Chianina: An Evolving Graph System for Flow- and
Context-Sensitive Analyses of Million Lines of C Code

Zhiqiang Zuo* "
Nanjing University, China
zqzuo@nju.edu.cn

Shenming Lu*
Nanjing University, China
mf1733041@smail.nju.edu.cn

Xuandong Li*
Nanjing University, China
Ixd@nju.edu.cn

Abstract

Sophisticated static analysis techniques often have compli-
cated implementations, much of which provides logic for tun-
ing and scaling rather than basic analysis functionalities. This
tight coupling of basic algorithms with special treatments
for scalability makes an analysis implementation hard to (1)
make correct, (2) understand/work with, and (3) reuse for
other clients. This paper presents Chianina, a graph system
we developed for fully context- and flow-sensitive analysis
of large C programs. Chianina overcomes these challenges
by allowing the developer to provide only the basic algo-
rithm of an analysis and pushing the tuning/scaling work
to the underlying system. Key to the success of Chianina is
(1) an evolving graph formulation of flow sensitivity and (2)
the leverage of out-of-core, disk support to deal with memory
blowup resulting from context sensitivity. We implemented
three context- and flow-sensitive analyses on top of Chian-
ina and scaled them to large C programs like Linux (17M
LoC) on a single commodity PC.

CCS Concepts: - Computer systems organization — Spe-
cial purpose systems; Reliability; « Theory of computa-
tion — Program analysis.
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1 Introduction

Static analysis plays important roles in a wide spectrum of
applications, including bug detection, compiler optimization,
etc.. Static analysis algorithms that distinguish results based
on various program properties (e.g., calling contexts and
control flow) are more useful than those that do not. For
example, these precise algorithms can uncover many true
bugs and report less false warnings. As a result, there is
an everlasting interest in program analysis community to
develop techniques that are context-sensitive [17, 29, 36, 38,
69, 70, 74], field-sensitive [4, 36, 59, 61], flow-sensitive [23,
24, 29, 52], or path-sensitive [2, 15, 57, 82].

Although these techniques are superior to their (context,
field, flow, or path-) insensitive counterparts, their computa-
tion is much more expensive, requiring CPU and memory
resources that a single machine may not be able to offer.
Given the limited resources to them, it is hard for them to
scale to programs with large codebases such as the Linux ker-
nel. Prior work employs sophisticated treatments that tune
the level of sensitivity [39, 42, 78] or explore different forms
of sensitivity [32, 46, 58], to find sweatspots between scala-
bility, generality, and usefulness. Despite their commendable
efforts, these treatments are specific to the applications they
are developed for and complicated to implement.

This paper is a quest driven by the following question:
given an analysis algorithm — in its simplest form — can
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we run it efficiently over large programs without requiring
any sophisticated treatment from developers? Achieving this
goal possesses a number of advantages: (1) analysis develop-
ment is significantly simplified — because a developer only
writes the basic algorithm without worrying about perfor-
mance, this enables developers without much training in PL
to easily develop and experiment with analyses that used to
be accessible only to experienced experts; and (2) porting
an existing analysis for different clients is significantly sim-
plified because the analysis implementation contains only
the logic necessary to realize the basic functionality, not any
complex tuning tasks.

Insight and Problem. This paper is inspired by a line of
prior work [6, 67-69, 82] that piggybacks static analysis
on databases or large-scale systems — an analysis is imple-
mented by following only a few high-level interfaces while
scaling is delegated to the underlying system, which makes
it possible for the analysis to run on large programs by enlist-
ing the humongous computing power provided by modern
hardware. BDDBDDB [69] and Doop [6] are early examples
where an analysis is expressed as a Datalog program, which
is executed by a low-level BDD-based Datalog engine for
scalability. Graspan [67] is a graph processing system that
leverages disk support to scale CFL-reachability computa-
tion to large programs that cannot fit into the main memory.
This line of work shifts the burden of tuning from develop-
ers’ shoulders to underlying systems, enabling developers to
enjoy both the implementation simplicity and the scalability
provided by the underlying system.

Inspired by these techniques, this paper revisits the prob-
lem of scaling context- and flow-sensitive analyses from a sys-
tem perspective — that is, we aim to develop system support
for scaling the simplest versions of context- and flow-sensitive
algorithms that developers can quickly implement by follow-
ing interfaces. On the one hand, a context- and flow-sensitive
analysis is arguably one of the most expensive analysis tech-
niques because it needs to compute and maintain an analysis
solution for each distinct program point under each distinct
calling context. On the other hand, it enables strong update
and produces ultra precise information at each statement.
For example, it is known in the community [23, 37] that flow
sensitivity is critical for a C pointer analysis to prune away
spurious points-to relationships.

State of the Art. One category of prior work dealing with
context sensitivity focuses on computing and applying sym-
bolic summaries [11, 70, 72, 76], which corresponds to the
bottom-up approach in Sharir and Pnueli’s seminal work [56].
Summary-based approach, while scalable for certain cases,
still suffers from drawbacks. First, it is hard for certain anal-
yses (e.g., pointer analysis) to establish a succinct summary
for each function [2, 70]. Moreover, due to lack of explicit
representation of contexts, it cannot answer queries such
as what objects a variable points to under a particular call
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stack. Another category of work is to aggressively clone
functions [36, 59, 69, 74], which corresponds to the top-down
approach in [56]. Cloning-based techniques often use opti-
mizations such as merging, reduction, etc., to gain scalability.

Work that deals with flow sensitivity includes the classical
IFDS [52] and IDE [55] frameworks, which turn a dataflow
analysis into a graph reachability problem over an exploded
graph representation of a program. These frameworks re-
quire a dataflow transfer function to be distributive over the
meet operator (e.g., set union or intersection). However, many
problems do not have this property; pointer/alias analysis
is such an example. To scale flow-sensitive pointer analysis,
researchers employ sparse analysis [23, 24, 26] over an SSA-
based def-use graph that allows pointer information to be
propagated only between statements that define/use same
pointers.

All of these analyses, except those implemented on top of
frameworks such as IFDS and IDE, have complicated imple-
mentations. Designing such an analysis requires a full-set
solution — from the basic analysis algorithm all the way
down to special treatments for efficiency/scalability that de-
part significantly from the basic algorithm. Commonalities
often exist between treatments for different analyses, but are
hard to reuse due to the tight coupling between basic algo-
rithms and scalability treatments. Clearly, it would remain
difficult for these techniques to gain real-world popularity
until (1) their implementation complexity can be significantly
reduced and (2) general frameworks can be developed to sup-
port a wide variety of them (e.g., as analogous to how Apache
Spark provides a general data-parallel foundation for various
data analytics and machine learning tasks).

Problem Formulation. This paper presents a domain-specific
graph system dubbed Chianina, that supports easy devel-
opment of any context- and flow-sensitive analysis (with
a monotone transfer function) for C and that is powerful
enough to scale the analysis to many millions of lines of code.
Chianina makes analysis implementation simple and general
— a variety of flow-sensitive analysis (e.g., analyses of IDE,
IFDS, pointer, alias, type, value, etc.) can be developed with
hundreds lines of code. The developer only specifies dataflow
facts and transfer functions, in their basic form without any
special treatment. Tuning and scaling (e.g., merging, exploit-
ing similarities, reduction, etc.), which used to be tightly
coupled with the analysis, now happen under the hood.

A system-level solution requires simple, mechanized com-
putation over very large datasets. To this end, Chianina uses
aggressive cloning to implement context sensitivity — a
callee is cloned into each of its callers and cloning is done in
a bottom-up fashion from each leaf node on the call graph to
the main function (if it exists). Cloning streamlines the imple-
mentation of any context-sensitive analysis and makes the
analysis highly parallel due to elimination of sharing (§2.2).
Of course, aggressively cloning function bodies can blow
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up the memory usage; Chianina overcomes memory limita-
tions by leveraging out-of-core disk support. Once cloning is
done, we have a complete, context-sensitive-by-construction
program representation for graph computation.

To deal with flow sensitivity, Chianina formulates a flow-
sensitive analysis as a problem of evolving graph process-
ing [27, 48, 65, 66]. An evolving graph contains a set of
temporally-related graph snapshots, each capturing the set of
vertices and edges of the graph at a certain point of time. For
example, a social network graph such as Twitter constantly
evolves. Analytics tasks such as finding popular users (i.e.,
PageRank) are often performed on snapshots of the graph pe-
riodically and results from these tasks are analyzed to under-
stand the evolution of the graph. Two consecutive snapshots
often have large overlap on vertices and edges (i.e., spatial
and temporal locality), which can be exploited for efficiency.
This nature of evolving graph processing matches exactly the
nature of a flow-sensitive analysis — at each program point,
(the most general form of) dataflow facts for variables in
the program constitute a graph snapshot; consecutive snap-
shots, which are captured at consecutive program points,
differ only in a small number of vertices and edges due to
application of transfer function.

Our formulation makes an analysis amenable to many opti-
mization techniques (e.g., auto-parallelization, work-balancing,
locality, etc.) available in the graph system community, tun-
ing and scaling the analysis at a low level without needing
any special treatment from the developer. In fact, many of the
prior analysis-level treatments are essentially equivalent to
certain system-level optimizations (e.g., BDD-based merging
is essentially locality-aware compression). By pushing the
tuning effort down into the system, every analysis running
atop can enjoy these low-level optimizations, while in the
past each analysis only receives a small handful of special
treatments tailored for itself.

Note that our work makes no contribution to the static

analysis algorithms. Our major contribution is building a
scalable system to support a wide variety of static analyses.
By leveraging auto-parallelization and out-of-core support,
Chianina liberates developers from the fear of memory ex-
plosion, enabling straightforward implementations and a
high-degree of parallelism.
Summary of Results. To validate scalability and general-
ity, we implemented, on top of Chianina, the fully context-
and flow-sensitive (1) pointer/alias analysis, (2) null-pointer
value flow analysis, and (3) instruction cache analysis. We
analyzed five large-scale software systems: Linux, Firefox,
PostgreSQL, OpenSSL and Httpd. Our results are promising:
our alias analyses completed on the five systems (4 minutes
— 20 hours) whereas their conventional counterparts (even
without context sensitivity) quickly ran out of memory for
large programs. Chianina’s source code is publicly available
on GitHub: https://github.com/Chianina-system.
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2 Background and Overview

We present Chianina in the context of pointer/alias analysis,
which is one of the most sophisticated and expensive analy-
ses in the context- and flow-sensitive analysis family. This
section first offers a gentle introduction to the basic algo-
rithm for a context- and flow-sensitive pointer/alias analysis
for C (§2.1). Next, we provide an overview of Chianina (§2.2).

2.1 Background

Alias Analysis as Graph Reachability. A flow-insensitive
alias analysis can be easily formulated as a graph-reachability
problem. There are a number of existing formulations, of
which we use the program expression graph (PEG) [80] based
representation as an example to illustrate how Chianina
works. Note that Chianina is a general framework that does
not tie to PEG; other program representations can be used
in Chianina as well.

A PEG represents a program as a graph where each vertex
corresponds to a pointer expression (e.g., a reference variable
x, a dereference expression *x, or an address-of expression
&x). Edges are added based upon the following rules for
statements that involve pointer expressions.

Type Stmt Edge

assignment x=y x & y (1)
store *X = wx & y 2)
load X =%y x & *Y 3)
address-of x =&y x & &y 4)

Each statement allocating heap memory (e.g., x = malloc())
is treated the same way as an address-of statement — we

add an edge x & &0 where O represents the allocation
site. Moreover, dereference edges (d) are added (1) from each
pointer variable x to *x and (2) from &x to x.

Based on this graph representation, the alias analysis is
formulated as a reachability problem guided by a context-free
language L over an alphabet X (i.e., the set of {a, d} in the
context of PEG). Given a PEG whose edges are labeled with
elements of 3, we say a vertex v is L-reachable from another
vertex w if there exists a path from v to w on the graph such
that the string formed by concatenating edge labels on the
path is a member of language L (i.e., complying with L’s
grammar). A whole-program alias analysis determines all
pairs of such vertices v and w such that w is L-reachable
from v, based on the following context-free grammar:

Value alias V= (M? @) M? (a M?)* (5)

Memory alias M:==dVd 6)

The non-terminals V and M represent the value-alias and
memory-alias relations, respectively. Each PEG is a bidirec-

tional graph — for each edge x 5 y with label a, there exists

an inverse edge y 4x automatically. Two pointer expres-
sions are aliases if they are V- or M-reachable. At the heart
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of this formulation is finding paths whose edge labels ex-
hibit “balanced-parenthesis” properties (e.g., a and a): if a
pointer value goes from a variable x into a heap location h
and later flows to another variable y from a heap location
i, the two variables x and y are (pointer) aliases if the two
heap locations h and i are (memory) aliases. Given that this
formulation is well-known to the PL community, we omit a
concrete example here to save space.

Flow-Sensitivity. Flow sensitivity is often achieved using
the traditional monotone dataflow analysis framework [31,
33], which consists of the analysis domain, including opera-
tions to copy and combine domain elements, and the transfer
functions over domain elements with respect to different
types of statement in the control flow graph. In the context
of a PEG-based alias analysis, a straightforward way to add
flow sensitivity is to model each domain element as a sepa-
rate PEG and the combination operator as the union of edge
sets. Each transfer function w.nt. a program statement takes
an input PEG that captures the state of the program before
the statement, and computes an output PEG by adding and
deleting edges according to the semantics of the statement.
Next, a worklist-based algorithm iteratively applies the
transfer function for each statement along the control-flow
graph (CFG). In our setting, two elements 7 N and OUT s
are maintained for each statement s of the CFG, representing
the incoming and outgoing PEGs, respectively. Each transfer
function s computes a new PEG OUT s by adding/deleting
edges on 7 N. At each control flow join point where a node
s has multiple predecessors p € predecessors(s), the incom-
ing graph 7 N of node s is the union of all graphs OUT ", of
its predecessors. The algorithm keeps updating these graphs
until seeing the global fixed point [30]. Each transfer func-
tion is characterized as addition (i.e., GEN) or deletion (i.e.,
KILL) of a set of edges based on the aforementioned formula-
tion. The GEN set usually denotes the new assignment edge
(labeled with a) added due to a statement. The KILL set con-
tains edges that must be deleted due to updated assignments.
These deletions enable strong update.
Graph Representation of Dataflow Facts. Relating the
PEG-based formulation of a flow-sensitive pointer analysis
to the traditional monotone dataflow framework, it is easy
to see that our (semi-) lattice here is a partial-order set con-
taining all possible edges over the (finite) set of all pointer
expressions, the meet operation is the set union, and the
bottom element _L is empty set (). We use the flow-sensitive
pointer/alias analysis as an example because its lattice is
much more complicated than that of other dataflow analyses
(which is often a small set of single elements rather than a
relation). However, this does not preclude similar graph rep-
resentations of simple lattices — thinking of a single-element
set as a special relation where each element is modeled as
a pair (i.e., edge) (I, o) (o is a special placeholder element),
any dataflow fact can be modeled as a relation with a graph
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representation. Of course, for problems whose lattice is a
set of single elements, graphs for their dataflow facts have a
special structure — all edges have o as their target vertex.

Note that the PEG representation discussed above de-
scribes the basic analysis algorithm without any scalability
treatments. Naively running this algorithm will be unscal-
able. Chianina provides scalability with graph optimizations
and disk support.

2.2 Chianina Overview

Chianina consists of a C-based frontend and a language-
independent backend (which can be readily used to analyze
programs in other languages although this paper focuses on
the C language). The frontend is a Clang-based intraprocedu-
ral compiler pass that analyzes each C function to produce a
control flow graph (CFG) of the function where each vertex
of the CFG (i.e, a statement) contains an PEG representing
the dataflow fact at the statement. The initial PEG for each
statement just contains edges induced by the statement itself.
The backend is a graph engine that performs iterative com-
putation over the CFG to update PEGs associated with each
statement. The CFG generation is generic and independent of
client analysis, but the graph representing each dataflow fact
(contained in each CFG vertex) is client-specific and needs
to be provided by the developer. For our pointer/alias analy-
sis, each dataflow fact is a PEG, which will grow/shrink as
computation is performed by the backend.

Note that the developer can also customize the CFG struc-
ture generated for each function. For example, our analysis
implementation actually generates a sparse def-use graph
proposed in [23], which is more efficient than the general
CFG. For generality, we will still use term CFG in the rest of
the paper to refer to the graph representation.

Cloning for Context Sensitivity. Once the CFG for each
function is generated, Chianina relies on a pre-computed
call graph (i.e., constructed by LLVM) to perform cloning
for context sensitivity. The CFG for each function is cloned
and incorporated into that of each of its callers by creating
assignment edges to connect vertices representing formal
and actual parameters. Cloning of a CFG includes cloning of
each PEG contained in each of its vertices.

To handle recursion, we first identify the strongly con-
nected components (SCCs) over the pre-computed call graph.
Functions in each SCC are cloned twice and treated context
insensitively afterwards. In other words, functions not in any
SCC enjoy full context sensitivity while a 2-level call-chain
sensitivity is used for those in SCCs.

It is important to note that although there exists a body of
work on other types of context sensitivity, cloning is the
type most suitable for a system solution like Chianina.
This is because cloning streamlines a context-sensitive anal-
ysis by generating a humongous global CFG (GCFG) that is
context sensitive by construction. It makes it easy not only to
mechanize analysis implementations but also to make them



Chianina: An Evolving Graph System for Flow- and Context-Sensitive Analyses of Million Lines of C Code PLDI ’21, June 20-25, 2021, Virtual, Canada

Stmts  Facts

AN our, | --
intc, e, *b; S,z our,| !
AN ) our, ;ﬁpﬁ
1 intxy = &b; 7 '
2 intx z = &c;
3 intex=y; | e
4 *X = Z; g our, |
5 ints v=&e 8 !
6 wy=v; 8 our, | !

(b) Partitions d) OUT

Figure 1. (a) The example program under analysis. (b) The two partitions: each CFG vertex links to a PEG; CFG edges are
stored with their source vertices but not shown in the figure. (c)-(h) PEGs at each program point as iterative computation is
performed by the backend graph engine; inverse edges are omitted for simplicity; The “V” and “M” edges represent transitive

(&) OUT

(a) Program ) OUT, (8) OUT 5 (h) OUT

value-alias and memory-alias relationships shown earlier in Equations (5) and (6).

highly parallel as many threads can run the same analysis
code over different parts of the graph without any sharing.
As such, Chianina has near-linear thread-scalability, leading
to superior performance (see §4.1). A high degree of par-
allelism requires (1) little sharing between threads and (2)
overcoming memory limitations (because each thread needs
to maintain its own analysis state and tracking data; running
many threads thus requires large amounts of memory). Exist-
ing analysis implementations are limited by the size of main
memory and hence cannot afford representing code sepa-
rately for distinct contexts. As such, threads often have to
work on a small program graph where code under different
contexts is shared, leading to frequent synchronizations.

Evolving Graph Computation. Figure 1a shows an ex-
ample C program. The dataflow fact associated with each
statement, represented as a PEG, is initialized by the fron-
tend compiler pass as a small PEG containing only edges
induced by that statement. For space efficiency, only OUT is
maintained explicitly since 7 N for a statement can be easily
derived by taking a union of OUT of its predecessors.

As the first step, Chianina divides the GCFG into multiple
partitions. Figure 1b shows such an example with two dis-
joint partitions, containing vertices of the logical ranges [1-3]
and [4-6], respectively. For edges that cross partitions, such
as the one between statement 3 and 4 in Figure 1a, we create
two mirror vertices 3’ and 4’ and place them respectively into
the two partitions. Such edges induce dependencies between
partitions. With multiple partitions available on disk, the
Chianina scheduler picks a number of partitions at a time
and loads them into memory for parallel computation. The
number of partitions to load at each time is determined by
(1) memory availability and (2) the number of CPU cores.
Partitioning and scheduling is detailed in §3.3.

Assuming that both partitions are selected for computa-
tion in our example, Chianina loads into memory all CFG
edges that belong to Py and P; and dataflow facts (PEGs)
associated with each vertex. The computation engine runs
the iterative algorithm over the subgraph represented by
the partition in a Bulk Synchronous Parallel (BSP) style [44].

For our example, Chianina uses two threads to run the it-
erative computation over the two partitions. The iterative
algorithm, which is the same as the traditional dataflow algo-
rithm, keeps updating PEGs until a fixed point is reached. For
example, when the computation reaches the mirror vertex 4
in Py, it stops because vertex 4 is not present in the partition
and there is no other path to continue the algorithm.

Before Chianina writes all updated PEGs back to disk for
Py, it adds statement 4 into the active list of P; via a message,
together with the new PEG for this statement computed
in Py. When the current computation for P; finishes, the
scheduler identifies that P; has an active vertex (meaning
an updated PEG for the vertex has been computed from
another partition). As a result, it selects P; for computation
again in the next round. This next round of computation
for P; is incremental — it starts at statement 4 (known as
frontier in the terminology of graph processing) and only
updates subsequent PEGs that are affected by the change. The
repetitive process stops until a global fixed point is seen — no
partition has any active vertices to process. In our example,
the final OUT PEGs for the statements 1-6 are shown in
Figure 1c-1h, respectively.

Alias Computation. There are two choices as to how to
compute an alias solution (based on Equation 5 and 6) on each
PEG. The first choice is that alias computation is performed
on each PEG after the iterative algorithm finishes globally.
While the approach simplifies the dataflow transfer function
(which only needs to update direct assignment (i.e., a-) edges
during iterative computation), we are not able to perform
strong update (i.e., edge deletion) at each update because the
pointer/alias information is unknown when transfer func-
tions are applied. The second choice is we compute transitive
edges on each PEG on the fly as the PEG is updated. This ap-
proach enables strong updates because the alias information
is available at each update, at a cost of complicating transfer
functions — now each transfer function has to additionally
take care of addition/deletion of transitive (i.e., V- and M-)
edges besides assignment (a-) edges. Due to the importance
of strong update in a flow-sensitive analysis, Chianina adopts
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the second approach, which computes and updates transitive
edges on the fly.

To illustrate, consider statement 6 in Figure 1a where
*y points to a singleton memory location. A strong update
is performed there — the effect of this is to kill, from the
PEG OUT 5, (1) all direct assignment edges going to *y and
expressions that must alias =y, as well as (2) all transitive
edges induced by these assignment edges heretofore. In our
example, there exists no direct assignment edge to *y, but
our must-alias analysis determines that *y and *x must alias.

As such, the direct assignment edge z 2, xx as well as the

induced edges z s wx and &c <% #x are deleted. Details
about strong update and edge deletion can be found in §3.5.

Stmts  Facts

3 — g

81+ 52 %

(@) g1 (b) g;

(c) Partition 1 after compression

Figure 2. Two frequent subgraphs mined over the PEGs in
Partition P, with frequency > 2 and size > 3: (a) g; whose
frequency = 4 and size = 7; (b) g, whose frequency = 2 and
size = 4; (c) concise representation of P; based on ¢g; and g,.

Exploiting Locality between Consecutive PEGs. One clear
advantage of our evolving graph formulation is that we can
exploit similarities between PEGs for increased efficiency.
In particular, Chianina extracts frequent common subgraphs
(FCS) among PEGs and composes each PEG by assembling ex-
isting FCSes instead of duplicating these common edges and
vertices in each PEG. In our example, P; consists of 4 PEGs.
We invoke an off-the-shelf itemset miner Eclat [5] to discover
the frequent edge-sets across these PEGs. Figure 2a and 2b
depict two frequent subgraphs (g; and g,), mined by using 2
as the frequency threshold and 3 as the size threshold. These
two thresholds determine, respectively, the minimum occur-
rences of a subgraph and the minimum number of edges
for the subgraph to be considered as a FCS. Next, Chianina
de-duplicates PEGs by replacing each instance of g; and/or g,
in each PEG with a reference. As shown in Figure 2c, OUT 3
is now represented as a reference to g; and OUT 4 as two
references to g; and g;. OUT 5 and OUT ¢ are stored as a
hybrid set of g; and g, references together with residue edges
that do not belong to any FCS. Details of this algorithm is
discussed in §3.4.

Dynamic Edge Pruning. Note that the pre-computed call
graph may contain spurious calls due to the imprecision of
the (inexpensive) points-to analysis used. To improve analy-
sis precision, Chianina enables dynamic pruning of edges if
our client is a pointer or alias analysis. Edge pruning can be
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easily done by checking the validity for edges connecting ac-
tual and formal parameters in the cloned control flow graph.
The precise points-to set of the target variable computed by
our system is used on the fly to determine whether such an
edge is spurious. A spurious edge would not be traversed and
hence everything reachable from it would not be traversed.
A potential limitation is that it can be hard to pre-compute
a proper call graph for certain dynamic languages such as
JavaScript [19, 34, 43, 60]. To support such languages, future
work can extend Chianina to explore call edges on-the-fly as
part of the computation model.

Chianina is “Soundy”. Like a typical static analysis [41],
Chianina provides a sound solution if the program does not
perform type casts between pointers and values of other
types, and pointer arithmetic. Unsoundness can result from
these language issues.

3 Chianina Design and Implementation

We architect Chianina as an disk-based, out-of-core graph
system running on a single machine — since static analysis
is our application domain, the desired system should run on
developers’ working machines, providing support for their
daily development tasks. This section first discusses how a
developer can use Chianina and then its design.

3.1 Programming Model

Similarly to the monotone framework [31, 33], implementing
a client analysis on Chianina requires two tasks. First, the
developer needs to create a subclass of an interface called
DataflowFactGraph to specify her own graph implementa-
tion for dataflow facts. In the case of pointer/alias analysis,
this subclass is PEG. Second, she implements two functions
combine and transfer, which are used to merge dataflow
facts at the control join points and propagate dataflow facts
at statements, respectively.

As discussed earlier in §2.2, the frontend is a compiler pass

that generates, by default, the CFG for each function, and
each vertex of the CFG references another graph represent-
ing the dataflow fact at the vertex. The developer can also
customize the format of the CFG. For our pointer analysis,
we actually generates a more efficient sparse def-use graph
proposed in [23].
Applicability. Chianina is a general framework supporting
all context- and flow-sensitive analyses. In this paper, we
implemented three particular analyses, pointer/alias anal-
ysis, null-value flow analysis, and cache-analysis as proof-
of-concept examples. Flow-sensitive pointer/alias analysis
serves as the foundation for virtually all static analyses. The
null-value flow analysis is a representative of IFDS analy-
ses (including value flow analysis, taint analysis, etc.) while
cache analysis is an example of non-IFDS dataflow analysis.

Performance-wise, the heavier an analysis, the more bene-
fit Chianina provides. For example, a fully context-sensitive
analysis benefits the most because it can hardly be done
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on a commodity PC without out-of-core support. On the
other hand, running an analysis that does not require much
memory on Chianina may incur extra overheads.

3.2 Two-Level Parallel Computation

Parallel processing is key to our performance. It is enabled
by cloning, which makes threading straightforward by phys-
ically separating CFGs under different contexts and elimi-
nating most of the sharing between threads.

Algorithm 1 provides Chianina’s iterative computation al-
gorithm. Chianina exploits parallelism at two levels: (1) bulk
synchronous parallel computation (BSP) at the partition level
(Line 7) and (2) asynchronous computation at the CFG vertex
level (Line 20). The loop between Line 5 and Line 16 describes
a typical BSP style computation — partitions scheduled to
process are loaded and processed completely in parallel dur-
ing each superstep (i.e., loop iteration). Each partition P;
has three data structures: (1) F; — the active CFG vertices
that form the frontier for the partition, (2) G; — the set of
dataflow fact graphs, and (3) Q; — the message queue. In the
beginning, ¥; contains all vertices in the partition (Line 3).

The partition-level BSP computation is done by the loop
from Line 7-10. Chianina loads the active vertices in #; and
the dataflow fact graphs G; of each scheduled partition P;
into memory (Line 8), processes the partition (Line 9), and
finds and exploits frequent common subgraphs (Line 10).

Function ProcEssPARTITION describes the logic of pro-
cessing of each partition that exploits parallelism at the (sec-
ond) CFG-vertex level. Chianina iterates, in parallel, over
the active CFG vertices in 77, applying the two user-defined
functions ComBINE and TRANSFER on each vertex. The alias
computation logic is done in TRANSFER. If the resulting PEG
Temp, is not isomorphic to the previously computed OUT
(Line 24), we record k into changeset and add k’s CFG suc-
cessors into the frontier set #;. It is clear that this parallel
loop performs asynchronous computation — whenever a new
active vertex is detected, it is added into ¥; and immediately
processed by a thread without any synchronization. Locks
(omitted here) are used to guarantee data race freedom — no
vertex will be processed simultaneously by multiple threads.

Asynchronous computation performs faster updates than
synchronous computation at the cost of increased scheduling
complexity. At the vertex level, since all CFG vertices of a
partition are already in memory, asynchronous parallelism
is a better fit as long as we can guarantee the data race
freedom and atomicity of the transfer function execution for
each vertex. However, at the partition level, our scheduler
determines which partitions to load and run based on a
set of already complex criteria, and hence, using BSP-style
parallelism significantly simplifies our scheduler design.

Finally, the loop at Line 29 iterates over all CFG vertices
whose dataflow facts have changed to find mirror vertices
such as statement 4 in Figure 1a. In particular, we find the
partition #; that contains each mirror vertex s and puts
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Algorithm 1: Two-level Parallel Computation.
1 V « {all vertices in the cloned GCFG}
2 G « {all initialized dataflow facts}

3 [Po:{F0, Go)s - .., Pi{Fi, Gi), . ..] « PaRTITION(V, G)

4 repeat

5 scheduled <« SCHEDULE()

6 /*Level 1: BSP computation at partition level*/
7 for Partition P; € scheduled do in parallel

8 (¥i, Gi) <Loap(P;)

9 ProcessPartition (%3, Gi)

10 ComPRESSFCS(G;)

1 for Each partition P; do in parallel

12 if Q; # 0 then F; «— Q;

13 if P; € scheduled then /*for loaded partitions™/
14 Write G;, F; back to disk

15 L Delete P; from memory

16 until Vi, 73 = 0

17 Procedure ProcessPartition(%;, Gi)

18 changeset < ()

19 /*Level 2: Async. dataflow computation at stmt level*/
20 for each CFG vertexk € ¥; do in parallel

21 Remove k from F;

22 I N < ComBINE(k)

23 Temp;. < TRANSFER(Z Ng)

24 if — IslsomorpHIC(Tempy, OUT ) then
25 OUT . « Tempy,

26 changeset « changeset U {k}

27 Fi < FiU Successor(k) \Mirror

28 /* Process CFG vertices with changed dataflow facts*/
29 foreach CFG vertex k € changeset do

30 foreach s € Successor(k) do
31 if s is a mirror vertex then
32 L Qj<—{<S,Oﬂ‘7-k>}UQj,Wheres€Pj

its dataflow fact graph OUT  into its message queue Q;
(Line 32). Later, when all scheduled partitions are done with
their processing (Line 11), the synchronization phase starts
(Line 11 - Line 15), updating each partition $;’s active vertex
set 7; with the messages in Q; (received from the processing
of other partitions). At the end of each superstep, the updated
G and ¥; are written back to disk and removed from memory
(Line 13) if partition P; is currently in memory.

3.3 Partitioning and Scheduling

Partitioning. Chianina uses the vertex-centric edge-cut
strategy [44] for effective partitioning, which assigns CFG
vertices to partitions and cuts certain edges across partitions.
Specifically, vertices of the global control flow graph are
firstly divided into disjoint sets. A partition is then created
by assigning all the edges whose source or destination vertex
belongs to this set. There often exist edges of the formx — y
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that cross two partitions P; and P, (e.g., x € P; and y € P,).
Chianina creates mirror vertices x” and y’, and places the
edges x — y’ and x” — y into P; and P,, respectively.

For each partition, its space is consumed by its CFG edges
as well as dataflow fact graphs associated with its vertices
(including mirror vertices). Dataflow fact graphs are main-
tained in a separate storage space from CFG edges. As a
result of this partitioning scheme, for any vertex (except for
mirrors) within a partition, Chianina can apply the transfer
function on it by accessing and updating its incoming and
outgoing dataflow facts. For each vertex whose successor is
a mirror vertex, when its associated dataflow fact is updated,
the mirror vertex is marked as active. A message containing
the vertex ID and its updated dataflow fact graph is sent to
its containing partition, as shown in Line 32 in Algorithm 1.

How to split GCFG nodes into disjoint sets determines
the effectiveness of partitioning, which has further impact
on the overall performance. Traditional graph partitioning
schemes [8] minimize the number of cuts across partitions,
with the goal to save communication costs. However, those
schemes do not consider the unique characteristics of our
(flow-sensitive analysis) workload. For example, the com-
putation performed by a flow-sensitive analysis follows the
structure of the CFG. It is well-known in the program anal-
ysis community that the convergence speed of an iterative
analysis is significantly affected by the order in which CFG
vertices are visited [13]. Intuitively, desirable performance
can be achieved if all predecessors of a CFG vertex have
been processed before the vertex itself, because the transfer
function can just use the latest updates from its predecessors.

Based on the insight, we propose a balanced, topology-
based partitioning mechanism. Given the number of par-
titions (specified by the user as a parameter) and the total
number of vertices in the GCFG, we first calculate the average
number of vertices for each partition. Next, the partitioner
traverses the GCFG in a topological order (a.k.a. reverse post-
order of DFS traversal), starting from each entry vertex of
the GCFG. The traversal continues until the number of ver-
tices visited matches (roughly) the average number. Once a
partition is generated, we repeat the same process by using
another unvisited vertex as the root. Eventually, all partitions
are produced with balanced sets of vertices that also follow
the traversal order.

This algorithm works well for CFGs without cycles. To
deal with cycles (induced by loops), we compute strongly con-
nected components (SCCs for brevity) over the GCFG. The
nodes within a SCC are connected to each other. As a result,
the control flow graph with cycles becomes an acyclic graph
with SCCs. The above algorithm can then be conducted over
the acyclic graph to produce balanced partitions.
Scheduling. Similarly to the partitioning scheme, the sched-
uler also needs to take into account topology when deciding
which partitions to load and process. Due to dependencies
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induced by inter-partition edges (say x — y), one major
goal of the scheduler is to schedule the processing of the
partition containing x before that of the partition contain-
ing y, so that communication costs can be reduced and the
algorithm can converge quickly. To this end, we devise a
priority queue based scheduling mechanism. We assign each
partition a priority, which is a function of (1) the number
of its active vertices (i.e., the size of ¥;) and (2) whether or
not the partition is currently in memory. The more active
vertices a partition has, the more updates can be generated
during computation. Furthermore, if a partition is already in
memory, processing it again in the next superstep can save
the large cost of a memory-disk round trip.

Our scheduler selects a number N of partitions with the
highest priority. The value of N is determined by (1) the
amount of memory each partition is estimated to consume,
(2) the total amount of available memory, and (3) the number
of CPU cores. Our goal is to fully utilize the memory and
CPU resources without creating extra stress.

3.4 FCS-Based De-Duplication

Although Chianina divides the input into many small parti-
tions, partitions are still space-consuming especially because
each CFG vertex carries a dataflow fact graph. These graphs
exhibit both temporal and spatial locality — graphs belong-
ing to connected CFG vertices are processed contiguously
and have large overlap. To exploit such overlaps, we propose
a frequent-itemset-based approach to find frequent common
subgraphs and perform de-duplication by maintaining only
one instance for each FCS and replacing other instances
with references. De-duplication (Line 10 in Algorithm 1) is
conducted before writing dataflow facts back to disk. In par-
ticular, our algorithm models each dataflow fact graph (e.g.,
PEG) as an itemset where each item is an edge. The graph
miner discovers frequent itemsets, each of which occurs at
least N times (i.e., N is a threshold) among dataflow fact
graphs in the same partition.

Once these FCSes are mined, we check each dataflow fact
graph and see if it contains any FCSes. If it does, we replace
each instance of each FCS with a reference, as illustrated in
Figure 2c. Given multiple FCSes, there may exist multiple
ways to conduct the placement. Given that the benefits of de-
duplication are determined primarily by an FCSes’ frequency
and size. The higher these numbers are, the more benefit
can be reaped. As such, Chianina assigns each FCS mined
a priority score, computed as the product of its frequency
and size. A greedy algorithm is then used to apply candidate
FCSes in the descending order of their priority.

In Chianina, we leverage an off-the-shelf frequent itemset
mining tool Eclat [5] to uncover FCSes. Although leveraging
these FCSes significantly reduces the size of dataflow facts,
it inevitably introduces overhead. With the growth in both
the number and size of dataflow facts, the mining cost is
non-trivial — it can take several minutes to run each mining
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task for large partitions in our experiments. To reduce the
overhead, we can focus only on very frequent and/or very
large FCSes by raising the mining thresholds. Moreover, we
randomly sample the dataflow fact graphs in each partition,
selecting no more than 10K graphs as our mining dataset.
These two approaches collectively bring the overhead down
to an acceptable percentage (i.e., less than 5%).

3.5 Strong Update and Edge Deletion

As stated earlier, the dataflow transfer function transfer
needs to be provided by the developer. For pointer/alias
analysis, the transfer function not only applies the logic
of GEN and KILL, but also discovers transitive edges on
each PEG to compute an alias solution. The logic of GEN
is straightforward — Rule 1-4 in §2.1 clearly describes how
new edges should be added. The algorithm of computing the
alias solution from a PEG is based on CFL-reachability [35,
59] (shown in Equation 5 and 6) and well-known to the
community [80]. Hence, we do not include this algorithm
in the paper. The logic of KILL (i.e., edge deletion) involves
strong update, which is crucial for achieving high precision
of flow-sensitive analysis [14, 37, 62]. Since this logic is much
trickier than that for edge addition, here we focus on the
discussion of edge deletion.

Condition for Strong Update. Strong update can be en-
abled on pointer expression x such that x is guaranteed to
refer to a single memory location (i.e., singleton) throughout
the execution. We follow [37] to identify our singleton set.
The detailed algorithm is known and omitted from the paper
to save space. Informally, a local or global variable is single-
ton except for the following cases: (1) dynamically allocated
variables, where one abstract variable may correspond to
multiple memory locations during execution; (2) local vari-
ables of recursive procedures (either directly or transitively
recursive), where each variable may have multiple instances
on the stack; and (3) array variables where usually only one
element is updated.

Edges to Delete. When such an expression (e.g., *p = v) is
defined, strong update may be performed because the value
contained in the location ! pointed-to by p changes. This
removes the value-aliasing (Equation 5) between #p and any
pointer variables that previously receive their values from
the location. On the PEG, two kinds of edges need be deleted:
all (direct and transitive) edges (a) going into and (b) coming
out of any pointer expressions referring to [. For (a), there
are four sub-cases: (a.1) direct assignment edges going to
expression #p, added due to a previous statement such as
xp = x — such a relationship no longer holds; (a.2) direct
assignment edges going to expression *q such that p and
q must alias. p and q must alias if they both have only one
and the same memory location o in their points-to set and
o is a singleton memory location; (a.3) transitive (V- or M-)
edges going to expression *p — these edges represent aliasing
relationships between the old value inside #p and another
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Table 1. Characteristics of subject programs.

Subject ‘ Version ‘ #LoC ‘ #Inlines ‘ #V-CFG ‘ #E-CFG ‘ Description
Linux 5.2 | 17.5M 48.5M | 443.5M | 668.7M oS
Firefox 67.0 | 7.9M 22.2M | 283.5M | 504.9M | web browser
PostgreSQL 122 | 1.0M 5.4M 39.3M 80.4M database
OpenSSL 1.1.1 | 519K 4.5M 49.4M 99.3M protocol
Httpd 2439 | 196K 293K 2.6M 3.8M web server

pointer expression and thus need to be deleted; and (a.4)
transitive (V- or M-) edges going to expression *q such that
p and q must alias; these edges need to be deleted for similar
reasons. We need to remove not only edges going into *p,
but also edges coming out of #p. For example, a direct edge
coming out of #p due to a previous statement v = *p needs
to be deleted, since v is not longer related to *p which now
contains a different value. Similarly to (a), four sub-cases
exist in (b), which need to be deleted as well.

4 FEvaluation

Our evaluation focuses on the following three questions:

e Q1: How does Chianina perform? How does it compare
to other analysis implementations? (§4.1)

e Q2: How effective are our de-duplication, partitioning,
and scheduling? (§4.2)

e Q3: Is the extra precision gained from context- and
flow-sensitivity useful in practice? (§4.3)

We selected five large software systems including the
Linux kernel, Firefox, PostgreSQL, OpenSSL, and Apache
Httpd as our analysis subjects. We implemented three context-
and flow-sensitive analyses on top of Chianina: a point-
er/alias analysis discussed in the paper as an example, a
null-value flow analysis with context-sensitive heap track-
ing, as well as an instruction cache analysis with 512 cache
lines and LRU replacement policy. The null-value analysis
was conducted in parallel with the pointer/alias analysis —
because pointer information is needed to track flows into/out
of the heap, this analysis implements its dataflow fact graph
by augmenting the PEG representation from the pointer/alias
analysis with additional types of vertices representing null
or non-null values. For the cache analysis, we adopted the
same abstract cache model as [71], which represents a pro-
gram as a set of instructions and their associated ages. The
analysis computes a cache model at each program point and
determines whether the instruction at the point leads to a
cache hit or miss.

The Chianina-based implementation for the pointer/alias
analysis has 553 lines of C++ code, most of which are on the
implementation of CFL-reachability and strong update. In
contrast, a context-, flow-insensitive pointer analysis [37]
(that supports strong update) has 2499 lines of C++ code,
while the staged context-insensitive, flow-sensitive analysis
for C [24] has 10,649 lines. The implementations for other
two analyses (null-value flow and cache analysis) have 708
and 436 lines of C++ code, respectively.
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Table 2. Chianina performance: columns shown are numbers of partitions (#Part.), numbers of iterations needed to converge
(#Ite.), total numbers of vertices (#V-PEGs) and edges (#E-PEGs) in the GCFG for alias and null-value flow analysis, total
numbers of cache states (#States) for cache analysis, and analysis times (Time), respectively.

Alias analysis

NULL value flow analysis with alias tracking

Cache analysis

Subject #Part. ‘ #lte. ‘ #V-PEGs ‘ #E-PEGs ‘ Time #Part. ‘ #lte. ‘ #V-PEGs ‘ #E-PEGs ‘ Time #Part. ‘ #lte. ‘ #States ‘ Time
Linux 287 | 339 59B| 126.1B | 20.9hrs 290 | 355 6.1B | 126.2B | 22.6hrs 232 | 4364 | 18.9B | 24.4hrs
Firefox 150 | 183 3.4B 84.2B | 1l.4hrs 150 | 193 3.8B 85.0B | 12.5hrs 158 | 1949 |  9.6B | 10.6hrs
PostgreSQL 34| 43| 4821M 13.7B | 1.3hrs 42| 45| 513.6M 13.7B |  1.5hrs 30| 808 | 1.3B| 2.4hrs
OpenSSL 12| 21| 4421M 5.7B | 55.3mins 12| 22| 468.1M 5.7B | 59.8mins 31| 582| 1.1B| 2.7hrs
Httpd 1 1| 376M| 585.4M | 4.7mins 1 1] 412M| 589.3M | 5.0mins 2| 17| 110.2M | 7.3mins
As discussed earlier, context sensitivity is achieved by o
. . . . 120
aggressive function cloning. Table 1 reports the static char- 100
acteristics of each subject including its version information, e
the number of lines of code excluding whitespace and com- 60
ments (#LoC), the number of functions inlined (#Inlines), the 0
numbers of CFG vertices (#V-CFG) and edges (#E-CFG) in 20
the global CFG after cloning, and the type description. °
1 2 4 8

All the experiments were conducted on a commodity desk-
top with an Intel Xeon W-2145 8-Core CPU, 16GB memory,
and 1T SSD, running Ubuntu 16.04. This resource profile is
consistent with that of developers’ working machines.

4.1 Chianina Performance

Table 2 reports, for the three client analyses, a variety of
performance statistics including numbers of partitions gen-
erated, numbers of iterations (supersteps) needed for con-
vergence, total numbers of vertices and edges in all PEGs
for alias and null value flow analysis, total number of cache
states (i.e., pair of instruction and its age) in the cache models
for cache analysis, and total computation times.

The numbers of partitions for large programs such as
Linux and Firefox are greater than 100. It would not have
been possible to scale the analysis to such large programs
without our disk support. Overall, it took the three analyses
20.9, 22.6, and 24.4 hours to process the entire Linux kernel
in a context- and flow-sensitive fashion. These analyses con-
verged much faster for smaller programs such as Httpd (in
a few minutes), which can be analyzed as only one or two
partitions.
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Figure 3. Performance breakdown of alias analysis: for each
subject, shown bottom-up are fractions of preprocessing, I/0,
BSP computation, and FCS de-duplication.

Figure 4. Alias analysis on Linux: time (in hours) with vary-
ing numbers of threads.

Performance Breakdown. To better understand the perfor-
mance, we further broke down the alias analysis execution
into four phases - preprocessing (i.e., partitioning), disk I/O
(i.e.,, reading/writing partitions), (in-memory) BSP compu-
tation, and FCS de-duplication — and measured the time
spent on each phase. Figure 3 depicts the time breakdown.
As shown, the in-memory BSP computation dominates the
execution. For example, it takes around or more than 80% of
the time for all five programs, indicating that these analyses
are compute-intensive. This is expected because each iter-
ation updates hundreds of millions of PEGs, each of which
can have thousands of edges. This observation suggests that
more CPU resources (e.g., cores, GPUs, or cluster) should be
enlisted to further improve performance. Time spent on I/O
varies across programs; for Linux, it takes around 6% of the
total execution time. This fraction is reasonably small due
to use of modern SSDs that have much higher bandwidth
and lower read/write latency than HDDs. The cost of FCS
de-duplication is constantly lower than 4%, thanks to the
optimizations discussed in §3.4.

Parallel Scalability. To understand Chianina’s (thread)
scalability, we measured the alias analysis time on Linux for
varying numbers of threads used in the system. As shown
in Figure 4, Chianina scales almost linearly with the num-
ber of threads because cloning eliminates most of the data
sharing between threads. In contrast, most existing analyses
are single-threaded. Even for multi-threaded implementa-
tions [3, 53], it is hard for them to achieve such a speedup
without physical separation of functions under different con-
texts (enabled by cloning).

Existing Analyses. The goal of this comparison is to un-
derstand if our context- and flow-sensitive alias analysis is
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Table 3. Performance comparison for context-insensitive,
flow-sensitive pointer analysis; OOM indicates out-of-
memory; - indicates runtime error.

| Linux Firefox PostgreSQL OpenSSL Httpd

Reference[24] | OOM  OOM 14.7mins OOM 34.7s
SVF[63] - OOM 56.1s OOM  83s
Chianina 1.9hrs  4.2hrs 3.9mins 25.7mins  11.5s

more scalable and efficient than state-of-the-art analysis im-
plementations. However, we could not find any available
implementation of the same analysis for C. Yu et al. [77] and
Kahlon [29] reported the context- and flow-sensitive pointer
analyses, but neither of the implementations is publicly avail-
able. Hardekopf et al. [23, 24] and Lhotak and Chung [37]
have both implemented the variations of flow-sensitive but
context-insensitive pointer analysis for C. Although their
implementations are available online, they were developed
a long time ago for deprecated versions of LLVM, which
are incompatible with the subject programs and our OS.
Doop [6] is a context-sensitive analysis framework, but it
only supports Java and does not have a C frontend. The
only available tool we can run is SVF [63], a demand-driven
flow-sensitive analysis tool, which does not support whole-
program context-sensitive pointer analysis.

Since no existing implementation for both context- and
flow-sensitive pointer/alias analysis was available for direct
comparison, we implemented by ourselves the staged flow-
sensitive pointer/alias analysis, by faithfully following the
algorithm described in [24]. The original analysis in [24]
does not consider context sensitivity, and hence, we added
context sensitivity to our implementation by letting the anal-
ysis take as input the cloned GCFG, which is automatically
context sensitive (we cannot do this to SVF due to different
implementation bases). We compared Chianina with this
version in a fully context-sensitive, flow-sensitive manner.
This reference implementation failed to analyze most pro-
grams except for Httpd in our benchmark set — it ran out
of memory quickly in a few seconds. This is not surprising
as holding the GCFG for large programs requires a huge
amount of memory. For Httpd, the reference implementation
(single-threaded) takes more than 20 minutes and is much
slower than Chianina. This is due to the high parallelism
degree in Chianina, which is, in turn, enabled by cloning and
our out-of-core support.

Next, we disabled context sensitivity in Chianina, enabling
direct comparisons between Chianina, SVF, and the refer-
ence implementation of [24]. In this setting, all the three
tools ran context-insensitive, flow-sensitive pointer analysis.
Table 3 reports the analysis times the three tools took to
analyze the five programs. Without context sensitivity, the
reference implementation still failed to analyze Linux, Fire-
Fox and OpenSSL due to out-of-memory errors. SVF ran out
of memory for Firefox and OpenSSL, and crashed on Linux.
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For Httpd and PostgreSQL, all the tools successfully ana-
lyzed them. Chianina outperformed [24] thanks to parallel
processing. For PostgreSQL, however, SVF achieved better
performance than Chianina. This is easy to understand —
many optimizations Chianina performs for scalability pur-
poses (e.g., preprocessing, scheduling, disk I/O, and FCS de-
duplication) take time to run; if scalability is not a concern,
these optimizations would only add overhead.
Precision and Correctness Validation. We first compared
the precision of flow-sensitivity among the three analyses in
Table 3 (Chianina is in its context-insensitive version) using
the alias-set metric. Particularly, we examined each pointer
dereference expression in load and store statements of the
program, and measured the average sizes of their alias sets
weighted by the number of times each variable is derefer-
enced — the smaller the better. On Httpd and PostgreSQL, for
which these three flow-sensitive analyses scale, they achieve
almost the same average sizes, with a less than 0.5% variation,
indirectly validating the correctness of our implementation.
We further verified Chianina’s correctness by testing it
over a micro-benchmark set PTABen [1] in both context- and
flow-sensitive settings. Our analysis passed all assertions.
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4.2 De-Duplication, Partitioning and Scheduling
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Figure 5. Percentages in numbers of PEG edges, numbers of
iterations (i.e., supersteps) needed, and total time spent for
Chianina + FCS, using Chianina - FCS as the baseline (100%).

To understand the performance impact of de-duplication,
we compared two versions of Chianina, one with FCS de-
duplication enabled (Chianina + FCS) and another without
(Chianina - FCS). We ran these two versions under the same
configuration and inputs for alias analysis, and collected the
relevant execution statistics. Figure 5 depicts the numbers of
PEG edges, numbers of iterations needed for convergence,
and total time spent for Chianina + FCS, as a fraction of
those of Chianina - FCS (i.e., the baseline). Note that since
Httpd is a small program with only one single partition, we
excluded it from the set for the FCS evaluation. As shown,
de-duplication significantly improved all of these aspects.
For example, the overall time is reduced by more than 30%
on average when FCS de-duplication is enabled.

To understand the efficacy of our partitioning and sched-
uling, we collected the statistics for alias analysis in a similar
manner by running two versions of Chianina, one with our
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Figure 6. Percentages in numbers of iterations and total time
for Chianina + PS using Chianina - PS as baseline (100%);
Httpd is not considered here as it has one single partition.

partitioning and scheduling algorithm (Chianina + PS) and
a second that uses default algorithms (Chianina - PS) — in
particular, in the second version, we partitioned the GCFG
using the min-cut algorithm [44] and scheduled random par-
titions (with active vertices) for processing in each superstep.
We use Chianina - PS as the baseline and report the statistics
for Chianina + PS as a fraction in relation to the baseline in
Figure 6. The statistics considered include numbers of itera-
tions needed for convergence, and time spent. As shown, our
partitioning and scheduling algorithms are effective — they
significantly improve the efficiency in all these aspects. For
example, total running time is reduced by more than 40% by
employing our structure-aware partitioning and scheduling.

Table 4. Sizes of alias sets of pointer expressions involved in
load and store statements under three different pointer/alias
analyses — our context-sensitive and flow-sensitive (CF),
context-insensitive and flow-sensitive (F), context-sensitive
and flow-insensitive (C).

Load Store
Subject CF| F | C CF| F | C
Linux 0.24 | 0.54 | 7.18 0.31 | 0.95 | 5.54
Firefox 0.29 | 0.70 | 5.08 0.14 | 1.51 | 3.80
PostgreSQL  0.44 | 1.54 | 14.0 111 | 157 | 18.1
OpenSSL 0.77 | 4.06 | 10.38 0.08 | 0.25 | 0.61
Httpd 0.38 | 1.46 | 11.72 1.97 | 1.97 | 10.80

4.3 Usefulness of Gained Precision

To understand the gained accuracy of our context- and flow-
sensitive alias analysis, we used the same alias-set metric

to compare precision among three variants of Chianina—

the full context- and flow-sensitive analysis (CF), a context-
insensitive, flow-sensitive analysis (F), and a context-sensitive,
flow-insensitive analysis (C). Table 4 reports the average sizes

of alias sets for each analysis. Clearly, our flow- and context-
sensitive analysis has the highest precision. The context-
sensitive and flow-insensitive analysis (C) has the largest

number (i.e., lowest precision). This observation demon-
strates that flow-sensitivity is more important than context-
sensitivity for large C programs because analysis precision

loses significantly if strong update is disabled.
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Table 5. Checkers implemented including the dataflow
analysis-based null pointer dereference (DF-Null), use-after-
free (DF-UAF), double free (DF-DF) and the belief analysis-
based null pointer dereference (BA-Null), their numbers of
bugs reported by the baseline checkers augmented with our
context- and flow-insensitive analysis (base+CF), context-
sensitive and flow-insensitive (base+C), context-insensitive
and flow-sensitive (base+F) in the Linux kernel 5.2.

Checker | DF-Null DF-UAF DF-DF BA-Null | total

base+CF 196 647 193 620 1656
base+C 217 1144 212 723 2296
base+F 211 805 200 663 1879

To measure the real-world usefulness of the increased pre-
cision, we implemented four static checkers: (1) a dataflow-
based null pointer dereference checker, (2) a use-after-free
checker, (3) a double-free checker, and (4) a belief analysis
based null pointer dereference checker. The first three check-
ers were commonly used in the program analysis commu-
nity [52, 67] and the last checker was used in the classical bug
study done by Engler et al. [7, 18]. Note that the original ver-
sions of these checkers do not use any pointer information;
they only use heuristics. To understand the effectiveness of
our flow-sensitive alias analysis, we augmented these check-
ers with alias information provided by three analyses — our
context- and flow-sensitive analysis (CF), context-sensitive,
flow-insensitive analysis (C), and context-insensitive and
flow-sensitive analysis (F). We next compared the numbers
of warnings generated by these four checkers when aug-
mented with each of these three pieces of alias information.
The fewer warnings generates, the better (i.e., more false pos-
itives are pruned). Table 5 reports these numbers — a large
number of false warnings are pruned by enabling context
and flow sensitivity. Similarly to an earlier observation, flow
sensitivity seems more important than context sensitivity as
well in pruning false warnings.

5 Related Work

Evolving Graph Systems. Although we formulate flow-
sensitive analysis as an evolving graph processing problem,
the nature of the problem differs significantly from that dealt
with in the graph system community [22, 27, 45, 65]. Sys-
tem design depends on (1) data and (2) computation. On
the data side, each vertex of the graph in Chianina is asso-
ciated with a separate dataflow graph. This kind of graphs
differs significantly from the typical evolving graphs where
no semantic dependence exists between vertices. On the
computation side, the computation in Chianina is defined by
vertex types — each vertex (statement) performs arbitrary
edge addition/deletion based on the statement’s semantics
and client type. This computation model differs from the
computation in existing systems, which is driven solely by
the graph algorithm (e.g., PageRank) and has nothing to do
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with the graph itself. In summary, the semantics of program
analysis makes Chianina distinctive and none of existing
systems are able to perform this type of computation.

Flow-Sensitive Analyses. A common optimization of scal-
ing flow-sensitive analysis is to perform a sparse analysis
preventing redundant values from being propagated [10, 51].
Hind and Pioli [26] adopted the sparse evaluation graph
[12] which eliminates pointer-free statements from the CFG.
Hardekopf and Lin [23, 24] proposed to utilize a semi-sparse
representation by connecting variable definitions with their
uses, allowing dataflow facts to be propagated only to the
locations needing the variable. Sui and Xue implemented
SVF [63], which constructs the sparse value-flow graph and
performs the pointer analysis in an iterative manner. Other
techniques such as [25, 64] use similar ideas to scale flow-
sensitive analysis. To accelerate an interprocedural dataflow
analysis, a few techniques attempt to parallelize its compu-
tation. Rodriguez et al. [53] proposed an actor-model-based
parallel algorithm for IFDS problems. Garbervetsky et al. [20]
developed a distributed worklist algorithm using the actor
model to implement a call-graph analysis. Albarghouthi et al.
[3] parallelize a top-down interprocedural analysis using a
MapReduce-like computation model. Several studies [49, 79]
attempt to parallelize flow-sensitive pointer analysis. Since
they all require large amounts of memory, there is no evi-
dence that these approaches can scale to the Linux kernel.
Context-Sensitive Analyses. Generally, there are two dom-
inant approaches to context-sensitive interprocedural analy-
sis: the summary-based approach and the cloning-based ap-
proach [56]. The summary-based approach [11, 47, 52, 55,
70, 72, 76] constructs a summary (transfer) function for each
procedure, and directly applies the summary to the specific
inputs at the call site invoking the function. Although it is
scalable for certain cases, it does not provide complete alias
information for each particular context due to lack of explicit
representation of calling contexts. Furthermore, it is difficult
for certain analyses (e.g., pointer analysis) to establish a suc-
cinct summary for each function and precisely model heap
effects. The cloning-based approach [17, 69, 73, 74] provides
complete information. However, it requires each procedure
to be re-analyzed under each calling context and hence is
hard to scale. Demand-driven techniques [9, 59, 75] match
call/return edges on the fly for context sensitivity. A body
of techniques have also been proposed to perform selective
context sensitivity [32, 39, 40, 42, 46, 50, 57, 58, 78], so as to
find sweatspots between scalability and precision.

Systems for Static Analyses. BDDBDDB [69] and Doop [6]
are the early pioneers that run sophisticated static analysis
on Datalog engines. These Datalog engines (even including a
recent one Soufflé [28]) do not provide out-of-core disk sup-
port and they are fundamentally limited by the size of main
memory. None of them were able to scale a fully context- and
flow-sensitive analysis to large-scale systems like Linux on

PLDI ’21, June 20-25, 2021, Virtual, Canada

the commodity desktop we used. Weiss et al. [68] presents
a database-backed static analysis for error propagation. A
recent piece of work Graspan [67] aims to scale context-free
language (CFL) reachability based analyses to large programs
with disk support. Although Chianina is inspired by the same
high-level observation as Graspan, it is impossible to extend
Graspan to support arbitrary flow-sensitive analyses without
re-designing the system from scratch. The simple computa-
tion logic for graph reachability does not work for Chianina’s
complex dataflow semantics. As an extension to Graspan,
BigSpa [21, 81] adapts the same computation model to a
distributed setting. Grapple [82] supports path sensitivity
by concisely encoding path constraints. However, neither
of them process evolving graphs or support flow-sensitive
analyses that we focus on in this paper. Google [54] and
Facebook [16] also deployed their analysis tools in the paral-
lel/distributed setting to analyze their large-scale codebases.
Chianina is another quest in this direction scaling context-
and flow-sensitive analyses to large programs while requir-
ing developers to provide only basic analysis algorithms.

6 Conclusion

This paper presents Chianina, a novel evolving graph sys-
tem for scalable context- and flow-sensitive analysis for C
code. Chianina requires developers to provide only the basic
algorithm while leveraging system-level optimizations for
scalability and efficiency. Using Chianina, a fully context-
and flow-sensitive pointer/alias analysis can scale to modern
large codebase like Linux kernel.

Future work can extend Chianina to analyze other lan-
guages as well. Chianina currently needs a pre-computed
call graph to perform cloning. It can be hard to pre-compute
a proper call graph for certain dynamic languages such as
JavaScript. One potential extension is to add support for
constructing the call graph on the fly based on pointer infor-
mation computed. Moreover, adapting our work to a cloud
setting is also a worthy task so as to further boost analysis
scalability. The architecture of Chianina involving parallel
processing model, partitioning and scheduling, is immedi-
ately applicable to the cluster/cloud settings.
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