Jaaru: Efficiently Model Checking Persistent Memory Programs

Hamed Gorjiara Guoqing Harry Xu Brian Demsky
University of California, Irvine University of California, Los Angeles University of California, Irvine
USA USA USA
hgorjiar@uci.edu harryxu@cs.ucla.edu bdemsky@uci.edu

ABSTRACT

Persistent memory (PM) technologies combine near DRAM per-
formance with persistency and open the possibility of using one
copy of a data structure as both a working copy and a persistent
store of the data. Ensuring that these persistent data structures are
crash consistent (i.e., power failures) is a major challenge. Stores
to persistent memory are not immediately made persistent — they
initially reside in processor cache and are only written to PM when
a flush occurs due to space constraints or explicit flush instructions.
It is more challenging to test crash consistency for PM than for
disks given the PM’s byte-addressability that leads to significantly
more states.

We present Jaaru, a fully-automated and ultra-efficient model
checker for PM programs. Key to Jaaru’s efficiency is a new tech-
nique based on constraint refinement that can reduce the number
of executions that must be explored by many orders of magnitude.
This exploration technique effectively leverages commit stores, a
common coding pattern, to reduce the model checking complexity
from exponential in the length of program executions to quadratic.
We have evaluated Jaaru with PMDK and RECIPE, and found 25
persistency bugs, 18 of which are new. Jaaru is also orders of magni-
tude more efficient than Yat, a model checker that eagerly explores
all possible states.

CCS CONCEPTS

« Hardware — Memory and dense storage; - Software and its
engineering — Software verification and validation.

KEYWORDS
Persistent Memory, Crash Consistency, Debugging, Testing

ACM Reference Format:

Hamed Gorjiara, Guoqing Harry Xu, and Brian Demsky. 2021. Jaaru: Effi-
ciently Model Checking Persistent Memory Programs. In Proceedings of the
26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS °21), April 19-23, 2021, Virtual,
USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3445814.
3446735

1 INTRODUCTION

Persistent memory (PM) technologies, such as phase change
memory (PCM) [31, 51, 55], resistive random-access memory

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ASPLOS 21, April 19-23, 2021, Virtual, USA

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8317-2/21/04.

https://doi.org/10.1145/3445814.3446735

879

(RRAM) [50], Spin-Transfer Torque memory (STT-MRAM) [28], or
3D XPoint [11], promise to combine the performance and flexibility
of DRAM with the persistency of flash storage. As commercially
available in the Intel Optane memory product [12], persistent mem-
ory can interface with the processor via the memory bus, providing
byte-addressable access for a program via regular store and load
instructions. Such instructions bypass the OS kernel, offering a
flexible and yet efficient interface to storage.

Persistent memory can potentially change the way programs
manipulate data structures to achieve greater performance—with
PM, programs can use a single copy of a data structure both as
an in-memory working data structure and as a persistent store of
the data, eliminating the serialization and deserialization process.
Failures are a key challenge in realizing this approach—stores are
not immediately written to persistent memory; they are initially
written to the processor cache and the persistent memory is only
eventually updated when the cache line is written back.

Modern processors provide special instructions to force cache

lines to be written to persistent storage. Using these instructions
correctly is challenging—it requires both subtle reasoning about
the ordering of memory operations and attention to detail to not
miss persisting any of the many stores a program may perform.
Moreover, testing the correctness of persistent storage code w.r.t.
failures is challenging. Exposing a bug requires that the machine
fails at a specific instruction and depends on the state of the cache
before the failure.
State of the art. The problem of PM consistency has received much
attention. There is a line of recent work on testing/dynamically
checking a PM program to find consistency-related bugs. XFDe-
tector [36] uses a finite state machine to track the consistency and
persistency of persistent data by implementing a shadow PM, and
with the help of user-provided annotations to identify commit vari-
ables. XFDetector only shows violations of programming patterns
for consistency and does not generate an execution that shows how
the violation can actually lead to a bug. Moreover, it only supports
scenarios in which a single failure occurs and ignores the possibility
of the occurrence of failures in the post-failure execution. Different
from XFDetector [36], PMTest [37] computes the persistency sta-
tus of writes and ordering constraints between writes. Developers
must annotate the code with checking rules to ensure that the code
establishes the correct persistency and ordering properties. PMTest
only executes the pre-failure portion of the program and thus does
not test failure recovery, which may also contain bugs.

Pmemcheck [25] is a binary rewriting tool that checks how many
stores were not made persistent and detects memory overwrites,
redundant flushes, and unnecessary flushes [25]. Similar to PMTest,
Pmemcheck also requires user annotations and only executes the
pre-failure execution.

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3445814.3446735
https://doi.org/10.1145/3445814.3446735
https://doi.org/10.1145/3445814.3446735

ASPLOS 21, April 19-23, 2021, Virtual, USA

These testing-based bug-finding tools suffer from two major
drawbacks: (1) They need users to add extra annotations for vari-
ous cache line flushing properties, which not only incur burdens
on users but also are error-prone themselves. Consequently, if the
developer misses an annotation or adds an incorrect annotation,
the tool will have false negatives and miss real bugs or have false
positives and report bugs that are not real. (2) Violations they report
are with respect to design principles and may or may not corre-
spond to actual bugs, e.g., certain tools report data has not been
flushed. However, in some cases, the data may never be accessed
in future executions. Thus, the absence of a flush is a false positive
that does not represent a real bug. These drawbacks call for tech-
niques such as model checking that can exhaustively explore states
without needing manual effort and provide strong witnesses (e.g.,
executions) for bugs exposed.

Model checking has been used extensively in the systems com-
munity (e.g., EXPLODE [53], FiSC [54], or SAMC [33]) to find bugs
in file/storage systems. However, there are several fundamental
differences between the file system bug problem and persistent
memory crash consistency problem that preclude direct application
of existing model checkers in the PM setting: (1) disks have a fun-
damentally different programming interface than PM — updates to
a disk block are only made upon making an explicit write request,
(2) disks have a larger block size and therefore there are fewer pos-
sible states to enumerate, and (3) operating systems receive explicit
notifications of when disk blocks are written. All of these factors
combined indicate that the state space to be explored for model
checking disks is significantly smaller than that for PM programs.

In fact, a recent technique Yat [29] attempts to use an eager model

checking approach to enumerate all possible post-failure memory
states for a PM program before it is aware of what parts of the
state the post-failure execution will read from. Since the number of
memory states that must be explored grows exponentially with the
number of stores that have not been flushed to memory, Yat cannot
scale. For example, consider the common scenario of code that
allocates a cache line aligned array of n 64-bit integers, initializes
the data, and crashes right before flush operations for that array.
This array spans n/8 cache lines and the persistent memory copy
of each cache line has 9 possible states (i.e., the initial value and the
state after each of the 8 writes). Therefore, persistent memory has
gn/8 possible states that Yat must explore.
Our approach. We develop Jaaru, a fully-automated and ultra-
efficient model checker for PM programs that achieves many orders-
of-magnitude reductions in the number of states that must be ex-
plored, compared to eager techniques such as Yat. It does not re-
quire any user annotation; as a model checker, Jaaru exhaustively
explores all possible states and can potentially find more bugs than
testing-based techniques.

Key to Jaaru’s efficiency is a constraint-refinement based technique
that effectively leverages commit stores — a common programming
practice in data structure implementations to drastically reduce the
space of executions. We elaborate on this insight below.

As stated above, a major challenge in model checking PM pro-
grams is the enormous post-failure state space the model checker
must explore — a store writes a value into the cache, and the value
is not persisted until the cache line is flushed. However, when a

880

Hamed Gorjiara, Guoqing Harry Xu, and Brian Demsky

failure occurs, it is unclear whether a cache line has been flushed
yet, leading to a large number of possibilities that the model checker
must explicitly enumerate.

To solve this problem, our major insight is that we can exhaus-
tively explore all executions by enumerating only a subset of post-
failure states using constraints on the time at which a cache line
was previously flushed. A c1flush or clflushopt instruction flushes
a cache line, imposing a constraint on the possible values that a
persistent variable can have after the failure. Jaaru builds such con-
straints during a pre-failure execution and refines them during a
post-failure execution (see §3.1). Leveraging these constraints in
partial order reduction [15, 56] enables Jaaru to explore exactly one
post-failure state for each equivalence class of post-failure execu-
tions, defined by which pre-failure stores are read by post-failure
loads.

To effectively leverage this insight, we made an observation that
there are often many stores that have not been flushed out to per-
sistent memory, PM programs often record in some fashion, using
a commit store, whether data is in a consistent state (see § 3.2). For
example, when adding a subtree to a node, the store of the node
pointer to the subtree is a commit store. Post-failure PM programs
then read from this commit store to determine whether data is
consistent. This is a common practice in data structure implemen-
tations (1) because the information about consistency also provides
a reference to where the data is stored (e.g., if the pointer from the
node to subtree is null, the subtree is not persisted; otherwise, it
can be found by following the pointer) and (2) for efficiency pur-
poses. Such checks explicitly prevent the post-failure execution
from accessing many unflushed stores (e.g., if the pointer is null,
the program cannot access any data protected by the pointer).

This pattern offers an opportunity for us to not explicitly enu-
merate all possible states at a failure — lazily enumerating the
stores read by the actual loads in the post-failure execution, as op-
posed to eagerly enumerating all of them, reduces the number of
executions to be explored from exponential in the length of the
program execution to linear (see §3.2). This observation leads to the
lazy exploration approach used in Jaaru, which does not enumerate
stores until loads are executed in the recovery code.

Note that leveraging such a programming pattern leads to ef-
ficiency, but has nothing to do with the thoroughness of the
state search — Jaaru always exhaustively explores all the non-
determinism that arises from the persistency of cache lines. As
a result, Jaaru does not generate any false positives or nega-
tives — it reports all bugs w.r.t. an input and any bug it reports
must be a real bug. For programs that do not obey such a program-
ming idiom (e.g., the recovery code directly reads the data without
checking consistency), Jaaru would not miss any bug, but it would
certainly spend more time on state exploration. In practice, how-
ever, Jaaru is often still efficient because PM programs are extremely
unlikely to read from many non-flushed cache lines.

Usage scenarios. Despite the aforementioned advantages, model
checking is not a silver bullet for bug finding in PM programs. For
example, even though Jaaru is orders of magnitude more efficient
than existing model checkers such as Yat, Jaaru still needs to execute
a program many times (e.g., between 24 and 891 in our experiments)
to fully explore the state space, taking a large amount of time for

Jaaru: Efficiently Model Checking Persistent Memory Programs

Thread Thread

Persistent Storage

Figure 1: An x86-TSO storage system.

checking. Compared to testing tools such as PMTest and XFDetector,
Jaaru is able to find more bugs, in a completely automated fashion.
However, it has difficulty checking programs such as Redis that
interact with the outside world and whose non-determinism from
the network would require deterministic replay for a model checker
to work. As such, the best use case for Jaaru is to exhaustively check
widely-used libraries such as PMDK, finding as many potential bugs
as possible before their release, while non-exhaustive tools such
as PMTest and XFDetector can scalably check large programs and
find bugs only when they are triggered in tests.

Summary of Results. We have implemented Jaaru which incor-
porates a full simulation of the underlying TSO memory model
including support for store buffering, buffering flush operations,
and buffering sfence operations. We evaluate Jaaru with PMDK [13]
and RECIPE [32]: Jaaru is effective at finding persistency bugs in
our benchmark set. Jaaru finds 18 new correctness bugs in exten-
sively studied PM programs, while PMTest and XFDetector finds
only 1 and 4 correctness bugs, respectively.

2 OVERVIEW OF X86 PERSISTENT MEMORY
STORAGE

We next overview the Intel-x86 persistent storage system. We refer
interested readers to the Px86gj, model in Raad et al. [43]. Figure 1
presents a graphical overview of the x86-TSO storage system. Each
core/thread on x86 has a store buffer that buffers stores to the cache
to hide the store latency. The store buffers implement bypassing
— when a core performs a load, the core checks whether there is a
store to the same address in its local store buffer. If so, it returns
the value written by the most recent such store. Effectively, this
allows the local core to observe the effect of a local store before that
store becomes visible to other cores. The memory fence instruction
mfence waits for the store buffer to be empty before future instruc-
tions can be executed. Locked RMW instructions also clear the store
buffer before future instructions can be executed.

Stores in the store buffer are written to the cache in the order they
were executed — they are written to the cache in a total order and
all other threads/cores observe these stores in that same order. The
cache is volatile — a power loss event will cause cached data that
has not yet been written back to persistent storage to be lost. Under

881

ASPLOS 21, April 19-23, 2021, Virtual, USA

Table 1: Summary of reordering constraints in the Px86j,,
model. A / indicates that the order between the two instruc-
tions is preserved, a X indicates that the two instructions can
be reordered, and a CL indicates that the order is preserved
only if they both operate on the same cache line. These con-
straints are also used in Raad et al. [43].

Later in Program Order

3 Re | Wr | RMW | mf [sf [clflushopt | clflush
S Read "4 4 v [/ 4 v

g Write X 4 v a4 CL v

E | RMW | 7 v v |7 4 v

° mfence 4 4 4 a4 4 4

':; sfence X 4 v v |V v 4

= | clflushopt | X X v a4 X CL
Z [cfiush | X | / 7 717 CL 7

3

m

normal execution, cache lines are written back to main memory
non-deterministically when the cache needs the space for other
data. The x86 architecture provides instructions to force the cache
to write data back to persistent storage. The three such instructions
are: (1) the flush cache line instruction c1flush that flushes a cache
line, (2) the optimized flush cache line instruction c1flushopt, and
(3) the cache line write back instruction clwb.

A key difference between these instructions is how they can
be reordered across other instructions. Table 1 summarizes the in-
struction ordering constraints for persistent storage on x86-TSO.
The clflush instruction is inserted into the store buffer just like
store instructions, and when it exits the store buffer it causes the
cache line to be flushed to persistent memory. The c1flushopt in-
struction is inserted into the store buffer also like store instruc-
tions, but it can be reordered across store instructions to other
cache lines, c1flush instructions to other cache lines, and other
clflushopt instructions. The clflushopt instruction cannot be re-
ordered across mfence or locked RMW instructions. The store fence
instruction sfence also orders c1flushopt instructions relative to
clflush, cl1flushopt, clwb, and store instructions. The clwb instruc-
tion only writes back the contents of the cache line and does not
evict it from the cache and thus has better performance. However,
from a semantics perspective, the clwb instruction is identical to
the c1flushopt instruction [43], and thus we treat them identically
in this paper.

3 BASIC IDEAS

Recall that prior work (e.g., Yat [29]) on model checking persis-
tent memory programs eagerly enumerates all possible post-failure
states of persistent memory. As the number of states grows ex-
ponentially with the amount of data that has not been flushed,
this approach can easily have scalability problems. Such eager ap-
proaches will explore many post-failure states that yield identical
post-failure executions in which the loads read from the same stores.
Dynamic partial order reduction (DPOR) [1, 15, 56] is a popular
technique that can determine that these states produce the same ex-
ecution, and instead explore the equivalent post-failure executions
once.

ASPLOS 21, April 19-23, 2021, Virtual, USA

3.1 Constraint-Refinement

Traditional DPOR techniques do not consider the effect of cache line
flushes and volatile memory. Naive adaptation of these techniques
in our setting would lead to the exploration of many states that
are not possible due to the use of instructions such as c1flush that
explicitly flush cache lines.

To reduce search space, our first idea is to use c1flush instruc-
tions to infer constraints on the last time each cache line was written
back to persistent memory in a pre-failure execution and refine these
constraints in a post-failure execution to narrow down when a cache
line became persistent. For example, when a c1flush instruction
leaves the store buffer, it forces the cache line to be written back
to persistent memory. That same cache line can later be written
back to persistent memory due to space constraints in the cache.
Hence, the c1flush instruction essentially sets a constraint that the
last time the corresponding cache line is written back to memory
must be after the c1flush instruction exits the store buffer.

Figure 2 illustrates the application of this idea on an execution
prior to a failure. The program executes the instruction sequence
on the left-hand side prior to the failure. The blue line shows the
order that stores were written to the cache. Both variables x and
y are located in the same cache line. After the program executes
the stores y = 1 and x = 2, it performs a c1flush instruction. This
instruction flushes the cache line that holds x and y to persistent
memory. At this point, Jaaru computes that the cache line for x
and y was most recently flushed during the interval [c1flush, co)
as represented by the red line in Figure 2. After the c1flush, the
program performs the stores y = 3, x = 4,y = 5, and x = 6. Finally,
power is lost and the program fails. The red interval indicates that
when the machine is powered back up, the persistent storage may
have the values 2, 4, and 6 for the variable x.

Note that there are constraints between the values for variable
x and those for y since they share a cache line. For example, it is
not possible for the post-failure state of the persistent memory to
have y = 1 and x = 6, because the store y = 5 is ordered between
y =1 and x = 6. To ensure that variables that share a cache line
have consistent values, Jaaru refines these intervals using the values
observed by loads during the recovery execution. Figure 3 shows a
post-failure execution. This execution reads the value 4 from the
variable x. This tells us that the cache line must have been flushed
some time after the store x = 4 and before the store x = 6. Thus, we
can refine the interval for the most recent flush to be [x = 4, x = 6),
which imposes a much tighter bound.

Since both variables x and y share the same cache line, reading
the value 4 for x constrains the set of values that we can read from
y. In particular, since the last flush occurred some time during
the interval from x = 4 to x = 6, we know that the cache line was
flushed some time after the assignment y = 3 and potentially after
the assignment y = 5. Therefore, if the post-failure execution reads
from y, it could only read the value 3 or 5. It could not read the
value y = 1, because the fact that the read from x returned 4 tells
us that the cache line was flushed after y = 1 was overwritten.

Jaaru uses this refinement-based approach to simulate cache line
flushes and lazily construct the state of persistent memory after
the failure, eliminating the need to eagerly explore all (equivalence
classes of) states.

882

Hamed Gorjiara, Guoqing Harry Xu, and Brian Demsky

Power
failure

y=1;
X=2;
clflush(x);
y=3;
x=4;
y=5;
x=6;

y=1 x=2 clflush y=3 x=4 y=5 x=6

Most recent cache line
writeback for x & y

Figure 2: Pre-failure execution of a simple PM program. We
assume that x and y reside on the same cache line. The blue
line represents the total order in which stores are written to
the cache. The red line shows the interval for the last time
the cache line containing x and y may be written back to
persistent memory.

Power
rl=x; .
failure
r2=y;
y=1 x=2 clflush y=3 x=4 y=5 x=6
&———O

Most recent cache line
writeback for x & y

Figure 3: Post-failure (recovery) execution of the program
that reads the value 4 from x. This refines the interval for
the most recent writeback of the cache line to be between
the store x = 4 and the store x = 6.

3.2 Leveraging Commit Stores for Additional
Efficiency

Our constraint-refinement approach works well for PM programs
because it effectively leverages commit stores to achieve efficiency.
Commit stores are a rather common programming practice; in
fact, all programs in our evaluation have such commit stores. To
effectively leverage such stores, Jaaru does not eagerly enumerate
all pre-failure stores; instead, Jaaru lazily enumerates a small subset
of them that are actually read by a post-failure execution.

void addChild(node *ptr, char * data) {
childNode * tmp = alloc_child();
tmp->data = data;
clflush(tmp, sizeof(childNode));
ptr->child = tmp;
clflush(&ptr->child,
}

sizeof (childNode *));

char * readChild(node #*ptr) {
if (ptr->child != NULL) {
return ptr->child->data;

}
return NULL;

}
Figure 4: An example program with a commit store.

To illustrate, Figure 4 presents a simple program that uses a
commit store. There are two methods here — method addchild
that adds a child to store data and method readChild that returns a
pointer to the data stored in the child. We first discuss the addChild

Jaaru: Efficiently Model Checking Persistent Memory Programs

method. The store at Line 3 writes a reference to the data field in
the newly created child node. Next, the c1flush instruction at Line 4
forces this write to persistent memory. Finally, the commit store at
Line 5 makes the child node reachable from the data structure and
the c1flush at Line 6 makes the commit store persistent.

We next discuss the readChild method. The load at Line 10 checks
whether the child field is non-null. If it is, then we know that (1)
the clflush instruction at Line 6 completed and (2) the child node
has been persisted and is safe to read in Line 11.

To illustrate how Jaaru leverages this pattern for efficient state
exploration, let us consider a client program that executes method
addChild, fails, and then calls the readChild method during recovery.
Jaaru injects failures in the execution of method addChild at three
points: (1) immediately before the c1flush instruction at Line 4, (2)
immediately before the c1flush instruction at Line 6, and (3) at the
end of the execution of method addChild. Injecting failures at these
three points is sufficient to explore all distinct program behaviors
(see § 4). While Jaaru supports failure scenarios that involve crashes
in the recovery routine, in this example we focus on a single failure
for simplicity.

To inject a failure, Jaaru stops the execution at the failure point,
resets volatile memory, and starts a new execution with the same
persistent memory region. In the new execution, loads from per-
sistent memory check the stores from the pre-failure execution to
determine which values the program will read from.

Let us first consider the failure immediately before Line 4. Since
the c1flush instruction has not executed, the write to the data field
may not have been persisted. When the readChild method executes,
it first reads the child field. Since the child field is null, it does
not access the data field. Jaaru explores exactly one post-failure
execution for this failure point.

Next, consider the failure immediately before Line 6. The data
field has been persisted by the first c1flush instruction, but the write
to the child field has not. Thus, when the post-failure execution
reads from the child field, Jaaru observes that the interval for the
most recent flush of the child field is [0, o). Jaaru then explores
two executions. In the first execution, the child field is null, and
this execution has the same behavior as the previously explored
execution. In the second execution, the child field is non-null and
thus it reads the data field. Since the interval [c1flushg,) for the
data field’s cache line starts after the last write to the data field,
the method returns the data field (c1flushs denotes the clflush
instruction at Line 4.).

Finally, consider the failure at the end of the execution of method
addChild. At this point, both clflush instructions have executed.
When the post-failure execution reads from the child field, Jaaru
observes that the interval for the most recent flush of the child field
is [c1flushg, 00). Therefore the load must see the value written to
the child field and thus it reads the data field. Since the interval
[c1flushg, o0) for the cache line of the data field starts after the last
write to data, the method returns data.

To illustrate why such stores are useful, consider the following
scenario. Suppose that method readChild accesses the data field of
the child node without first checking the commit store in Line 5.
If the addChild method crashes before the first c1flush instruction,
there would be two different potential post-failure states for the
data field. If the child node has n different cache lines that were

883

ASPLOS 21, April 19-23, 2021, Virtual, USA

Instrumented PM
Binary Program
Compile e
E . Frontend . E
i]} Jaaru
Crash
Insertion Jaaru’s
Scheduler > Runtime
System
Report Noﬁ @
Yes
|| Found ¢ Constraint
E < Bug? Analyzer

Figure 5: Jaaru system overview.

accessed in a similar manner, then the number of post-failure states
would grow to be O(2"). If the post-failure code accesses all of
the child’s states, the model checker would have to explore O(2")
executions. The commit store limits the number of unflushed stores
that the post-failure program execution reads from, and thus the
executions Jaaru must explore.

The complexity of model checking programs that use commit
stores like this example is O(m?) where m is the length of the
execution. We obtain this complexity because the number of failure
injection points is O(m), the post-failure execution involves O(m)
steps, and with commit stores, we explore two executions at each
failure point — a first execution that reads from the commit store
and a second execution that reads the value of the memory location
before the commit store.

Note that prior techniques that eagerly explore all pre-failure
stores cannot take advantage of such commit stores. The key differ-
ence between prior model checkers such as Yat and Jaaru is that Yat
enumerates all possible states at the failure point before executing
the post-failure code (thus with a complexity of O(2")) while Jaaru
executes the post-failure code and lazily explores pre-failure stores
that are actually read by the post-failure code.

3.3 System Overview

Jaaru uses an LLVM compiler pass to instrument both atomic and
normal memory accesses along with fences and cache flush oper-
ations. The instrumented binary is then dynamically linked with
the Jaaru library. Figure 5 presents an overview of Jaaru. A fail-
ure scenario involves multiple executions — the simplest failure
scenario (a single failure) involves a pre-failure execution and a
post-failure execution. To simulate a failure scenario, Jaaru keeps
the information about each of the executions in the sequence that
comprises the failure scenario. Figure 6 shows the exploration of
a failure sequence composed of a pre-failure execution and the
current post-failure execution.

Jaaru uses a fork-based approach to roll back executions to sim-
ulate failures and start new executions. In each execution, Jaaru
records all of the stores that have been written to the cache and
the c1flush instructions that have taken effect (shown with the

ASPLOS 21, April 19-23, 2021, Virtual, USA

Jaaru’s Runtime System
Power
failure
° ~ X |t x=1 sfence | store buffer
Pre-failure| ;=1 cifiush cifiush - cflushopt(x) | flush buffer
Execution
x’s cache line
= - t store buffer
piclcachellic ? [cflushopt(z) | flush buffer
Py ° ¢ x=1 sfence | store buffer
E::Z-::;Lire z=1 cIfI'ush cIfI'ush ! cflushopt(x) | flush buffer
o X's cache line
; - t store buffer
pelcacheling ? | cflushopt(y) | flush buffer
Figure 6: An example of Jaaru’s runtime system.

blue lines). Jaaru also records a set of intervals for every flushed
cache line to identify the time ranges of the most recent writes of
each cache line into persistent memory (shown in the red lines).
As shown earlier in the example, these intervals are used by the
model checker to make decisions about the values of variables in
the post-failure execution. The right side of each execution shows
the thread-specific state Jaaru maintains — each thread has a local
store buffer that simulates the processor’s store buffer and a flush
buffer that implements the reordering of clflushopt instructions
(based on the constraints in Table 1).

4 MODEL CHECKING ALGORITHM

This section presents the model checking algorithm. We begin by
presenting the following notations that we will use throughout the
paper:

o We refer to an execution as e.

e A given failure scenario may involve a sequence of multiple
executions ending in failures. We record this sequence of
executions that have been executed on the persistent store
using a stack, referred to as exec.

e Function top(exec) denotes the most recent execution (the
current one) on the stack exec.

e Function prev(e) returns the execution that immediately
precedes e in exec.

o A global sequence number counter ocy,r is used to assign
increasing sequence numbers to stores, c1flush, sfence in-
structions.

e Each store, c1flush, and sfence instruction i is assigned a
sequence number o;. These numbers record the total order
in which these instructions take effect in the cache.

e Fach execution e has a map e.getcacheline() that maps
an address to an interval in which the cache line was most
recently flushed to persistent memory in the exection e.

e Each execution e has a map e.queue() that maps each address
addr to a sequence of tuples (val, o) that record the values
stored at the address and the sequence number o generated
at the moment that value was stored.

e We denote a thread using 7 € 7.

e Each thread 7 has a store buffer S; that keeps a queue of
store, c1flush, and sfence operations that have not yet taken
effect in the cache.

884

Hamed Gorjiara, Guoqing Harry Xu, and Brian Demsky

e Each thread 7 has a cache line flush buffer F; that stores the
set of clflushopt operations that have not yet flushed the
cache line to persistent storage.

o We refer to the timestamp as t.

The Jaaru LLVM frontend instruments only memory operations
and cache operations as those are the operations relevant to per-
sistent storage. Jaaru implements a software simulation of those
instructions with full support for the persistency semantics from
the Px864ir, model [43]. The majority of PM-based tools have been
developed for x86 since it provides the most advanced and mature
architectural support for accessing persistent memory. By fully sup-
porting x86 semantics, Jaaru satisfies the fast-growing need for a
scalable and fast model checker to validate and test these programs.
Although the current version of Jaaru is developed for x86, the
primary idea behind it is not limited to x86 and could potentially
be adapted to support other architectures such as ARM.

The TSO memory model separates the executions of stores, cache

flush operations, and sfence operations into two phases: (1) the
initial phase that often inserts an operation into a buffer and (2)
the second phase that removes the instruction from the buffer and
updates the state of the cache or persistent storage. We present our
algorithm for each of the stages.
Executing instructions. Figure 7 presents our algorithm for the
first phase of instruction execution, which inserts an instruction
into each thread’s local store buffer S;. The mfence instruction waits
until S; is empty and then clears the thread’s flush buffer F;.

: function Exec_STorE(addr, val,)
Enqueue (store, addr, val) into S;.

: function Exec_CLFLUSH(addr)
Enqueue (c1flush, addr) into S;.

1

2

3

4

5: function Exec_CLFLUSHOPT(addr)

6 Enqueue (c1flushopt, addr, ocuy) into S;.
7
8

: function Exec_SFENCE
Enqueue (sfence) into S;.

9: function Exec_MFENCE
10: Evict all entries in S;.
11: Flush F;.

Figure 7: Algorithm for executing instructions.

Updating storage. The second phase occurs when the instruction
leaves the store buffer. This phase updates the storage system. Fig-
ure 8 presents our algorithm for this phase. We have four different
implementations of the EvicT_SB function for different types of
instructions.

The Evict_SB({store, addr, val)) function handles store instruc-
tions. This function assigns a sequence number to each store. These
sequence numbers enforce a total order over all writes to the cache.
The function then moves the store to the queue of stores that records
possible cache line values based upon the address it writes to. Fi-
nally, the function updates the timestamp (¢ cache1p(addr)) for the
most recent write to the cache line or c1flush from this thread to
be the store’s sequence number.

The Evict_SB((clflush, addr)) function handles the cache line
flush instruction clflush. The function first assigns a unique se-
quence number to the instruction. It then updates the lower bound
of when the cache line was most recently flushed to be the sequence

Jaaru: Efficiently Model Checking Persistent Memory Programs

1: function Evict_SB((store, addr, val))

2 Ocurr = Ocurr + 1

3 Enqueue (val, oy) into top(exec).queue(addr).
4 tr cacheID(addr) = Ocurr

5: function Evict_SB({clflush, addr))

6: Ocurr = Ocurr + 1

7 cl = top(exec).getcacheline(addr)

8 cl.begin = ocurr

9: tr cacheID(addr) = Ocurr
10: function Evict_SB({clflushopt, addr, o))
Add (addr, max(o, 7 cacheID(addr)s t,)) to Fr.

12: function Evict_SB((sfence))

13: Ocurr = Ocurr + 1
14: Flush F;.
15: tr = Ocurr

16: function Evict_FB({addr, o))
cl := top(exec).getcacheline(addr)
cl.begin = max(cl.begin, o)

Figure 8: Algorithm for evicting store and flush buffers.

number for this particular flush operation. Finally, the function up-
dates the timestamp for the most recent write to the cache line or
c1flush from this thread to be the store’s sequence number.

The Evict_SB({clflushopt, addr, o)) function handles the op-
timized cache line flush instruction cl1flushopt. The c1flushopt
instruction can be reordered with other cl1flushopt instructions,
previous stores to other cache lines, c1flush instructions to dif-
ferent cache lines, and later stores to any cache line. Support for
reordering with previous operations is implemented by computing
the maximum sequence number of the most recent instruction that
the c1flushopt cannot be reordered with. Support for reordering
with later instructions is implemented by a flush buffer that is emp-
tied when an instruction, which cannot be reordered with previous
clflushopt instructions (i.e.,sfence, mfence, or RMW instructions), ex-
ecutes.

The Evict_SB({sfence)) function handles the store fence in-
struction sfence. This sfence instruction is ordered relative to all
previous clflushopt instructions and thus it flushes the thread’s
flush buffer when it exits the thread’s store buffer.

Finally, the Evict_FB({addr, o)) function handles c1flushopt

instructions when they are evicted from the flush buffer by an
sfence, mfence, or RMW instruction. This function updates the lower
bound of when the cache line was most recently flushed to be the
sequence number o from the tuple in the flush buffer. Recall that
this sequence number is the maximum of the following four values:
(1) the current sequence number when the c1flushopt instruction
was first executed, (2) the sequence number of the most recent
sfence instruction executed by the thread, (3) the sequence number
of the most recent store to the same cache line executed by the
same thread, or (4) the sequence number of the most recent c1flush
to the same cache line executed by the same thread.
Load operations. Figures 9 and 10 present our algorithm for
loads. We split handling of loads into two functions: (1) the BuiLp-
MayREADFRoM function that computes and returns a set of stores
that a load may read from and (2) the DoREAD function that refines
the cache line flush intervals once Jaaru has selected a specific
store for the load to read from. Splitting the load handling into two
components makes it straightforward to integrate loads into Jaaru’s
exploration.

885

ASPLOS 21, April 19-23, 2021, Virtual, USA

1: function BuiLbMaYREaDFrOM(addr)

2 if Jval.S; = by.{addr, val).b; A Yval'.{addr, val') ¢ b, then

3 return {(top(exec),_, val)}

4 if Jval, o.top(exec).queue(addr) = m;.(val, c) then

5: return {(top(exec),_, val)}

6 return READPREFAILURE(prev(top (exec)), addr)

7: function READPREFAILURE(e, addr)

8 cl := e.getcacheline(addr)

9 set := {(e, o, val) | o < cl.end A e.queue(addr) = m;.(val.c).ma A (o <
cl.begin = VYval' Vo' < cl.begin.(val',c’) ¢ my)}

10: if 3(val, o) € set.c < cl.begin then

11: return set

12: else

13: return set U READPREFAILURE (prev(e), addr)

Figure 9: Algorithm for BuILDMAYREADFROM.

We first discuss the BuiLbMAYREADFROM function in Figure 9.
This function returns a set of tuples for each possible store that
the load may read from. Each tuple contains the execution e that
performed the store, the sequence number o of the store, and the
value val stored. We use _ when the store is from the current
execution and thus does not have a sequence number that can be
used to constrain when a cache line was last flushed in the previous
execution.

Lines 2—-3 check whether there is a store to read from in the store
buffer, and if so, returns the tuple for the newest such store. More
precisely, the syntax by.{(addr, val).by represents the state of store
buffer with b; being the oldest operations and by being the newest
operations. A load can read from a store (addr, val) in the store
buffer if there are no newer stores to the same address.

Lines 4-5 check whether there is a store in the current execution
that has updated the cache. If so, they return the tuple for that store.
More precisely, the syntax m1.(val, o) represents the sequence of
stores written to the cache with m; being the older operations. A
load can read from a store (val, o) in the cache queue for an address
if there are no newer stores to the same address. Otherwise, Line 6
invokes the READPREFAILURE function to compute potential stores
from the executions before the most recent failure.

We next discuss the READPREFAILURE function in Figure 9. This
function computes the set of stores from previous executions that a
load may read from. Lines 8-9 compute the set of stores that would
have been present on the cache line for the time range specified by
the cache line’s last flush interval. Line 10 checks whether there was
a store performed before the earliest possible time for the cache line
flush. If there is no such store, it is possible that the load has read
from an earlier execution. In this case, the algorithm recursively
calls READPREFAILURE on earlier executions and combines the set
of stores from the current execution with those returned by the
recursive call.

After the model checking algorithm has selected a store for the
load to read from, it invokes the DoREAD function in Figure 10
to refine the most recent cache line flush intervals for previous
executions. Line 2 checks whether the store is from the current
execution. If so, there is no refinement to be performed and the
function returns. Otherwise, it calls the function UPDATERANGES to
refine the interval in which the last cache flush was performed.

ASPLOS 21, April 19-23, 2021, Virtual, USA

: function DoReAD(addr, (e, o, val))
if e # top(exec) then
UppATERANGES(prev (top(exec)), addr, {e, o, val))
: function UPDATERANGES(e., addr, (e, o, val))
if e # e, then
cl := e..getcacheline(addr)
(val',c’) = first(ec.queue(addr))
cl.end = min(cl.end, o”)
9: UprpATERANGES(prev(e.), addr, (e, o, val))
else
cl := e..getcacheline(addr)
cl.begin := max(cl.begin, o)
Let o’ be the sequence number for the next tuple after (val, o) in
ec.queue(addr) or oo if there is no such tuple.

XN P

14: cl.end :=min(cl.end, o’)
Figure 10: Algorithm for DOREAD.
1: function EXPLORE(s, exec)
2 if choose to fail then
3 EXPLORE(S, exec.push(fresh_execution()))
4: if choose to evict then
5: Select 7 from nonemptystorebuffer(s)
6 Pop head h off of S,
7 EXPLORE(s.next(z, h), exec)
8: else
9: Select 7 from enabled(s)
10: if next action a for thread 7 is a load then
11: rfset := BUuILDMAYREADFROM (a.addr)
12: for each (e, o, val) € rfset do
13: ExpLORE(s.DOREAD((e, o, val)), exec)
14: end for
15: else
16: EXPLORE(S.next(z), exec)

Figure 11: The main model checking Algorithm.

We next discuss the UPDATERANGE function. Line 5 checks
whether the store is from the execution ec. If not, Lines 6-9 re-
fine the upper bound of the most recent flush interval to occur
before the first store because the load reads from a store from a
prior execution e and thus we know that the current execution ec
did not flush the cache line after performing a store. It then recur-
sively calls the UPDATERANGE function on previous executions.

If the store is from the execution e, then Lines 11-14 refine the

interval for the most recent cache line flush. The key insight is that
the cache line must have been flushed after the store that the load
reads from and before any subsequent stores.
Exploration algorithm. Finally, we present the core model check-
ing algorithm. Figure 11 presents the ExpLORE function that im-
plements Jaaru’s exploration. The EXPLORE function takes in an
execution s and a stack of executions exec. Lines 2-3 inject failures
and start new executions. Lines 4-8 decide whether to evict an
entry from a thread’s store buffer. Function next(z, h) calls the
appropriate EvicT function from Figure 8. Line 9 selects the next
thread to execute. Line 10 checks whether the thread’s next oper-
ation is a load. If so, Lines 11-14 handle the load — we first call
BuiLpMayREaDFROM to compute the set of potential stores that the
load may read from. The foreach loop then explores executions
for each possible store that the load may read from.

If the thread’s next operation is not a load, then Line 16 explores
the next step. Function next(7) computes the next step by calling
the appropriate Exec function from Figure 7.

886

Hamed Gorjiara, Guoqing Harry Xu, and Brian Demsky

Injecting failures. The natural points to inject failures are those
immediately before operations that flush cache lines. The reason
is that writes to the cache increase the set of possible post-failure
executions while flushes decrease the set of possible post-failure
executions. Thus, injecting failures at these points is sufficient to
explore all program behaviors. Jaaru, therefore, injects failures at
those points.

For long runs or scenarios in which multiple failures are injected,
injecting failures before every flush can result in exploring many
executions. Jaaru contains an optimization that skips injecting a
failure if there have been no writes since the last injected failure.
Jaaru can also support injecting failures into a post-failure execution
(with a command line option). This option controls the maximum
depth of the exec stack.

Locked RMW instructions. Locked (atomic) read-modify-write in-
structions include compare-and-swap (CAS), atomic exchange, and
many atomic arithmetic instructions. On x86 these instructions
also have fence-like semantics. They are equivalent to the atomic
execution of the following sequence of instructions: mfence, load,
store, and mfence. Jaaru implements them by atomically executing
this sequence.

Mixed size accesses. C and C++ programs may access fields using
stores and loads with different widths. For example, a 32-bit integer
field in a union may be initialized to 0 with a 64-bit integer store
and then read with a 32-bit integer load. We implement accesses
that are larger than a byte as a sequence of byte accesses that are
performed atomically. Thus, a 32-bit load is implemented as four
8-bit loads.

Checksum-based recovery. One approach to ensure data persis-
tency is to write a checksum along with data — recovery code reads
the checksum to verify that the data was persisted. Checksum-
based recovery differs from other approaches in that the recovery
code may read from a larger number of non-persisted stores. Jaaru
provides special support that can exhaustively check programs that
use checksum-based recovery without explicit flushes.
Debugging support. Jaaru can identify different types of bugs in-
cluding missing fences, misordered flushes, missing flushes, and
misordered stores that cause atomicity violations. The most com-
mon bug type we found was due to missing cache line flush instruc-
tions. Looking at the entire trace to understand a bug is not easy.
Therefore, we extend Jaaru with additional functionality to help
developers quickly determine why a program crashed.

Our observation is that a missing flush instruction effectively in-
creases the number of pre-failure stores that a post-failure load may
read from. Jaaru, therefore, contains optional support for flagging
loads that can read from more than one store. To facilitate debug-
ging, Jaaru prints out the load that can read from multiple stores,
the source location of the load, each of the stores, their locations
in the trace, and their source locations. Our experience shows that
this information is very useful for quickly understanding missing
flush instructions that cause the program to crash or loop.
Discussion. Existing DPOR algorithms [8, 15, 30, 45-47, 49] are not
directly applicable in the setting of persistent memory. None of the
traditional DPOR algorithms consider the effect of volatile memory
such as crashes and cache flushes. For example, a crash makes

Jaaru: Efficiently Model Checking Persistent Memory Programs

pre-failure stores that were executed but not written to persistent
memory completely disappear.

Jaaru can be viewed as implementing a form of dynamic par-
tial order reduction that avoids exploring equivalent executions.
Pre-failure executions that differ in when cache lines are flushed
and thus generate different post-failure states can still yield the
same post-failure executions if the post-failure executions never
read from the memory locations that contain different values. Such
cache line flushes can be viewed as commuting with the crash. Other
cache line flushes make stores visible to post-failure loads and thus
do not commute with the crash. Jaaru’s constraint refinement algo-
rithm lazily identifies non-commuting cache line operations during
the post-failure execution and effectively explores reordering such
cache line flushes.

Many PM programs are multi-threaded, creating the opportunity
for concurrency bugs. Jaaru does not exhaustively explore all con-
current schedules and thus does not provide any guarantees that
it will find concurrency bugs. However, since Jaaru controls the
concurrent schedule and fully simulates the TSO memory model,
as future work, it can be used to fuzz for concurrency bugs.

5 EVALUATION

In this section, we evaluate Jaaru’s bug-finding capabilities and
performance with a set of benchmarks. Our system configuration
is reported in Table 2.

Table 2: System configuration.

CPU
Volatile Memory
Non-volatile Memory
0S

6-core 3.7 GHz Intel i7-8700K processor
32GB DDR4, 2666MT/s
Full Px864im semantics simulated (see §4)
Ubuntu Linux 18.04
gee version 7.5.0 opt level O3
clang version 11.0.0 opt level O3

Compiler

Our benchmarks. We have evaluated Jaaru on PMDK [13] and
RECIPE [32]. PMDK is a library used extensively in prior work to
evaluate bug-finding techniques [36, 37]. Both PMTest and XFDe-
tector would require extra annotations to cover different behaviors
of PMDK (e.g., PMTest requires the persistency order of every sin-
gle variable to be defined by annotations). These annotations are
on top of the normal assertions used to sanity check the program.
However, Jaaru, as a model checker, can exhaustively explore the
state space without the need to write any extra assertions other
than the basic sanity checks that programs often have. For RECIPE,
we were not able to run the P-HOT program because it did not
compile with LLVM. All programs in the PMDK library have been
used.

Memcached and Redis have both been ported to use PMDK and
evaluated in prior work [36, 37]. Unfortunately, Memcached and
Redis can only be executed as servers that interact with clients via
sockets. Model checking a program that interacts with other pro-
grams requires support for deterministically replaying those socket
interactions that the current version of Jaaru does not support. Jaaru
could potentially be integrated with existing record-and-replay de-
bugging frameworks to lift this limitation.

887

ASPLOS 21, April 19-23, 2021, Virtual, USA

5.1 Bug Detection

We ran Jaaru over PMDK and RECIPE automatically to find bugs.
The inputs are examples that come with these benchmark suites.
We have not developed any new inputs ourselves. Jaaru has found
a total of 25 bugs, of which 18 are new bugs that have not been
reported before. Bugs that Jaaru can identify must have some visible
manifestation — either a crash, e.g., segmentation fault, or an asser-
tion failure in the program. Missing sanity checks in the program
can result in silent data corruption where the program appears to
recover successfully but has incorrect data.

We first discuss our experience with PMDK. Figure 12 reports
the bugs we have found. For each bug, we list the program in which
the bug was found. Note that the majority of these bugs are in the
core libpmemobj library in PMDK and the examples merely have
served as test cases for the library. For each bug, Figure 12 reports
the symptoms of the bug, e.g., an assertion failure or illegal memory
access. For many of these bugs, we have found that multiple failure
injection points have led to the same symptom. These bugs may or
may not be the same and to be conservative we report each such
group of bugs as one bug. We have found 6 new bugs in the PMDK
library — only bug #2 was previously found by XFDetector [36].
Some of these bugs are not missing-flush bugs since the stores are
followed by appropriate flush instructions, but atomicity violations
in which partially completing updates leaves the data structures in
inconsistent states. None of these 6 bugs was reported before (in
either PMTest [37] or XFDetector [36]).

Benchmark Symptom

1 Btree* Illegal memory access at btree_map.c:89
2 Btree Failed to open pool error

3 | Hashmap_atomic* Assertion failure at heap.c:533

4 CTree” Assertion failure at obj.c:1523

5 | Hashmap_atomic* Assertion failure at pmalloc.c:270

6 Hashmap_tx* Illegal memory access at obj.c:1528

7 RBTree* Illegal memory access at rbtree_map.c:137

Figure 12: Bugs found in PMDK. Bugs with a * are new bugs.
Only the second bug was reported before in XFDetector [36].

Benchmark Type of Bug

1 CCEH* Missing flush in CCEH constructor

2 CCEH* Missing flush in CCEH constructor

3 CCEH" Missing flush in CCEH constructor

4 | FAST _FAIR Missing flush in header constructor

5 FAST_FAIR Missing flush in entry constructor

6 | FAST FAIR* Missing flush in btree constructor

7 P-ART* Use of non-persistent data structure in Epoch

8 P-ART* Missing flush in Tree constructor

9 P-ART* Use of non-persistent data structure for recovery
10 | P-BwTree* GC crash leaves data structure in inconsistent state
11 | P-BwTree* Missing flush of GC metadata pointer

12 | P-BwTree* Missing flush of GC metadata

13 | P-BwTree* Missing flush in AllocationMeta constructor
14 | P-BwTree* Missing flush in BwTree constructor

15 P-CLHT Missing flush in clht constructor

16 P-CLHT Missing flush for hashtable object

17 P-CLHT Missing flush for hashtable array

18 | P-MassTree Flushed referenced object instead of pointer

Figure 13: Bugs were found by Jaaru in every program of
RECIPE. Bugs with a * are new bugs.

ASPLOS 21, April 19-23, 2021, Virtual, USA

We next discuss results for the RECIPE benchmarks. We have
found 12 new bugs in the RECIPE programs. Many programs con-
tain multiple bugs. When Jaaru has found an execution that causes
the program to crash (or loop) we have examined Jaaru’s outputted
trace and debugging information to understand the bug. Since these
benchmarks are easier to understand than PMDK benchmarks, we
have fixed the bug and used Jaaru to look for additional bugs. We
continued this until the program executed correctly.

Figure 13 presents the bugs we have found. We confirmed that
each bug caused the program to crash. Jaaru found bugs in every
program. These bugs are primarily missing flush instructions in ob-
ject constructors. All of the bugs can potentially corrupt a persistent
data structure leading to data loss.

Many bugs are simple cases of forgetting to flush stores or mis-
takenly flushing the wrong memory location. However, we have
found other kinds of bugs. In P-ART, the developer has used a vec-
tor data structure from tbb to track locks that must be unlocked in
the recovery procedure. The bug is that tbb data structures do not
persist across failures. In P-BwTree, Jaaru has found a logical error
in the garbage collection (GC) algorithm in which failures during
the GC can corrupt the GC data structures. This bug is an atomicity
violation and not a case of missing flushes.

Comparing these results with the bugs found by PMTest [37]
and XFDetector [36], Jaaru appears to have a stronger bug-finding
ability than PMTest and XFDetector. For example, PMTest reported
three new bugs and XFDetector reported four; several of these
bugs were performance bugs. On the contrary, Jaaru found serious
functional bugs that can corrupt data structures and lead to a crash
or an assertion failure in the program. This is not surprising because
Jaaru explores many more states than PMTest and XFDetector,
which focus on a single execution.

Among the several bugs reported before, three were not found
by Jaaru. We inspected those bugs and found it was because (1) two
were performance bugs that are not our focus and (2) one was in
the Redis code which we did not test. Jaaru could be extended to
find performance bugs such as redundant cache flushes and fences.
Jaaru Bug Reporting. We presented Jaaru and the bugs found by
our tool to the authors of RECIPE and we received overall positive
feedback. At the time of writing, 6 out of 18 bugs found by Jaaru
were fixed by the developers of RECIPE. There were 6 bugs that were
related to memory allocators and garbage collectors. The RECIPE
developers did not fix the persistency bugs related to memory
allocators because they believe these bugs need to be addressed by
the memory allocators, which is not their focus. The remainder of
the bugs were already fixed before our bug report.

5.2 Performance

Figure 14 presents the performance results for Jaaru on RECIPE
benchmarks. Providing performance results for a model checker
requires first fixing the bugs we have found so that Jaaru can run
to completion and fully explore the state space of the program;
otherwise, it would not make sense to report running time. We
have spent much time fixing all the bugs we have found in RECIPE
so that the model checker can fully explore these benchmarks. The
bugs in the PMDK framework are more complicated and would take
more time to fix, so we did not include our performance results for

888

Hamed Gorjiara, Guoqing Harry Xu, and Brian Demsky

Benchmark | #JExec. | JTime | #FPoints | #Yat Execs.
CCEH 891 14.51s 528 2.17x101%2
FAST_FAIR 170 1.48s 41 5.43x10'°
P-ART 174 1.86s 22 1.21x10%*
P-BwTree 71 0.79s 36 1.50x10%¢
P-CLHT 25 1.59s 12 1.93x1000%
P-Masstree 24 0.17s 16 1.67x10%°

Figure 14: Jaaru’s state space reduction. Reported are the
number of times Jaaru executes a program (JExec.), time
Jaaru takes to finish exploration (JTime), number of failure
injection points (FPoints), and the number of program exe-
cutions Yat needs to eagerly explore pre-failure stores (Yat
Execs.).

PMDK. Note that Jaaru is able to model check each RECIPE program
in less than 15 seconds. We next discuss our evaluation of the state
space reduction that Jaaru achieves on these programs, relative to
an eager model checking approach such as that implemented in
Yat [29]. Since Yat is not publicly available, we have calculated the
number of legal post-failure states that Yat would have to explore.
Figure 14 presents these results. Given the very large number of
executions Yat would have to explore, it is unlikely to be feasible to
exhaustively model check these realistic programs with Yat.

To better understand Jaaru’s effectiveness, we compare the total
number of executions with the number of failure injection points in
the original execution. As shown in Figure 14, Jaaru only explores a
few executions per failure injection point. The number of executions
per failure injection point ranges from 1.5 to slightly less than 8.

It does not make much sense to compare performance directly

between Jaaru and non-exhaustive approaches such as PMTest and
XFDetector, which detect bugs on single executions. However, as a
reference, Jaaru incurs an overall slowdown of 736X per execution,
which is on par with the overhead of XFDetector (i.e., from dozens
of times to almost a thousand times as reported in the paper [36]).
PMTest and Pmemcheck have much lower overhead (1.69x and
22.3X%, respectively). This is because Jaaru fully simulates the x86
TSO persistency semantics while the other tools ignore the effects
of store buffers.
Key Takeaway. Our results highlight the strengths and weaknesses
of model checking: Jaaru finds more bugs without any user involve-
ment, but cannot easily handle programs with complex interactions
with the outside world. Jaaru is a good fit for checking library code
that is usually small in size but has a large impact. Non-exhaustive
tools such as PMTest and XFDetector should be used to check large
programs such as Redis whose non-determinism from the network
can give a model checker much trouble. It is also clear that the
constraint refinement approach enables Jaaru to efficiently check
these programs; without refinement, it would not be possible for a
model checker to scale even to library code.

6 RELATED WORK

Bug/crash consistency detection. There exists a large body of
work on testing [26, 29, 39, 52], checking [38, 44, 53, 54], and for-
mally verifying [9, 10, 48] file system implementations to find
and eliminate crash consistency bugs. Fuzzing techniques such
as Janus [52] and Hydra [26] mutate disk images and file operations

Jaaru: Efficiently Model Checking Persistent Memory Programs

to explore states of file system code. Using heuristics, B3 [39] em-
ploys a bounded testing technique to explore states in a bounded
space. EXPLODE [53], FiSC [54], and SAMC [33] use model check-
ers to systematically explore states of a file system implementation.
Although crash consistency bugs in file systems bear similarities
with bugs in PM programs, they are fundamentally different in the
access granularity as well as how writes are performed.

There is a recent line of work on checking/testing PM programs

to find bugs. In particular, XFDetector [36] uses a finite state ma-
chine to track the consistency and persistency of persistent data.
PMTest [37] lets developers annotate a program with checking rules
to infer the persistency status of writes and ordering constraints
between writes. Pmemcheck [25] checks how many stores were
not made persistent and detects memory overwrites using binary
rewriting. Although these tools are able to find many bugs, none
of these tools can systematically explore the state space. In par-
ticular, they simply check whether data is persisted appropriately.
However, buggy data structures can have windows of vulnerability
when crashes can cause failures even if all data is persisted and
ordered. This motivates us to develop Jaaru, a model checker that
can thoroughly explore states to find bugs.
Model checking. Model checking has been extensively studied.
Stateless model checking techniques do not explicitly track which
program states have been visited and instead focus on enumerating
schedules [18-20, 40, 41]. To make model checking more efficient,
researchers propose dynamic partial order reduction techniques [8,
15, 30, 45-47, 49] that exploit state equivalence to reduce search
space.

Recent work model-checks multi-threaded programs against the
TSO and PSO memory models [2, 23, 56] and the release-acquire
fragment of C/C++ [3, 5, 14, 27].

Model checking is also widely used to find bugs in systems code.
Model checkers such as EXPLODE [53], FiSC [54], and SAMC [33]
check file system code. However, directly applying these techniques
would dictate enumerating all possible PM states, which is not feasi-
ble given that PM is byte-addressable and has orders of magnitude
more states than a disk.

Yat [29] is an attempt to model check persistent memory. It
injects failures before fence operations and eagerly enumerates all
post-failure states to detect potential bugs.

Agamotto [42] finds bugs in persistent memory programs by
using symbolic execution. It tracks the state of persistent memory
objects and their corresponding cache lines in the program, i.e.,
whether the cache line is modified. Agamotto updates constraints on
these states as the program runs and uses them to identify different
types of persistency bugs including correctness, performance, and
custom user-defined bugs. It uses a priority-based static analysis to
steer program execution to program states that frequently modify
PM. This approach can miss bugs because it only reasons about
whether stores are made persistent and does not reason about the
order that stores are made persistent.

Programming Models for PM. There is a great deal of work on
building programming systems that allow developers to use PM in
a reliable way without knowing the details of PM. For example, a
line of work [6, 16, 17, 34] proposes to use (software or hardware)
transactions to provide (failure and thread) atomicity. Another line

889

ASPLOS 21, April 19-23, 2021, Virtual, USA

of work [4, 7, 22, 24, 35] advocates use of locks or synchronization-
free regions [21]. Jaaru is complementary to these approaches, it
can be used to check the correctness of their implementation.

7 CONCLUSION

Jaaru is the first efficient model checker for persistent memory
programs. Jaaru uses a constraint refinement-based approach that
drastically reduces the number of executions that must be explored.
Jaaru is the first tool to fully model the TSO persistent memory
model. Our evaluation shows that Jaaru effectively finds bugs in
our benchmark applications and that Jaaru reduces the number of
executions that must be explored by several orders of magnitude.

ACKNOWLEDGMENTS

We would like to thank our shepherd, Jay Lorch, and the anonymous
reviewers for their thorough and insightful comments that helped
us substantially improve the paper. This work is supported by the
National Science Foundation grants CNS-1703598, OAC-1740210,
CNS-1703598, CNS-1763172, CCF-2006948, CNS-2007737, and CNS-
2006437, as well as ONR grants N00014-16-1-2913 and N00014-18-
1-2037.

A ARTIFACT APPENDIX
A.1 Abstract

This artifact contains a vagrant repository that downloads and
compiles the source code for Jaaru, its companion compiler pass, and
benchmarks. The artifact enables users to reproduce the bugs that
are found by Jaaru in PMDK (i.e., Figure 11 of the paper) and RECIPE
(i.e., Figure 12) as well as the performance results to compare Jaaru
with Yat (i.e., Figure 13).

A.2 Artifact check-list (meta-information)

Algorithm: Lazy exhaustive model-checking

Program: Jaaru

Compilation: GCC 7.5.0 and Clang

Binary: Instrumentation LLVM pass

Data set: RECIPE and PMDK benchmarks

Run-time environment: Any system that can run Vagrant
Hardware: One 6 core 3.7 GHz Intel i7 machine with 32 GB DDR4
memory

Run-time state: Managed by our x86 simulator

Execution: Automated by our tooling system

Metrics: Crashing the program under test

Output: Program crash for bugs. Logging performance measure-

ment for executions.

e Experiments: Regenerating all bugs found by Jaaru. Reproducing
performance results and comparing them with Yat (fully automated
by our custom tooling)

e How much disk space required (approximately)?: 80G

How much time is needed to prepare workflow (approxi-

mately)?: 1 hour

o How much time is needed to complete experiments (approx-
imately)?: About 20 mins

e Publicly available?: Yes. Open-source on GitHub

o Code licenses (if publicly available)?: GNU GENERAL PUBLIC

LICENSE Version 2

Data licenses (if publicly available)?: BSD-3-Clause and Apache

License 2.0.

ASPLOS 21, April 19-23, 2021, Virtual, USA

o Workflow framework used?: Vagrant.
e Archived (provide DOI)?:
https://doi.org/10.6084/m9.figshare.13392338

A.3 Description

Our workflow has four primary parts: (1) creating a virtual machine
and installing dependencies needed to reproduce our results, (2)
downloading the source code of Jaaru and the benchmarks and
building them, (3) providing the parameters corresponding to each
bug to reproduce the bugs, and (4) running the benchmarks to
compare Jaaru with the naive exhaustive approach (i.e., Yat). After
the experiment, the corresponding output files are generated for
each bug and each performance measurement.

A.3.1 How to access. All source code is open-source and available
on GitHub. Our packaging requires cloning the vagrant system
repository from https://github.com/uci-plrg/jaaru-vagrant. As de-
scribed in the README.md file of the repository, you will need to
install a VirtualBox VM and Vagrant on your machine. Then, the
vagrant setup will install the required dependencies and download
the source code of the tools from our git repository. Next, it builds
each tool on the virtual machine.

A.3.2 Hardware dependencies. Our tooling system and Jaaru have
no special hardware dependencies and it can be running on any
x86 machine with at least 32GB RAM and 4 cores.

A.3.3 Software dependencies. To run our system, the following
should be installed on the local machine:

e Linux (we tested on Ubuntu)
e Vagrant

e VirtualBox

o Vagrant-disksize plugin

A.3.4 Data sets. To evaluate Jaaru, our tooling system downloads
the source code of RECIPE and PMDK from our git repository. We
forked a branch from the original source code of these benchmarks
that don’t contain our bug fixes. The tooling system automatically
sets up and builds these benchmarks and runs them under Jaaru to
identify bugs in them.

A.4 Installation

Please see the README.md file of the https://github.com/uci-
plrg/jaaru-vagrant repository, which contains a detailed step-by-
step guide to setup Jaaru on a virtual machine. Then, our scripts
automatically do the following:

(1) Install all the dependencies needed to install and evaluate
Jaaru on different benchmarks.

(2) Check out the source code for LLVM, Jaaru, Jaaru’s LLVM
pass, RECIPE, and PMDK.

(3) Include Jaaru’s LLVM pass to LLVM and building it

(4) Set up and build Jaaru with two different configurations (One
for RECIPE that uses libvmemmalloc, and one for PMDK that
uses libpmem APIs).

(5) Set up and building RECIPE (including CCEH, FAST_FAIR,
P-ART, P-BwTree, P-CLHT, and P-Masstree benchmarks)
and PMDK benchmarks.

890

Hamed Gorjiara, Guoqing Harry Xu, and Brian Demsky

(6) Generate three scripts in the home (or ~/) directory of the
virtual machine to generate the results.

Once the scripts are finished setting up the virtual machine and
benchmarks, the user can use Jaaru on the virtual machine to further
evaluate different benchmarks or regenerate our evaluation results.

A.5 Experiment workflow

After setting up the virtual machine, the user can use 'vagrant ssh’
to connect to the VM and use Jaaru. The detailed instructions to
run the suggested workflow is included in the README.md file
of https://github.com/uci-plrg/jaaru-vagrant repository. There are
three scripts in the home directory of the virtual machine that user
can run:
recipe-perf.sh : It runs the RECIPE benchmarks using Jaaru and
gathers measurements to compare Jaaru against Yat. For each bench-
mark, the corresponding log file is generated in ~/results/recipe-
performance.
recipe-bugs.sh : It runs the RECIPE benchmarks using Jaaru and
sets the corresponding parameters to reproduce each bug. For each
bug, the corresponding log file is generated in ~/results/recipe-bugs.
pmdk-bugs.sh : It runs PMDK benchmarks by using Jaaru and set
the corresponding parameters to reproduce each bug. For each bug,
the corresponding log file is generated in ~/results/pmdk-bugs.

In our tooling system, the timeout is used in both recipe-bugs.sh
and pmdk-bugs.sh scripts to recover from segmentation fault. The
timeout needs to be adjusted if the user uses a slower machine.

A.6 Evaluation and expected result

After successfully running the experiment using our scripts, the
results directory is generated in the home directory. This directory
contains the following results:

A.6.1 RECIPE. Performance Results: For each RECIPE bench-
mark, there is a -Performance file in the ~/results/recipe-performance
directory (for a total of 6 files). These files contain the performance
information corresponding to Figure 13.

Bugs: There are 18 files in ~/results/recipe-bugs directory. Each
file contains the corresponding logs for the bug that Jaaru found.
Figure 15 contains information about how Jaaru identified each bug
correspond to Figure 12.

A.6.2 PMDK. There are 7 files in ~/results/pmdk-bugs directory.
Each file contains the corresponding logs for the bug that Jaaru
found. Figure 16 contains information about how Jaaru identified
each bug correspond to Figure 11.

A.7 Experiment customization

The experiment workflow can be customized to install and run
everything on the local machine instead of the virtual machine. To
set up everything locally, download data/setup.sh script from the
https://github.com/uci-plrg/jaaru-vagrant repository in the home
directory of your local machine and run the script after installing
the dependencies.

https://doi.org/10.6084/m9.figshare.13392338
https://github.com/uci-plrg/jaaru-vagrant
https://github.com/uci-plrg/jaaru-vagrant
https://github.com/uci-plrg/jaaru-vagrant
https://github.com/uci-plrg/jaaru-vagrant
https://github.com/uci-plrg/jaaru-vagrant

Jaaru: Efficiently Model Checking Persistent Memory Programs

Bug ID Cause of Bug

1 CCEH-1 Getting stuck in an infinite loop
2 CCEH-2 Segmentation fault in the program
3 CCEH-3 Segmentation fault in the program
4 | FAST_FAIR-1 Segmentation fault in the program
5 | FAST FAIR-2 Segmentation fault in the program
6 | FAST_FAIR-3 Segmentation fault in the program
7 P-ART-1 Segmentation fault in the program
8 P-ART-2 Illegal memory access in the program
9 P-ART-3 Getting stuck in an infinite loop
10 P-BwTree-1 Segmentation fault in the program
11 P-BwTree-2 Segmentation fault in the program
12 P-BwTree-3 Segmentation fault in the program
13 P-BwTree-4 Segmentation fault in the program
14 | P-BwTree-5 Segmentation fault in the program

15 P-CLHT-1 Illegal memory access in the program
16 P-CLHT-2 Illegal memory access in the program
17 P-CLHT-3 Getting stuck in an infinite loop

18 | P-MassTree-1 | Illegal memory access in the program

Figure 15: More information about the bugs that are found
by Jaaru in RECIPE benchmarks.

| Benchmark Found Symptom

1 Btree* Illegal memory access at btree_map.c:89
2 Btree Failed to open pool error

3 | Hashmap_atomic* Assertion failure at heap.c:533

4 CTree” Assertion failure at obj.c:1523

5 | Hashmap_atomic™ Assertion failure at pmalloc.c:270

6 Hashmap_tx* Illegal memory access at obj.c:1528

7 RBTree* Assertion failure at tx.c:1678

Figure 16: More information about the bugs that are found
by Jaaru in PMDK benchmarks.

A.8 Notes

Note that the performance results generated for RECIPE can be
different from the numbers that are reported in the paper since there
is non-determinism in scheduling threads; when stores, flushes,
and fences leave the store buffer; and memory alignment in the
malloc procedure. This non-determinism can possibly impact on
the type of bugs reported in Figure 15 and Figure 16 for RECIPE and
PMDK benchmarks. Also, for some bugs, the segmentation fault
(or assertion failure) occurs in Jaaru code. This is caused by illegal
memory access by the program under test.

REFERENCES

[1] Parosh Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas. Opti-
mal dynamic partial order reduction. In Proceedings of the 2014 Symposium on
Principles of Programming Languages, POPL *14, pages 373-384, 2014.

[2] Parosh Aziz Abdulla, Stavros Aronis, Mohamed Faouzi Atig, Bengt Jonsson, Carl
Leonardsson, and Konstantinos Sagonas. Stateless model checking for TSO and
PSO. In Proceedings of the 21st International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, pages 353-367, 2015.

[3] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and Tuan Phong
Ngo. Optimal stateless model checking under the release-acquire semantics.
Proceedings of the ACM on Programming Languages, October 2018.

[4] Hans-J. Boehm and Dhruva R. Chakrabarti. Persistence Programming Models
for Non-volatile Memory. In Proceedings of the 2016 ACM SIGPLAN International
Symposium on Memory Management, ISMM 2016, pages 55-67, 2016.

[5] Sebastian Burckhardt, Rajeev Alur, and Milo M. K. Martin. CheckFence: Checking
consistency of concurrent data types on relaxed memory models. In Proceedings
of the 28th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 07, pages 12-21, 2007.

[6] Daniel Castro, Paolo Romano, and Jodo Barreto. Hardware transactional memory

meets memory persistency. In 2018 IEEE International Parallel and Distributed

Processing Symposium, IPDPS ’18, pages 368-377, 2018.

Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. Atlas: Leveraging

Locks for Non-volatile Memory Consistency. In Proceedings of the 2014 ACM

International Conference on Object Oriented Programming Systems Languages and

=

ASPLOS 21, April 19-23, 2021, Virtual, USA

Applications, OOPSLA ’14, pages 433-452, 2014.

Krishnendu Chatterjee, Andreas Pavlogiannis, and Viktor Toman. Value-centric
dynamic partial order reduction. Proceeding of the ACM on Programming Lan-
guages, 3(OOPSLA), October 2019.

Haogang Chen, Tej Chajed, Alex Konradi, Stephanie Wang, Atalay Ileri, Adam
Chlipala, M. Frans Kaashoek, and Nickolai Zeldovich. Verifying a high-
performance crash-safe file system using a tree specification. In Proceedings
of the 26th Symposium on Operating Systems Principles, SOSP 17, pages 270-286,
2017.

Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans Kaashoek,
and Nickolai Zeldovich. Using crash Hoare logic for certifying the FSCQ file
system. In Proceedings of the 25th ACM Symposium on Operating Systems Principles,
SOSP ’15, pages 18-37, 2015.

Intel Corporation. 3D XPoint”™: A breakthrough in non-volatile mem-
ory technology. https://www.intel.com/content/www/us/en/architecture-and-
technology/intel-micron-3d-xpoint-webcast.html, 2018.

Intel Corporation. Intel announces broadest product portfolio for moving, stor-
ing and processing data. https://newsroom.intel.com/news-releases/intel-data-
centric-launch/#gs.d3t61g, April 2019.

Intel Corporation. Persistent memory development kit. https://pmem.io/pmdk/,
2020.

Brian Demsky and Patrick Lam. SATCheck: SAT-directed stateless model check-
ing for SC and TSO. In Proceedings of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions, OOPSLA 2015, pages 20-36, October 2015.

Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduction for
model checking software. In Proceedings of the 32nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’05, pages 110-121,
2005.

Kaan Geng, Michael D. Bond, and Guoqing Harry Xu. Crafty: Efficient, HTM-
Compatible Persistent Transactions. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2020,
pages 59-74, 2020.

Ellis Giles, Kshitij Doshi, and Peter Varman. Continuous Checkpointing of HTM
Transactions in NVM. In Proceedings of the 2017 ACM SIGPLAN International
Symposium on Memory Management, ISMM °17, pages 70-81, 2017.

Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent Systems:
An Approach to the State-Explosion Problem. Springer-Verlag, Berlin, Heidelberg,
1996.

Patrice Godefroid. Model checking for programming languages using VeriSoft.
In Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL °97, pages 174-186, 1997.

Patrice Godefroid. Software model checking: The VeriSoft approach. Formal
Methods in System Design, 26(2):77-101, 2005.

Vaibhav Gogte, Stephan Diestelhorst, William Wang, Satish Narayanasamy, Pe-
ter M. Chen, and Thomas F. Wenisch. Persistency for Synchronization-Free
Regions. In Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI *18, pages 4661, 2018.

Terry Ching-Hsiang Hsu, Helge Briigner, Indrajit Roy, Kimberly Keeton, and
Patrick Eugster. NVthreads: Practical Persistence for Multi-threaded Applications.
In Proceedings of the 12th European Conference on Computer Systems, EuroSys *17,
pages 468-482, 2017.

Shiyou Huang and Jeff Huang. Maximal causality reduction for TSO and PSO. In
Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA ’16, pages 447-461,
2016.

Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. Failure-Atomic Persistent

Memory Updates via JUSTDO Logging. In Proceedings of the 21st International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’16, pages 427-442, 2016.

Tomasz Kapela. An introduction to pmemcheck (part 1) - basics. https://pmem.
10/2015/07/17/pmemcheck-basic.html, July 2015.

Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon Yoon, Wen Xu, and Taesoo
Kim. Finding semantic bugs in file systems with an extensible fuzzing framework.
In Proceedings of the 27th ACM Symposium on Operating Systems Principles, SOSP
’19, pages 147-161, 2019.

Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and Viktor Vafeiadis.
Effective stateless model checking for C/C++ concurrency. Proceedings of the
ACM on Programming Languages, 2(POPL), December 2017.

Emre Kultursay, Mahmut Kandemir, Anand Sivasubramaniam, and Onur Mutlu.
Evaluating STT-RAM as an energy-efficient main memory alternative. In IEEE
International Symposium on Performance Analysis of Systems and Software, ISPASS
13, pages 256-267, 2013.

Philip Lantz, Subramanya Dulloor, Sanjay Kumar, Rajesh Sankaran, and Jeff Jack-
son. Yat: A validation framework for persistent memory software. In Proceedings
of the 2014 USENIX Annual Technical Conference, pages 433-438, Philadelphia,
PA, June 2014. USENIX Association.

https://www.intel.com/content/www/us/en/architecture-and-technology/intel-micron-3d-xpoint-webcast.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-micron-3d-xpoint-webcast.html
https://newsroom.intel.com/news-releases/intel-data-centric-launch/#gs.d3t61g
https://newsroom.intel.com/news-releases/intel-data-centric-launch/#gs.d3t61g
https://pmem.io/pmdk/
https://pmem.io/2015/07/17/pmemcheck-basic.html
https://pmem.io/2015/07/17/pmemcheck-basic.html

ASPLOS 21, April 19-23, 2021, Virtual, USA

[30] Steven Lauterburg, Rajesh K Karmani, Darko Marinov, and Gul Agha. Evaluating
ordering heuristics for dynamic partial-order reduction techniques. In Inter-
national Conference on Fundamental Approaches to Software Engineering, pages
308-322. Springer, 2010.

[31] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Architecting phase

change memory as a scalable DRAM alternative. In Proceedings of the 36th Annual

International Symposium on Computer Architecture, ISCA *09, pages 2-13, 2009.

Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and Vijay Chi-

dambaram. Recipe: Converting concurrent DRAM indexes to persistent-memory

indexes. In Proceedings of the 27th ACM Symposium on Operating Systems Princi-
ples, SOSP ’19, pages 462-477, New York, NY, USA, 2019. Association for Com-
puting Machinery.

Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi Joshi, Jeffrey F. Lukman, and

Haryadi S. Gunawi. SAMC: Semantic-aware model checking for fast discovery

of deep bugs in cloud systems. In Proceedings of the 11th USENIX Conference on

Operating Systems Design and Implementation, OSDI "14, pages 399-414, USA,

2014. USENIX Association.

Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai Qian, Yongwei Wu, Weimin

Zheng, and Jinglei Ren. DudeTM: Building Durable Transactions with Decoupling

for Persistent Memory. In Proceedings of the 22nd International Conference on

Architectural Support for Programming Languages and Operating Systems, ASPLOS

’17, pages 329-343, 2017.

Qingrui Liu, Joseph Izraelevitz, Se Kwon Lee, Michael L Scott, Sam H Noh, and

Changhee Jung. iDO: Compiler-Directed Failure Atomicity for Nonvolatile

Memory. In Proceedings of the 51st Annual IEEE/ACM International Symposium

on Microarchitecture, MICRO ’18, pages 258-270, 2018.

[36] Sihang Liu, Korakit Seemakhupt, Yizhou Wei, Thomas Wenisch, Aasheesh Kolli,
and Samira Khan. Cross-failure bug detection in persistent memory programs.
In Proceedings of the 25th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS °20, pages 1187-1202,
New York, NY, USA, 2020. Association for Computing Machinery.

[37] Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh Kolli, and Samira Khan. PMTest:
A fast and flexible testing framework for persistent memory programs. In Proceed-
ings of the 24th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’19, pages 411-425, New York, NY,
USA, 2019. Association for Computing Machinery.

[38] Changwoo Min, Sanidhya Kashyap, Byoungyoung Lee, Chengyu Song, and Tae-
soo Kim. Cross-checking semantic correctness: The case of finding file system
bugs. In Proceedings of the 25th Symposium on Operating Systems Principles, SOSP
15, pages 361-377, 2015.

[39] Jayashree Mohan, Ashlie Martinez, Soujanya Ponnapalli, Pandian Raju, and Vijay
Chidambaram. Finding crash-consistency bugs with bounded black-box crash
testing. In Proceedings of the 13th USENIX Conference on Operating Systems Design
and Implementation, OSDI ’18, pages 33-50, 2018.

[40] Madan Musuvathi, Shaz Qadeer, and Thomas Ball. CHESS: A systematic testing
tool for concurrent software. Logic-Based Program Synthesis and Transformation,
page 16, November 2007.

[32

w
&

[34

[35

[41] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler, Pira-
manayagam Arumuga Nainar, and Iulian Neamtiu. Finding and reproducing
Heisenbugs in concurrent programs. In Proceedings of the 8th USENIX Conference
on Operating Systems Design and Implementation, OSDI *08, pages 267-280, 2008.

[42] Ian Neal, B. Reeves, Ben Stoler, Andrew Quinn, Youngjin Kwon, S. Peter, and Baris

Kasikci. AGAMOTTO: How persistent is your persistent memory application?

892

[43

[44]

[45

=
&

[47

[48

[49

o
2

[56

Hamed Gorjiara, Guoging Harry Xu, and Brian Demsky

In Proceedings of the 14th USENIX Conference on Operating Systems Design and
Implementation, OSDI 20, 2020.

Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis. Persistency
semantics of the Intel-X86 architecture. Proceedings of the ACM on Programming
Languages, 4(POPL), December 2019.

Cindy Rubio-Gonzalez, Haryadi S. Gunawi, Ben Liblit, Remzi H. Arpaci-Dusseau,
and Andrea C. Arpaci-Dusseau. Error propagation analysis for file systems. In
Proceedings of the 30th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’09, pages 270-280, 2009.

Olli Saarikivi, Kari Kédhkonen, and Keijo Heljanko. Improving dynamic partial
order reductions for concolic testing. In 2012 12th International Conference on
Application of Concurrency to System Design, pages 132-141. IEEE, 2012.
Koushik Sen and Gul Agha. Automated systematic testing of open distributed
programs. In Proceedings of the 9th International Conference on Fundamental
Approaches to Software Engineering, FASE’06, pages 339-356. Springer, 2006.
Koushik Sen and Gul Agha. A race-detection and flipping algorithm for automated
testing of multi-threaded programs. In Proceedings of the 2nd International Haifa
Verification Conference on Hardware and Software, Verification and Testing, HVC 06,
pages 166—182. Springer, 2006.

Helgi Sigurbjarnarson, James Bornholt, Emina Torlak, and Xi Wang. Push-button
verification of file systems via crash refinement. In Proceedings of the 12th USENIX
Conference on Operating Systems Design and Implementation, OSDI ’16, pages
1-16, 2016.

Samira Tasharofi, Rajesh K Karmani, Steven Lauterburg, Axel Legay, Darko
Marinov, and Gul Agha. TransDPOR: A novel dynamic partial-order reduction
technique for testing actor programs. In Proceedings of the 14th Joint IFIP WG
6.1 International Conference and Proceedings of the 32nd IFIP WG 6.1 International
Conference on Formal Techniques for Distributed Systems, FMOODS 12/FORTE’12,
pages 219-234. Springer, 2012.

H. S. P. Wong, H. Lee, S. Yu, Y. Chen, Y. Wu, P. Chen, B. Lee, F. T. Chen, and
M. Tsai. Metal-oxide RRAM. Proceedings of the IEEE, 100(6):1951-1970, June 2012.
H.S.P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi,
and K. E. Goodson. Phase change memory. Proceedings of the IEEE, 98(12):2201—
2227, December 2010.

W. Xu, H. Moon, S. Kashyap, P. Tseng, and T. Kim. Fuzzing file systems via
two-dimensional input space exploration. In 2019 IEEE Symposium on Security
and Privacy (S&P), pages 818-834, 2019.

Junfeng Yang, Can Sar, and Dawson Engler. Explode: A lightweight, general
system for finding serious storage system errors. In Proceedings of the 7th USENIX
Symposium on Operating Systems Design and Implementation, OSDI "06, page 10,
USA, 2006. USENIX Association.

Junfeng Yang, Paul Twohey, Dawson Engler, and Madanlal Musuvathi. Using
model checking to find serious file system errors. ACM Transactions on Computer
Systems, 24(4):393-423, November 2006.

Hanbin Yoon, Justin Meza, Naveen Muralimanohar, Norman P. Jouppi, and Onur
Mutlu. Efficient data mapping and buffering techniques for multilevel cell phase-
change memories. ACM Transactions on Architecture and Code Optimization,
11(4):40:1-40:25, December 2014.

Naling Zhang, Markus Kusano, and Chao Wang. Dynamic partial order reduction
for relaxed memory models. In Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’15, pages 250-259,
2015.

	Abstract
	1 Introduction
	2 Overview of x86 Persistent Memory Storage
	3 Basic Ideas
	3.1 Constraint-Refinement
	3.2 Leveraging Commit Stores for Additional Efficiency
	3.3 System Overview

	4 Model Checking Algorithm
	5 Evaluation
	5.1 Bug Detection
	5.2 Performance

	6 Related Work
	7 Conclusion
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected result
	A.7 Experiment customization
	A.8 Notes

	References

