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A B S T R A C T

This paper proposes an automatic anomaly detection and removal algorithm for peripheral venous pressure
(PVP) signals, which can be used to predict intravascular volume loss in humans. PVP signal collection is a
minimally invasive procedure that can be performed by using a standard peripheral intravenous (PIV) catheter
and a commercial pressure-monitoring transducer. PVP signals are highly susceptible to motion and noise
artifacts such as patient movements or unintended manipulation of PIV lines. Anomalies in PVP signals can
corrupt useful information and seriously affect the integrity of PVP signal analysis. We propose to detect and
remove such anomalies by exploiting the properties of PVP signals. Specifically, a dynamic linear model (DLM)
with a Kalman filter is used to track and predict the time-domain evolution of PVP signals. The prediction
residuals of the Kalman filter are then modeled with a hidden Markov model (HMM), with the normal and
anomalous status of the signal modeled by using binary states of a hidden Markov chain. The HMM parameters
along with the hidden states are iteratively estimated by using an unsupervised learning algorithm with a
modified Baum–Welch method. The anomaly detection algorithm is applied to clinical data from a cohort of
24 pediatric patients with hypertrophic pyloric stenosis. Experimental results demonstrate that the proposed
unsupervised anomaly detection algorithm can efficiently remove anomalies in PVP signals without the need
of a training phase. The algorithm can also be applied to other time series signals, such as Electrocardiography
(ECG) and Photoplethysmogram (PPG) signals.
1. Introduction

Dehydration or loss of intravascular blood volume is a common
and potentially life-threating condition. Dehydration affects 30 million
children annually and accounts for 400,000 pediatric emergency room
visits in the United States [1,2]. Often severe dehydration (hypov-
lemia) or occult bleeding is not recognized by monitoring vital signs
ntil the stage where end-organ damage occurs [3,4]. However, there
s no standardized measurement for intravascular volume in adults or
hildren. This necessitates the development of technologies that would
ccurately assess the volume status of a patient to guide resuscitation
nd treatment.
Analysis of peripheral venous pressure (PVP) waveforms is a novel
ethod of monitoring intravascular volume and may provide valuable
nformation in earlier detection of volume depletion [5,6]. Previous
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studies have demonstrated that PVP signals strongly correlate with
central venous pressure under different conditions [7–11]. The shapes
of PVP waveforms could be affected by a number of physiological
phenomena, such as respiration, heart rate (HR), and/or systolic blood
pressure (SBP). With porcine models, it has been shown in [5] that PVP
signals can be a good indicator of intravascular volume depletion due
to hemorrhage. Similarly, the HR frequency components of PVP signals
have been used to quantify blood loss with porcine models in [12].

Pilot studies have shown evidence that PVP signal can be used for
early hemorrhage detection in humans [13]. It has been demonstrated
in previous studies that PVP signals can be used to predict dehydration
in pediatric patients [6,14,15]. PVP signal collection is a minimally
invasive technology consisting of a standard peripheral intravenous
(PIV) catheter and a commercial pressure-monitoring transducer. How-
ever, PVP signals are highly susceptible to non-stationary noise, such as
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random patient movements or unintended physical manipulation of the
PIV catheter during the measurement process. The PVP signals will be
corrupted under such events, which results in anomalies in the collected
data. The presence of anomalies will seriously undermine the integrity
of the analysis results. Thus it is necessary to detect and remove such
anomalies before any further processing.

Anomaly detection has a wide range of applications, and it is
critical for biomedical signal processing [16]. One of the main sources
of anomalies in time series biomedical signals are motion and noise
artifacts (MNA), which impose serious challenges in the accurate collec-
tion, modeling, and analysis of signals such as PVP [14], Electrocardio-
graphy (ECG) [17], and Photoplethysmography (PPG) [18]. Anomalies
in PVP signals are detected and removed manually through visual
inspections by clinical staffs in [6] and [15], where sections of PVP
signals with large variations are removed before further processing. A
simple automatic anomaly detection method is adopted in [14], where
signals with excessively large variances are labeled as anomalies. An
automatic MNA detection method for ECG signals is developed in [17]
by using empirical mode decomposition, and the cleaned signals are
used to detect diseases like atrial fibrillation (AF). An adaptive step-size
least mean squares (AS-LMS) filter is used to reduce motion artifacts
in PPG signals in [18]. Anomaly detections in time series can also be
performed by using deep learning algorithms, such as recurrent neural
networks with long short-term memory (LSTM) [19,20].

The objective of this paper is to develop an efficient and unsuper-
ised anomaly detection algorithm by exploiting the features of PVP
ignals. To model the correlation of consecutive samples of the PVP
ignal, we propose to use a dynamic linear model (DLM) [21] with
alman filter to track and predict the evolution of the PVP signal
n the time domain. It is expected that the model residual, which is
he difference between the actual signal and the one predicted by the
alman filter, is a stationary random process with small variances for
ormal PVP signals. On the other hand, since anomalies or bad data
iolate the normal dynamics of PVP signals, the DLM residual will
e large for anomalies. Motivated by this fact, we propose to detect
nd remove PVP anomalies by analyzing the differences in statistical
ehaviors of Kalman filter residuals.
Specifically, the Kalman filter prediction residuals are modeled by

sing a hidden Markov model (HMM). HMM is a powerful statistical
ool that has been widely used in many different disciplines for various
pplications [22]. For example, it has been used for protein structure
rediction [23], genome sequencing [24], speech processing [22,25],
etwork intrusion detection [26], traffic sensing [27], etc. In this paper,
he status of the PVP data is modeled by using a Markov chain with
wo hidden states: normal or anomalous states. The distributions of the
rediction residuals depend on the two hidden states of the PVP signals.
he unknown parameters of the statistical model are iteratively learned
y using a modified Baum–Welch algorithm [28]. The original Baum–
elch algorithm [28] suffers from mathematical underflow due to
imited computer precision. A variable scaling approach [22] is adopted
n this paper to ensure the numerical stability of the iterative algorithm.
n addition, we provide detailed explanations on physical meanings of
he scaled probability variables which to our understanding are not
vailable in the literature. The results of the modified Baum–Welch
lgorithm are used to detect and remove anomalies in PVP signals.
he algorithm has been applied to clinical data from a cohort of 24
ediatric patients. Experiment results demonstrate that the algorithm
an efficiently remove anomalies in PVP signals without a training
hase. The proposed anomaly detection algorithm can also be applied
o other time-series biomedical signals, such as ECG and PPG signals.
The remainder of this paper is organized as follows. The data

cquisition process is described in Section 2. Section 3 presents the
epresentation of PVP signals with the DLM and HMM. The anomaly
etection is performed with a modified Baum–Welch algorithm, which
s also described. Experimental results are presented in Section 4, and
2

ection 5 concludes the paper.
Fig. 1. Exemplary PVP signal (a) without anomaly and (b) with anomaly.

Fig. 2. Schematic diagram of the data acquisition system. Peripheral intravenous (PIV)
catheter is inserted into peripheral vein of a patient. Arterial pressure tubing connects
the PIV catheter to pressure transducer that converts pressure to equivalent electrical
signal. This signal is acquired and processed afterwards.

2. Methods

PVP waveform data was collected in a closed system via a 22-gauge
Insyte-N Autoguard PIV catheter (Becton Dickinson Infusion Therapy
Systems, Sandy, Utah, USA) connected to a 48-inch arterial pressuring
tubing (Smiths Medical, Dublin, OH, USA). The arterial pressure tubing
was connected to a Deltran II pressure transducer (ADInstruments,
Colorado Springs, CO, USA) interfaced with a PowerLab data acqui-
sition system (ADInstruments) (see Fig. 2). A similar data collection
procedure was used in [14] and [29]. Primary data manipulation
and visualization have been done using LabChart v8 (ADInstruments)
software of PowerLab. Acquired data was saved in .adicht and .mat
formats.

Patients were defined as euvolemic or hydrated when the concen-
tration of serum chloride was ≥ 100 mmol/L or bicarbonate < 30
mmol/L and hypovolemic or dehydrated when serum chloride < 100
mol/L or bicarbonate ≥ 30 mmol/L. Data were collected on emer-

gency department admission of patients suffering from Hypertropic
pyloric stenosis.

The study was approved by the University of Arkansas for Medical
Sciences (UAMS) Institutional Review Board (IRB) (Protocols 206193
& 207085). All procedures performed on the study participants were
in accordance with the ethical standards of the IRB and with the 1964
Helsinki declaration and its later amendments. Informed consent was
obtained from the legal guardians of the children participating in the
study.



Biomedical Signal Processing and Control 62 (2020) 102126M.A. Hayat et al.

a
c

𝑦

w
t

m
g

𝜏
d

Fig. 3. Dependence structure of dynamic linear model. Here, 𝜃𝑖 ’s are forming a first-
order Markov chain. Also, 𝜃𝑖+1 and 𝑦𝑖 follow a Gaussian distribution depending on 𝜃𝑖
under a linear relationship. {𝜃𝑖} and {𝑦𝑖} are continuous random variables.

3. Theory

In this section, the PVP signals are represented and modeled by
using dynamic linear models (DLM) [21]. The results will be used
to detect and remove anomalies in PVP signals. The PVP signals are
collected by using PIV catheters from a peripheral part of the body [14].
As a result, the signal is highly susceptible to non-stationary noise
caused by events such as the random movement of the patients or
an unintended touch of the catheter during the measurement process.
The PVP signals will be corrupted under such events, which result in
anomalies in the collected data. Fig. 1 shows a normal PVP signal and a
corrupted PVP signal. It is apparent that the statistical behaviors of the
PVP signals with anomalies are considerably different from its normal
counterpart. The presence of anomalies will seriously undermine the
integrity of the analysis results. Thus it is necessary to detect and
remove such anomalies before any further processing.

We propose to capture the dynamic behaviors of PVP signals by
using a DLM [21], which is a special case of the Gaussian state space
model and commonly used for time series modeling and forecast. The
DLM can be used in combination with the Kalman filter to track and
predict the dynamic evolution of the PVP signal in the time domain.
Under normal conditions, it is expected that Kalman filter with the
DLM can accurately predict normal PVP signal values, and this will
result in very small prediction residuals (prediction errors). On the
other hand, abnormal signals will lead to large prediction residuals due
to the unpredicted nature of abnormal events. Thus anomalies can be
detected by analyzing the statistical properties of prediction residuals
of Kalman filter.

3.1. Dynamic linear model with Kalman filter

The discrete-time PVP signal can be modeled as a time series 𝑦𝑡,
for 𝑡 = 1, 2,… , 𝑇 . Define 𝐲1∶𝑇 = [𝑦1, 𝑦2,… , 𝑦𝑇 ] to simplify notation.
In this DLM, it is assumed that each sample of the PVP signal, 𝑦𝑡, is
ssociated with a time-varying state, 𝜃𝑡, as shown in Fig. 3. The DLM
an be represented as [21]

𝑡 = 𝐹𝜃𝑡 + 𝑣𝑡; (1a)

𝜃𝑡 = 𝐺𝜃𝑡−1 +𝑤𝑡. (1b)

here (1a) is the observation model describing the relationship be-
ween state variable 𝜃𝑡 and observation variable 𝑦𝑡, with 𝑣𝑡 being the
observation noise, and (1b) is the state transition model with 𝑤𝑡 being
odel uncertainties. Here, the coefficients 𝐹 and 𝐺 are constants for a
iven patient, and it is assumed that both 𝑣𝑡 and 𝑤𝑡 are independent
zero-mean Gaussian distributed with variances 𝜎2𝑣 and 𝜎2𝑤, respectively,
that is 𝑣𝑡 ∼  (0, 𝜎2𝑣 ), 𝑤𝑡 ∼  (0, 𝜎2𝑤) and 𝑣𝑡 ⟂ 𝑤𝑡.

With the DLM given in (1), we can apply the Kalman filter to
iteratively predict the values of the PVP signal 𝑦𝑡 and the state variable
𝜃𝑡 by using all previous observations 𝐲1∶𝑡−1. In the implementation of
the Kalman filter, denote 𝜃̂𝑡|𝜏 as the estimation of 𝜃𝑡 by using 𝐲1∶𝜏 with
= 𝑡−1 or 𝑡, 𝑅𝑡|𝜏 = E[|𝜃̂𝑡|𝜏 − 𝜃𝑡|𝜏 |

2] as the corresponding error variance;
3

enote 𝑦̂𝑡|𝜏 as the estimation of 𝑦𝑡 by using 𝐲1∶𝜏 with 𝜏 = 𝑡 − 1, with
error variance 𝑄𝑡|𝜏 = E[|𝑦̂𝑡|𝜏 − 𝑦|2]. The values of 𝜃̂𝑡|𝜏 , 𝑅𝑡|𝜏 , 𝑦̂𝑡|𝜏 , and 𝑄𝑡|𝜏
can be iteratively updated by using the Kalman filter, and details are
given in Algorithm 1.

The DLM is completely represented by the initial parameter set,
{𝐹 ,𝐺, 𝜎2𝑣 , 𝜎

2
𝑤 𝜃̂0|0, 𝑅0|0}. The values of these parameters for a given

patient can be estimated by applying maximum likelihood estimation
on the data of that patient. In this paper, the parameters are estimated
by using the maximum likelihood estimation algorithm L-BFGS-B [30].
Once the parameters are estimated, Kalman filter can then be applied
to track and estimate the dynamic evolution of the data in the time
domain.

Algorithm 1: Kalman Filter.
1: Input: Discrete time dataset 𝐲1∶𝑇 ;
2: Estimate {𝐹 ,𝐺, 𝜎2𝑣 , 𝜎

2
𝑤 𝜃̂0|0, 𝑅0|0} by applying the L-BFGS-B algo-

rithm on 𝐲1∶𝑇 ; initialize 𝑡 = 0.
3: do
4: 𝑡 ← 𝑡 + 1;
5: Prediction of 𝜃𝑡:

𝜃̂𝑡|𝑡−1 = 𝐺𝜃̂𝑡−1|𝑡−1 (2)

𝑅𝑡|𝑡−1 = 𝐺2𝑅𝑡−1|𝑡−1 + 𝜎2𝑤 (3)

6: Prediction of 𝑦𝑡:

𝑦̂𝑡|𝑡−1 = 𝐹 𝜃̂𝑡|𝑡−1 (4)

𝑄𝑡|𝑡−1 = 𝐹 2𝑅𝑡|𝑡−1 + 𝜎2𝑣 (5)

7: Calculate prediction residual: 𝑥𝑡 = 𝑦𝑡 − 𝑦̂𝑡|𝑡−1;
8: Update estimation of 𝜃𝑡:

𝜃̂𝑡|𝑡 = 𝜃̂𝑡|𝑡−1 + 𝐹𝑅𝑡|𝑡−1𝑄
−1
𝑡|𝑡−1𝑥𝑡 (6)

𝑅𝑡|𝑡 = 𝑅𝑡|𝑡−1 − 𝐹 2𝑅2
𝑡|𝑡−1𝑄

−1
𝑡|𝑡−1 (7)

9: while 𝑡 ≤ 𝑇
10: Output: Prediction residual 𝐱1∶𝑇 .

The Kalman filter described in Algorithm 1 iteratively tracks and
predicts the state and observation variables using the DLM. The output
of the Kalman filter is the prediction residual, 𝑥𝑡 = 𝑦𝑡 − 𝑦̂𝑡|𝑡−1, which
is the difference between the predicted and actual value of 𝑦𝑡. It is
expected that the prediction residuals under normal and abnormal
conditions will exhibit different statistical properties, thus they can be
used for anomaly detection.

3.2. Modeling PVP prediction residuals with HMM

The prediction residuals at the output of the Kalman filter are mod-
eled by using HMM. Each residual 𝑥𝑡 is associated with a binary hidden
state 𝑠𝑡 ∈ {0, 1}, where 𝑠𝑡 = 0 indicates normal data, and 𝑠𝑡 = 1 indicates
anomalies. The HMM is illustrated in Fig. 4. Under the HMM, the
residuals are conditionally independent with each other conditioned
on their respective hidden states. The dependence of the residuals are
represented through the hidden states. To simplify notation, define
𝐱1∶𝑇 = [𝑥1, 𝑥2,… , 𝑥𝑇 ].

The hidden states form a first-order Markov chain with transition
probability, 𝑎𝑖𝑗 = Pr(𝑠𝑡+1 = 𝑗|𝑠𝑡 = 𝑖), for 𝑖, 𝑗 ∈ {0, 1}. Define the
transition probability matrix as

𝐀 =
[

𝑎00 𝑎01
𝑎10 𝑎11

]

(8)

The initial distribution of the two states in the Markov chain is assumed
to be 𝜋𝑘 = Pr(𝑠1 = 𝑘) for 𝑘 ∈ {0, 1}. Define the initial probability vector
as 𝝅 = [𝜋 , 𝜋 ]𝑇 , where the operator (⋅)𝑇 represents matrix transpose.
0 1
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Fig. 4. Dependence structure of first-order hidden Markov model. Unlike Fig. 3, here
{𝑠𝑖} are discrete random variables and 𝑥𝑖 follows a Gaussian distribution depending on
𝑠𝑖.

The statistical distribution of each prediction residual depends on its
hidden state. For state 𝑠𝑡 = 𝑘, it is assumed that the prediction residuals
follows a Gaussian distribution with mean 𝜇𝑘 and variance 𝜎2𝑘, that is,

𝑡|(𝑠𝑡 = 𝑘) ∼  (𝜇𝑘, 𝜎2𝑘), for 𝑘 ∈ {0, 1} (9)

t is assumed that 𝜎21 > 𝜎20 due to the presence of noise or interference
n the corrupted signals. Define the sample distribution parameter set
s  = {𝜇0, 𝜇1, 𝜎20 , 𝜎

2
1}.

Based on the above definitions, the HMM can be represented by
sing the parameter set 𝝀 = {𝐀,𝝅,}. The HMM is assumed to be
ime-homogeneous, that is, the model parameters do not change over
ime.
The objective of anomaly detection is to identify the state {𝑠𝑡},

y using the prediction residuals {𝑥𝑡}. The identification of the state
ariables require the knowledge of the parameter set 𝝀, which can be
irectly learned from {𝑥𝑡} by using the Baum–Welch algorithm.
Define the posterior probability of the hidden state variable as

𝑡(𝑖) = Pr(𝑠𝑡 = 𝑖|𝐱1∶𝑇 ,𝝀). (10)

f the HMM parameter set 𝝀 is known, then the anomaly detection
lgorithm can be formulated as

̂𝑡 = argmax
𝑖∈{0,1}

𝛾𝑡(𝑖). (11)

The parameter set 𝝀 is unknown, and all parameters can be esti-
ated from prediction residual {𝑥𝑡} by using the Baum–Welch algo-
ithm.

.3. Unsupervised learning with a modified Baum–Welch algorithm

In this section, unsupervised learning is performed to detect the
nomalies in PVP signals with the help of a modified Baum–Welch algo-
ithm [28]. The Baum–Welch algorithm is an expectation–maximization
lgorithm [31] that can iteratively learn the values of the unknown
arameter set, 𝝀, by maximizing the log-likelihood function

= log 𝑝(𝐱1∶𝑇 |𝝀) (12)

he unsupervised learning process is carried out by using the observa-
ions, 𝐱1∶𝑇 , without the need of a training phase.
The implementation of the Baum–Welch algorithm requires the

terative calculation of a forward probability, 𝛼𝑡(𝑖), and a backward
robability, 𝛽𝑡(𝑖), which are defined, respectively, as

𝑡(𝑖) =
{

𝜋𝑖𝑝(𝑥1|𝑠1 = 𝑖,𝝀), 𝑡 = 1,
Pr(𝐱1∶𝑡, 𝑠𝑡 = 𝑖|𝝀), 2 ≤ 𝑡 ≤ 𝑇

𝛽𝑡(𝑖) =
{

𝑝(𝐱(𝑡+1)∶𝑇 |𝑠𝑡 = 𝑖,𝝀), 1 ≤ 𝑡 ≤ 𝑇 − 1,
1, 𝑡 = 𝑇 .

Based on the above definitions and the Markov property of the
idden states, the forward and backward probabilities can be iteratively
pdated as

𝑡(𝑖) =
∑

𝛼𝑡−1(𝑗)𝑎𝑗𝑖𝑝(𝑥𝑡|𝑠𝑡 = 𝑖,𝝀), 2 ≤ 𝑡 ≤ 𝑇
4

𝑗∈{0,1} 𝛽
𝛽𝑡(𝑖) =
∑

𝑗∈{0,1}
𝑎𝑖𝑗𝑝(𝑥𝑡+1|𝑠𝑡+1 = 𝑗,𝝀)𝛽𝑡+1(𝑗),

for 1 ≤ 𝑡 ≤ 𝑇 − 1.

As the number of samples, 𝑇 , increases, the values of 𝛼𝑡(𝑖) and
𝛽𝑡(𝑖) get very small and technically become zero due to limited com-
puter precision. To solve the problem of mathematical underflow, the
‘log-sum-exponent’ trick is used in many cases. However, the ‘log-
sum-exponent’ trick is an approximate solution and it introduces ad-
ditional computation time. To achieve mathematically accurate and
robust estimation, we adopt the variable scaling approach as proposed
in [22]. The notation is ambiguous while defining the scaled probabil-
ities in [22]. This paper tries to give the physical meaning and better
understanding of the scaled variables.

3.4. Modified Baum–Welch algorithm

Define a modified forward probability variable, 𝛼̃𝑡(𝑖), as

𝛼̃𝑡(𝑖) =
{

Pr(𝑥1, 𝑠1 = 𝑖|𝝀), 𝑡 = 1
Pr(𝑥𝑡, 𝑠𝑡 = 𝑖|𝐱1∶𝑡−1,𝝀), 𝑡 > 1

(13)

The variable 𝛼̃𝑡(𝑖) can be interpreted as a scaled version of 𝛼𝑡(𝑖) as

𝛼̃𝑡(𝑖) = 𝐶𝑡−1𝛼𝑡(𝑖) (14)

where the scaling variable 𝐶𝑡 is defined as follows

𝐶−1
𝑡 =

{

1, 𝑡 = 0,
𝑝(𝐱1∶𝑡|𝝀) = 𝛼𝑡(0) + 𝛼𝑡(1), 𝑡 ≥ 1

Lemma 1. The scaled forward probability variable, 𝛼̃𝑡(𝑖), can be calculated
in an iterative manner as

𝛼̃𝑡(𝑖) = 𝑐𝑡−1
∑

𝑗∈{0,1}
𝛼̃𝑡−1(𝑗) ⋅ 𝑎𝑗𝑖 ⋅ 𝑝(𝑥𝑡|𝑠𝑡 = 𝑖, 𝜆), (15)

for 2 ≤ 𝑡 ≤ 𝑇 and 𝛼̃1(𝑖) = 𝛼1(𝑖), and 𝑐𝑡 is defined as

𝑐−1𝑡 = 𝑝(𝑥𝑡|𝐱1∶𝑡−1,𝝀) = 𝛼̃𝑡(0) + 𝛼̃𝑡(1) (16)

Proof.

𝛼̃(𝑖) = Pr(𝑥𝑡, 𝑠𝑡 = 𝑖|𝐱1∶𝑡−1,𝝀)

=
Pr(𝐱1∶𝑡, 𝑠𝑡 = 𝑖|𝝀)

𝑝(𝐱1∶𝑡−1|𝝀)

=
Pr(𝐱1∶𝑡, 𝑠𝑡 = 𝑖|𝝀)

𝑝(𝑥𝑡−1|𝐱1∶𝑡−2,𝝀) ⋅ 𝑝(𝐱1∶𝑡−2|𝝀)
, (17)

he numerator in the above expression can be calculated as

Pr(𝐱1∶𝑡, 𝑠𝑡 = 𝑖|𝝀)

=
∑

𝑗∈{0,1}
Pr(𝐱1∶𝑡, 𝑠𝑡−1 = 𝑗, 𝑠𝑡 = 𝑖|𝝀)

=
∑

𝑗∈{0,1}
Pr(𝐱1∶𝑡−1, 𝑠𝑡−1 = 𝑗|𝝀) ⋅ 𝑎𝑗𝑖 ⋅ 𝑝(𝑥𝑡|𝑠𝑡 = 𝑖,𝝀)

= 𝑝(𝐱1∶𝑡−2|𝝀) ⋅ 𝑝(𝑥𝑡|𝑠𝑡 = 𝑖,𝝀)

×
∑

𝑗∈{0,1}

[

Pr(𝑥𝑡−1, 𝑠𝑡−1 = 𝑗|𝐱1∶𝑡−2,𝝀) ⋅ 𝑎𝑗𝑖
]

(18)

Substituting (17) into (18) results in

𝛼̃(𝑖) = 𝑐𝑡−1
∑

𝑗∈{0,1}
𝛼̃𝑡−1(𝑗) ⋅ 𝑎𝑗𝑖 ⋅ 𝑝(𝑥𝑡|𝑠𝑡 = 𝑖,𝝀).

This completes the proof. ■

Similarly, define a scaled backward probability variable, 𝛽𝑡(𝑖), as

𝛽𝑡(𝑖) =

{ Pr(𝐱𝑡+1∶𝑇 |𝑠𝑡=𝑖,𝝀)
Pr(𝐱𝑡+1∶𝑇 |𝐱1∶𝑡=𝑖,𝝀)

, 1 ≤ 𝑡 ≤ 𝑇 − 1
1, 𝑡 = 1.

(19)

lso,

̃ (𝑖) = 𝐷 𝛽 (𝑖), (20)
𝑡 𝑡+1 𝑡
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where the scaling variable 𝐷𝑡 is defined as

𝐷−1
𝑡 =

{

Pr(𝐱𝑡∶𝑇 |𝐱1∶𝑡−1,𝝀), 1 ≤ 𝑡 ≤ 𝑇 ,
1, 𝑡 = 𝑇 + 1.

(21)

Lemma 2. The scaled backward probability variable, 𝛽𝑡(𝑖), can be calcu-
lated in an iterative manner as

𝛽𝑡(𝑖) = 𝑐𝑡+1
∑

𝑗∈{0,1}
𝑎𝑖𝑗𝑝(𝑥𝑡+1|𝑠𝑡+1 = 𝑗, 𝜆)𝛽𝑡+1(𝑗) (22)

where 1 ≤ 𝑡 ≤ 𝑇 − 1 and 𝛽𝑇 (𝑖) = 𝛽𝑇 (𝑖) = 1.

roof.

𝑡̃(𝑖) =
Pr(𝐱𝑡+1∶𝑇 |𝑠𝑡 = 𝑖,𝝀)
𝑝(𝐱𝑡+1∶𝑇 |𝐱1∶𝑡,𝝀)

=
Pr(𝐱𝑡+1∶𝑇 |𝑠𝑡 = 𝑖,𝝀)

𝑝(𝑥𝑡+1|𝐱1∶𝑡,𝝀) ⋅ 𝑝(𝐱𝑡+2∶𝑇 |𝐱1∶𝑡+1,𝝀)
= 𝑐𝑡+1

∑

𝑗∈{0,1}
𝑎𝑖𝑗𝑝(𝑥𝑡+1|𝑠𝑡+1 = 𝑗,𝝀)𝛽𝑡+1(𝑗).

The last equality in the above equation is based on the fact that

Pr(𝐱𝑡+1∶𝑇 |𝑠𝑡 = 𝑖,𝝀)

=
∑

𝑗∈{0,1}
𝑎𝑖𝑗𝑝(𝑥𝑡+1|𝑠𝑡+1 = 𝑗,𝝀) Pr(𝐱𝑡+2∶𝑇 |𝑠𝑡+1 = 𝑗,𝝀).

This completes the proof. ■

Based on the definitions of 𝐶𝑡, 𝐷𝑡, and 𝑐𝑡, we have the following
relationship among them

𝐶𝑡 = 𝑐1𝑐2 ⋯ 𝑐𝑡 =
𝑡

∏

𝑖=1
𝑐𝑖 = 𝑐𝑡𝐶𝑡−1

𝐷𝑡 = 𝑐𝑡𝑐𝑡+1 ⋯ 𝑐𝑇 =
𝑇
∏

𝑖=𝑡
𝑐𝑖 = 𝑐𝑡𝐷𝑡+1

The likelihood function can then be calculated as

𝑝(𝐱1∶𝑇 |𝝀) = 𝐶−1
𝑇 =

𝑐𝑡
𝐶𝑡𝐷𝑡

= 𝐶−1
𝑡 𝐷−1

𝑡+1 = 𝑐−1𝑡 𝐶−1
𝑡−1𝐷

−1
𝑡+1 (23)

The posterior probability 𝛾𝑡(𝑖) defined in (10) can be calculated as

𝑡(𝑖) =
𝑝(𝐱1∶𝑇 , 𝑠𝑡 = 𝑖|𝝀)

𝑝(𝐱1∶𝑇 |𝝀)

=
Pr(𝐱1∶𝑡, 𝑠𝑡 = 𝑖|𝝀) ⋅ 𝑝(𝐱(𝑡+1)∶𝑇 |𝑠𝑡 = 𝑖,𝝀)

𝑝(𝐱1∶𝑇 |𝝀)
= 𝛼𝑡(𝑖)𝛽𝑡(𝑖)𝐶𝑡−1𝐷𝑡+1𝑐𝑡

= 𝑐𝑡𝛼̃𝑡(𝑖)𝛽𝑡(𝑖) (24)

During implementation, the relationship 𝛾𝑡(0) + 𝛾𝑡(1) = 1 can be used
or sanity check. Due to the structure of HMM, 𝐱1∶𝑡 and 𝐱𝑡+1∶𝑇 are
onditionally independent given 𝑠𝑡.
With 𝛼̃𝑡(𝑖) and 𝛽𝑡(𝑖), we can calculate the posterior probability of

ransitioning from state 𝑖 at time 𝑡 to state 𝑗 at time 𝑡 + 1 as the
mplementation of the Baum–Welch algorithm requires the definition
f the following probability

𝑡(𝑖, 𝑗) = Pr(𝑠𝑡 = 𝑖, 𝑠𝑡+1 = 𝑗|𝐱1∶𝑇 ,𝝀)

=
𝛼𝑡(𝑖)𝛽𝑡+1(𝑗)𝑎𝑖𝑗𝑝(𝑥𝑡+1|𝑠𝑡+1 = 𝑗)

𝑝(𝐱1∶𝑇 |𝝀)

= 𝑐𝑡𝑎𝑖𝑗 𝛼̃𝑡(𝑖)𝛽𝑡(𝑗)𝑝(𝑥𝑡+1|𝑠𝑡+1 = 𝑗) (25)

The Baum–Welch algorithm updates the values of the parameter set
𝝀 in an iterative manner. Each iteration contains an expectation step
(E-step) and a maximization step (M-step).

In the E-step, the probabilities, 𝛼̃𝑡(𝑖), 𝛽𝑡(𝑖), 𝛾𝑡(𝑖), and 𝜉𝑡(𝑖, 𝑗), are
calculated by using (15), (22), (24) and (25) with the parameter set
5

𝝀 from the previous iteration.
In the M-step, the parameter set 𝝀 are updated by using the prob-
abilities 𝛾𝑡(𝑖) and 𝜉𝑡(𝑖, 𝑗) obtained in the 𝐸 step. The parameter estima-
ions [32] performed at the 𝑀-step in each iteration are

𝜋𝑖 = 𝛾1(𝑖); (26)

𝜇𝑖 =
∑𝑇

𝑡=1 𝛾𝑡(𝑖)𝑥𝑡
∑𝑇

𝑡=1 𝛾𝑡(𝑖)
(27)

𝜎2𝑖 =
∑𝑇

𝑡=1 𝛾𝑡(𝑖)(𝑥𝑡 − 𝜇𝑖)2
∑𝑇

𝑡=1 𝛾𝑡(𝑖)
(28)

𝑖𝑗 =
∑𝑇−1

𝑡=1 𝜉𝑡(𝑖, 𝑗)
∑𝑇−1

𝑡=1 𝛾𝑡(𝑖)
(29)

or 𝑖, 𝑗 ∈ {0, 1}. It is important to note that the estimated parameters
re calculated using 𝛼̃𝑡(𝑖) and 𝛽𝑡(𝑖) instead of using 𝛼𝑡 and 𝛽𝑡.
In the 𝑘th iteration, we can update the log-likelihood function as

(𝑘) = − log𝐶𝑇 . (30)

he iterative procedure is terminated if 𝓁(𝑘 + 1) − 𝓁(𝑘) is less than a
redefined threshold 𝜖.
At the beginning of the iteration process, the parameters are initial-

zed as

0 = 𝜋1 = 0.5 (31a)

𝐀 = 1
2 𝐈2 (31b)

𝜇0 = 0 (31c)

𝜇1 = 0 (31d)

𝜎0 = 𝑠 (31e)

𝜎1 =
1
2
max(|𝐱1∶𝑇 |). (31f)

Here, 𝑥̄ =
∑𝑇

𝑖=1 𝑥𝑖 and 𝑠2 = 1
𝑇−1

∑𝑇
𝑖=1(𝑥𝑖 − 𝑥̄)2 are sample mean and

ample variance of 𝐱1∶𝑇 , respectively, and 𝐈2 is a size 2 identity matrix.
lso, |.| is the absolute value operator, operating individually on each
lement of the vector. Proper care should be taken while selecting
alues of 𝜎0 and 𝜎1, if these values are too big or small then likelihood
r(𝑥𝑡|𝑠𝑡 = 𝑖) can be very small which will force subsequent forward and
ackward probabilities to zero.
The modified Baum–Welch algorithm is summarized in Algorithm

.

Algorithm 2: Baum–Welch Algorithm.
1: Input: Discrete time dataset 𝐱1∶𝑇 ;
2: Initialize 𝝀 with Eq. (31), set 𝑘 = 0 and 𝓁(0) = −∞;
3: do
4: 𝑘 ← 𝑘 + 1;
5: Calculate 𝛼̃𝑡(𝑖) and 𝑐𝑡 using Eq. (15) and Eq. (16);
6: Calculate 𝛽𝑡(𝑖) using Eq. (22);
7: Calculate 𝛾𝑡(𝑖) and 𝜉𝑡(𝑖, 𝑗) using Eq. (24) and Eq. (25);
8: Update 𝜋𝑖, 𝜇𝑖, 𝜎2𝑖 ,𝐀 using Eq. (26)-Eq. (29), here 𝜎21 > 𝜎20 ;
9: Calculate 𝓁(𝑘) using Eq. (30);
0: while 𝓁(𝑘) − 𝓁(𝑘 − 1) > 𝜖
1: Output: 𝝀, 𝛾𝑡(𝑖), for 𝑡 = 1,⋯ , 𝑇 and 𝑖 ∈ {0, 1}.

3.5. Anomaly removals

Based on the output of the Baum–Welch algorithm, the hidden state
̂𝑡 of each sample can be detected by applying 𝛾𝑡(𝑖) in (11). Samples with
stimated hidden state 𝑠̂𝑡 = 1 are labeled as anomalies.
Since PVP signals are usually analyzed in the frequency domain,

we need to ensure the continuity of the signal in the time domain after
the removal of the anomalous samples. To achieve this goal, the PVP

signals are first divided into non-overlapping windows with 𝑤 samples
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Fig. 5. (Top) Exemplary PVP signal from Fig. 1; (middle) Prediction residual of the
Kalman filter; and (bottom) estimated hidden states (𝑠𝑡 = 0: normal sample; 𝑠𝑡 = 1:
anomalous sample).

per window. If the percent of corresponding anomalous residuals within
a window exceeds a certain threshold 𝜁 (e.g. 𝜁 = 15%), then all samples
within this window are discarded. Such a window-based anomaly re-
moval ensures the time continuity of samples within the same window.
The remaining windows are considered as normal windows with valid
data. Fast Fourier transform (FFT) can then be applied to each normal
window to obtain the frequency domain representation of the PVP
signal. With a window size of 𝑤 samples with sampling period 𝑇0, the
frequency resolution of the frequency domain signal is 1

𝑤𝑇0
.

The window-based anomaly removal approach will remove both
normal and anomalous sample inside a window if the percentage of
anomalous samples inside that window exceeds a certain threshold.
Thus using a smaller window size can effectively reduce the amount of
normal samples being removed. On the other hand, a smaller window
will results in a lower resolution in the frequency domain. Thus the
window size determines a tradeoff between the precision of anomaly
removal and frequency domain resolution. In this paper, we pick a
window size of 10,000 samples, which corresponds to a duration of 10 s
with a sampling rate of 1 kHz, to ensure a frequency domain resolution
of 0.1 Hz. Algorithm 3 summarizes the procedure of window-based
anomaly removal.

Algorithm 3: Window-based Anomaly Removal.
1: Input: PVP signal 𝐲1∶𝑇 , window size 𝑤, threshold 𝜁 ;
2: Infer 𝐬̂1∶𝑇 using Algorithms 1 and 2.
3: for 𝑛 = 1 to ⌊𝑇 ∕𝑤⌋ do
4: Calculate the percentage of anomaly samples in the 𝑛-th window

𝜏𝑛 =
1
𝑤

𝑤
∑

𝑖=1
𝑠̂(𝑛−1)𝑤+𝑖

5: If 𝑤 ≥ 𝜁 , discard the 𝑛-th window;
6: end for
7: Output: Normal windows.

4. Results

The proposed anomaly detection and removal algorithm is applied
to clinical data to verify its effectiveness. The data used in the ex-
periments are PVP signals collected from a cohort of 24 pediatric
patients suffering from Pyloric stenosis during emergency department
admissions. The characteristics of the patient population are summa-
rized in Table 2. Based on the concentration of serum chloride or
bicarbonate of each patient, patients were classified as either euvolemic
6

or hypovolemic as described in Section 2. Among the 24 patients, 14
Fig. 6. Empirical probability density function of prediction residuals (𝑥𝑡) of patient
10.

Table 1
Number of normal and anomalous windows for each patient (𝜁 = 15%).
Patient Status Normal Anomaly Anomaly (%)

5 Hypo. 55 9 14.06
6 Hypo. 65 2 02.99
7 Hypo. 14 34 70.83
9 Euvo. 55 1 01.79
10 Euvo. 42 24 36.36
12 Euvo. 35 23 39.66
18 Hypo. 27 17 38.64
20 Euvo. 36 5 12.20
22 Hypo. 42 5 10.64
23 Euvo. 26 5 16.13
24 Euvo. 26 7 21.21
25 Hypo. 49 9 15.52
26 Hypo. 45 4 08.16
27 Euvo. 22 11 33.33
28 Euvo. 45 2 04.26
29 Hypo. 43 3 06.52
30 Euvo. 37 9 19.57
31 Euvo. 52 9 14.75
32 Hypo. 38 9 19.15
33 Euvo. 30 14 31.82
34 Hypo. 30 15 23.33
35 Euvo. 50 7 12.28
37 Euvo. 40 13 24.53
39 Euvo. 40 9 18.37

Table 2
Patient characteristics.

Euvo. Hypo.

Patients 14 10
Average weight (kg) 4.17 3.89
Minimum weight (kg) 2.76 2.72
Maximum weight (kg) 5.82 4.72
Std. deviation (kg) 0.78 0.70
Mean age (days) 38.1 40.1

Table 3
Number of windows in dataset.

Training set Testing set

Euvo. Hypo. Total Euvo. Hypo. Total

Raw data 466 354 820 209 161 370
Manual 333 273 606 155 124 279
Algorithm in [14] 372 306 678 172 139 311
Proposed algorithm 371 281 652 165 127 292

were labeled as euvolemic and 10 were labeled as hypovolemic. The
signals for each patient are collected over a continuous period of time
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Table 4
Testing classification results.
Parameter Raw data Manual Algorithm in [14] Proposed algorithm

True positive rate 45.96% 69.35% 63.31% 71.65%
True negative rate 76.08% 77.42% 79.65% 81.21%
Precision 59.68% 73.83% 71.54% 74.60%
F1 score 52.00% 75.41% 67.18% 73.09%
Accuracy 62.97% 71.07% 72.35% 77.05%
Windows used 100% 70.20% 84.05% 78.92%
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Fig. 7. Example of normal windows inferred by the proposed model. Windows have
a periodic structure and the amplitude does not change abruptly.

Fig. 8. Example of anomalous windows inferred by the proposed model. In these
windows, amplitude changes abruptly (10–15 mmHg higher than average) indicating
random MNAs.

with a sampling rate of 𝑓𝑠 = 1 kHz. The PVP signal is also affected by
heart rate in the range 1.9–2.5 Hz (114−150 bps) and respiratory rate at
0.25–0.45 Hz (15−27 bps) and their higher order harmonics. Amplitude
of the signal varies from 5 − 40 mmHg. The signal duration collected
from each patient ranges from 310 to 670 s.

For each patient, the unsupervised anomaly detection algorithm is
applied to the entire data sequence collected from that patient. As an
example, Fig. 5 shows the PVP signal along with the estimated hidden
tates from patient 20 for a duration of 50 s. Hidden states 1 and 0
orrespond to anomalous samples or normal samples, respectively. The
robability density functions of anomalous and normal data residuals
or patient 10 are shown in Fig. 6. As can be seen from the results,
ll large fluctuations in the signals are labeled as anomalous by the
roposed algorithm. The large fluctuations are mainly caused by sud-
en movements of the pediatric patients during the data collection
rocess, and they deviate significantly from normal PVP signals. The
esults in Fig. 6 demonstrate that the distributions of residuals from
7

anomalous data are quite different from their normal counterpart, thus
the algorithm can effectively distinguish between the two by analyzing
their statistical distributions.

Among all PVP signal windows, 20.67% are detected as anomalous
by the HMM-based anomaly detection algorithm. Here, 𝜖 = 10−5 has
been used. A window is declared as anomalous if it contains more than
𝜁 = 15% of anomalous residual samples. Figs. 7 and 8 show a few exam-
les of the PVP signals in normal and anomalous windows, respectively.
able 1 lists the number of normal and anomalous windows for each
atient.
The direct quantitative evaluation of the anomaly detection algo-

ithm requires labeled data with each sample classified as either normal
r anomalous. However, due to the unexpected nature of anomaly
vents, no labeled data is available for testing of the HMM-based
nomaly detection algorithm. Manually labeling the data might in-
roduce subjective bias, which will affect the objectiveness of the
valuation results. The only objective labels that are available to the
ata are the euvolemic or hypovolemic status of the patients. It has
een shown in [6] that there is a strong correlation between PVP signals
nd the volume status of pediatric patients. That is, the dehydration sta-
us of a pediatric patient can be accurately predicted by analyzing PVP
ignals. Motivated by this result, we propose to indirectly evaluate the
ffectiveness of the HMM-based anomaly detection algorithm through
olume status prediction.
Based on the results in [6], our hypothesis is that removing anomaly

n PVP signals can improve the prediction accuracy of dehydration in
ediatric patients. To verify the hypothesis, the experiment is designed
s follows. First, the original raw PVP signals without cleaning are used
o train and detect the volume status of the patients. The accuracy of
he prediction can be quantitatively evaluated given that all patients
re objectively labeled as euvolemic or hypovolemic. Second, apply
he HMM-based anomaly detection algorithm to the PVP signals, and
emove all anomalous windows. Then perform volume status prediction
ith the cleaned PVP signal after anomaly removal. It is expected that
he cleaned signal can achieve a higher accuracy of volume status
rediction compared to its uncleaned counterpart.
The volume status prediction is performed by using regularized lo-

istic regression as described in [6]. The regularized logistic regression
s a supervised learning algorithm for classification, thus it requires a
raining phase to build the classification model. It should be noted the
raining is only used for volume status classification, and no training is
eeded for the proposed anomaly detection algorithm.
During the analysis, the data are divided into non-overlapping

indows with 𝑤 = 10,000 samples per window. Thus the duration of
ach window is 𝑇𝑤 = 10 seconds. Signals in each window are converted
o the frequency domain by using FFT. The frequency resolution of
he frequency domain signals is 𝑓0 = 1

𝑇𝑤
= 0.1 Hz, with the highest

frequency being 1
2𝑓𝑠 = 500 Hz. Since PVP signals are mainly in the

low frequency range, only signal components below 20 Hz are used
in the analysis. This results in a frequency domain vector of length
200 for each window. For volume status prediction with regularized
logistic regression, the training-testing data was split with a 70%− 30%
ratio. During training, a 5-fold cross validation was used to tune the
regularization parameter. The number of windows used in both cases
are presented in Table 3.

The classification results obtained from raw data, manually cleaned
data, data cleaned by a simple anomaly removal method in [14], and
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data cleaned by the proposed algorithm are summarized in Table 4.
or the algorithm in [14], the model parameters are set as 𝑎 = 4,
= −0.1 and 𝑤𝑠 = 100. Even though the denominator used by different
lgorithms are different in Tables 3 and 4, the difference is relatively
small. For example, the numbers of testing samples for manual clean-
ing, algorithm in [14], and proposed algorithm are 279, 311, and 292,
respectively, which are within 5.7% of their mean value. As can be seen
from the results, after removing anomaly with the proposed anomaly
detection algorithm, the accuracy of volume status prediction is consid-
erably improved compared to the results obtained from the uncleaned
raw data. The proposed algorithm also outperforms manual cleaning
or the cleaning algorithm in [14]. These results demonstrate that the
HMM-based anomaly detection algorithm can effectively remove the
anomalous data from the collected PVP signals, thus more accurate
volume status prediction is achieved by using the cleaned PVP signals.

5. Conclusion

An unsupervised anomaly detection algorithm has been proposed
to remove MNA in PVP signals. The PVP signals were modeled by
using a DLM to capture correlation of neighboring samples of the PVP
signals. Kalman filter was applied to the DLM to track and predict
the PVP signal in the time domain. The prediction residuals were
then modeled by using an HMM, where the normal and anomalous
states of the PVP signals were represented by using the binary states
of the hidden Markov chain. The HMM parameters along with the
hidden states were iteratively estimated with a modified Baum–Welch
algorithm to ensure the numerical stability. The proposed algorithm
was verified by comparing the hypovolemic prediction accuracy of PVP
signals before and after the anomaly processing. Experimental results
with clinical data of a cohort of 24 pediatric patients demonstrated
that the algorithm can efficiently remove anomalies in PVP signals. The
algorithm can also be used for anomaly detection in other time series
signals, such as ECG and PPG signals.
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