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Abstract: We study the sequential quickest change point detection for systems with multiple possible post-change
models. A change point is the time instant at which the distribution of a random process changes. In many practical
applications, the pre-change model can be easily obtained, yet the post-change distribution is unknown due to the
unexpected nature of the change. In this paper, we consider the case that the post-change model is from a finite set
of possible models. The objective is to minimize the average detection delay (ADD), subject to upper bounds on the
probability of false alarm (PFA). Two different quickest change detection algorithms are proposed under Bayesian and
non-Bayesian settings, respectively. Under the Bayesian setting, the prior probabilities of the change point and prior
probabilities of possible post-change models are assumed to be known, yet this information is not available under
the non-Bayesian setting. Theoretical analysis is performed to quantify the analytical performance of the proposed
algorithms in terms of exact or asymptotic bounds on PFA and ADD. It is shown through theoretical analysis that
when PFA is small, both algorithms are asymptotically optimal in terms of ADD minimization for a given PFA upper
bound. Numerical results demonstrate that the proposed algorithms outperform existing algorithms in the literature.
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1. INTRODUCTION

Change point detection is the process of detecting the time instants at which the distribution of a random
process changes (Tartakovsky et al., 2014). It has a wide spectrum of applications in various science and
engineering fields, such as quality control, anomaly detection, and seismology, etc. (Aminikhanghahi and
Cook, 2017). In many applications, it is relatively easier to obtain the distribution model before the change
point, which usually corresponds to normal system operations. The post-change model, on the other hand,
might not be readily available due to the unexpected nature of the change. This problem is exacerbated for
quickest change detection (QCD), which aims at minimizing the detection delay with only a small amount
of post-change data for training post-change models (Poor and Hadjiliadis, 2009; Veeravalli and Banerjee,
2014). For many applications, the post-change model might be from a finite set of possible models, that
is, there are multiple hypotheses of the post-change models. For example, for the detection of wind turbine
bearing fault, the fault could be caused by a finite number of defects, such as inner race fault, outer race
fault, cage fault, and roller defect (Gong and Qiao, 2013).

Quickest change point detection methods attempt to detect the change point in real time by sequen-
tially updating a test statistics with recently observed data. They are usually designed based on the tradeoff
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among several metrics, such as average detection delay (ADD), probability of false alarm (PFA), false alarm
rate (FAR), and average run length (ARL) to false alarms, etc. Existing sequential change point detection
methods can be classified into two categories, Bayesian and non-Bayesian (Minimax) methods. If the prior
probability of the change point is known, then Bayesian procedures, such as the well-known Shiryaev pro-
cedure (Shiryaev, 1963), can be applied to minimize the ADD, under the constraint of an upper bound on the
PFA. Tartakovsky and Veeravalli (2005) showed that the Shiryaev procedure is asymptotically optimal when
the PFA upper bound is small. When the prior probability of the change point is unknown, non-Bayesian
procedures, such as the cumulative sum (CUSUM) (Page, 1954) method and the Shiryaev-Roberts (SR)
procedure (Roberts, 1966), aim at minimizing the delay with the worst-case change point distribution, under
the constraint of a lower bound of ARL. The asymptotic optimality of the CUSUM and SR procedures are
discussed in Lorden (1971) and Pollak and Tartakovsky (2009). The problem of QCD is studied in different
fields of science and technology. Ren and Shi (2014) formulated a Bayesian QCD over wireless fading
channels with energy constraints as a partially observable Markov decision problem (POMDP) and the op-
timal stopping rules are shown to have weak threshold structure. Raghavan and Veeravalli (2009) studied
the QCD problem to detect a point of disruption in centralized multi-sensor network. A QCD algorithm is
proposed in order to detect false data injection attacks (FDIA) in smart grids with time-varying dynamic
models in Nath et al. (2019).

All the above procedures are developed for binary hypothesis testing, i.e. for systems with single pre-
change and single post-change model, and they require precise knowledge about the distribution models
before and after the change. There are limited works with unknown or uncertain post-change models. A
Bayesian QCD algorithm for system with multiple candidates of post-change models is developed in Nath
and Wu (2018). Lai (1998) proposed two methods for detecting a post-change distribution with an unknown
parameter. In the first method, the detection is performed by using a mixture post-change distribution,
which is obtained by averaging the set of possible post-change distributions with prior distributions of the
unknown parameter. The second method is based on the generalized likelihood ratio test (GLRT), where the
unknown parameter of the post-change model is estimated by maximizing the likelihood ratio. The GLRT-
based method still requires a generous amount of post-change training data to tune the unknown parameter
for the GLRT. A low-complexity adaptive-CUSUM method is presented in Nath et al. (2019) for estimating
unknown statistics of post-change distributions by using a normalized Rao test statistic (De Maio, 2007).

There also have been some works related to non-Bayesian formulation of the QCD problem with mul-
tiple post-change models. For example, Tartakovsky and Veeravalli (2004) studied the non-Bayesian QCD
problem in multi-channel and distributed network systems. A non-parametric sequential method is proposed
using multichannel generalization of the CUSUM procedure for the detection of intrusions in information
systems in Tartakovsky et al. (2006). None of the above works provide theoretical analysis to quantify the
performance of the algorithms. Mei (2010) performed sequential change point detection based on the sum
of local CUSUM statistics of each possible post-change model. An orthogonal matching pursuit CUSUM
(OMP-CUSUM) algorithm is proposed to detect false data attack in power grid systems with unknown
post-attack parameters while minimizing the detection delay in Akingeneye and Wu (2018).

The objective of this paper is to design sequential quickest change detection algorithms for systems with
multiple possible post-change models under both Bayesian and non-Bayesian settings. The algorithms are
developed to minimize the average detection delay (ADD), under the constraint on the upper bounds of the
probability of false alarm (PFA). Under the Bayesian setting, the algorithm is developed by analyzing the
likelihood ratio of the change point, the computation of which relies on the prior probabilities of change
point and prior probabilities of different post-change models. Under the non-Bayesian setting, the algorithm
is designed by replacing all prior probabilities with one in the Bayesian algorithm, and the resultant pro-
cedure happens to be the sum of local Shiryaev-Roberts (SR) statistics for each post-change model. The
performances of the proposed algorithms are analytically quantified in terms of exact or asymptotic bounds
on PFA and ADD. It is shown that when the PFA is small, the proposed algorithms are asymptotically op-
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timal in terms of ADD minimization under a certain PFA upper bound. Numerical results demonstrate that
the proposed algorithms outperform existing algorithms in the literature.

The rest of this paper is organized as follows. Section 2 presents the assumptions and problem for-
mulation. The Bayesian and non-Bayesian detection algorithms, along with their corresponding theoretical
analysis, are given in details in Sections 3 and 4, respectively. Section 5 demonstrates the performance of
the algorithms through numerical results, and Section 6 concludes the paper.

2. PROBLEM FORMULATION

Consider a sequentially observed random sequence, Xn, n = 1, 2, · · · . Let FXn = σ(X1:n) be the σ-
algebra generated by X1:n. Assume there is an unknown change point θ, such that the distributions of
the random sequence are different before and after θ. Denote the probability density function (pdf) of the
random sequence before the change point as f0,n(Xn|X1:n−1) for n < θ. The distribution after the change
point could be one of a finite number of possible distribution models, denoted as fi,n(Xn|X1:n−1), for
n ≥ θ and i = 1, 2, · · · ,M , with M < ∞. Denote the index of true post-change distribution as β, where
β ∈ {1, · · · ,M} is unknown.

In a Bayesian setting, the change point θ is random with prior probability mass function (PMF) P(θ =
k) = πk, for k = 1, 2, · · · . The post-change model index is random with prior PMF P(β = i) = ωi, for
i = 1, · · · ,M .

Let Pk,i and Ek,i denote the probability measure and the corresponding expectation operator when the
change occurs at θ = k < ∞ and the post-change model index is β = i. Under Pk,i, the conditional pdf
of Xn is f0,n(Xn|X1:n−1) for n < k, and it is fi,n(Xn|X1:n−1) for n ≥ k. For any k < ∞, we have
Pk =

∑M
i=1 ωiPk,i and Ek =

∑M
i=1 Ek,i. Denote P∞ and E∞ as the probability measure and expectation

operator for the data sequence before the change point, that is, under P∞, the conditional pdf of Xn is
f0,n(Xn|X1:n−1). Thus P(E) =

∑∞
k=1Pk(E) and E =

∑∞
k=1 Ek.

We need to design a test in order to detect the change point θ based on the sequentially observed data
Xn. Denote θ̂ as the estimated value of θ. A sequential test δ can be defined as a mapping from FXn to
θ̂ ∈ {1, · · · , n}, such that δ(FXn ) = θ̂. The test needs to be designed by optimizing with respect to two
performance metrics, the PFA and ADD.

For a given test δ, the PFA and ADD are defined, respectively, as

PFA(δ) = P(θ̂ < θ|FXn ) (2.1)

ADD(δ) = E[θ̂ − θ|θ̂ ≥ θ] (2.2)

The objective is to minimize the ADD, subject to a constraint on the PFA. The problem can thus be
formulated as

(P1) minimize ADD(δ)

subject to PFA(δ) < α

We propose the solution to this problem under both Bayesian and non-Bayesian setting in the following
sections respectively.

3. QUICKEST CHANGE DETECTION ALGORITHM FOR BAYESIAN SETTING

In this section, we develop the algorithm that can detect the change point with minimum delay under the
Bayesian setting.
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3.1. Detection Algorithm

At any moment n, the detector needs to make a decision between two hypotheses

H1 : θ ≤ n
H0 : θ > n

Define the ratio of the posterior probabilities as

∆(n) =
P(H1|FXn )

P(H0|FXn )
. (3.1)

Based on Bayes’ rule, we have

∆(n) =

∑n
k=1 πk · dP(x1:n|θ = k)

Ωn · dP(x1:n|θ > n)
=
∑M

i=1
ωi
∑n

k=1

πk
Ωn

∏n

t=k

fi,t(Xt|X1:t−1)

f0,t(Xt|X1:t−1)
(3.2)

where, Ωn = P(θ > n) =
∑∞

k=n+1 πk.
Define

Zk:ni =
∑n

t=k
log

fi,t(Xt|X1:t−1)

f0,t(Xt|X1:t−1)
(3.3)

and

∆i(n) =
∑n

k=1

πk
Ωn

exp
(
Zk:ni

)
. (3.4)

Then ∆(n) defined in (3.1) can be written as

∆(n) =
∑M

i=1
ωi∆i(n) (3.5)

With ∆(n) defined in (3.5), the proposed quickest change detection algorithm is a threshold-based se-
quential test given as follows.

Definition 3.1. (Bayesian Quickest Change Detection) For a given PFA upper bound α, the change point is
detected as

δ1 : θ̂1 = inf
{
n ≥ 1 : ∆(n) ≥ 1− α

α

}
(3.6)

It should be noted that the proposed algorithm in (3.6) can be considered as an extension of the well-
known Shiryaev procedure Shiryaev (1963), which only considers the case of one known post-change model.
We will show next that the above algorithm is asymptotically optimal with respect to (P1).

3.2. Probability of False Alarm

We first study the PFA of the detection procedure defined in Definition 3.1.

Lemma 3.1. For the quickest change detection algorithm in Definition 3.1, the probability of false alarm is
upper bounded by α.
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Proof. Let p(n) = P(H1|FXn ) = P(θ ≤ n|FXn ). From (3.1), we have ∆(n) =
pn

1− pn
, or equivalently,

p(n) =
∆(n)

∆(n) + 1
= 1− 1

∆(n) + 1
(3.7)

It is apparent that pn is an increasing function in ∆(n). From (3.6), we have

∆(θ̂1) ≥
1− α
α

=⇒ p(θ̂1) ≥ 1− α. (3.8)

From (2.1) and the definition of p(n), the PFA can be calculated as

PFA(δ1) = P(θ̂1 < θ|FXn ) = 1− p(θ̂1) (3.9)

Combining (3.9) with (3.8) completes the proof.

3.3. Average Detection Delay

In the Bayesian setting, the ADD defined in (2.2) can be computed as follows

ADD(δ) =
E(θ̂ − θ)+

P(θ̂ ≥ θ)
=

1

P(θ̂ ≥ θ)

∑∞

k=1
πk Pk(θ̂ ≥ k) Ek(θ̂ − k|θ̂ ≥ k) (3.10)

where x+ = max(0, x).
To facilitate the ADD analysis, it is assumed that 1

nZ
k:k+n
i almost surely converges in probability Pi to

a positive finite number Di (Tartakovsky and Veeravalli, 2005), that is,

1

n
Zk:k+n−1i

Pi−a.s.−−−−−→
n→∞

Di ∀ k <∞ (3.11)

In the case of identically and independently distributed (i.i.d.) data models, we have fi,t(Xt|X1:t−1) =

fi(Xt), and Di = E
[
log fi(X)

f0(X)

]
is the Kullback-Leibler (KL) divergence between fi(X) and f0(X).

The following asymptotic notations are used in the analysis. Consider two continuous functions f(x)
and g(x) where limx→x0 f(x) = limx→x0 g(x) =∞. We have the following notations.

f(x) �
x→x0

g(x)⇐⇒ lim
x→x0

f(x)

g(x)
≤ 1 (3.12)

If both f(x) �
x→x0

g(x) and g(x) �
x→x0

f(x), then the two functions are called asymptotically equivalent

as x→ x0, and it is denoted as

f(x) �
x→x0

g(x)⇐⇒ lim
x→x0

f(x)

g(x)
= 1 (3.13)

Theorem 3.1. Assume the condition (3.11) holds and πk = (1− ρ)k−1ρ. As the PFA upper bound α → 0,
we have

Ek[(θ̂1 − k)+] �
α→0

min
i

[
log
(
1−α
α

)
− logωi

Di + | log(1− ρ)|

]
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Proof. To facilitate analysis, we first introduce a new stopping time with respect to each individual post-
change distribution model as follows

θ̂1,i = inf

{
n ≥ 1 : ωi∆i(n) ≥ 1− α

α

}
(3.14)

From the definition of ∆(n) in (3.5), it is evident that ∆(n) ≥ ωi∆i(n) for all i. Consequently,

θ̂1 ≤ min
i=1,2,...,M

θ̂1,i (3.15)

The stopping time in (3.14) can be alternatively represented by

θ̂1,i = inf

{
n ≥ 1 : log ∆i(n) ≥ log

(
1− α
α

)
− logωi

}
(3.16)

Based on the definition of ∆i(n) in (3.4), it is easy to show that

log ∆i(n) ≥ Zk:ni + log

(
πk
Ωn

)
, V k:n

i (3.17)

Define a new stopping time

ζ1,i = inf

{
n ≥ 1 : V k:n

i ≥ log

(
1− α
α

)
− logωi

}
(3.18)

From (3.16)-(3.18), it is apparent that θ̂1,i ≤ ζ1,i, thus

θ̂1 ≤ min
i=1,2,...,M

θ̂1,i ≤ min
i=1,2,...,M

ζ1,i (3.19)

For geometric pirors, we have

lim
n→∞

1

n
log

(
πk

Ωk+n−1

)
= | log(1− ρ)|. (3.20)

Combining (3.11) with (3.20) yields

1

n
V k:k+n−1
i

Pi−a.s.−−−−→
n→∞

Di + | log(1− ρ)| , qi. (3.21)

Define

Tk = sup

{
n ≥ 1 :

∣∣∣∣ 1nV k:k+n−1
i − qi

∣∣∣∣ > ε

}
. (3.22)

If ζ1,i − k > Tk, then from (3.22) we have∣∣∣∣ 1

ζ1,i − k
V
k:ζ1,i−1
i − qi

∣∣∣∣ ≤ ε, if ζ1,i − k > Tk (3.23)

which implies

ζ1,i − k ≤
V
k:ζ1,i−1
i

qi − ε
, if ζ1,i − k > Tk (3.24)
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Based on the definition of ζ1,i in (3.18), we have

V
k:ζ1,i−1
i < log

(
1− α
α

)
− logωi (3.25)

Combining (3.24) and (3.25) results in

ζ1,i − k ≤
log
(
1−α
α

)
− logωi

qi − ε
, if ζ1,i − k > Tk (3.26)

When α < 0.5 and ε < qi, we always have
log( 1−α

α )−logωi
qi−ε > 0. Therefore the following inequality is

true for both ζ1,i − k > Tk and ζ1,i − k ≤ Tk

ζ1,i − k ≤
log
(
1−α
α

)
− logωi

qi − ε
+ Tk, if α < 0.5 and ε < qi (3.27)

Given the convergence condition in (3.21), we have E(Tk) < ∞. Since ε can be arbitrarily small, we
can let ε→ 0. Thus when α→ 0,

E[ζ1,i − k] �
α→0

log
(
1−α
α

)
− logωi

Di + | log(1− ρ)|
. (3.28)

Since θ̂1 is a lower bound of ζ1,i as in (3.19), we have

E[θ̂1 − k] �
α→0

min
i

[
log
(
1−α
α

)
− logωi

Di + | log(1− ρ)|

]
. (3.29)

When α→ 0, the right hand side of (3.29) is always positive. Thus the inequality in (3.29) still holds if
we replace θ̂1 − k by (θ̂1 − k)+. This completes the proof.

From the results in Theorem 3.1, it can be seen the prior probability ωi and the constant Di plays an
important role in determining the ADD upper bound. If ωi is very small, that is, the i-th post-change model is
very unlikely, the value of− logωi will be very large, and it will not affect the delay upper bound because the
minimum is performed over all M post-change models. Similarly, if Di is very small, that is, the difference
between the i-th post-change model and the pre-change model is small, then the minimum operator will
exclude its impact on the delay upper bound. Consequently, the delay upper bound is dominated by the
post-change models that have large ωi and/or large Di, that is, those models that are likely to appear and
have a big difference with the pre-change model.

In addition to the asymptotic upper bound in Theorem 3.1, we also have the asymptotic lower bound for
the detection delay.

Theorem 3.2. Assume the condition (3.11) holds and πk = (1− ρ)k−1ρ. As the PFA upper bound α → 0,
we have

Ek[(θ̂1 − k)+] �
α→0

min
i

[
log
(
1−α
α

)
− logωi

Di + | log(1− ρ)|

]
Proof. To simplify notation, define

Liα =
log
(
1−α
α

)
− logωi

Di + | log(1− ρ)|
, (3.30)

Lα = min
i

Liα (3.31)
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Also, define the following events and their probabilities,

Ci,k : {k ≤ θ̂1 ≤ k + (1− ε)Liα} and γεi,k(θ̂1) = Pk{Ci,k}

Ck : {k ≤ θ̂1 ≤ k + (1− ε)Lα} and γεk(θ̂1) = Pk{Ck}

where 0 ≤ ε < 1 is a constant.
Since Lα = mini Liα, it can be easily shown that Ck = ∩i Ci,k. Thus

γεk(θ̂1) = Pk{C1,k ∩ C2,k ∩ . . . ∩ CM,k} ≤ min
i
γεi,k(θ̂1) (3.32)

where the last inequality follows from the fact that for any events Y and Z, P(Y ∩Z) = P(Y ) ·P(Z|Y ) ≤
P(Y ).

Given the convergence condition in (3.11), it can be proven that

lim
α→0

γεi,k(θ̂1) = 0 ∀ i = 1, . . . ,M, 0 < ε < 1 and k ≥ 1 (3.33)

The above equation can be proved by following a similar procedure for the proof of equation (3.31) in
(Tartakovsky and Veeravalli, 2005, Lemma 2). Combining (3.32) with (3.33) yields

lim
α→0

γεk(θ̂1) = 0 ∀ i = 1, . . . ,M, 0 < ε < 1 and k ≥ 1 (3.34)

Based on the Chebyshev inequality, for any 0 ≤ ε < 1, we have

Ek[(θ̂1 − k)+] ≥ [(1− ε)Lα] Pk{(θ̂1 − k)+ ≥ (1− ε)Lα}
= [(1− ε)Lα] Pk{(θ̂1 − k) ≥ (1− ε)Lα} (3.35)

where the last equality is based on the fact that the event {X+ ≥ A} is true if and only if {X ≥ A} is true
for A > 0, and (1− ε)Lα is positive when 0 ≤ ε < 1.

It is also evident that,

Pk{θ̂1 − k ≥ (1− ε)Lα} ≥ Pk{θ̂1 ≥ k} − γεk(θ̂1) (3.36)

which is based on the fact that for two events Y and Z, P(Y ∪ Z) ≤ P(Y ) + P(Z).
Based on Lemma 3.1, the PFA is upper bounded by α. Thus

α ≥ PFA(θ̂1) =
∑∞

i=1
πiPi(θ̂1 < i) ≥ πkPk(θ̂1 < k)

Thus Pk(θ̂1 < k) ≤ π−1k α, or equivalently,

Pk{θ̂1 ≥ k} = 1−Pk{θ̂1 < k} ≥ 1− π−1k α (3.37)

Combining (3.35), (3.36) and (3.37), we get,

Ek[(θ̂1 − k)+] ≥ [(1− ε)Lα] [1− π−1k α− γεk(θ̂1)].

Since ε can be arbitrarily small, we can let ε→ 0, then

lim
α→0

Ek[(θ̂1 − k)+]

Lα
≥ lim

α→0
[1− π−1k α− γεk(θ̂1)] = 1

where the last equality is based on the fact that γεk(θ̂1)→ 0 as α→ 0 as given in (3.34). This completes the
proof.
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The asymptotic lower bound in Theorem 3.2 is the same as the asymptotic upper bound in Theorem 3.1.
The asymptotic convergence between the lower bound and upper bound indicates that the detection method
in Definition 3.1 is asymptotically optimal. That is, the algorithm can asymptotically achieve the minimum
detection delay because the asymptotic lower bound is also the asymptotic upper bound.

Theorem 3.3. Assume the condition (3.11) holds and πk = (1− ρ)k−1ρ. As the PFA upper bound α → 0,
the quickest change detection presented in Definition 3.1 is asymptotically optimal with respect to (P1). The
asymptotic ADD is

ADD(δ1) �
α→0

min
i

[
log
(
1−α
α

)
− logωi

Di + | log(1− ρ)|

]
.

Proof. The results can be directly obtained by combining Theorems 3.1 and 3.2.

4. QUICKEST CHANGE DETECTION ALGORITHM FOR NON-BAYESIAN SETTING

In this section, we develop the algorithm that can detect the change point with minimum delay under a
non-Bayesian setting. Under a non-Bayesian setting, the prior probabilities of the change point, πk, for
k = 1, 2, · · · and the prior probabilities of the post-change model, ωi, for i = 1, · · · ,M , are all unknown.

4.1. Detection Algorithm

Define

Λ(n) =
∑M

i=1
Λi(n) (4.1)

where,

Λi(n) =
∑n

k=1
exp

(
Zk:ni

)
. (4.2)

With Λ(n) defined in (4.1), the proposed quickest change detection algorithm under non-Bayesian set-
ting is a threshold-based sequential test given as follows.

Definition 4.1. (Non-Bayesian Quickest Change Detection) For a given PFA upper bound α, the change
point is detected as

δ2 : θ̂2 = inf
{
n ≥ 1 : Λ(n) ≥ Mθ

α

}
(4.3)

where

θ =
∑∞

k=1
kπk (4.4)

is the prior mean of the change point.

Note that the statistic Λi(n) is the Shiryaev-Roberts (SR) statistic (Roberts, 1966) for detecting a change
corresponding to the i-th post-change model. The detection procedure δ2 is therefore an extension of the
SR procedure adapted to detect changes in system with multiple post-change models (Tartakovsky and
Veeravalli, 2004). The non-Bayesian detection algorithm in (4.3) has a similar flavor as the algorithm
proposed in Mei (2010). The test statistic in (Mei, 2010, Equation. (9)) is the sum of the CUSUM statistics
for each post-change hypothesis. In (4.3), the test statistic is the sum of the SR statistics for each post-change
hypothesis. Next, we will show that the proposed detection method in Definition 4.1 is asymptotically
optimum with respect to (P1).

9



4.2. Probability of False Alarm

We first study the PFA of the detection procedure defined in Definition 4.1.

Lemma 4.1. For the quickest change detection algorithm in Definition 4.1, the probability of false alarm is
upper bounded by α.

Proof. The statistic Λi(n) defined in (4.2) can be written in a recursive form as

Λi(n+ 1) = λi(n+ 1) [1 + Λi(n)] (4.5)

where λi(n) is the likelihood ratior (LR) of the i-th post-change model at time n

λi(n) =
fi,n(Xn|X1:n−1)

f0,n(Xn|X1:n−1)
(4.6)

It is straightforward that E∞[λi(n)] = 1, and from (4.5)

E∞[Λi(n+ 1)|FXn ] = 1 + Λi(n). (4.7)

Thus Λi(n) is a submartingale with respect to the probability measure P∞. In addition, since E[Λi(1)] =
E[λi(1)] = 1, we have E∞[Λi(n)] = n.

Combining the definition of Λ(n) in (4.1) with (4.7), we get

E∞
[
Λ(n+ 1)|FXn

]
= M + Λ(n). (4.8)

Thus Λ(n) is also a submartingale with respect to P∞ and E∞ [Λ(n)] = Mn. Using Doob’s submartingale
inequality, we get

P∞{θ̂2 < n} = P∞

{
max
1≤k≤n

Λ(k) ≥ Mθ

α

}
≤ nα

θ

Therefore,

PFA(δ2) =

∞∑
k=1

πkP∞{θ̂2 < k} ≤
∞∑
k=1

πkkα

θ
= α.

4.3. False Alarm Rate

For a given test δ, the FAR is defined as

FAR(δ) =
1

E∞(θ̂)
(4.9)

where E∞(θ̂) is known as the ARL to false alarm.

Lemma 4.2. For the quickest change detection algorithm in Definition 4.1, the false alarm rate is upper
bounded by α/θ.
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Proof. From (4.8), it is obvious that Λ(n)−Mn forms a Martingale with respect to P∞.
If E∞[θ̂2] =∞, then FAR(δ2) = 0 and it is bounded by α/θ.
If E∞[θ̂2] <∞, then based on the optional stopping theorem, we have

E∞[Λ(θ̂2)−Mθ̂2] = E∞[Λ(1)−M ] = 0. (4.10)

Thus

E∞[θ̂2] =
1

M
E∞[Λ(θ̂2)] (4.11)

Combining (4.11) with (4.3) yields

E∞[θ̂2] ≥
θ̄

α
(4.12)

which implies FAR(δ2) ≤ α/θ̄.

4.4. Average Detection Delay

The asymptotic upper and lower bounds for the ADD of the detection method in Definition 4.1 are derived
respectively in a similar manner as in Subsection 3.3.

Theorem 4.1. Assuming the condition (3.11) holds, as the PFA upper bound α→ 0, we have

Ek[(θ̂2 − k)+] �
α→0

min
i

log
(
Mθ
α

)
Di

Proof. The proof follows a similar procedure as the proof of Theorem 3.1. First define a new stopping time
with respect to each individual post-change distribution model as follows

ζ2,i = inf

{
n ≥ 1 : Zk:ni ≥ log

(
Mθ

α

)}
(4.13)

From (4.1) and (4.2), it is straightforward that log Λ(n) ≥ log Λi(n) ≥ Zk:ni . Thus

θ̂2 ≤ min
i=1,2,...,M

ζ2,i. (4.14)

Given the fact that 1
nZ

k:k+n−1
i almost surely converges to Di in probability Pi as n → ∞ as in (3.11),

we can define

Γk = sup

{
n ≥ 1 :

∣∣∣∣ 1nZk:k+n−1i −Di

∣∣∣∣ > ε

}
. (4.15)

If ζ2,i − k > Γk, then from (4.15) we have∣∣∣∣ 1

ζ2,i − k
Z
k:ζ2,i−1
i −Di

∣∣∣∣ ≤ ε, if ζ2,i − k > Γk (4.16)

which implies

ζ2,i − k ≤
Z
k:ζ2,i−1
i

Di − ε
, if ζ2,i − k > Γk (4.17)

11



From (4.13), we have

Z
k:ζ2,i−1
i < log

(
Mθ

α

)
(4.18)

Combining (4.17) and (4.18) results in

ζ2,i − k ≤
log
(
Mθ
α

)
Di − ε

, if ζ2,i − k > Tk (4.19)

When α < Mθ̄ and ε < Di, we always have
log

(
Mθ
α

)
Di−ε > 0. Therefore the following inequality is true

for both ζ2,i − k > Γk and ζ2,i − k ≤ Γk

ζ2,i − k ≤
log
(
Mθ
α

)
Di − ε

+ Γk, if α < Mθ̄ and ε < Di (4.20)

Given the convergence condition in (3.11), we have E(Γk) <∞. Setting ε→ 0 and α→ 0, we have

E[ζ2,i − k] �
α→0

log
(
Mθ
α

)
Di

. (4.21)

Since θ̂2 is a lower bound of ζ2,i as in (3.19), we have

E[θ̂2 − k] �
α→0

min
i

log
(
Mθ
α

)
Di

. (4.22)

When α→ 0, the right hand side of (3.29) is always positive. Thus the inequality in (3.29) still holds if
we replace θ̂2 − k by (θ̂2 − k)+. This completes the proof.

From the results in Theorem 4.1, it can be seen that the delay upper bound is dominated only by the
post-change models that have large Di, that is, those models that have a big difference with the pre-change
model.

Theorem 4.2. Assuming the condition (3.11) holds, as the PFA upper bound α→ 0, we have

Ek[(θ̂2 − k)+] �
α→0

min
i

log
(
Mθ
α

)
Di

Proof. The proof follows a similar procedure as the proof of Theorem 3.2. First define

Yiα =
log
(
Mθ
α

)
Di

, and Yα = min
i
Yiα (4.23)

Define the following events and their respective probabilities,

Di,k : {k ≤ θ̂2 ≤ k + (1− ε)Yiα} and φεi,k(θ̂2) = Pk{Di,k}

Dk : {k ≤ θ̂2 ≤ k + (1− ε)Yα} and φεk(θ̂2) = Pk{Dk}

where 0 ≤ ε < 1 is a constant.

12



Since Yα = mini Yiα, we have Dk = ∩i Di,k, which implies

φεk(θ̂2) ≤ min
i
φεi,k(θ̂2). (4.24)

Similar to (4.25), it can be shown that

lim
α→0

φεi,k(θ̂2) = 0, ∀i = 1, . . . ,M, 0 < ε < 1 and k ≥ 1. (4.25)

Combining (4.24) with (4.25) yields

lim
α→0

φεk(θ̂2) = 0, ∀i = 1, . . . ,M, 0 < ε < 1 and k ≥ 1 (4.26)

Based on the Chebyshev inequality, for any 0 ≤ ε < 1, we have

Ek[(θ̂2 − k)+] ≥ [(1− ε)Yα] Pk{(θ̂2 − k) ≥ (1− ε)Yα} (4.27)

Since {θ̂2 ≥ k} = {θ̂2 − k ≥ (1− ε)Yα} ∪ Dk, we have

Pk{θ̂2 − k ≥ (1− ε)Yα} ≥ Pk{θ̂2 ≥ k} − φεk(θ̂2). (4.28)

Based on Lemma 4.1, the PFA is upper bounded by α. Thus

α ≥ PFA(θ̂2) =

∞∑
i=1

πiPi(θ̂2 < i) ≥ πkPk(θ̂2 < k),

and consequently,

Pk{θ̂2 ≥ k} = 1−Pk{θ̂2 < k} ≥ 1− π−1k α (4.29)

Combining (4.27), (4.28), and (4.29), we get,

Ek[(θ̂2 − k)+] ≥ [(1− ε)Yα] [1− π−1k α− φεk(θ̂2)].

Since ε can be arbitrarily small, we can let ε→ 0, then

lim
α→0

Ek[(θ̂2 − k)+]

Yα
≥ 1

This completes the proof.

The asymptotic lower bound in Theorem 4.2 is the same as the asymptotic upper bound in Theorem 4.1.
The asymptotic convergence between the lower bound and upper bound indicates that the detection method
in Definition 4.1 is asymptotically optimal.

Theorem 4.3. Assuming the condition (3.11) holds, as the PFA upper bound α → 0, the quickest change
detection presented in Definition 4.1 is asymptotically optimal with respect to (P1). The asymptotic ADD is

ADD(δ2) �
α→0

min
i

log
(
Mθ
α

)
Di

Proof. The results can be directly obtained by combining Theorems 4.1 and 4.2.
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Figure 1. Average detection delay of the proposed Bayesian algorithm.

5. NUMERICAL RESULTS

Numerical results are presented in this section to demonstrate the performance of the proposed change
detection algorithms under both Bayesian and non-Bayesian settings. All simulation results are obtained by
averaging over 10,000 Monte-Carlo trials. The change point follows a geometric distribution with ρ = 0.1
in all simulations.

We first study the performance of the algorithm in Definition 3.1 under the Bayesian setting. The algo-
rithm utilizes the prior probabilities of change points as well as the prior probabilities of post-change models.
In the first example, we consider M = 2 possible post-change models. The pre-change and post-change
distributions are zero-mean Gaussian distributions with variance σ2i , that is, fi ∼ N (0, σ2i ). We have σ20 = 1
for the pre-change distribution, and we will consider different combinations of the post-change parameters
(σ21, σ

2
2). Figure 1 shows the average detection delay, ADD(δ1), as a function of the PFA upper bound α un-

der various combinations of (σ21, σ
2
2) and model prior probability ω1. When (σ21 = 0.5, σ22 = 1.5), we have

D1 = 0.0966 and D2 = 0.0473. When (σ21 = 0.8, σ22 = 1.2), we have D1 = 0.0116 and D2 = 0.0088.
Under all configurations, the asymptotic analytical ADDs have the same slopes as their simulation counter-
parts. Thus the asymptotic results provide very good predictions regarding the trend of the detection delay.
The performance difference of the three cases becomes smaller as the PFA increases.

Figure 2 shows the PFA of the proposed Bayesian detection algorithm as a function of the PFA upper
bound α. There are M = 2 post-change models. The pre- and post-change data follow exponential distribu-
tions with the parameters λi, for i = 0, 1, 2. We have λ0 = 1 for the pre-change distribution, and λ1 = 0.5
and λ2 = 1.5 for the post-change distributions. It can be clearly observed that PFA obtained from numerical
simulations is always below its upper bound as proved in Lemma 3.1. The analytical upperbound has the
same trend as the simulated PFA under all system configurations.

Figure 3 compares the ADD of the proposed Bayesian algorithm with an adaptation of the well-known
Shiryaev procedure. The adapted procedure exploits the mixture post-change distribution, which is obtained
as h(x) =

∑
i ωifi(x) (Lai, 1998). The Shiryaev procedure is then employed by using f0 and h as the

pre-change and post-change models, respectively. In this example, there are four post-change models, fi ∼
N (µi, 1), with µ1 = 0.6, µ2 = 0.8, µ3 = 1.2, and µ4 = 1.4. The prior probabilities of these models are
ω1 = 0.1, ω2 = 0.2, ω3 = 0.3, and ω4 = 0.4, respectively. The pre-change model follows the distribution
f0 ∼ N (1, 1). The proposed algorithm outperforms the Shiryaev-Mixture algorithm under the entire range
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Figure 2. Probability of false alarm for the proposed Bayesian algorithm.
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Figure 3. Comparison of the proposed Bayesian algorithm with adapted Shiryaev algorithms.

of PFA. At PFA = 0.02, the ADDs of the Shiryaev-Mixture and the proposed algorithms are 28 and 24,
which corresponds to an improvement of 14% over the Shiryaev-Mixture algorithm.

Next, we study the performance of the algorithm in Definition 4.1 under the non-Bayesian setting.
There are M = 2 equiprobable post-change models, i.e., ω1 = ω2 = 0.5. The pre-change and post-
change distributions are zero-mean Gaussian distributions with variance σ2i . We have σ20 = 1 for the pre-
change distribution, and we will consider different combinations of the post-change parameters (σ21, σ

2
2).

Figure 4 shows ADD(δ2) as a function of the PFA upper bound α. When (σ21 = 0.6, σ22 = 1.4), we have
D1 = 0.0554 and D2 = 0.0318. When (σ21 = 0.55, σ22 = 1.45), we have D1 = 0.0739 and D2 = 0.0392.
When (σ21 = 0.5, σ22 = 1.5), we have D1 = 0.0966 and D2 = 0.0473. Similar to the Bayesian case, the
asymptotic analytical ADDs for non-Bayesian method have similar slopes as their simulation counterparts
under different configurations. Thus the asymptotic results are very good predictors for the trend of the
detection delay.

Figure 5 shows the PFA of the non-Bayesian algorithm as a function of the PFA upper bound α under
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Figure 4. Average detection delay of the proposed non-Bayesian algorithm.
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Figure 5. Probability of false alarm for the proposed non-Bayesian algorithm.

different system configurations. There are M = 2 post-change models. The pre-change and post-change
data follow Gaussian distributions with unit variance and mean µi. We have µ0 = 1 for the pre-change
distribution, and µ1 = 0.5 and µ2 = 1.5 for the post-change distributions. The simulated PFAs are always
under the theoretical upper bounds as proved in Lemma 4.1. Under the non-Bayesian setting, the theoretical
PFA upper bound is not as tight as its Bayesian counterpart. The PFA upper bound is about one order of
magnitude higher than the results obtained from numerical simulations.

Figure 6 illustrates the performance of the non-Bayesian change detection algorithm described in Def-
inition 4.1. In this example, there are M = 3 post-change models. The data follow a two-dimensional
multivariate Gaussian distribution with zero-mean and covariance matrix

R =

[
1 r
r 1

]
.

The coefficient r is set to 0 before the change point. After the change point, we set r = 0.1, 0.5, and 0.9 for
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Figure 6. Comparison of the proposed non-Bayesian algorithm with adapted CUSUM algorithms.

the three post-change models, respectively. The prior probabilities of the post-change models are ω1 = 0.1,
ω2 = 0.3, and ω3 = 0.6, respectively. Figure 6 compares the ADD of the proposed non-Bayesian algorithm
with the ADD of three different non-Bayesian algorithms based on CUSUM procedure. The CUSUM-
GLRT procedure (Lai, 1998) uses GLRT by estimating the unknown parameter, which corresponds to the
post-change model in this example. The SUM-CUSUM procedure (Mei, 2010) exploits the sum of the
local CUSUM statistics corresponding to the individual post-change models. The MAX-CUSUM procedure
(Tartakovsky et al., 2006) uses the maximum of the local CUSUM statistics. The proposed non-Bayesian
algorithm achieves significant performance gains over the existing CUSUM-based algorithms.

6. CONCLUSION

Quickest change point detection with multiple possible post-change models has been studied in this paper.
We have proposed two quickest change detection algorithms under the Bayesian and non-Bayesian settings,
respectively. Theoretical analysis has been performed to obtain the PFA upper bounds and asymptotic
bounds on ADD when the PFA is small. It has been shown that both algorithms are asymptotically optimal
in terms of average detection delay. Numerical results have shown that the proposed algorithms outperform
existing algorithms in terms of average detection delay under the same PFA constraints.
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