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Abstract

Hardware tracing modules such as Intel Processor Trace
perform continuous control-flow tracing of an end-to-end
program execution with an ultra-low overhead. PT has been
used in a variety of contexts to support applications such
as testing, debugging, and performance diagnosis. However,
these hardware modules have so far been used only to trace
native programs, which are directly compiled down to ma-
chine code. As high-level languages (HLL) such as Java and
Go become increasingly popular, there is a pressing need
to extend these benefits to the HLL community. This paper
presents JPortal, a JVM-based profiling tool that bridges the
gap between HLL applications and low-level hardware traces
by using a set of algorithms to precisely recover an HLL pro-
gram’s control flow from PT traces. An evaluation of JPortal
with the DaCapo benchmark shows that JPortal achieves an
overall 80% accuracy for end-to-end control flow profiling
with only a 4-16% runtime overhead.
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1 Introduction

Modern CPUs are equipped with tracing modules such as In-
tel processor trace (PT) [19] and ARM embedded trace macro-
cell (ETM) [18], providing ultra efficiency for control-flow
profiling of end-to-end program executions. With these hard-
ware traces, it is possible to reconstruct a program’s complete
execution flow, enabling a wide spectrum of client applica-
tions in testing [5, 28, 47, 61-63], debugging [27, 30, 64, 65],
performance analysis [50, 51], etc. For example, with a pro-
gram’s control flow, various execution statistics, such as
function and statement coverage, path profiles, call tree
profiles, etc. are all close at hand. Furthermore, hardware
traces contain event timestamps, enabling performance anal-
ysis such as detection of invocation hot spots. Compared
to software-based tracing that is often limited by compiler
infrastructures and prohibitively expensive (i.e., slowdowns
of dozens to thousands of times), hardware-based tracing has
a negligible overhead (2-5% [51, 56]) and does not need any
modification to program code, enabling tasks that were pre-
viously unimaginable, such as in-production profiling across
languages, between applications, or even into the OS kernel.
Problems. As of date, hardware-based tracing has been
applied only to native programs running on bare metal ma-
chines [30]. This is because processors can only profile hard-
ware instructions; for native programs, these instructions
can be easily mapped, with the help of compilation metadata,
back to the source code they are compiled from. As high-
level languages (HLL) such as Java, Go, and Scala are playing
an increasingly important role in modern computing, there
is a pressing need to extend the efficiency benefit provided
by such hardware modules to HLL communities.

However, there are significant challenges in tracing an
HLL program with hardware, primarily due to the language
runtime on which the HLL program executes. A language
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runtime such as the JVM alternates between two execution
modes: it starts an execution via interpretation and switches
to running the JIT-compiled code when methods become
sufficiently hot. As such, for those languages, the instruc-
tions seen by CPU are not only structurally different from
their HLL source/byte code, but also generated by different
code generators under different compilation strategies—the
interpreter uses templates to generate code while the JIT
compiles code with many optimizations. To make matters
worse, the language runtime inserts code to perform various
runtime checks (such as barriers and bound checks), creating
a huge structural gap between what a developer sees and
what CPU executes.

A naive approach is to selectively instrument a program
(e.g., at each important control-flow point), augmenting hard-
ware traces with “delimiters” generated from instrumented
code. However, instrumenting even a small number of control-
flow points can yield a non-trivial overhead [24, 25, 35],
which is often too high to be acceptable in producing settings.
In fact, hardware-based tracing is appealing particularly due
to its ultra-low overheads; maintaining such overheads pre-
cludes use of any instrumentation-based approaches.
JPortal. This work develops JPortal, a tool that can precisely
reconstruct the control flow in Java bytecode from traces
collected by hardware, and in particular, by Intel Processor
Trace (PT). Our idea is to develop a postmortem static anal-
ysis that analyzes a hardware trace to establish a mapping
(or projection) from the trace to a path on the (statically
built) interprocedural control flow graph (ICFG) of the pro-
gram. While this idea appears simple at a high level, doing
so precisely (i.e., the reconstructed bytecode profiles should
faithfully represent what hardware records in the trace) and
efficiently requires overcoming three major challenges:

First, the interpreter and JIT compiler stand in the way.
Mapping low-level instructions back to a high-level CFG is
essentially a de-interpretation and de-compilation process.
JPortal builds the mapping by leveraging the metadata the
JVM maintains in its interpreter and JIT compilers (i.e., C1
and C2) (§3). In particular, the interpreter interprets each
Java bytecode instruction by running a piece of code defined
by a template table. This table can be used to decode the
interpreted code. For the JIT compilation, the JIT compilers
record the high-to-low-level mapping into debug metadata
at each step of compilation (e.g., from bytecode to IR, be-
tween different levels of IR, and from IR to machine code).
This metadata is originally used for providing debugging
information at exceptions; JPortal leverages it for decoding.

Second, hardware traces are often incomplete—a trace col-
lected by PT, especially for a long-running program, can
miss information for an arbitrary number of execution pe-
riods, each at an arbitrary length. This is because PT can
potentially produce hundreds of megabytes of trace data
per CPU per second, a rate faster than data can be exported
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Figure 1. Example of trace recovery.

to file, and sometimes faster even than can be recorded to
memory. Data loss can occur at any point in a trace, making
reconstruction impossible—two consecutive events in the
trace may stem from methods far apart; to make matters
worse, they can even come from code generated by different
generators (i.e., interpreter and JIT). In our experiments, the
percentage of missing data ranges from 22.2% to 28.0% under
a 128MB per-core trace buffer. Under a smaller buffer size
(e.g., 64M), this percentage could go beyond 50%.

Missing data leads to trace segmentation—a segment of
instructions in the trace can end unexpectedly, and the next
instruction, as the starting point of a new segment, can be
far away from the previous segment. Segmentation creates a
significant challenge in projecting each segment onto the pro-
gram’s ICFG. Once an unexpected instruction is encountered
during decoding, which node/edge on the ICFG does this
instruction map to? To tackle this challenge, we formulate
control-flow projection as a problem of disambiguation in
NFA-based string matching. In particular, we treat the static
ICFG of a program as a non-deterministic finite state au-
tomaton (NFA) and a hardware trace as a segmented string.
There may exist multiple paths in the NFA that can match
the string (i.e., ambiguity) and our goal is to disambiguate
the matching to find one single path that most likely corre-
sponds to the actual execution represented by the string. We
develop an abstraction-guided projection algorithm that can
efficiently find a likely path on the ICFG for a given trace
segment (§4).

Third, missing data creates holes between segments. To
maximize the profiling accuracy, we must recover the miss-
ing data from data that have been collected. To this end, our
idea is to recover the incomplete segments (IS) in the trace us-
ing the complete segments (CS) whose contexts match those
of the former (i.e., filling holes with the help of information
before each hole). Figure 1 illustrates this idea. However,
finding the matching CS is a daunting task because (1) a
trace can be extremely long (i.e., efficiency concern) and (2)
there can be many matching CSes and we need to narrow
the search down to those that most likely correspond to the
execution of the IS in question (i.e., precision concern).

To prune the search space, we guide matching with con-
texts, represented as a hierarchy of abstractions (e.g., call/re-
turns, control structures, etc.). As such, the matching process
can be formulated as a series of abstraction refinements—if
the context of a complete segment s does not match that of
an incomplete segment i at a high abstraction level (e.g., call
trace), s can be quickly filtered out. If it does, we refine the
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abstraction and perform context matching at a lower abstrac-
tion level (e.g., control structures). Matching at each level
also ranks candidates that advance to the next level based
on the matching degree (e.g., how much their suffixes over-
lap). Finally, JPortal inspects the ranking of the candidates
whose contexts match those of i at all levels and picks the
highest-ranked one as a reference to fill the holes in i (§5).
Results. We have implemented JPortal on OpenJDK 12 and
evaluated it with the DaCapo benchmark. Our results show
that JPortal achieves an overall 80% accuracy in end-to-end
control-flow profiling with only a 4-16% overhead. JPortal is
publicly available: https://github.com/JPortal-system.

2 Background

Intel Processor Tracing (PT). PT is a new hardware fea-
ture that exploits a dedicated hardware facility to capture the
control flow of instructions with minimal overheads. After
properly configured, Intel PT records control-flow informa-
tion such as branch targets and branch taken indications, and
encodes the collected information to produce trace packets.
There are several types of trace packets generated by PT, in-
cluding Packet Generation Enable (PGE), Packet Generation
Disable (PGD), Taken Not-Taken (TNT), Target Instruction
Pointer (TIP), Flow Update Packet (FUP), and Time-Stamp
Counter (TSC). PGE and PGD packets record the addresses
of the first and last instructions traced, indicating the begin-
ning and the end of tracing, respectively. During execution,
the following three kinds of packets record the control flow
information. Particularly, TNT packets record whether con-
ditional branches are taken or not. TIP packets log the targets
of indirect branches (e.g., call and ret). FUPs provide the
source instruction pointer (IP) for asynchronous events (e.g.,
interrupts and exceptions). In addition to the control flow
information, other information such as timestamps can also
be recorded to assist in performance debugging.

To minimize the size of packets generated, PT adopts var-
ious compression techniques. For example, only one bit is
used in TNT to indicate the direction of a conditional. For
the unconditional jumps, like JMP and CALL, no trace packet
is generated since the target addresses can be directly in-
ferred from the application assembly. For TIP packets, PT
compresses the target address if the upper bytes match the
previous address traced. Since the trace data collected is
highly compressed, a decoding process is required to re-
trieve the program control flow. With the trace packets and
program’s native code as input, a software decoder [9] can
reconstruct the control flow of the program executed.

Trace packets are directly written into physical memory by
PT, bypassing cache and TLB to reduce performance impact.
Multiple discontinuous buffers in the physical address space
can be used to maintain the tracing data via a table-like data
structure. When a buffer is full, it triggers an interrupt.
Java Virtual Machine (JVM). The JVM is a language run-
time that compiles and executes programs (written in many
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high-level languages such as Java, Scala, Python, etc.) that
can be compiled to Java bytecode. The JVM takes a byte-
code program as input and alternates its execution between
interpreted and JIT-compiled code.

In the interpretation mode, a template interpreter gen-
erates, for each bytecode instruction, a piece of assembly
code implementing the instruction’s functionality. During
the JVM’s initialization, the assembler translates the template
assembly code into machine code and loads it into memory.
Each bytecode instruction is executed by simply jumping to
the starting address of its corresponding machine code.

Once a method becomes sufficiently hot, the JVM switches
to the compilation mode. The JIT compiler compiles the
method to machine code using two compilers (C1 and C2),
each performing various optimizations.

3 Dealing with Compiler Intricacies

We first present how JPortal deals with the intricacies of the
JVM’s interpreter and JIT.

JPortal consists of two components—online collection and
offline decoding. The online component collects the runtime
information needed by decoding, including (1) hardware
tracing data (collected by PT) as well as (2) meta-information
of machine code that is necessary for decoding. PT records
trace packets when machine code is running. These trace
packets are periodically dumped to files. In addition to hard-
ware traces that contain only branch information (e.g., the
target of a jump), the metadata of the machine code is also
needed. For example, given the target address of a jump in
a hardware trace, JPortal needs to understand which basic
block the address falls in to recover the control flow. JPortal
obtains such metadata from the JVM after its initialization.

With a hardware trace and the meta-information of ma-
chine code, JPortal’s offline component decodes the trace and
reconstructs the control flow for the program. Since the byte-
code program is executed under different execution modes,
both the online collection of machine-code metadata and the
offline decoding algorithm must be developed separately for
the interpreter and the JIT.

3.1 Flow Reconstruction for Interpreted Code

In the interpretation mode, the machine-code metadata is the
address range of each instruction template. JPortal collects
such information automatically during the JVM’s initializa-
tion. For certain cases where the machine code for a byte
code handler is non-contiguous, multiple sub-ranges could
be recorded. Figure 2 shows an example of decoding inter-
preted code: Figure 2(a) and 2(b) depict the source code and
bytecode of a program, respectively.

Each bytecode instruction is interpreted by running the in-
struction’s corresponding machine-code template. Figure 2(c)
shows the metadata for a number of bytecode instructions
relevant to the example. For instance, when interpreting the
bytecode iconst_0, the execution jumps to the machine code
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(a) program (b) bytecode

(c) interpreter’s machine code

(d) tracing data (e) code sequence (f) control flow

Figure 2. Flow reconstruction for interpreted code: (a) source code; (b) its bytecode; (c) the interpreter’s machine-code metadata
for relevant bytecode instructions; (d) its hardware trace; (e) the decoded bytecode instruction sequence; and (f) the control

flow recovered (numbers show bytecode offset).

that is located in the address range [0x00007fa8a501c880,
0x00007fa8a501c8e0], and runs the code there. The hardware
trace recorded by PT is shown in Figure 2(d) where each TIP
indicates a jump and the address attached shows the target.
For example, the first TIP packet represents a jump to ad-
dress 0x7fa41901e9a0, which falls into the address range of
iload_0’s machine code template.

The offline decoding algorithm consists of two steps. The
first step is decoding a hardware trace into bytecode instruc-
tions. For template-based interpretation, the mapping be-
tween the executed machine code and each bytecode instruc-
tion is statically defined by the JVM’s code template table.
As a result, JPortal identifies each bytecode instruction by
matching the templates’ address ranges against the entry
addresses recorded for each bytecode handler. In doing so,
we can always precisely determine the bytecode instruc-
tion interpreted. Figure 2(e) shows the decoded sequence of
bytecode instructions from the hardware trace.

However, with the sequence of bytecode instructions, it
is unclear which program path has been executed. As such,
the second step is to identify the flow between these in-
structions. To this end, we need the program’s ICFG—the
executed instructions should correspond to a path in the
ICFG. If the hardware trace is complete (e.g., from the first to
the last instruction of main) and the program runs normally,
finding that path is a rather simple task; Figure 2(f) shows
the reconstructed control flow for the hardware trace. How-
ever, various ambiguities can be introduced in the matching
process in a realistic setting (with dynamic control flow and
missing data). For example, exception throwing and handling
can take the execution to an arbitrary point; interpreted and
compiled code can alternate in the execution; to make mat-
ters worse, missing data can take the offline analysis from
one point to another point that is arbitrarily far, and the path
in the middle is completely lost.

3.2 Flow Reconstruction for JITed Code

Under the JIT compilation, a method is compiled directly to
machine code. Hence, for each method, its JITed code (and its

'0x00007fa4195bfc43: cmp  $0x0,%edx

0x00007fa4195bfc8d: callq 0x00007fa4191c17c0

0x00007fa4195bfbe0: mov %eax,-0x16000(%rsp)
0x00007fa4195bfbe7: push %rbp
0x00007fa4195bfbe8: sub $0x30,%rsp

0x00007fa4195bfc08: je  0x00007fa4195bfc76
0x00007fa4195bfcOe: cmp  $0x0,%esi
0x00007fa4195bfcll: je 0x00007fa4195bfcle
0x00007fa4195bfc17:inc  %edx
0x00007fa4195bfc19: jmpg 0x00007fa4195bfc21
0x00007fa4195bfcle: sub $0x2,%edx

pc=0x00007fa4195bfcOe Test::fun@0
pc=0x00007fa4195bfc17 Test:fun@1
pc=0x00007fa4195bfcle Test:fun@8
pc=0x00007fa4195bfc43 Test:fun@17
pc=0x00007fa4195bfcac Test::fun@18
pc=0x00007fa4195bfc61 Test:fun@22
pc=0x00007fa4195bfc92 Test::fun@-1

(b) debug information

'0X00007f24195bfc37: cmp  SOXFFFFFFF, %esi

0x00007fa4195bfc3a: je  0x00007fa4195bfca3 TIP(0x00007fa4195bfbe0)

TNT(0110)

0x00007fa4195bfc46: jne 0x00007fad195bfc61
0x00007fa4195bfcdc: mov  $0x1,%eax

0x00007fa4195bfc60: retq
0x00007fa4195bfc61: mov  $0x0,%eax

(c) tracing data

[0x00007fa4195bfbe0,0x00007fa4195bfcOe)
[0x00007fa4195bfc0e,0x00007fa4195bfc17)
[0x00007fa4195bfcle,0x00007fa4195bfc35)
[0x00007fa4195bfc40, 0x00007fa4195bfc4c)
[0x00007fa4195bfc4c, ...

0x00007fa4195bfc75: retq

(a) compiled code (d) instruction executed

Figure 3. Flow reconstruction for JITed code: (a) compiled
code for the program in Figure 2(a); (b) the debug information
generated by compilation; (c) its hardware trace; and (d) the
machine instructions executed.

address range) needs to be collected as machine-code meta-
data. However, different from the interpreter’s code template
that is persistent throughout execution, the JITed code is sub-
ject to garbage collection (GC) and hence can be removed. As
such, JPortal exports (1) the compiled code of a method and
(2) its address range (to disk) before it is reclaimed by GC.
Such information helps JPortal recognize targets of jumps.
To appropriately reconstruct the bytecode-level control flow
from the JITed code, we also need the mapping between each
bytecode instruction i and the machine-level instructions to
which i is compiled. Such a mapping is maintained as debug
information in the JIT and accessible to JPortal.

For flow reconstruction, JPortal also uses a two-step ap-
proach: decoding the hardware trace to control flow of native
code and reconstructing the control flow of bytecode. The
first step is done by directly decoding the hardware trace
on the compiled code via the decoding library [9] provided
by Intel, and the second step is done with the help of the
JIT’s debug information which gives the mapping relation
between the compiled code and the respective bytecode.
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For example, Figure 3(a) shows the compiled machine code
for the program in Figure 2(a). When the compiled code is
running, the hardware trace shown as Figure 3(c) is gener-
ated. The TIP packet TIP (0x00007fa4195bfbe0) indicates the
starting of the execution. The TNT packet records the re-
spective branch results in the compiled code. After decoding
the trace with the help of the machine code, JPortal acquires
the instruction sequence, shown in Figure 3(d). Each line
indicates the IP range within which machine code is exe-
cuted. Next, JPortal reconstructs the control flow of bytecode
via the debug information shown as Figure 3(b), which is
generated by the JIT compiler during compilation. This step
produces the same control flow as shown in Figure 2(f).

JPortal relies on JIT’s debug information for decoding. The
quality of the debug metadata plays an important role in JPor-
tal’s decoding. In OpenJDK 12 where JPortal is implemented,
such information is precise enough so that the precision loss
in our experiments is relatively small (see Figure 7).

4 Decoding and Reconstruction

This section presents how JPortal decodes a segmented hard-
ware trace and reconstructs its control flow. To disambiguate
the use of terms, we use “decode” to refer to the process of
translating a hardware trace into a sequence of bytecode
instructions (i.e., the first step discussed in §3), “reconstruct”
to refer to the projection of the decoded sequence onto the
ICFG (i.e., the second step), and “recover” to refer to the pro-
cess of “hole filling” for missing data. This section focuses
solely on decoding and reconstruction, while recovery will
be the focus of §5.

Challenges. With the help of the machine-code metadata,
the first (decoding) step is straightforward. The second step is
significantly more challenging due to data loss, which causes
the decoded bytecode sequence to be segmented (into an
arbitrary number of subsequences). While this section does
not focus on recovery of missing data, the fact that a sub-
sequence can potentially map to many ICFG paths already
makes flow reconstruction a difficult problem. Assuming the
decoded instruction sequence begins at the very first instruc-
tion in main, the reconstruction process is trivial until it hits
a mismatch—the next bytecode instruction does not match
the expected ICFG node, indicating that a new subsequence
starts. The question here is: which ICFG node should be used
as the starting point to project this new subsequence?

Upon a mismatch between an instruction and an ICFG
node, we need to find a new ICFG node and resume projec-
tion from there.

During decoding, the segmented subsequences can be
easily identified and separated. The hardware trace includes
a type of meta-events (i.e., perf_record_aux events including
the data loss flag and timestamp) indicating the points where
data loss happens. JPortal leverages these events to localize
data loss and separate subsequences. This section focuses
on the following problem: given an arbitrary subsequence w
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Algorithm 1: Enumerate and test.

Input: ICFG G, a bytecode sequence
Output: A path in G corresponding to w
1 foreach Noden in G do
2 A « CoNsTRUCTNFA(G, n);
3 if IsAccEPTED(A, w) then
4 return the sequence of transitions in (A that leads
L to acceptance;

that does not have any missing data in itself, how to find the
subpath on the ICFG that corresponds to w (i.e., projection)?
Problem Formulation. First, we formulate control-flow
reconstruction as a problem of matching a given string (i.e.,
subsequence of bytecode instructions) against an automaton-
based representation of the program’s ICFG. Given an ICFG
G where each node n represents a bytecode instruction s
and each edge represents a “potential-next-instruction-to-
execute” relation, we define a mapping I that maps each CFG
node to the bytecode instruction it represents (i.e., I(n) = s).
With these notations, we present our formulation below:

Definition 4.1 (ICFG as a Nondeterministic Finite Au-
tomaton (NFA)). Given an ICFG G and the entry node ny
in the ICFG, we formulate the ICFG as an NFA A which is a
five tuple (Q, %, 8, qo, F) defined as follows:

1. Q is a finite set of states; each state g € Q corresponds
to a node n € G, representing that node n has been
matched during projection; we define a relation N that
maps each state g to its corresponding ICFG node (i.e.,
N(g) = n);

2. X is a finite set of symbols, each of which represents a
bytecode instruction that appears in the trace;

3.0 : O x 3 — 29 is a transition function that takes
as input a state ¢ € Q and an instruction s € ¥, and
returns a subset of states O C Q, such that each state
0 € O corresponds to a successor node of N(q) in G
and s matches the bytecode instruction represented by
that node (i.e., s = I(N(0)));

4. S C Q is a set of starting states; since a hardware
trace can start at any point, each state in Q could be a
starting state;

5. F € Q is the set of accepting states; since a hardware
trace can end at any point, each state in Q could be an
accepting state.

To facilitate reconstruction, we let each method m have
an artificially-created starting state q[., € Q such that
6(ql . sgt) = q° where s is the first bytecode instruc-
tion in m and g’ is the state corresponding to the entry node
ng' of m’s CFG, that is, I(n]") = s;” A N(qg") = ng'.

Figure 4 depicts an example of an (I)CFG for the program
in Figure 2(a) (Figure 4a) and its modeling NFA (Figure 4b),
assuming that the starting instruction is iload_0.
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. o
0: iload_0 iload_o (CH
v " ifeq 1
s ifeq O
0, 1:ifeq 11 WU ifeq
11:iload_1 4:iload_1 iload_ iload_1
A v s ON
12: iconst_2 5:iconst_1 iconst_2 s iconst_1
iadd
d108¥W
istore_1

v v . )
13: isub 6: iadd isub
v v . .
14: ist*ore_l 7: istgre_l istore_1 ) goto 15
iload_1
iload_1
iconst_2

15:iload_1_ <«— 8:goto15
~a
16: iconst_2
v
17:irem
v
0 18: ifne 23 1
/ \
21:iconst_1 23: iconst_0

v v
22:ireturn 24: ireturn

(a) CFG

Figure 4. (a) Part of the ICFG of the program in Figure 2(a);
(b) its modeling NFA.

Given an NFA A that models an ICFG and an arbitrary

subsequence @ of bytecode instructions decoded, a naive ap-
proach to control flow reconstruction is to use an enumerate-
and-test algorithm shown in Algorithm 1. In particular, for
each state in A, we test if it has an outgoing transition la-
beled with the first instruction in w. If so, the state can be
used as a starting point for projection. Otherwise, the al-
gorithm continues to try testing the next state. The time
complexity of each step is thus O(t?) where t is the number
of states in Q. With each possible starting point, the com-
plexity of matching the subsequence is O(|w|t?). Since there
are at most |Q| starting points in A, the complexity of the
enumerate-and-test algorithm is O(|Q||w|t?). Given that |Q],
|w| and t are all extremely large, this naive algorithm can be
prohibitively expensive.
Abstraction-Guided Flow Reconstruction. To reduce the
search space, we propose an algorithm inspired by the idea
of counter-example guided abstraction refinement [29]. In
particular, we create a high-level abstraction for both A and
®. Our basic idea is instead of matching instructions one
by one, we can first test if their corresponding abstractions
match. If the abstract bytecode sequence can be accepted by
the abstract NFA, a refinement can be performed to lower the
abstraction level and do the matching at the concrete level.
Any mismatch at a high level of abstraction would quickly
invalidate the starting state and direct the algorithm to try
the next state. To formally describe this algorithm, we first
define our abstractions:

Definition 4.2 (Abstraction of Bytecode Sequence). Given

adecoded bytecode sequence w = (by, bs, . ..,b,),an abstrac-
tion of w, denoted as as(w), produces an abstract sequence

o= (bAl, by, ..., l;;) such that the following conditions hold:

e for each i € [1, m], b; is a control-flow instruction, i.e.,
jump, branch, call, or return;
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(a) Abstract NFA (b) DFA

Figure 5. (a) ANFA of the NFA shown in Figure 4b; (b) its
simplified DFA after eliminating e-transitions.

e for any indices i,j € [1,n] such that i < j, and b; and
b; are control-flow instructions, there exist indices

p,q € [1,m] such that p < g, b;, =b; andl;; = b;.

In fact, the abstraction function turns a bytecode sequence
o into a subsequence @ of @ which only consists of control-
flow instructions in w.

Similarly, we define the abstraction of an NFA as follows.

Definition 4.3 (Abstract NFA). Given an NFA A = (Q,
3, 8, S, F), an abstraction of A produces an abstract NFA

~ o~~~ o~

°*0=0;
e 3 =3 U{e}\ U{inst;} where J{inst;} represents all
such bytecode instructions that are not control related;
e for each transition §(q;, inst) = gj, there is a corre-
sponding transition g(qi, €)=gq;ifinst ¢ 3; otherwise,
there is a transition g(ql-, inst) = gq;;
eS=35;
e F=F.
Theorem 4.4 (Necessary Condition of Acceptance).
Given an NFA A and a bytecode sequence w, & must not
be accepted by A if the abstract bytecode sequence & is not
accepted by the ANFA A.

This is straightforward—the ANFA extracts the control
flow “skeleton” of the program while @ extracts the control-
flow instructions in the bytecode sequence; if they do not
match, it is impossible for A to accept w. A proof can be done
by contradiction; details are omitted due to space constraints.

By eliminating e-transitions and merging states, we can
turn an ANFA into a DFA. Figure 5a and Figure 5b show the
ANFA and its DFA (after simplification) for the NFA shown
in Figure 4b, respectively. Algorithm 2 shows our algorithm
that performs abstraction-guided control flow reconstruction.
The two-level matching leads to significantly reduced search
space and hence increased efficiency.
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Algorithm 2: Abstraction-guided control flow re-
construction.

Input: a control flow graph G, a bytecode sequence w
Output: the control flow trace corresponding to w

1 O — as(w);

2 foreach Noden € G do

3 A « ConsTRUCTNFA(G, n);

4 A — aq(A);
5 if IsAccepTED(DFA(A), &) then

6 if IsAccepTED(DFA(A), ) then
7 return the sequence of transitions in A that
leads to acceptance;

Discussions. Note that Ohmann et al. [45] also formulated
CFGs as finite state automata so as to efficiently (in poly-
nomial time) answer control-flow queries for incomplete
failure reports. By encoding both failure constraints of re-
ports and user queries in the unreliable trace languages, a
Possible/Impossible answer is given by checking intersection-
emptiness over context-insensitive traces. Instead of testing
for language-level intersection-emptiness, our control-flow
reconstruction simply determines whether a dynamic se-
quence can be accepted by an NFA.

Another way to model an ICFG is to use the pushdown
automaton (PDA). The difference between the formulations
with NFA and PDA is whether the context information (e.g.,
call-return) is taken into consideration during matching.
While a PDA-based representation can filter out infeasible
interprocedural paths, it is not necessary for our scenario.
Our abstraction-guided approach rules out the possibility of
producing an infeasible path as it must not be accepted by
our abstraction.

As a statically-built ICFG can be imprecise (including in-
feasible paths or missing feasible paths), another potential
issue is whether the imprecision of the ICFG can lead to
reconstruction imprecision? For the infeasible paths in the
ICFG, it is not a concern because the instruction sequence
decoded from the hardware trace represents the dynamic
execution flow, which can only correspond to feasible paths
in the ICFG. However, it could lead to performance issues
due to unnecessary matching. Another issue here is that
certain feasible paths can be lost in the ICFG due to dynamic
language features such as reflection. To tackle this problem,
if a method invocation is seen in the captured instruction
sequence but there does not exist a corresponding call node
in the ICFG, JPortal inspects all potential callback methods
in the program to find a match.

5 Abstraction-Guided Data Recovery

This section discusses recovery of missing data. In particular,
given a hardware trace segmented into n subsequences (w1,
W2, - .. Wy), how can we find a path on the ICFG that can
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Potential CS #1 Potential CS #2

Figure 6. An overview of missing data recovery: the anchor
instructions are “XEF”.

connect the last instruction of w; and the first instruction of
w;+1 for each i € [1,n)?

Problem Formulation. Since data loss occurs frequently,
it is necessary to recover the missing parts of the control
flow by leveraging information from the completed parts.
Our key insight here is that if two segments of instructions
share the same (or similar) context (e.g., prefix of a certain
length), they are likely to represent the same execution path
on the ICFG. If the first segment has missing data, we can
recover the data with information extracted from the sec-
ond segment. Here the terms “incomplete” and “complete”
are both relative — a segment a that misses data itself may
contain a sequence of instructions (s) that can be used to
fill a hole in another segment b; in this case, a and b are
complete and incomplete, respectively, with respect to s.
We first formulate data recovery as a problem of sequence
matching:

Definition 5.1 (Data Recovery). Given anincomplete trace
segment IS = (tpm, N 9 o) where each tp, Tepresents
a bytecode instruction and ¢ indicates an unknown subse-
quence, we formulate the problem of recovering ¢ as finding a
complete trace segment CS = (ty,., ..., by, tpys £, E,s 0 Hg )
such that IS and the part of CS before t; share a common
suffix Epys s Lpys by (y < m Ay < x) and there does not
exist another sequence CS’ such that the length of such a
common suffix between CS’ and IS is larger than y.

Figure 6 illustrates our main idea. First, we consider each
subsequence that starts at an instruction right after a o (i.e.,
a hole) and ends at the next o as an IS. Our goal is to replace
its end ¢ with information learned from a CS. To identify
a potential CS for matching, we use the last x instructions
before the ¢ in the IS as anchor instructions. In Figure 6, the
three instructions XEF (x = 3) are used as anchor instructions.
With these instructions, we quickly locate two potential CSes,
each of which is divided into two parts: a prefix that contains
instructions before the anchor instructions and a suffix that
contains instructions after. Finding these potential CSes is
easy due to the small number of anchor instructions used.
Given each potential CS, we compare its prefix p with the IS
from their end instructions (i.e., in the reverse order); the CS
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Algorithm 3: Data recovery: basic algorithm.

Input: IS, all CSes that match the anchor instructions of IS
Output: One CS that matches IS with common suffix

1 matched « 0;

2 CSmatched < null;

3 foreach complete segment CS do

4 matchedjycq) —
CoMPUTESUFFIXLENGTH(IS, PREFIX(CS));

5 if matched,,., > matched then

6 L matched «— matchedj,c,;

7 CSmatched < CS;

8 return CS,,,icheds

whose p shares the longest suffix with the IS is used to fill
the o in the IS.

In Figure 6, the first CS wins because its prefix p shares
a suffix CD with the IS while the second CS does not have
any instruction before the anchors that can match the IS.
For recovery, we use the suffix of the first CS (i.e., GHX in
the example) to fill the hole in the IS. In particular, we start
our recovery from reading instructions following the anchor
instructions in the winning CS. This process finishes until we
hit a number y of instructions that match those that follow
the ¢ in the IS (i.e, BDCA in the example). This number y
can be specified as a user parameter.

A naive algorithm, as shown in Algorithm 3 is to enumer-

ate all potential CSes (that match the anchor instructions
of the IS) and find the winning one by comparisons on a
per-instruction basis. However, this algorithm is not scal-
able given the huge number of potential CSes and the huge
number of instructions in each CS.
Abstraction-Guided Recovery. Similarly to control flow
reconstruction, we propose an efficient abstraction-guided
algorithm for data recovery. The key idea is that we can
leverage the abstract traces (similar to those built by the re-
construction algorithms in Section 4) to quickly filter out
irrelevant CSes. In particular, we extend Definition 4.2 to
define a three-tier abstraction hierarchy that we use for data
recovery. The first (highest) tier of abstraction is call struc-
ture, the second (middle) tier is control structure (which is
exactly Definition 4.2), and the lowest (concrete) tier is byte-
code instruction. For each trace segment, we construct the
two high-level abstractions during the control-flow recon-
struction phase discussed in Section 4. In searching for a
CS, we use an iterative process that compares traces at each
abstraction level (from call structures, through control struc-
tures, to concrete instructions).

Note that in Section 4, we only use the middle-tier ab-
straction (i.e., control structure) because the goal there is to
project a trace subsequence onto the ICFG where call struc-
tures are irrelevant. Since the ICFG is statically built, there
is no dynamic call information available on the ICFG.
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Definition 5.2 (Tier-/ Abstraction of Bytecode Trace).
Given a trace segment w = (1, s, ..., I,), an abstraction of
w at tier I, denoted as a;(w), produces an abstract segment
@1 = {t,fa, . .., Iy such that (1) for each i € [1,n],; is a
tier-I instruction; and (2) for the indices i,j: 1 <i<j<n
such that t; and t; are tier-I instructions, there always exist
the indices p,q,1 < p < ¢ < m, such that f;, =t;and E] =tj.

In fact, Definition 4.2 is a special case of Definition 5.2.
The abstraction function at tier / essentially removes all non-
tier-/ instructions. In particular, at the call-structure tier (tier
1), we are interested in call/return instructions, while at the
control-structure tier (tier 2), we are interested in control-
related instructions such as call, return, branch, and jump.
The tier-2 instructions include those in tier 1, and the tier-3
(concrete) instructions include those in both tier 1 and tier 2.

Next, we formally define abstraction-guided data recovery.

Lemma 5.3 (Common Suffix Properties). Let wy be an
IS, w1 and w, be two potential CSes. Let o denote a matching
operator—wy © w; generates the longest common suffix between
the prefix of w1 and wy; with our abstractions, we have the
following properties:
® |wo o wi|>|wg 0 2| = [az(wy © w1)| 2 |az(woo w;)]
* |az(woowr)|2|az(woowz)| = |ar (w0 wr)| 2]y (w0 ws)|

Proof. Let wy=(tp,, ..., b, tp»0), 1=ty s stpyutp .. o),
and wy = (tpy, <+ sty by, .. .). Suppose the common suffix
between wy and the prefix of w; is wy © w1 = (tp,,, .-,
tp,» tp,); similarly, the common suffix between wy and the
prefix of w; is wy 0 wa = (tp,, ...ty tp,). If | 0 w1] >
|wg © wal, wg © Wy = (tp,,.-.»Lp,,1tp,) is a suffix of wy o
@1 = (tpys---stpystp). Thatis, m > n. This implies that
the length of az(wy o w;) (i.e, the number of control in-
structions matched) must be > that of ay(wy © ws), Le.,
|aa(woo w1)| > |aa(woo wy)|. With the same reasoning, we
can deduce |z (wp 0 w1)| = |az(wp © wy)| implies |a;(wg © w1)]
> |ary (@ 0 w)]. O

Lemma 5.4 (Matching Relaxed by Abstractions). Letw,
be an IS and w, be a CS. Let o denote the same matching oper-
ator. With our abstractions, we have the following properties:
® |aa(wo) © az(wr)| = fera(wo © wi)
® |ai(wo) o ar(w)| = |a(wo © wi)l

Lemma 5.4 shows that given an IS wy and a CS w;, the
common suffix at the tier / (between the abstract segments of
wo and @) is always > the length of the tier-I abstraction of
the common suffix of wy and w;. This is easy to see because
the lower the tier, the stricter the matching.

Based on Lemma 5.3 and Lemma 5.4, we obtain the fol-
lowing necessary condition for pruning.

Theorem 5.5 (Necessary Condition of Pruning). Let w
be an IS, wy and w; be two potential CSes. We have the following
conditions:
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o [y 0w 2w ows| = |az(wp) o arz(@1)| = |arz(@p 0 wy)|
o |ay(wo)oaa(wi)| = |aa(wo owy)| = |t (wo)oar(wr)] >
a1 (wo 0 wsy)|

Proof. The proof can be done by applying a transitivity rule
over Lemma 5.3 and Lemma 5.4. First, according to Lemma
5.3, |wgo wi| > |wyo | implies |az(woo wy)| > |az(woo @2)|.
According to Lemma 5.4, |az(wp) © az(wq)| = |az(wp © w1)].
Transitively, we have |az(wo) © aa(w1)| = |a2(wp 0w,)|. Sim-
ilarly, we can prove |az(wg) © az(w1)| = |az(wpowr)] =

la1(wo) © a1(w1)] = a1 (wo 0w2)| holds. o

Theorem 5.5 provides a way for JPortal to quickly test,
given wy, a CS that has been found to match the IS to some
degree, whether a new CS w; can match the IS better. Specif-
ically, if the condition |az(wp) 0 az(w1)| < |az(wp 0wz)| holds,
we must have |wy 0 w1| <|wp © wy| (i.e., the negation of the
first rule in Theorem 5.5), which means there is no way for
w1 to beat w; in matching wy. Since testing |az(wp) o aa(w1)| <
|a2(wg ow,)| only needs the abstract segments of wy and w;
(i.e., |az(wp 0w2)| can be remembered when w; was processed
earlier), this test can be done much more efficiently than a
concrete instruction-level test.

Based on this idea, we propose Algorithm 4 for efficient re-
covery. Given an IS, and all potential CSes that match the an-
chor instructions of the IS, the algorithm first retrieves their
tier-1 and tier-2 abstract segments (f:S 1 and ITSZ, and CS 1 and
5:92), respectively. For each CS, we use a function COMPUTE-
SUFFIXLENGTH (shown as Lines 13-21 in Algorithm 4) to com-
pute the common suffixes at all three tiers between the IS and
the CS. The function returns a tuple (ml;, ml,, mls), which
indicates the length of the tier-1, tier-2, and tier-3 common
suffix, respectively. As shown by Line 9 of Algorithm 4, if
the tier-3 (concrete) common suffix (ml;) between IS and the
current CS is longer than the maximum length found so far,
we update the maximum length and let a pointer CSa¢ched
point to CS. Finally, Algorithm 4 returns CS ;,,4¢cheq that will
be used for data recovery in IS.

The procedure CoMPUTEPREFIXLENGTH takes as input IS,
I/S\z, ﬁ CS, @ 55 and the maximum lengths of the com-

mon suffixes found for IS so far at the three levels (mq, my, m3).

It returns the updated maximum lengths after checking CS.
The procedure computes the length of the common suffix
at each tier (from 1 to 3) between IS and CS. If the tier-I’s
common suffix length ml; is less than the recorded maxi-
mum common suffix length at the same tier m; (i.e., |a;(wp) 0
ay(w1)] <|a(wo 0wy)|), the procedure returns directly rather
than exploring lower tiers. According to Lemma 5.5, this is
safe—we are guaranteed to not miss a candidate CS that can
better match the IS.

Recovery. As an extension to Algorithm 4, JPortal actually
finds, for each IS, the top N CSes that share the longest com-
mon suffix with the IS. JPortal follows this ranking (from
high to low) to use an CS for recovering the ¢ in the IS. The
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Algorithm 4: Abstraction-guided CS search.

Input: an IS, all potential CSes

Output: a CS matching IS with the longest common suffix
1 E «—a1(IS); // Obtain the abstraction of IS at tier 1
2 IS, «—ap(IS); // Obtain the abstraction of IS at tier 2
3 (mgi, mgz, mgs) < 0;
4 CSpatched < null;
5 foreach potential CS do

s | CSi—ai(CS);

7| CSz — az(CS);

8 (mly, mly, ml3) « CoMPUTESUFFIXLENGTH(IS, IS’\Z I’S\l
CS, CSz, CSt, {mg1, mgz, mgs));

9 if mlz > mgs3 then

10 L (mg1, mga, mg3) «— (mly, mlz, mls);

11 CSpatched <— CS;

12 return CSp,qicheds

13 Function COMPUTESUFFIXLENGTH
Input: IS = (tp,,, ..., tp,, bp,, ), its tier-2 segment 1’5\2,
its tier-1 segment I’S\l; a CS, it tier-2 abstract
(’?S\z, the tier-1 abstract 55\1 and the maximum
common suffix length found so far (mj, mz, ms)
Output: the common suffix length at three tiers
(my, ma, m3)

14 ml; < length of common suffix between IS’\l and 55‘1 ;
15 if ml; < m; then continue;

16 mly < length of common suffix between IE and ETS\Z ;
17 if ml, < my then continue;

18 ml3 « the length of common suffix between IS and CS;
19 if ml; > ms then

20 | (m1,ma,m3) — (Jar(IS o CS)|, |az(IS o CS)|, ml3)
21 return (my, my, ms);

recovery uses instructions from the suffix of the CS. How-
ever, this does not guarantee a perfect match. For example,
following these instructions in the suffix of the CS may not
be able to connect to the post-¢ instructions in the IS (e.g.,
BDCA in Figure 6). To quickly identify problems, we use
timestamps from the hardware trace. For example, we cal-
culate a time range d for the missing data in each o (i.e., by
diffing the timestamps attached with the packet before and
after the ¢). During recovery, if after reading d’s worth of
instructions from the CS, we still cannot reach the post-¢
instructions in the IS, we terminate this process and try the
next CS on the list. If no CS can fill the ¢, JPortal walks the
ICFG and returns a random path to connect the pre- and
post-¢ instructions.

6 System Implementation

Collecting Hardware Traces. JPortal uses perf_events to
configure PT tracing and data exportation, and in particular,
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the following system call perf_event_open:

int perf_event_open(struct perf event_attr * attr, pid_t pid,
int cpu, int group_fd, unsigned long flags);

When the user specifies PT-related parameters, the system
call perf_event_open establishes a channel to monitor PT
events and returns a file descriptor. In addition to the event
monitored, one can also specify which threads and CPU cores
to monitor via the pid and cpu parameters. Here an event is
invoked on each core by setting pid to the ID of the Java main
thread. Meanwhile, via the attribute inherit, we can enable
PT to monitor all the threads forked by the Java main thread.
With the file descriptor returned by perf_event_open, we can
use ioctl, which takes the descriptor as input, and enables
and disables the tracing. To collect the tracing data, we create
a memory buffer and export the data to disks periodically.
In our experiments, the buffer size is set to 128MB per CPU
core. This is done via the system call mmap with the same
file descriptor as input.

Collecting Machine-Code Metadata. For decoding, JPor-
tal collects all the metadata of application-related machine
code including that used by both the interpreter and the
JIT. For interpretation mode, JPortal obtains the machine
code metadata from the template loaded during the JVM’s
initialization. To obtain the JITed code, we modified the JVM
to allocate a shared memory region of 2MB immediately
after the JIT’s code cache as a buffer. Our JVM maintains
two pointers tail and head that specify the boundary of this
buffer. Once a method is compiled and its code is stored
in the code cache, our JVM copies the code into the buffer.
Meanwhile, the exporting process periodically checks the
head and tail pointers of the buffer to export code.
Filtering Out Irrelevant Data. By default, PT records the
information of all the machine code executed, including sys-
tem calls, JVM code, as well as other application code running
concurrently on the same core. Hence, a large amount of
data is irrelevant to the application of interest, which can
cause not only performance issues but also loss of useful
data. To tackle this problem, we need to filter out packages
corresponding to irrelevant programs. Intel PT offers the
functionality of instruction pointer filtering. By configuring
certain registers, PT enables the generation of trace packets
only when the processor executes code within certain IP
ranges. If an IP is outside of these ranges, generation of some
packets is blocked [19]. JPortal leverages this functionality
to collect only the interpreted and JITed code from the JVM
application being traced. Since these two types of machine
code are both maintained in the code cache, JPortal can use
the code cache boundary (which does not change throughout
the execution) as the IP range to filter out irrelevant data.
Dealing with Inlined Code. When reconstructing the con-
trol flow, JPortal leverages the debug information to deter-
mine the mapping between bytecode and machine code.
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However, when inlining happens, such mapping cannot be
used. For each machine instruction executed, JPortal verifies
if it is compiled from code from an inlined method. This can
be done by checking the index associated with the machine
instruction in the debug information. If it is, we further re-
trieve the inlined method’s signature with the help of the
debug metadata. With the signature of the inlined method,
we can easily find the bytecode instruction in that method
that corresponds to the machine instruction executed.
Multi-Cores and Multi-Threads. At the hardware level,
PT records data from each physical core separately. As a
thread can be scheduled on different cores, its trace is dis-
tributed across cores. For a single-threaded program, we first
collect the tracing data from all cores and then piece together
fragments corresponding to the program based on the pro-
cess information embedded in the trace. For a multi-threaded
program, we obtain, at each core, the thread switching infor-
mation, which records the timestamps at which each thread
begins to run. This information helps us segregate the trac-
ing data from each core based on threads. Next, we use the
treatment for a single-threaded program to piece together
information across cores that corresponds to each thread.

7 Evaluation

Hardware & Software Environments. JPortal was built on
top of OpenJDK 12 - the latest version of Oracle’s HotSpot
JVM. All of our experiments were conducted on a machine
with one Intel i7-6700 CPU (3.40GHz with 8MB cache, 8
physical cores and 16 logical cores in total), 16GB memory
and 256G SSD storage, running Ubuntu 20.04.

Subjects & Client Applications. We used DaCapo-9.12
[26] as our benchmarks. We ran them with default work-
loads. Five programs including xalan, eclipse, tradebeans,
tradesoap, and tomcat use libraries that are not compatible
with OpenJDK 12 [54], and hence always crash. Note that
this is not due to any issue in our implementation. Therefore,
we excluded these programs from the experiments. Table
1 lists the characteristics of the remaining nine programs,
including their version information, lines of code, numbers
of methods, numbers of classes, and whether they have mul-
tiple threads.

Table 1. Characteristics of subject programs.

Subject ‘ Version ‘ #LoC ‘ #Methods ‘ #Classes ‘ Threaded

avrora 1.7.110 70,117 9,501 1,828 single
batik 1.7 | 195,232 2,430 15,211 single
fop 0.95 | 105,889 1,314 9,968 single
h2 1.2.121 | 119,693 471 7,026 multiple
jython 2.5.1 | 209,016 3,288 31,201 single
luindex 241 | 39,864 560 4,365 single
lusearch 2.4.1 40,194 563 4,371 multiple
pmd 425 | 60,472 727 5,055 | multiple
sunflow 0.07.2 | 21,962 255 1,762 single
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Table 2. Slowdown in times; columns shown are statement
coverage (SC), path frequency (PF), control flow (CF), hot
methods (HM) for instrumentation-based profiling, as well
as xprof (xp) and JProfiler (JP) for sampling-based profiling.

Instrumentation-based Sampling-based

Subject  JPortal SC[24] | PF[25] | CF[24] | HM  xp[16] | JP[8]

avrora 1.154  29.940 | 43.777 | 3555.073 | 11.038 1.059 1.512
batik 1.084 1.603 1.776 46.322 | 2.322 1.262 1.331
fop 1.044 2.182 1.947 41.631 1.969 1.309 1.221
h2 1.128  10.114 | 13.507 | 1266.685 | 50.840 1.056 1.140
jython 1.165 3.600 7.113 | 502.163 | 14.657 1.052 1.519
luindex 1.041 2.027 2.403 80.776 | 3.817 1.115 1.272
lusearch 1.162  13.979 | 24.093 | 1706.262 | 8.203 1.168 1.509
pmd 1.086 1.140 1.258 5.320 | 2.040 1.063 1.822
sunflow 1.156 6.343 | 10.767 | 887.897 | 14.564 1.151 1.464

Our goal is to evaluate JPortal in terms of overhead and
profiling accuracy. JPortal can collect rich control flow in-
formation for bytecode programs, enabling reconstruction
of various types of profiling information. To understand
the effectiveness of JPortal, we compared JPortal with both
instrumentation-based and sampling-based profiling tech-
niques. In particular, we compared JPortal with four exist-
ing profiling techniques—statement coverage profiling, path
profiling, control flow profiling, and hot method profiling.
The first three are instrumentation-based while the last one
is sampling-based. For the first three techniques, we reim-
plemented Ball and Larus’ approaches for statement cov-
erage profiling [24], path profiling [25] and control flow
tracing [24] with the help of the ASM framework [1]. As
for sampling-based profiling, we directly compared JPortal
with two existing hot-method profilers: xprof [16], which is
HotSpot’s built-in profiler, as well as JProfiler [8], which is a
widely-used Java profiler.

Our evaluation answers the following research questions:

e Q1. How much overhead does JPortal incur? How does
it compare to the overheads of state-of-the-art profil-
ing techniques? (§7.1)

e Q2. How accurate is JPortal? How does it compare to
the accuracy of the aforementioned techniques? How
effective is our recovery mechanism? (§7.2)

e 3. How fastis JPortal in decoding and recovery? (§7.3)

7.1 Runtime Overhead

To answer the first question, we compared the runtime over-
heads between JPortal and the existing techniques. For the
sampling-based tools xprof and JProfiler, we used one sample
per 10ms, which is the default setting in xprof. In particular,
we measured the slowdowns (i.e., running time with pro-
filing enabled divided by the original running time). Each
program is executed three times and the average running
times are used in our experiments. Table 2 reports the slow-
downs in terms of the statement coverage profiling (SC) [24],
path frequency profiling (PF) [25], control flow profiling
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Figure 7. JPortal’s overall accuracy, using profiles collected
by the instrumentation-based approach as ground truth.

(CF) [24], and hot methods profiling (HM). JPortal, which
performs end-to-end execution profiling, has an overhead
between 4.1% and 16.5%, which is much lower than that of
instrumentation-based profiling techniques (which can be
as high as 3555x for jython). Sampling-based profiling tools,
xprof (xp) and JProfiler (JP) enjoy a relatively low overhead
of 6%-82%, although it is still higher than that of JPortal,
which does hardware-based profiling.

Note that JPortal’s overhead is higher than the overhead
previously reported (2-5% [51, 56]) for applying PT on native
applications. There are two major reasons. First, to inter-
pret one bytecode instruction, the interpreter often produces
many more instructions. Second, JPortal has an additional
overhead of collecting machine-code metadata, which does
not exist when native programs are profiled.

7.2 Profiling Accuracy

Another important metric is profiling accuracy, which is the
focus of this subsection. As the control flow profile includes
the information of statement coverage and path frequency,
we measured JPortal’s accuracy of decoding and recovery us-
ing the profile generated by Ball and Larus’ instrumentation-
based control flow profiling technique [24] as ground truth.
Figure 7 shows JPortal’s profiling accuracy, obtained by
measuring the degree of matching between each JPortal-
reconstructed control flow path and its corresponding path
collected by the baseline approach—the higher, the better.
JPortal achieves an overall accuracy of 80%.

Recall that JPortal’s analysis has two major components:
(1) trace decoding and call flow reconstruction for each trace
segment, and (2) recovering missing data between these seg-
ments. To understand the source of inaccuracies and JPortal’s
effectiveness in each of these components, we broke each
reconstructed control flow path into (1) a part that is directly
reconstructed from the hardware trace, and (2) a second part
that is recovered for missing data. Table 3 shows the detailed
breakdown between these parts for three programs that have
more than 10% of their data missing under three different
buffer settings (i.e., 256 M, 128M, and 64M). In particular, PMD
and PDC report, respectively, the percentages of data lost
due to buffer overflow and data captured successfully. PR and
PD report, respectively, the percentages of the final control
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Table 3. A breakdown of data captured and lost, as well as JPortal’s reconstruction accuracies under different buffer sizes.

batik h2 sunflow

256M 128M 64M 256M 128M 64M 256M 128M 64M
Percent of missing data (PMD) 0% 22.23% 39.75% 19.30% 28.03% 54.28% 10.40% 22.67% 45.04%
Percent of recovered (PR) - 11.79% 16.44% 10.88% 16.95% 29.14% 5.05% 9.26% 15.13%
Recovery accuracy (RA) - 53.05% 41.36% 56.35% 60.48% 53.69% 48.52% 40.86% 33.59%
Percent of data captured (PDC) 100% 77.77% 60.25% 80.70% 71.97% 45.72% 89.60% 77.33% 54.96%
Percent of decoded (PD) 85.40% 66.53% 51.42% 61.18% 54.36% 34.38% 74.94% 65.43% 45.74%
Decoding accuracy (DA) 85.40% 85.55% 85.34% 75.81% 75.53% 75.20% 83.64% 84.61% 83.22%

flow profiles that are recovered using the algorithm in §5 as
well as reconstructed from the captured data (§4). Relatedly,
RA and DA report the accuracies of JPortal’s recovery and
decoding/reconstruction, respectively.

The percentage of data loss is dependent on multiple fac-
tors such as CPU frequency, the application’s instruction
characteristics, I/O latency, and buffer sizes, etc. As shown,
for the same program, the larger the buffer size, the less the
data loss. It is clear that most of the accuracy loss stems
from the data loss. Our recovery algorithm in §5 achieves
an accuracy of 51.4% across these programs under the 128M
buffer size. The recovery algorithm is less effective when
more data is lost. This is expected since more data loss leaves
a lower chance for a CS to exist. For sunflow, a moderate-
sized program, its data loss even reaches 40% under a 64M
buffer. A careful inspection found that sunflow has a much
higher trace generation rate than other programs.

Table 4. Accuracy in hot method detection.

[t
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JPortal’s decoding/reconstruction accuracy is much higher
(i.e, 82%). However, we are not able to precisely reconstruct
100% of control flow for the captured trace data. There are
a few reasons. First, for multi-threaded programs, JPortal
first separates the tracing data collected at each core based
on threads. To do this, JPortal records the timestamps of
thread switching points, and use these timestamps to sep-
arate the trace. However, the timestamps embedded in a
hardware trace can be inconsistent with those recorded at
thread switching points, resulting in occasional mistakes
in data separations. Furthermore, due to JIT optimizations
such as loop transformation and method inlining, the debug
information used for decoding is often imprecise as well.

We also compared the accuracy in hot method detection
between JPortal and the two performance profilers — xprof

and JProfiler, which are based on sampling. We identified the
10 hottest methods based on the control flow profile collected
from Ball and Larus’ instrumentation-based technique and
used these methods as the ground truth. Next, we obtained
the top 10 methods from JPortal’s profiles as well as those
of xprof [16] and JProfiler [8]. Finally, we compared these
reports with the ground truth. Table 4 reports the number
of hot methods in the intersection between the ground truth
and the report from each profiler. For each sampling-based
profiler, we ran it three times and reported the best result in
Table 4. Clearly, JPortal’s report is much closer to the ground
true than the sampling-based profilers (and simultaneously
has a much lower overhead).

Table 5. Trace size and time for decoding/reconstruction
and recovery; baseline is the instrumentation-based control
flow profiling technique [24]; reported for each technique
are data sizes (TS) and decoding times (DT); for JPortal, we
additionally report the recovery time (RT); ‘-’ indicates there
is no data loss.

‘ Baseline [24] ‘ JPortal
Subject | TS(MB) DT (min) | TS(MB) DT (min) RT (min)
avrora 8301.4 113.2 773.4 20.4 -
batik 176.4 4.2 1197.6 4.8 1.0
fop 109.1 1.7 520.7 3.5 -
h2 14946.7 198.9 3067.7 33.1 16.7
jython 1735.0 19.7 829.8 12.5 —
luindex 81.4 1.7 192.7 1.6 -
lusearch 1174.8 20.1 1067.2 6.1 -
pmd 3.2 3.2 secs 174.9 1.1
sunflow 1808.6 33.5 1052.3 10.9 6.6

7.3 Performance of Decoding and Recovery

To understand the performance of JPortal’s offline perfor-
mance of reconstruction and recovery, we measured the
trace size as well as the running time for each benchmark
under the instrumentation-based approach and JPortal. Ta-
ble 5 reports our results. For most programs, JPortal finishes
decoding within 10 minutes. The recovery time is also reason-
ably short (i.e, around 8 minutes across the three programs
with missing data). In contrast, the instrumentation-based
approach [24] records more tracing data for most programs.
The time spent on data decoding varies across programs.
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8 Related Work
8.1 Program Profiling

Instrumentation-based Profiling. In the JVM community,
multiple instrumentation frameworks have been developed,
such as Soot [14], ASM [1], BIT [37], RoadRunner [31], and
DiSL [2, 41]. They provide high-level APIs that hide low-
level details of bytecode or intermediate representation (IR),
making instrumentation much easier to do.

In particular, ASM [1] is a Java bytecode instrumentation
framework, which provides a way to dynamically manip-
ulate Java classes. Soot [14] is a Java optimization infras-
tructure. It provides intermediate representations (IRs) at
different abstraction levels for analyzing and transforming
Java bytecode. DiSL [2, 41] is an aspect-oriented language
developed for Java bytecode instrumentation. It leverages
high-level language constructs for concise instrumentation
and high performance of the instrumented code. Similar to
DiSL, BISM [52] is a lightweight low-level instrumentation
framework suitable for runtime verification.

A large body of binary instrumentation frameworks, such
as Pin [12, 40], DynamoRIO [3], Valgrind [15], Dyninst [4]
have been developed to assist in implementing various dy-
namic analyses on binaries. IR-level instrumentation tools
such as LLVM [10] and CSI [46] have also been extensively
used. Recently, Lehmann and Pradel developed Wasabi [38],
which is a binary instrumentation framework for analyzing
WebAssembly. Sen et al., developed Jalangi [48], which pro-
vides supports for dynamic analyses of JavaScript programs.

There also exists a body of JVM-based profiling tech-
niques [21, 36, 43, 49, 57-59] that are used primarily to detect
performance problems.

Sampling-based Profiling. To reduce the runtime over-
head, sampling-based profiling tools such as xprof [16], hprof
[6], JProfiler [8], and YourKit [17], have been developed and
extensively used in practice. Instead of capturing the com-
plete program behavior, sampling-based approaches only
collect data at a certain frequency; with the collected data,
they can statistically estimate the overall behavior of the
program. As a result, their overheads can be controlled by
tuning the sampling rate. However, finding the right sam-
pling rate is often challenging, and hence the accuracy of
profiling data is usually not guaranteed [42, 60].
Hardware-based Profiling. Another category of profiling
leverages hardware-provided profiling/tracing functionali-
ties. For instance, the Performance Monitoring Unit (PMU),
which is extensively used by profiling tools (such as Linux
perf [11] and Intel Vtune [7]), exploits PMU counters to
record events of interest. Although it has been shown to be
effective in many use scenarios [20, 22, 23], its applicability
is limited by the few PMU registers available.

In the past decade, dedicated hardware modules have been
developed to support powerful instruction and data tracing,.
Such modules include Intel processor trace (PT) [19] and

PLDI ’21, June 20-25, 2021, Virtual, Canada

ARM embedded trace macrocell (ETM) [18, 53]. These mod-
ules record minimal tracing information at runtime. Control
flow can be reconstructed offline with libraries such as li-
bipt [9] and ptm2human [13] (for Intel PT and ARM ETM,
respectively). Hardware tracing avoids any modification to
executables. More importantly, it incurs negligible runtime
overheads (around 2-5% in general [51, 56]) to the execution
of the software being traced.

8.2 Applications of Hardware Tracing

Hardware tracing has already enabled a variety of client
tasks, including testing/fuzzing [5, 28, 47, 63], debugging [30,
33, 34, 44], security enforcement [32, 39, 55], performance
tuning [50, 51], etc. Multiple fuzzing systems, such as Hong-
gfuzz, KAFL, PTFuzz, and PTrix, collect code coverage infor-
mation via PT so as to efficiently guide the fuzzing process.
In security enforcement, Griffin [32] and FlowGuard [39]
both exploit Intel PT to enforce control-flow integrity (CFI).
Cui et al. [30] proposed REPT that combines online hard-
ware tracing with offline binary analysis to achieve efficient
reverse debugging for field failures. PT has also been utilized
to debug concurrency and kernel bugs [33, 34]. Moreover,
Sharma and Dagenais [50, 51] have employed hardware trac-
ing for latency profiling and performance analysis.

Despite these many advantages provided by hardware trac-
ing, it has so far been used only to trace native programs run-
ning on bare metal machines. High-level languages such as
Java, Go, and Scala cannot benefit from it due to the runtime-
induced gap between application code and machine code
executed. JPortal closes this gap so that these benefits can
be easily extended to HLL applications.

9 Conclusion

This paper presented JPortal, a JVM-based profiling tool that
bridges the gap between the low-level hardware (machine-
code) traces and the high-level control flow of JVM programs.
By leveraging a postmortem static analysis that analyzes the
low-level traces collected by hardware, JPortal is able to
precisely and efficiently track the dynamic control flows of
Java bytecode with ultra-low runtime overheads.
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