects of the batteries and PV panels.

In this paper, we study the optimum scheduling of BESS in grid-
connected PV systems to minimize the average long term energy cost.
BESS is used for two purposes: 1) to store excessive energy generated
from PV systems for later use, and 2) to store energy purchased from the
grid when the time-of-use (TOU) pricing is lower. The BESS can bridge
the gap between energy supply and demands by shifting both PV energy
and grid energy in time. The objective of the optimum design is to
identify the optimum BESS charging/discharging policy such that the
long-term cost of electricity purchased from grid is minimized. The key
contributions of this paper can be listed as below:

• In order to capture both the deterministic and stochastic variability
in the load and PV energy, probabilistic models for periodic sto-
chastic process are employed, where the model parameters are es-
timated using historical data.

• The problem is formulated as a periodic discounted MDP, with each
period corresponding to a period of 24 hours to account for the
semi-periodic nature of loads and PV energy on a daily basis. The
problem formulation considers the aging effects of batteries and PV
panels.

• The problem is solved by developing a policy iteration algorithm
that is tailored specifically for periodic discounted MDP. The algo-
rithm can dynamically adjust the scheduling policy based on load
and PV energy from the previous days in a rolling horizon fashion.

The remainder of this paper is organized as follows. Section 2 de-
scribes the system model. The optimization problem is formulated using
the framework of periodic MDP in Section 3. The online BESS sche-
duling algorithm is developed in Section 4. Simulation results are given
in Section 5, and Section 6 concludes this paper. A list of the notations
used in this paper is summarized in Table 1.

2. System model

The system model is shown in Fig. 1. The system is assumed to
operate in slotted time under hourly discretization, where ∈ …t {1, 2, }
denotes the time index.

2.1. Battery model

The battery model represents the dynamics of the battery regarding
its mode of operation, such as idle, charging and discharging. Let ct (in
kWh) denote the state of charge (SOC) or the amount of energy stored
in the BESS at the end of time slot t. Let qt

b represent the charging/
discharging power during slot t. More specifically,

• =q 0t
b if the battery is idle,

• >q 0t
b if the battery is charging, and

• <q 0t
b if the battery is discharging.

The dynamics of battery is described as

= ++c c q .t t t
b

1 (1)

The BESS is subject to the following two constraints:

1) Capacity constraint: The BESS cannot be charged above or below a
certain range such that

≤ ≤′ ′N C c N C λ a( ),b t b bmin max (2)

where Nb is the number of batteries in the BESS, ′Cmax is the initial
capacity of a single battery, ′Cmin is minimum allowable capacity of a
battery, and λ(ab) is the battery aging function defined as [17]

= − − − −λ a α a β a( ) 1 ( 1) ( 1) .b b b
0.75 0.5 (3)

Here, α and β denote the calendar aging and cycling aging coeffi-
cients of the battery described in months, respectively, and ab is the
age of the battery in months. The aging function models the phe-
nomenon that the maximum battery capacity gradually decreases

Table 1
List of notations.

t time index for hourly observations
h(m) index of hours (months)
( )� � set of hours (months)

q q( )t t
pv ld PV energy (electricity load) during time slot t (kWh)

qt
b charging/ discharging rate of battery (kW)

qt
net net energy bought from the grid during slot t (kWh)

pt time-of-use price ($/kWh)
ct state of charge (SOC) i.e., amount of energy stored in BESS (kWh)
Nb(Ns) number of batteries (solar panels)
ηc(ηd) charging (discharging) conversion efficiency of battery (%)
ηs efficiency of solar panel described in months
Ml(Mp) number of discretization levels for electricity load (PV energy) variable
Mc number of discretization levels for SOC of BESS
πm(i, h) action (charging/ discharging rate of battery) during hour h in month

m at system state i
Πm policy matrix consisting of actions for all hours and all system states

during month m

Fig. 1. Grid-connected PV system with battery and load.
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over a long period of time.
2) Charging/discharging constraint: The battery charging/discharging

rate qt
b (W) must follow

− − ≤ ≤ −c C q q C a c qmax[ ( ), ¯ ] min[ ( ) , ¯ ],t d t
b

b t cmin max (4)

where <q̄ 0,d − q̄d is the maximum battery discharging power,
>q̄ 0c is the maximum battery charging power, = ′C N Cbmin min is the

minimum allowable capacity of BESS, and = ′C a N C λ a( ) ( )b b bmax max is
the maximum capacity of BESS.

Since the battery is operated on DC, and ans AC-to-DC converter is
required while charging the battery, and a DC-to-AC converter is re-
quired while discharging [18] as shown in Fig. 1. We denote ηc ∈ (0, 1]
and ηd ∈ (0, 1] as the charging and discharging conversion efficiency,
respectively. For simplicity, we assume that both converters have the
same conversion efficiency, i.e., = =η η ηc d . Note that =η η ηc d

2 is the
round trip efficiency of the battery storage. Given the battery charging/
discharging rate qt

b during time slot t, the amount of power exchanged
with the AC bus qt can be expressed as

= ⎧
⎨
⎩

<
q

ηq q

q η

, if 0

/ , otherwiset
t
b

t
b

t
b

(5)

2.2. PV energy and load

The PV energy and load are assumed to be exogenous stochastic
processes, and we denote qt

pv and qt
ld as their respective quantities (in

kWh) during time t. The PV energy is obtained by

= −q N q η η· · · ,t s t
s

s
apv

pv
inv 1s

(6)

where Ns is the number of solar panels, qt
s is the PV energy (DC output)

from a single solar panel, ηpv
inv is the PV inverter efficiency, ηs ∈ (0, 1] is

the efficiency of the solar panel described in months, as is the age of the
solar panel in months. The age information as can be easily calculated
from the production date documented by the manufacturer of the solar
panel. In our simulations, we assume both the ages of solar panel (as)
and battery (ab) to be zero initially, and update the ages incrementally
as time goes on. The efficiency parameter ηs describes the aging effect of
the solar panel over time. It is noteworthy to mention that the PV
system, BESS, grid, and loads are all connected to an AC bus as shown in
Fig. 1. As PV generation is operated on DC, a DC-to-AC inverter is re-
quired, and its efficiency is assumed to be a constant ∈η (0, 1]pv

inv .
It is reasonable to assume that there are different types of periodical

patterns such as daily or/and weekly pattern in PV energy and elec-
tricity load profiles. So, PV energy and load demonstrate deterministic
variability as well as stochastic variability. In order to model such a
phenomenon, we consider the probabilistic model for periodic sto-
chastic process [7].

Definition 1. (Periodic Stochastic Process) A stochastic process =
∞X{ }t t 1

is periodic with period of T if the joint probability distribution of
+ =X{ }k lT k

T
1 is identical for all ∈ …l {0, 1, }.

For PV energy and load, the period of the periodic stochastic process
is =T 24 hours. In addition to hours in a day, the actual distributions of
the PV energy and load should also depend on the season and month in
a year. Thus the probabilistic model for these features are described for
each month as

= +q a b W ,t m h m h t
ld

, ,
ld (7)

=q d W ,t m h t
pv

,
pv

(8)

where ∈ ≜ …m {1, 2, ,12}� represents index of months in a year,
∈ ≜ …h {1, 2, ,24}� represents index of hours in a day, am,h, bm,h, dm,h

are sets of deterministic constants defined as

=a qmin ,m h
i i m h, , ,

ld
(9)

= −b q amax ,m h
i i m h m h, , ,

ld
, (10)

=d qmax .m h
i i m h, , ,

pv
(11)

Here, (i, m, h) corresponds to the ith observation for the hth hour in the
mth month. ∈ = ∈ =W W[0, 1], [0, 1]t t

ld
ld

pv
pv� � are stationary and

independent discrete-time Markov chains (DTMC). These parameters of
the model can be estimated using historical data.

2.3. Electricity price

Electricity is purchased from the power grid at unit price rt ($/kWh)
according to time-of-use (TOU) pricing. TOU pricing is the rate plan in
which energy prices are time-dependent. TOU rates are often set in
advance and kept constant throughout a contract duration. Different
utilities use different time schedules for defining TOU pricing; however,
they are generally classified as followings:

• Hour: peak hours, part-peak hours, and off-peak hours.

• Day: weekdays, weekends, and holidays.

• Month: summer months and winter months.

3. Problem formulation

In this section, we formulate the problem under the MDP frame-
work.

3.1. MDP Framework

Definition 2. Markov decision process is a 4-tuple { , , , }� � � � in
which � is a set of states, � is a set of actions, � is a transition
probability function defined as × × →: [0, 1],� � � � and � is a
reward (or cost) function defined as × →: � � � .

This work considers a finite MDP where the number of states and
actions are finite. At each time step t, the system transitions from state
∈st � to ∈+st 1 � under the influence of a control action ∈at � ac-

cording to the transition probability function � . The system incurs a
cost rt (or receives a reward) with each state transition according to � .
The goal in MDP is to find an optimum policy π* that minimizes some
form of long-term cumulative costs =

∞r{ }t t 1. A policy π is a function that
outputs an action ∈a � for each state ∈s ,� such that →π: � � .
Here, we only consider deterministic and stationary unichain policy
[14]. Next, we describe the components of MDP framework according
to the system model.

3.1.1. State space �
The state space � consists of two types of features.

(i) Controllable feature: This feature contains state information related
to system quantities that are influenced by the control actions. In
this system model, the battery SOC ∈ct � is the controllable fea-
ture. In order to formulate the problem in the form of a finite MDP
with a finite number of states, the state support space � is uni-
formly discretized into Mc levels as

= −
−

c C a C
M

Δ ( )
1

,b

c

max min

(12)

where the step size Δc is a decreasing function of the age of BESS ab.
(ii) Exogenous feature: The exogenous feature includes the observable

information that affects the system dynamics and the cost function,
but cannot be influenced by the control actions. This feature de-
pends on time and weather. In this case, load qt

ld and PV energy qt
pv

are the exogenous processes that produce the featuresWt
ld andWt

pv
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as defined in (7) and (8), respectively.

Note that, Wt
ld and Wt

pv are continuous since qt
ld and qt

pv are con-
tinuous. Therefore, in order to use the model as a finite MDP, we dis-
cretizeWt

ld andWt
pv into Ml and Mp levels, respectively. The discretized

random variables are represented as Wt
ld and W ,t

pv respectively. That
means, Wt

ld is mapped from a state space = [0, 1]ld� to
= ⋯− −[0, , , , 1]M Mld

1
1

2
1l l

 and Wt
pv is mapped from a state space

= [0, 1]pv� to = ⋯− −[0, , , , 1]M Mpv
1

1
2

1p p
 . Thus, Wt

ld and Wt
pv are the

DTMCs with Ml and Mp states, respectively, and they represent the
exogenous features in the state space.

To summarize, the state vector of the system at time slot t is denoted
by = ∈s c W W( , , ) ,t t t t

ld pv
� where state space = … N{1, 2, , }� and the

size of the state space is = × ×N M M Mc l p.

3.1.2. Action space �

According to the system model, the action or control variable of the
MDP framework is qt

b which denotes the charging/discharging power of
the BESS during time slot t. During each time slot, the possible actions
are either to leave the BESS idle or to charge the BESS or to discharge
the BESS depending on the state st of the system. To satisfy the state
transition equation of the battery SOC described in (1), the action space
� is discretized with the same step size Δc as used in discretization of
state variable ct in (12).

= ⋯ − − ⋯c c c c{ , 2Δ , Δ , 0, Δ , 2Δ , },�

where the boundary of � is limited by the constraint of battery char-
ging/discharging power in (4). Therefore, the sets of allowable actions

⊂s( )t� � for states ∈st � can be different from each other depending
on the values of state variable ct. For a given month m, define the
policy-matrix as ≜ ∈ ∈Π π i h[ ( , )] ,m m

i h,� � where ∈π i h i( , ) ( )m � re-
presents the action, i.e., BESS charging/discharging power selected for
state i during hour h. The dimension of the policy-matrix Πm is N × 24.

The discretization of the state and action spaces is performed to
meet the requirement of a finite MDP. The discretization step size
controls the tradeoff between complexity and accuracy. A finer dis-
cretization step size provides a more accurate approximation of the
original system with continuous state and action spaces, but at the cost
of a higher computation complexity. The impact of discretization step
size on the complexity-accuracy tradeoff will be studied in Section 5
Experimental Results.

3.1.3. Transition probability �

The transition probability +s sq( , , )t t
b

t 1� denotes the probability of
the system transitioning from state st at time step t to state +st 1 at time
step +t 1 under the influence of battery charging/discharging rate qt

b.
The control variable qt

b only affects the transition of controllable feature
ct, which is defined by the dynamics in (1). All other state variables are
unaffected by qt

b.
The stochastic variability of the system comes from the random

transitions of the exogenous features represented by the DTMC vari-
ables Wt

ld and Wt
pv . In order to capture the true nature of exogenous

features as accurately as possible, we consider separate models of
transition probability for different hours and different months.
Specifically, for a given month ∈m � and hour ∈h ,� we denote
m h,
ld

� and m h,
pv

� as the transition probability matrices of discretized load
and PV energy, respectively. The dimensions of m h,

ld
� and m h,

pv
� are re-

spectively Ml × Ml and Mp × Mp.
For a given transition from state =s c W W( , , )t i i i

ld pv to state
=+s c W W( , , )t j j j1

ld pv under action =q a,t
b we denote p h( )ij

m a, as the
transition probability for the system in month m and in hour h.
According to the system model,

= ⎧
⎨⎩

≠ +
p h

c c a

W W W W
( )

0, if

( , )* ( , ), o.w.ij
m a j i

m h i j m h i j

,

,
ld ld ld

,
pv pv pv

� �

We define ≜ ∈ ∈ ∈p h[ ( )]m
ij
m a

i j a i h
,

, , ( ),� � � � as the transition probabilities
of the overall system in month m.

For a given policy-matrix = ∈ ∈Π π i h[ ( , )] ,m m
i h,� � let denote

= ∈[ ]h p hP ( ) ( )Π
m

ij
m π i h

i j
, ( , )

,
m

� as the transition probability matrix at hour h
of month m. hP ( )Π

m is a stochastic matrix with the dimension N × N.
Therefore, the intermittent variations in load and PV energy can be

effectively captured by using the transition probabilities of the periodic
MDP framework. The optimum solution to the MDP problem depends
on these transition probabilities, which model the stochastic and in-
termittent nature of load and PV energy.

3.1.4. Cost function �

The system cost function � is used to evaluate the system perfor-
mance under a given policy π. In our system model, the price of the
electricity is used as the performance metric. During each time slot t, for
a given load q ,t

ld PV energy q ,t
pv and charging/discharging rate q ,t

b the
net energy bought from the grid can be expressed as

= − +q q q q ,t t t t
net ld pv (13)

where qt is defined as a function of qt
b in (5). So, the cost of electricity

purchased from the grid in order to meet demand at each time slot t
(corresponding to month m and hour h) can be computed as

=s q q r( , ) max(0, )· ,t
m

t t
b

t t
mnet

� (14)

where rtm is the per-unit TOU electricity price (with slight abuse of
notation) in month m and hour =h mod − +t( 1, 24) 1, with mod( · )
being the modulo operator. If the system originates from state i at hour
h in month m, the expected immediate cost with action a can be ex-
pressed as

∑= =
∈

g h p h i a i a( ) ( ) ( , ) ( , ).i
m a

j ij
m a

h
m

h
m, ,

� �
� (15)

3.2. Optimization objective

We consider the long-term average cost of electricity as the objec-
tive function. For a given stationary unichain policy Πm, the average
cost of electricity that is drawn from the grid in month m can be defined
as

∑≜ ⎡
⎣⎢

⎤
⎦⎥=

∞ −ΠR γ s q( ) ( , ) ,m
t

t
t
m

t t
b

1
1 �

(16)

where γ ∈ (0, 1) is a discount factor, and [·] represents expectation
taken with respect to the measure induced by the random DTMC pro-
cessesW ,t

ld W ,t
pv and the policy Πm.

Based on the above definitions, the dynamic battery scheduling
problem can be formulated as

≜ ΠR R(P1) * min ( )
Π

m
m

m

where R*m denotes the minimum long-term discounted accumulative
electricity cost obtained from the optimum policy in month m.
According to [19], (P1) is a nonstationary discrete-time periodic MDP.
The objective is to find the optimum policy-matrix Πm* for every month
∈m � separately, such that the average discounted electricity pur-

chase cost is minimized.

4. Periodic MDP-based online battery scheduling

In this section, we propose to solve the periodic MDP defined in (P1)
by using dynamic programming. The results are then used for online
battery management in real-world systems.

For any periodic MDP, there exist value functions
∀ ∈ ∈v h i h* ( ), ,i

m
� � and a scalar R *m satisfying the Bellman op-

timality equation [20]
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such that the policy-matrix Πm* resulting from the optimum value
functions achieves the minimum cost R*m for month m. Here, ′ =h 24 if
=h 1, and ′ = −h h 1 otherwise.
From the Bellman equation in (17), it can be observed that Πm*

depends on the state ∈i � through the value function v h* ( )i
m . Ob-

taining the value functions involves solving the Bellman equations for
all states ∈i � and hours ∈h ,� for which there is no closed-form
solution in general [20]. Exact solution to MDP can be obtained either
by linear programming (LP) based methods or dynamic programming
(DP) based methods such as value iteration (VI) [16,21] or policy
iteration (PI) [22]. DP-based methods utilize iterative approach that is
more efficient than LP-based solution in case of large-scale discrete-
time MDPs.

The value iteration method does not converge for systems with
periodic transitions [14, Ch. 8.5.1]. In order to overcome this issue, the
transition probabilities � and the cost functions � can be transformed
in a modified VI algorithm to achieve an equivalent aperiodic MDP [14,
Ch. 8.5.4]. However, the modified value iteration algorithm suffers
from low convergence speed in case of high dimensional state and ac-
tion spaces. Therefore, in this work, we adopt the policy iteration al-
gorithm for periodic MDP [19] to solve the Bellman equation and ob-
tain the policy-matrix Πm for every month ∈m � .

4.1. Policy iteration algorithm for periodic MDP

The conventional PI procedure [22] converges to an optimum policy
in the case of stationary finite Markov processes, by iteratively selecting
a better policy based upon the results from the former policy in the
previous iteration. A similar method is developed in Riis [19] for non-
stationary periodic Markov processes. In order to examine the effect of
each stage in a periodic MDP separately, the periodic PI procedure deals
with a policy or decision-matrix that is divided into T stages, with T
denoting the period in a periodic MDP ( =T 24 in our case).

Based on the 24-hour non-stationary periodic feature of the pro-
blem, we introduce the following definitions to facilitate the im-
plementation of the PI method. First, define the l-step transition prob-
ability matrix as

∏≜ +
=

−
h l h kP P( ; ) ( ),Π Π

m
k

l m
0

1
(18)

where = ∈[ ]h p hP ( ) ( )Π
m

ij
m π i h

i j
, ( , )

,
m

� is the one-step transition probability
matrix at hour h of month m +h kP ( )Π

m under policy-matrix
= ∈ ∈Π π i h[ ( , )] ,m m

i h,� � ≜ ∈h l p h lP ( ; ) [ ( ; )]Π
m

ij
m

i j, � is a stochastic ma-
trix, and p h l( ; )ij

m denotes the probability of the system transitioning
from state i at hour h to state j at hour +h l in month m for a given
policy-matrix Πm.

For a given policy-matrix Πm, denote
= ∈∈

×[ ]g h g h( ) ( )Π
m

i
m π i h

i
N, ( , ) 1m

� as the expected immediate cost
vector at hour h of month m. Then, for a system starting from hour h at
month m, the expected total cost over a 24-hour period can be defined
as

∑= + ⊕
=

w g gh h γ h k h kP( ) ( ) ( ; ) ( ),Π Π Π Π
m m

k
k m m

1

23
(19)

where ⊕ = + − +h k h kmod( 1, 24) 1, ≜ ∈∈
×w h w h( ) [ ( )]Π

m
i
m

i
N 1�

and w h( )i
m denotes the expected total cost over a 24-hour period given

that the system started in state i at hour h at month m under policy-
matrix Πm.

With the above definitions, for a given policy matrix Πm, the value
function of a non-stationary periodic Markov process with =T 24 can
be expressed as

∑= + ∀ ∈
∈

v h w h γ p h v h i( ) ( ) ( ; 24) ( ), .i
m

i
m

j
ij
m

j
m24 �

� (20)

In (20), the value of w h( )i
m can be calculated by using (19) and the

policy-matrix Πm. Given fixed Πm, m, and h while changing i, the above
equation results in a system of N linear equations with N unknown
variables ∈v h{ ( )} ,i

m
i � where = = × ×N M M M| | c l p� is the size of state

space. Thus for a given m and h, we can initialize the value of v h( )i
m at

the end of a 24-hour period by solving the equation system defined by
(20). The initialized value function can then be applied to the Bellman’s
Eq. (17) to update the policy in a 24-hour period. Details of the algo-
rithm are given in Algorithm 1.

It is proven in Riis [19] that the value functions v h* ( )i
m is improved

for at least one state in every iteration, and the PI procedure converges
to an optimum policy-matrix for a finite periodic MDP.

The value function in (20) is developed for a non-stationary periodic
Markov process with a period =T 24. Thus the time horizon for opti-
mization is 24 h. The output of the proposed Algorithm 1 is a policy
matrix Πm of N × 24 dimension, which provides the battery charging/
discharging rates in different states and different hours of a day in the
mth month. As each day progresses, the system model parameters and
transition probabilities of the MDP get updated according to the newly
observed load and solar energy data. Details of the parameter update
process will be discussed in the next subsection.

4.2. Online implementation

Based on the PI procedure listed in Algorithm 1, the online im-
plementation of the optimum battery scheduling is given in
Algorithm 2. In practical scenarios, the transition probability function
m� evolves with respect to time. Thus the scheduling algorithm should

be dynamically adjusted based on the update of the transition prob-
ability function. The PI procedure given in Algorithm 1 runs based on a
fixed probabilistic model defined by transition probability function m� .
The algorithm provides policy-matrix Πm, i.e., the battery charging/
discharging decisions as a function of state variables for a 24-hour
period in a particular month m. In order to implement an online (real-
time) battery charge scheduling scheme, the system model needs to be
daily re-calibrated by updating the transition probability function m�

based on newly collected data of load and PV energy, and then solve it
for operations on the next day in a rolling horizon fashion. Similar
approach is also adopted in Hu and Defourny [13]. This update will
help to model the stochastic behavior of the system more accurately,
and thus yield better policy. Details of the online implementation of the
optimum battery scheduling are summarized in Algorithm 2.

5. Experimental results

In this section, experimental results are presented to demonstrate
the performance of the proposed MDP-based battery scheduling algo-
rithm. The results are based on the load data from a large hotel in San
Francisco (SF) [23]. The PV energy is obtained by using the PVWatts
calculator from National Renewable Energy Laboratory (NREL) [24]
with the weather information of San Francisco. The solar system size is
limited by the area of the hotel rooftop, and the number of 10 kW solar
panels is set at =N 120s . The price of each solar panel is set at $6400,
including the price of products and installation. The PV inverter effi-
ciency is =η 96%pv

inv and the storage efficiency for solar panels de-
scribed in month is =η 99.96%s [25]. The electricity charges are cal-
culated by using the TOU rate (pt) of PG&E [26], which is given in
Table 2 along with the time schedule.

Tesla Powerwall batteries [27] are used to model the BESS, which
have a 5 kW charging/discharging rate q q( ¯ / ¯ )c d and 13.5 kWh capacity
( ′Cmax) each. Price of each battery is $5900 and the conversion efficiency
of the batteries is =η 94%. According to the datasheet [27], the ca-
lendar aging coefficient is =α 0.0036, and the cycling aging coefficient
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is =β 0.0155. The initial SOC of BESS is 0. The number of batteries Nb

are set at 90. The discretization levels for load, PV energy, and SOC of
BESS are set as = =M M6, 6,l p and =M 10,c respectively (unless
otherwise specified). The discount factor is =γ 0.999.

Fig. 2 illustrates a snapshot of 1-day energy usage on July 1st. The
energy profiles are shown as functions of the hour of the day. The
proposed solution yields the values of the net energy bought from grid
qt
net and battery SOC ct. During 10:00 to 16:00, the PV energy exceeds

the load and the amount of energy bought is almost zero. The extra
energy from PV is used to charge the BESS during this period. During
late night 21:00 to 24:00, extra energy is bought from the grid even
after meeting the load demand in order to utilize the low TOU rate
during those off-peak hours. As a result, these extra energy is used to
charge the BESS and later used to meet the load demand during peak
hours, when TOU rate is much higher. Therefore, considerable amount
of utility cost is saved with the proposed periodic MDP-based solution.

The snap shots of 1-week energy usage in the first week of a typical
winter month and a typical summer month are shown in Fig. 3. The
loads in both months are similar due to the relatively mild weather in
San Francisco. There are usually two peaks in the load profile in every
day of the week: the early one is around 8:00 and the later one is
around 20:00. Also, the peak in PV energy profile during mid-day is
higher in summer than in winter. The distinguishing effect of the pro-
posed algorithm in these two weekly energy profiles can be observed in
the amount of net energy bought from the grid during early morning. In
January, the net energy exceeds 600 kWh in most of the days, while the
net energy bought in June is under 400 kWh mostly. Even though the
load profile is similar in both months, due to higher PV energy peak
value in June, the demand during early morning hours can be met by
utilizing the energy stored in BESS.

Table 3 compares the result of the proposed online battery charge
scheduling scheme with the optimum results obtained from offline
optimization [6], the results obtained from the One-step Roll-out al-
gorithm (ORA) proposed in Kwon et al. [7], and the results obtained
from the rule-based scheme (RS) presented in Bhende et al. [8]. In the
offline optimization scheme, the system has complete knowledge of
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Table 2
Time schedule and TOU rates ($ per kWh) in San Francisco [26].

Summer (5/1 to 10/31) Winter (11/1 to 4/30)

Peak Part-peak Off-peak Part-peak Off-peak

Time 12p-6p 9a-12p, 6p-9p 9p-9a 9a-9p 9p-9a
TOU 0.15384 0.11333 0.08651 0.10779 0.09317

Fig. 2. Snap shot of 1-day energy usage on July 1st.
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future data on load and PV power over an entire year, yet these data are
not available in practical systems. Thus the results of the non-causal
offline scheduling algorithm serve as a non-achievable lower bound for
any practical algorithms. The ORA is a heuristic policy based on ap-
proximate dynamic programming, which approximates the cost-to-go
by solving a deterministic (certainty-equivalent) optimization problem
with all random variables taking their respective expected values. The
RS algorithm provides dynamic scheduling by using decision trees with
the help of forecast load and PV energy. The proposed online sche-
duling algorithm, ORA, and RS only have knowledge of past data. For
ORA and the proposed algorithm, the numbers of all discretization le-
vels are set as = =M M6, 6,l p and =M 10,c while the data from the
previous day is used as the forecast data in RS. In spite of not having
access to the actual data from the future, the performance of the pro-
posed online scheduling algorithm is close to that of the non-causal
offline algorithm. Compared to a system without PV or BESS, the non-
causal offline algorithm achieves a 43.86% saving in the annual bill. In
comparison, our proposed online solution yields a 41.68% saving in the
annual bill. The annual bill from the proposed online algorithm is only
3.88% higher than that from the non-causal offline algorithm. The
savings achieved by the ORA and RS algorithms are 39.80% and
40.64%, respectively.

Fig. 4 demonstrates the impacts of discretization levels on the re-
lative difference in annual electricity bill with respect to the non-causal
offline lower bound of $264,510. Intuitively, as the numbers of all
discretization levels Ml, Mp, and Mc increase, the result of the proposed
solution gets better, since high-dimensional state space provides a
better representation of the system dynamics. On the other hand, the
computational complexity of the proposed algorithm increases with the
number of discretization levels, which raises the issue of tradeoff be-
tween complexity and performance of the algorithm. According to the
results in Fig. 4, the difference in the performance of the proposed al-
gorithm is very small between =M 10c and =M 20c . Therefore, after a
certain point, increasing the values of discretization level will not yield
any significant improvement in performance.

Fig. 3. Snap shots of 1-week energy usage in the first weeks of January and June, respectively.

Table 3
Annual electricity bill under BESS-assisted PV system.

System Proposed online Optimum offline [6] ORA [7] RS [8]

Electricity Bill ($) 274,780 264,510 283,620 279,690
Bill without BESS & PV ($) 471,160
Savings ($) 196,380 (41.68%) 206,650 (43.86%) 187,540 (39.80%) 191,470 (40.64%)
System Cost ($) 1,299,000
Break-even point (months) 80 76 84 82

Fig. 4. Effect of discretization levels on relative difference with respect to the
non-causal offline lower bound of annual electricity bill of $264,510.

Fig. 5. Effects of time discretization interval on electricity bill.
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Fig. 5 illustrates the effects of time discretization interval on the
performance of the proposed solution. In all previous results, the time is
discretized into 1-hour intervals. The complexity of the algorithm can
be further reduced by increasing the discretization time interval. In the
results in Fig. 5, the annual electricity bill is divided into two separate
periods of the year, summer and winter (c.f. Table 2). Intuitively, a
longer time interval will results in a lower time resolution during op-
timization, which in turn leads to a decrease in performance. Specifi-
cally, the system model with 1-hr interval achieves 1.25% and 5.44%
better performance than the models with 2-hr and 3-hr intervals, re-
spectively.

Table 4 shows the average computation times of the proposed al-
gorithm (Algorithm 2) under different configurations of Mc and time
discretization interval. The results are obtained on a computer with an
Intel i5 dual-core 2.2 GHz processor with 6 GB RAM and calculated by
taking the daily average. It is worth noting that the majority of com-
putation need is required for solving the optimum policy matrix, which
is performed only once every day. The computation time is on the order
of dozens of seconds or less. The results justify that the proposed battery
charge scheduling algorithm can be implemented in real-time with
negligible delay. It can be observed that the algorithm requires more
computation time with the increase in discretization level Mc due to the
larger number of states. Moreover, as the time discretization interval
increases, the algorithm requires less data to process, thus yielding
smaller computation time.

6. Conclusion

The optimum online BESS management policy has been studied in
this paper for grid-connected PV systems. The policy was designed to
identify the optimum charging/discharging schedule of BESS so that the
long-term cost of energy purchased from the grid is minimized. The
optimization problem was formulated by using the framework of peri-
odic discounted MDP and solved by using a policy iteration based ap-
proach. The aging effects of the batteries and solar panels, and the
stochastic variability in loads and PV energy have been included in the
problem formulation. Simulation results demonstrated that the pro-
posed algorithm can achieve a 41.68% saving in annual utility bills
compared to conventional systems without BESS or PV. In addition, the
annual bill resulted from the proposed online algorithm is only 3.88%
higher than the optimum lower bound obtained from a non-causal
offline algorithm.

For future works, we can further improve the performance of the
system by employing model-free approaches such as deep reinforce-
ment learning (DRL), which does not require an explicit model of the
transition probabilities. In addition, one particular DRL approach, deep
deterministic policy gradient (DDPG), can deal with continuous state
space, thus further improve the precision of the results.
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