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Abstract 13 
Purpose: The objective of this study is to quantitatively evaluate terahertz (THz) imaging for differentiating cancerous 14 
from non-cancerous tissues in mammary tumors developed in response to injection of ENU in Sprague Dawley rats. 15 
Approach: While previous studies have investigated the biology of mammary tumors of this model, the current work 16 
is the first study to employ an imaging modality to visualize these tumors. A pulsed THz imaging system is utilized 17 
to experimentally collect the time domain reflection signals from each pixel of the rat's excised tumor. A statistical 18 
segmentation algorithm based on the expectation maximization (EM) classification method is implemented to 19 
quantitatively assess the obtained THz images. The model classification of cancer is reported in terms of the receiver 20 
operating characteristic (ROC) curves and the areas under the curves.  21 
 22 
Results: The obtained low power microscopic images of 17 ENU-rat tumor sections exhibited the presence of healthy 23 
connective tissue adjacent to cancerous tissue. The results also demonstrated that high reflection THz signals were 24 
received from cancerous compared with non-cancerous tissues. Decent tumor classification was achieved using the 25 
EM method with values ranging from 83% to 96% in fresh tissues and 89% to 96% in formalin fixed paraffin 26 
embedded tissues. 27 
Conclusions: The proposed ENU breast tumor model of Sprague Dawley rats showed a potential to obtain cancerous 28 
tissues adjacent to healthy tissues like human breast tumors. The implemented EM classification algorithm 29 
quantitatively demonstrated the ability of THz imaging in differentiating cancerous from non-cancerous tissues. 30 
Keywords: Terahertz imaging, reflection mode, breast cancer, ENU-rat tumor induction, Sprague Dawley rats, 31 
microscopic imaging, expectation maximization classification method. 32 
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 35 

1 Introduction 36 

Terahertz (THz) imaging has emerged as a potential clinical technology for noninvasive and 37 

nonionizing evaluation of breast tumor margins [1-4]. Leveraging its sensitivity to water content, 38 

THz imaging has been used to determine the differences between normal and diseased tissue in 39 

several organs [5-9]. To establish the feasibility of THz imaging for imaging breast tumor margins, 40 
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we and others have shown the ability of THz imaging to distinguish between tumors and the 41 

surrounding fatty tissue in subcutaneous tumor xenograft models of breast cancer [10-13]. These 42 

tumor models are established from subcutaneous injections of immortalized cancer cells and result 43 

in the formation of distinct tumor cells and fatty tissue compartments. However, these tumors are 44 

nearly devoid of fibrous tissue and therefore do not adequately represent the complexity of human 45 

breast cancer. Recent work from our group demonstrated the first THz imaging study [14] in a 46 

transgenic mouse model of breast cancer (MMTV-PyMT), which has been used extensively as a 47 

preclinical model of breast cancer due to its similarities to the complexity and progression of 48 

human breast cancer [15, 16]. Despite the incredible tumor heterogeneity that was similar to what 49 

we have observed in our studies of human breast cancer [3, 17-20], there were appreciable 50 

differences in THz signal between different tumor compartments, such as fibrous, adipose (with 51 

and without tumor infiltration), tumor, and glandular secretions. However, the relative 52 

contributions of fatty and fibrous tissue to these tumors were still not reflective of human breast 53 

cancer [21]. Specifically, these transgenic tumors exhibit progressive degradation of the 54 

extracellular matrix with tumor progression, resulting in nearly 70-80% of the tumor being 55 

composed of adipose tissue at the time of tumor excision in our study. In our previous work [3], 56 

we reported tomographic images of freshly excised cancerous and healthy tissues obtained from 57 

patients and breast reduction surgeries, respectively. It is a continuous challenge, in cost and 58 

frequency, to acquire an adequate number of freshly excised human tumors that include normal 59 

tissue adjacent to cancerous tissue needed to assess the tumor margins. While no model can 60 

perfectly replicate human disease, our use of THz imaging and image analysis algorithms that 61 

leverage differences in the reflection signatures from different tissue compartments necessitate the 62 

use of a model that is a closer representation of the human breast tumors. 63 
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The development of carcinogen-induced mammary tumors in rodents has been used as a 64 

preclinical model, albeit not as extensively as transgenic or tumor xenograft models. Studies have 65 

shown that injection of N-ethyl-N-nitrosourea (ENU) results in reliable growth of benign and 66 

malignant mammary tumors [22-24]. These tumors have several similarities to human breast 67 

cancer, including elevated serum calcium and local invasion into the stroma and muscle. Rats were 68 

found to develop mammary tumors between 50- and 155-days post-injection [24]. As such, the 69 

ENU model of breast cancer has the potential to present tumors that are like human breast tumors 70 

in both complexity and composition (i.e. presence of cancerous adjacent to fatty and healthy 71 

connective tissues).  72 

The objective of this study is to determine the ability of THz imaging to differentiate cancerous 73 

and non-cancerous tissue in mammary tumors that develop in response to injection of ENU in rats. 74 

While previous studies by others conducted investigations of mammary tumor biology in these 75 

models [25-27], this is the first study to employ an imaging modality to visualize these tumors. In 76 

addition to imaging cancer and non-cancer tissue within each tumor in both fresh and formalin-77 

fixed paraffin-embedded forms (FFPE), we also report the results of a new classification analysis 78 

based on the expectation maximization technique [28] and a side-by-side comparison with 79 

xenograft and transgenic mice models. To ensure an objective comparison across all tumor models, 80 

our classification algorithm only considers two compartments— cancer and non-cancer. 81 

This work is organized as follows: methodology describing the rodent injections, pulsed THz 82 

imaging system, pre-image preparation of fresh tumor tissue, and image segmentation based on 83 

the expectation maximization technique are discussed in Section 2, results of THz imaging of 84 

ENU-rat tumors, a comparison to other mice tumor models, and THz image analysis and 85 
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classification are presented in Section 3, and conclusion and future work is discussed in Section 4. 86 

The microscopic imaging and image analysis procedure is discussed in Appendix A. 87 

2 Methodology 88 

2.1 ENU Tumor Induction in Rats 89 

All the rats handled in this work were injected with N-ethyl-N-nitrosourea (ENU) chemical 90 

solution at the Oklahoma State University. Two batches of ten 30-day old female Sprague Dawley 91 

rats were purchased from Charles River, Wilmington, MA, USA, and housed to acclimate for at 92 

least two days after arrival. The rats were kept two per cage in static filtered microisolator cages 93 

with corn cob bedding (Bed' OCobs, Maumee, OH, USA). Rats were fed rodent chow (Lab Diet 94 

5001, St. Louis, MO, USA) and tap water ad libitum. The weight of the rats ranged between 150 95 

and 186 grams. An amount of 15 mL of phosphate citrate buffer (Sigma-Aldrich, Milwaukee, WI, 96 

USA) was infused into the ipsopac containing the ENU solution (Sigma-Aldrich, Milwaukee, WI, 97 

USA). The rats were given 165 mg/kg of the ENU solution intraperitoneally in the lower right 98 

quadrant of the peritoneal cavity. All the animal procedures were performed in a chemical safety 99 

fume hood [29]. The cages were changed every four days, with the waste being handled as 100 

chemical hazardous for the first four days. Two weeks after inoculation, the rats were shipped to 101 

the University of Arkansas, where they were housed in the animal facility. The rats were 102 

maintained at standard 12-hour light/dark cycles with regular access to food and water. Tumors 103 

were excised between 9 and 21 weeks, with sizes ranging between 8 mm and 18 mm in diameter. 104 

The protocols for injecting rats with ENU chemical to produce mammary tumors were 105 

approved by the Institutional Animal Care and Use Committee (IACUC) of the Oklahoma State 106 
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University. Additionally, protocols for all rat experiments were approved by the Institutional 107 

Animal Care & Use Committee (IACUC) of the University of Arkansas. 108 

2.2 Pulsed Terahertz Imaging System 109 

The diagram of the pulsed terahertz system utilized in this work is shown in Fig. 1. The terahertz 110 

emitter and receiver antennas are voltage biased bow-tie antennas on the GaAs substrate [20]. Fig. 111 

1c shows the generated THz signal upon excitation with a 780 nm wavelength Ti: Sapphire laser 112 

beam. The Fourier transform of the time domain pulse gives the spectrum ranging from 0.1 THz 113 

to 4 THz, Fig. 1d. The generated THz pulse is directed onto the tissue sample, and the reflected 114 

signal is collected at the receiver antenna. For fresh tissue imaging, the specimen is placed between 115 

two polystyrene plates. The incident THz signal is directed on this polystyrene-tissue arrangement, 116 

and the reflected signal is recorded at the receiver antenna. In this case, two reflected pulses are 117 

received, one from the air-polystyrene interface and the second from the polystyrene-tissue 118 

 
Fig. 1. Terahertz system diagram in reflection mode (a) for fresh tissue placed between two polystyrene plates, (b) 
for FFPE tissue block, (c) Time domain THz pulse, (d) Fourier transform of the THz pulse in (c), and (e) Reflection 
signals from the polystyrene-tissue arrangement in (a). 
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interface, Fig. 1e. To record the reflected data from the tissue, the first pulse is windowed-out, and 119 

only the second pulse is recorded at each pixel on the tissue [20]. In this case, the power spectra 120 

image is constructed across a frequency range from 0.5 THz to 1.0 THz as: 121 

Spectral power =  ∫
|Esamp(𝑓)|2

|Eref(𝑓)|2

1.0 THz

0.5 THz

 d𝑓 (1) 

where Esamp is the magnitude of the Fourier transform reflected sample signal, Eref is a single point 122 

reference signal obtained from the air-polystyrene interface, and f is the frequency in THz. For the 123 

FFPE block tissue imaging, the block is placed directly onto the scanner, and the reflected time 124 

domain peak signal is collected at each pixel to construct the time domain THz image [17]. 125 

2.3 Pre-image Preparation of Fresh Tumor Tissue 126 

Upon excising the tumor from the rat with adequate healthy normal margin, it was immersed in 127 

phosphate buffered saline (PBS) for transfer from the excision site to the THz lab in the same 128 

building. As shown in Fig. 2a, the bulk tumor was bisected into two halves, such that each section 129 

has surrounding healthy normal tissue in Fig. 2b.  130 

For performing the THz imaging, the tumor was first dried for around 3-4 minutes on a grade-131 

1 filter paper, Fig. 2c. The tumor section was then positioned between two polystyrene plates with 132 

gentle pressure from the top to make the tumor surface as flat as possible for imaging, as shown in 133 

 
 
Fig. 2. Rat # 1 fresh tissue preparation for THz imaging. (a) Photograph of bulk tumor excised from rat tumor #1, 
(b) Bulk tumor bisected into two halves, (c) Tumor placed on filter paper to remove excess fluid, (d) Tumor 
positioned between two polystyrene plates, and (e) Polystyrene-tumor-polystyrene arrangement placed on the 
scanning window.  
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Fig. 2d. This tissue arrangement was then placed on the scanning window prepared for the 134 

reflection imaging, Fig. 2e. The x-y scanner motors were set to increment at every 200 µm step 135 

size to collect reflection data at each pixel on the specimen [20]. After completing the scanning, 136 

the tissue was immersed in a 10% buffered formalin solution and shipped to the Oklahoma Disease 137 

Diagnostic Laboratory for the histopathology process. In the histopathology process, all the fluid 138 

and lipids were extracted from the tissue (dehydrated tissue). Finally, the tumor was embedded in 139 

a paraffin block from which a 3-4 µm thick flat tissue section was sliced, stained with standard 140 

hematoxylin and eosin (H&E) ink, and fixed on glass slides. The FFPE tissue block and the H&E 141 

stained tissue glass slides are imaged using the THz reflection imaging system and the Nikon 142 

SMZ745T and NIKON Eclipse Ci microscopes, respectively. The scanner motors in the THz 143 

system were first set up to 400 µm step size to obtain quick images for adjusting the boundaries, 144 

but a finer step size of 200 µm was used to obtain the final THz images shown in this work. 145 

2.4 Image Segmentation Based on the Expectation Maximization Technique 146 

The THz images were assessed with respect to the pathology images as the ground truth of tumors. 147 

However, a pathology image has an inherently higher resolution than the THz image. Additionally, 148 

due to the dehydration process that the sample goes through during the histopathology process, a 149 

shape mismatch occurs between the pathology image and the THz image of fresh tissue [30]. Due 150 

to these factors and to compare the two images at a neutral ground, two statistical processes are 151 

implemented. First, a mesh morphing algorithm is used to digitize the pathology image and 152 

generate a classification at the same resolution and orientation as the THz image as reported in 153 

[12]. Our algorithm in [12] is implemented here to correct the alignment, resolution, and shape 154 

mismatch between these images. Such an algorithm utilizes control points within the contour of 155 

the images to provide a reference pathology for the pixel-by-pixel evaluation of the segmentation 156 
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results. The obtained image is referred to as the morphed pathology image. Second, a segmentation 157 

algorithm, based on the expectation maximization (EM) technique, is implemented on the THz 158 

image data to classify different tissue regions in the sample [31, 32]. The segmentation algorithm 159 

utilizes the amplitude of the frequency domain representation of the reflected THz waveform for 160 

each pixel, 𝒗𝑛 ∈ ℛ𝐹, where 𝐹 is the number of frequency samples in the spectrum, 𝑛 = {1, … , 𝑁} 161 

is the index of the pixel of interest, and 𝑁 corresponds to the total number of pixels in the THz 162 

image. The THz information for each pixel is represented by a high-dimension vector with 𝐹 =163 

106 frequency samples, which contains valuable information for the region characterization of the 164 

tumor. On the other hand, the high dimension of the THz information vector can negatively impact 165 

the model complexity of the segmentation process. Unlike alternative studies that summarize the 166 

THz information per pixel into a single physical characteristic, such as the absorption coefficient 167 

[33], the proposed algorithm employs a dimension reduction approach to identify the most relevant 168 

discriminating features while minimizing the loss of information. Here we utilize the low-169 

dimensional ordered orthogonal projection (LOOP) algorithm [28], which empirically projects the 170 

high-dimension waveform per pixel into a lower-dimension subspace containing the most relevant 171 

features for the region segmentation of the THz image. The details of the LOOP algorithm and the 172 

EM technique were reported in [28, 34].  173 

In addition to implementing the EM technique, we applied other classification methods such 174 

as estimating the model parameters within the Gaussian mixture model (GMM) utilizing a Markov 175 

chain Monte Carlo (MCMC) process.  This procedure iteratively takes samples from the posterior 176 

distributions of the mixture model parameters by employing a Gibbs sampling technique [35]. Two 177 

versions of the MCMC were tested on the data (not presented due to space limitation); a 1-178 

dimensional MCMC [11] and a higher dimensional MCMC with LOOP [28]. The first algorithm 179 
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summarizes the THz waveform per pixel into a single feature, which corresponds to the spectral 180 

power and the peak of the normalized reflected signal for fresh and FFPE tissue, respectively [11]. 181 

While the second algorithm employs the LOOP dimension reduction technique to summarize the 182 

THz waveform per pixel into a lower dimension representation of the data with at least two 183 

features. A previous study compared the segmentation results obtained through EM and MCMC 184 

for the detection of breast cancer in THz imaging and concluded that the EM algorithm presents 185 

the best overall segmentation performance among these approaches [28]. It is important to clarify 186 

that the samples presented in this paper were analyzed by considering different dimension sizes 187 

within the LOOP algorithm, ranging from two to six dimensions. For consistency, we present the 188 

EM results obtained through the dimension size that achieved the best overall detection 189 

performance. 190 

3 Experimental and Image Analysis Results 191 

A total of 9 tumors were obtained from 20 ENU induced Sprague Dawley rats, while the rest did 192 

not produce any tumors in the expected period of 9-21 weeks and were sacrificed according to the 193 

protocol. The obtained tumors were bisected into two sections, as shown in Fig. 2. The low power 194 

pathology images of 17 tumor sections obtained from the 9 rat tumors are presented in Fig. 3. The 195 

details of the low power pathology process of stitching are clarified in Appendix A. The 196 

microscopic images of Figs. 3a-3q shows that the rat tumors exhibit cancer tissues adjacent to pre-197 

existing normal fibro-fatty tissue with healthy mammary ducts and glands, mimicking the human 198 

breast tissue reported in [3, 17-20]. The microscopic images of Figs. 3a, b, f, g, j, l, m, and o, 199 

exhibit muscle tissue adjacent to both cancer and healthy fibro-fatty tissues. The muscle tissue is 200 

usually not present in human breast cancer excision but could exist in animal model tumors due to 201 

the narrow space where the tumor grows in the mammary pad.  202 
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Due to the space limitation, we present results for THz images and EM classifications for only 203 

three cases of ENU- rat tumors— rat tumor #1- section 2, rat tumor #2- section 2, and rat tumor 204 

#9- section 2. 205 

3.1  THz Reflection Images 206 

The THz reflection imaging of fresh and FFPE block tumor tissue are presented in Fig. 4. In 207 

addition, data of two tumors obtained from our previous mice models [13, 14] are included in the 208 

figure for comparison purposes. The first row of Fig. 4 shows the photographs of the fresh tissues 209 

starting with rat tumor #1- section 2 in Fig. 4a, rat tumor #2- section 2 in Fig. 4e, rat tumor #9- 210 

 
Fig. 3. Low power microscopic images of 17 tumor sections obtained from 9 rat tumors. (a) rat #1- section 1, (b) 
rat #1- section 2, (c) rat #2- section 1, (d) rat #2- section 2, (e) rat #3, (f) rat #4- section 1, (g) rat #4- section 2, (h) 
rat #5- section 1, (i) rat #5- section 2, (j) rat #6- section 1, (k) rat #6- section 2, (l) rat #7- section 1, (m) rat #7- 
section 2, (n) rat #8- section 1, (o) rat #8- section 2, (p) rat #9- section 1, and (q) rat #9- section 2. 
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section 2 in Fig. 4i, xenograft mouse tumor #9- section 2 [13] in Fig. 4m, and transgenic mouse 211 

tumor #14 C [14] in Fig. 4q. Following the same order, the results in the second, third, and fourth 212 

rows of Fig. 4 show the low power microscopic pathology images of H&E stained slide (second 213 

row), THz power spectra images of the freshly excised tumors (third row), and THz peak time 214 

reflection images of the FFPE block tumors (fourth row).  215 

  
Fig. 4. THz reflection imaging results. For rat tumor #1- section 2 (a) the photograph of the fresh tissue, (b) the 
low power pathology image, (c) the THz power spectra image of the fresh tissue, (d) the THz time domain peak 
reflection image of the FFPE block. For rat tumor #2- section 2 (e) the photograph of the fresh tissue, (f) the low 
power pathology image, (g) the THz power spectra image of the fresh tissue, (h) the THz time domain peak 
reflection image of the FFPE block. For rat tumor #9- section 2 (i) the photograph of the fresh tissue, (j) the low 
power pathology image, (k) the THz power spectra image of the fresh tissue, (l) the THz time domain peak 
reflection image of the FFPE block. For xenograft mouse tumor #9- section 2 (m) the photograph of the fresh 
tissue [13], (n) the low power pathology image [13], (o) the THz power spectra image of the fresh tissue [13], (p) 
the THz time domain peak reflection image of the FFPE block [13]. For transgenic mouse tumor #14 C (q) the 
photograph of the fresh tissue [14], (r) the low power pathology image [14], (s) the THz power spectra image of 
the fresh tissue [14], and (t) the THz time domain peak reflection image of the FFPE block [14]. Figs. 4m-4p, are 
reproduced with permission from the IEEE. Figs. 4q-4t, are reproduced with permission from the IOP Publishing, 
Ltd.  



12 

Upon visual inspection of the microscopic images of xenograft and transgenic mice sections 216 

in Figs. 4m and 4q, respectively, the differentiation between cancerous and non-cancerous tissues 217 

can be clearly observed. Whereas it is not the case for the ENU-rat tumor photographs in Fig. 4a, 218 

4e, and 4i. Here we can see the advantageous role of utilizing the THz reflection imaging 219 

technology to highlight the contrast differentiation between cancerous and non-cancerous tissue 220 

sections in the tumors, as shown in Fig. 4.  221 

The tumor of rat #1 was excised on the 63rd day after the chemical injection with a size of ~18 222 

mm diameter. The microscopic low power image in Fig. 4b shows that this tumor exhibits three 223 

tissue regions— cancer, fibro-fatty, and muscle. The light purple colored spots seen in the 224 

pathology image in Fig. 4b indicate a lack of cancer tissue on the slide (gaps) that is important to 225 

mention as it will also be seen in the THz image in Fig. 4d. These gaps could be either pre-existing 226 

lumens, which were filled with some secretions when the tissue was fresh, or occurred due to 227 

handling the tissue during the histopathology process. Fig. 4c shows the THz imaging of the fresh 228 

tumor obtained using the power spectra image using eq. (1) demonstrating the excellent distinction 229 

between cancer and the fibro-fatty regions of the tumor. Here, the cancer shows higher reflections 230 

(red color) than the fibro-fatty (cyan and blue color). However, no distinction could be observed 231 

between the cancer and the muscle regions. This is because the electrical properties of fresh muscle 232 

tissue and fresh cancer tissues are similar, in agreement with our previously reported work [11]. 233 

In contrast to the fresh tissue THz image, the THz peak reflection image in Fig. 4d shows a clear 234 

differentiation between all three regions, with cancer representing higher reflections (red color) 235 

followed by the muscle (light yellow) and fat (blue color). Consistent with the pathology image in 236 

Fig. 4b, the THz image in Fig. 4d shows blue color spots inside the cancer region associated with 237 

the gaps/lumens filled with the paraffin. 238 
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The rat tumor #2 was excised on the 68th day from the chemical injection with a ~11.87 mm 239 

tumor diameter. Based on the microscopic image in Fig. 4f, this tumor includes two tissue 240 

regions— cancer and fibro-fatty. Here, we also observe in Fig. 4g that the THz power spectra 241 

image shows higher power spectra values for the cancer region (red color) compared with the 242 

fibro-fatty region (blue and cyan color). In other words, a clear margin between cancer and fibro-243 

fatty tissue regions is seen in this image. This differentiation is also observed in the THz peak 244 

reflection image of the FFPE block tumor in Fig. 4h, with cancer demonstrating higher reflection 245 

magnitude (red color) than the fibro-fatty region (blue and cyan color). Furthermore, we observe 246 

darker red color regions (higher reflection) in the cancer region in Figs. 4c and 4g that could be 247 

due to higher density of cancer cells, insufficient drying of the tumor before placing it on the 248 

polystyrene plate, or excess fluid secreted out of the tumor due to the pressure from the polystyrene 249 

plate during the scanning process. 250 

The third case presented here is for the rat tumor #9 shown in Figs. 4i-4l. This tumor was 251 

excised on the 120th day after the chemical injection with a tumor diameter equals to ~10.63 mm. 252 

Like the second rat tumor, this tumor also exhibits cancer and fibro-fatty regions, as shown in the 253 

microscopic image of Fig. 4j. Consistent with the above cases, the THz power spectra image in 254 

Fig. 4k and the peak reflection image in Fig. 4l demonstrate higher reflection  values for the cancer 255 

region (yellow-red color) in the tumor compared with the fibro-fatty region (blue and cyan color). 256 

Upon comparing the THz image of the FFPE block tissue in Fig. 4l and the pathology image in 257 

Fig. 4j, we see an excellent qualitative correlation between both images. However, this is not the 258 

case with the fresh tissue image. As discussed in our previous work [30], the histopathology 259 

process introduced deformation in tissue shape leading to a change in the imaging surface. 260 

Therefore, the correlation between the fresh tissue THz image and pathology image is degraded. 261 
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For comparison purposes between three animal breast tumor models, two tumors of different 262 

animal models based on mice are included in Fig. 4. The first is the xenograft mice model reported 263 

in [11-13], and the transgenic mice model reported in [14]. These three breast cancer animal 264 

models represent major differences in the tumor growth process, types of healthy tissues enclosed 265 

in the tumor along with cancer, the heterogeneity of the tumor, and the amount of healthy tissue at 266 

the tumor margin. As described in Section 2.1, the tumors in the Sprague Dawley rats were induced 267 

by injecting ENU chemical in the rat's mammary pad. Whereas the tumors in C57BL/6 black 268 

laboratory xenograft mice were induced by injecting E0771 murine breast adenocarcinoma cells 269 

in their mammary pad [13]. In contrast to both these methods, the transgenic model did not require 270 

any carcinogen injection to induce tumors in the mice's body as it is a genetically modified mice 271 

model that grows multifocal tumors spontaneously in the mammary pad [14].  272 

The data of the xenograft and transgenic tumors are shown in Figs. 4m-4t. As observed from 273 

the THz imaging point of view, we see a visual consistency in differentiation between different 274 

tumor regions. For example, in the THz power spectra image of xenograft mouse tumor #9 in Fig. 275 

4o and the transgenic mouse tumor #14 in Fig. 4s, the cancer shows higher reflections (red color) 276 

compared with fat (blue color). Also, like rat tumor #1, the cancer and muscle show similar 277 

reflection magnitudes in the fresh tissue images in Figs. 4o and 4s. We also observed consistent 278 

THz reflections from different regions in the FFPE block tissue images in Figs. 4p and 4t, for 279 

xenograft mouse and transgenic mouse tumors, respectively.  280 

Furthermore, upon comparing the microscopic images of xenograft [13] and transgenic [14] 281 

mice tumors in Figs. 4n and 4r, respectively, with the microscopic images of rat tumors in Fig. 3, 282 

it can be seen that both mice tumor models lack the presence of pre-existing healthy fibrous tissue 283 

in the excised tumors. Both mice tumor models exhibit only fat adjacent to cancer in the tumor. 284 
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Also, it can be seen that the amount of surrounding healthy tissue available in ENU-rat tumors is 285 

more than that in the presented mice models.  286 

A numerical comparison between the percentage cancerous pixels in each tumor in three 287 

animal models is shown in Table 1 and Fig. 5. The percentage is achieved through generating 288 

binary masks of the tissue under test. The outer mask of the FFPE block is obtained upon mapping 289 

the THz image with the pathology image, while the fresh tissue mask was obtained through 290 

applying the gradient to the fresh tissue THz image.  The binary masks have values of one for the 291 

pixels on the tissue and zeros for the outside pixels. Similarly, a second binary mask is generated 292 

for the cancerous region using the guidance of the pathology image for the FFPE tumor and the 293 

gradient for the THz fresh tissue. The estimated percentage of cancerous pixels is comparable 294 

among the tumors indicating to a general preservation of the surface between the fresh and fixed 295 

tissue specimens.  Furthermore, despite the very different procedures used to grow the tumors in  296 

 297 

 298 

 299 

 300 

 
Table 1: Summary of % cancerous pixels in each tumor in Fig. 4  

Tumor Type % of cancer pixels in 
fresh tumor 

% of cancer pixels in 
FFPE block tumor 

Rat #1- section 2 56.61 50.7 
Rat #2- section 2 73.22 65.99 
Rat #9- section 2 46.12 54.33 

Xenograft #9- section 2 [13] 62.70 68.71 
Transgenic #14 C [14] 43.09 45.81 

 

 
Fig. 5. Percentage of cancerous pixels in each tumor THz image in Fig. 4. 
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these three animal models, the percentage of cancerous pixels is consistent with the size of the 301 

excised tumors following the IACUC protocol. 302 

3.2  THz Image Classification  303 

The tumor classification results in Fig. 6 are achieved using the EM technique for all tumors 304 

presented in Fig. 4. While the THz images of xenograft and transgenic mice tumors are published 305 

in [13, 14], the EM classification technique is implemented on these mice tumors here for the first 306 

time for comparison purposes. The results are obtained from a binary classification perspective as 307 

cancer versus non-cancerous regions, in which any non-cancerous regions in the tumor are merged 308 

into a single region. For the binary representation of tumors in Fig. 6, cancer pixels in each tumor 309 

are displayed as red color and the non-cancer pixels (fat, fibro, or muscle tissues) as blue color. 310 

The statistical classification results of rat #1 are presented in Figs. 6a-6d. The morphed 311 

pathology images, constructed based on the pathology assessment, are obtained separately for both 312 

fresh and FFPE tumors [12], as shown in Figs. 6a and 6c, respectively.  The EM model results are 313 

shown in Figs. 6b and 6d for the fresh and FFPE tissue, respectively. Although there is no tissue 314 

distortion among the pathology results and the THz image of the FFPE tissue, the morphing 315 

algorithm is still applied to the FFPE tissue to correct the resolution and alignment mismatch 316 

between these images. For this tumor, the fibro-fatty and muscle tissues are grouped together and 317 

classified as non-cancer for the binary representation of the tissue classification results. The results 318 

in Fig. 6b represent the classification of tissues in the fresh tumor obtained by the 3D EM model. 319 

It can be observed here that the 3D EM segmentation model presents a good visual correlation 320 

with respect to the morphed pathology results, where it identifies the cancerous area correctly with 321 

minimum non-cancer misclassification. The classification image shown in Fig. 6d represents the 322 

Tanny
Inserted Text
Applying the EM segmentation algorithm to the data in Fig. 4, we can obtain the probability that each pixel belongs to cancer or non-cancer regions. For example, based on the calculation of the EM segmentation algorithm, a given pixel within the THz image can present a 20% chance of belonging to cancer and 80% of belonging to a non-cancerous region. The segmentation results presented in Fig. 6 were obtained by considering the maximum probability among these 2 regions, i.e. a threshold of 50% was utilized for the label assignment of this process.
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FFPE block tumor segmentation results obtained using the 4D EM model. In this figure, we can 323 

observe that the 4D EM segmentation results show some misclassification of the non-cancer region 324 

but overall shows a good correlation with the microscopic image in Fig. 4a.  325 

The statistical classification results of rat tumor #2 are discussed in Fig. 6e-6h. The morphed 326 

pathology image of a fresh and FFPE tumor in Fig. 6e and 6g display cancer and fibro-fatty tissue 327 

 
 
Fig. 6. Statistical classification. Sub-figures (a-d) for rat #1; (a) The morphed pathology for the fresh tissue, (b) 
The 3D EM detection model results for the fresh tissue, (c) The morphed pathology image for the FFPE tissue 
block, and (d) The 4D EM detection model results for the FFPE block tissue. Sub-figures (e-h) for Rat # 2; (e) The 
morphed pathology for the fresh tissue, (f) The 2D EM detection model results for the fresh tissue, (g) The morphed 
pathology image for the FFPE tissue block, and (h) The 4D EM detection model results for the FFPE block tissue. 
Sub-figures (i-l) for rat #9. (i) The morphed pathology for the fresh tissue, (j) The 2D EM detection model results 
for the fresh tissue, (k) The morphed pathology image for the FFPE tissue block, and (l) The 4D EM detection 
model results for the FFPE block tissue. Sub-figures (m-p) for xenograft mouse #9. (m) The morphed pathology 
for the fresh tissue, (n) The 2D EM detection model results for the fresh tissue, (o) The morphed pathology image 
for the FFPE tissue block, and (p) The 3D EM detection model results for the FFPE block tissue. Sub-figures (q-
t) for transgenic mouse #14 C. (q) The morphed pathology for the fresh tissue, (r) The 2D EM detection model 
results for the fresh tissue, (s) The morphed pathology image for the FFPE tissue block, and (t) The 2D EM 
detection model results for the FFPE block tissue. 
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regions in the tumor as cancer and non-cancer, respectively. The 2D EM classification model 328 

results for fresh tumor THz data are presented in Fig. 6f. By visually inspecting Fig. 6f, we can 329 

observe that the overall region classification for the EM model shows a good correlation with the 330 

morphed pathology results with a very minimum non-cancer misclassification around the edge of 331 

the cancer region. Furthermore, the classification results obtained for the FFPE block tumor using 332 

the 4D EM model are presented in Fig. 6h. This figure shows that the model represents the correct 333 

classification of both cancer and non-cancer regions with a small region of pixels in the non-cancer 334 

region classified as cancer. These results are to be compared with the pathology and THz images 335 

of rat # 2 in Fig. 4. 336 

 The statistical classification results of the third tumor, rat tumor #9, are shown in Fig. 6i-6l. 337 

The morphed pathology images of fresh and FFPE tumors showing a binary representation of 338 

tumor as cancer and non-cancer regions are shown in Figs. 6i and 6k, respectively. By visually 339 

inspecting the 2D EM classification results in Fig. 6j, we can observe that most of the cancer area 340 

located in the lower-left section of the tissue was correctly identified. In contrast, the upper-middle 341 

cancerous region within the tissue was mostly misclassified. For the FFPE block tumor, the 342 

segmentation image obtained using the 4D EM model presented in Fig. 6l represents the correct 343 

classification of both cancer and non-cancer regions. These results are to be compared with the 344 

microscopic pathology and THz images of rat # 9 in Fig. 4.  345 

The statistical classification results of the xenograft mouse tumor #9 are shown in Fig. 6m-6p. 346 

In the morphed pathology images of fresh and FFPE block tumor in Fig. 6m and 6o, respectively, 347 

the fat and muscle tissues are combined and displayed as non-cancer. From the classification 348 

imaging results in Fig. 6n, we can observe that the overall region classification for the 2D EM 349 

model presents a good correlation with the morphed pathology results and correct classification of 350 
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muscle as a non-cancer region around the lower-middle edge of the cancer region. The 3D EM 351 

model deployed for the FFPE block tumor provides the correct classification of both cancer and 352 

non-cancer regions with some misclassification of cancer in the upper right section of the tumor, 353 

as presented in Fig. 6p. 354 

Similarly, the classification results of the fifth tumor obtained from transgenic mouse #14 are 355 

presented in Figs. 6q-6t. In the morphed pathology images in Figs. 6q and 6s for fresh and FFPE 356 

block tumors, respectively, the cancer and cancer in fat are grouped to be classified as cancer, and 357 

fat and muscle tissues are grouped to be classified as non-cancer. The segmentation results for the 358 

fresh transgenic tumor obtained using the 2D EM model in Fig. 6r represent the misclassification 359 

of the cancer area located in the center of the tumor. Similarly, in the 2D EM classification results 360 

of FFPE tumor shown in Fig. 6t, the non-cancer region in the upper-left and lower-left region of 361 

the tumor is misclassified as cancer. 362 

The segmentation process shown above is performed by considering the total number of regions 363 

within the tissue, but the performance analysis presented here is evaluated in terms of the detection 364 

of cancer alone using the operating characteristic (ROC) curves. Ideally, the ROC curves achieve 365 

the optimum 100% true detection rate with 0% false detection rate. Therefore, we compare the 366 

proposed classifiers' performance by analyzing their proximity to the optimal detection point 367 

within the curve. Additionally, we summarize the classifiers' performance by obtaining their areas 368 

under the ROC curve, which are then evaluated by considering their proximity to the ideal case, 369 

i.e., 100%. A comparison of the ROC curves of cancer for the rats, xenograft mouse, and transgenic 370 

mouse is summarized in Fig. 7 and Table 2. In Fig. 7, we present the cancer ROC curves obtained 371 

using the statistical EM classification technique of the five tumors presented in Fig. 4.  The cancer 372 
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ROC curves for fresh tissue samples are presented in Fig. 7a and for the FFPE block tissue samples 373 

in Fig. 7b.  374 

As mentioned in the Methodology Section, the tumor sections were also classified using the 375 

MCMC method, and the areas under the cancer ROC curves are listed in Table 2. Upon comparing 376 

the MCMC and EM results, it is clear that the EM technique provided the highest success rate in 377 

most of the cases. For example, the EM provided 96.45 % for rat tumor # 2, followed by the 378 

xenograft mouse tumor # 9 with 90.68 %. The classifications of rat tumors # 1and # 9 show similar 379 

performance with more ~84 % area under the ROC curve. The performance of the classifier in the 380 

 
Fig. 7. ROC curves of cancer using the EM technique. (a) fresh tissues, and (b) FFPE tissues.  

Table 2: Summary of areas under the cancer ROC curves for all samples  

Fresh Tissue                                                            FFPE Block Tissue 
Rat Tumor #1 Section 2 

1D MCMC 6D MCMC 3D EM 1D MCMC 2D MCMC 4D EM 
0.7787 0.8392 0.831 0.7551 0.9347 0.9636 

Rat Tumor #2 Section 2 
1D MCMC 2D MCMC 2D EM 1D MCMC 6D MCMC 4D EM 

0.9591 0.9284 0.9645 0.9752 0.9949 0.9957 
Rat Tumor #9 Section 2 

1D MCMC 5D MCMC 2D EM 1D MCMC 5D MCMC 4D EM 
0.7319 0.8356 0.8457 0.9312 0.9711 0.9812 

Xenograft Tumor #9 Section 2 
1D MCMC 2D MCMC 2D EM 1D MCMC 2D MCMC 3D EM 

0.8647 0.8968 0.9068 0.8633 0.8827 0.8869 
Transgenic Tumor #14 C 

1D MCMC 5D MCMC 2D EM 1D MCMC 3D MCMC 2D EM 
0.624 0.6551 0.5782 0.5917 0.6878 0.6776 
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rat tumor # 9 could be degraded due to the distortion in the shape of the tumor after the 381 

histopathology process, as discussed earlier. Furthermore, we observe that the transgenic mouse 382 

tumor #14 C does not show good tissue classification due to the high heterogeneity and complexity 383 

observed in the transgenic tumors, as reported in [14]. As cancer invades the other tissue, it became 384 

difficult for the classifier to distinguish between the different regions of the transgenic model. 385 

Similarly, the EM classification of FFPE block tumors in Fig. 7b presents the best performance 386 

among the rat tumors. The results of Table 2 show a success rate with more than 95% area under 387 

the ROC curves for rat tumors, followed by xenograft mouse tumor #9 with 88.69%, and then the 388 

transgenic mouse tumor with 67.76%. The results of Table 2 are consistent with the classification 389 

results of human breast cancer tumors reported in [28].  390 

4. Conclusion and Future Work 391 

The results obtained in this work highlighted the THz imaging reflection technique and the 392 

expectation maximization classification (EM) algorithm of breast cancer in rats. Malignant 393 

mammary tumors were grown in Sprague Dawley rats upon injection with the N-ethyl-N-394 

nitrosourea (ENU).  395 

Seventeen tumor sections were obtained from nine tumors once they reached the size of ~18mm 396 

in diameter. The freshly excised tissue sections and their associated dehydrated FFPE block tissues 397 

were scanned on the imaging system to produce the THz images. The fresh tissue images were 398 

based on the reflected signal in the frequency domain using the power spectra formulation, while 399 

the FFPE block tissue images were based on the peak of the time domain reflected signal at each 400 

pixel. The low power microscopic images of the 17 rat tumor sections were obtained using the 401 

high-power microscope, followed by applying the stitching procedure. The obtained images 402 

demonstrate that the ENU-tumors induced in rats exhibit the presence of cancer tissue adjacent to 403 
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healthy fibro-fatty tissues like human breast cancer tumors. This was the motivation of this work 404 

as the previously investigated xenograft, and transgenic mice tumor models did not exhibit such 405 

resemblance with human breast tumors.   406 

Based on the results obtained in this work, we can conclude that the xenograft tumor model 407 

represents the simplest tumor with only cancer and fat regions. The transgenic model represents 408 

much more complex heterogeneous tumors with cancer invading the surrounding tissue and 409 

expressing advanced-stage tumors. At the same time, the ENU-tumor rat model fits in between the 410 

two mice models and closely mimics human breast tumors where healthy fibro-fatty tissues are 411 

present adjacent to cancer tissues. 412 

The obtained THz images showed significant differentiation between cancer and healthy 413 

tissues in most tumors' sections presented here. A few sections showed the presence of muscle 414 

tissue in the tumor, which exhibits reflection signals like the cancer in the THz images shown in 415 

Fig. 4. As a result, the presence of muscle tissue introduced some challenges in the EM 416 

classification; however, muscle tissue is not a concern in human breast tumors. While THz images 417 

of the FFPE block tissue show a good correlation with the pathology image, the challenge remains 418 

in the correlation between the THz image of fresh tissue and the pathology image. As reported in 419 

previous work [30], there is usually a surface mismatch between the pathology and the fresh tissue 420 

THz image, as can be clearly seen in rat tumor #9- section 2. The primary reason for this mismatch 421 

is due to tissue deformation that occurs during the histopathology process. Almost ~100 µm thick 422 

tissue section is usually removed during the histopathology process to obtain a flat surface cut for 423 

the H&E stained slide. The mismatch and deformation in the imaging surface lead to a mismatch 424 

in the image between THz and pathology. Additionally, during the histopathology process, the 425 

tissue sometimes gets unfold and laid down at the bottom surface of the tumor. This also introduces 426 
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ambiguity when correlating fresh tissue THz images with the pathology image. This observation 427 

is consistent with our previous mice tumor models [13, 14].  428 

THz imaging and classification results were obtained for the ENU-tumors in rats and the mice 429 

models previously published, such as the xenograft [11-13] and the MMTV PyMT transgenic [14]. 430 

The difference observed in the results between these animal models was based on various factors, 431 

like the tumor induction process, the presence of healthy breast tissue at the tumor's margin, the 432 

tissue types in the tumor, and the tissue response to the THz pulse. A small amount of fibrous 433 

tissue was exhibited in transgenic mouse tumors, but that fibrous tissue was cancer induced tissue 434 

and not pre-existing. The results also showed that the best classification was achieved using the 435 

EM technique, except for the transgenic mouse tumor, consistent with the classification of human 436 

breast cancer tumors reported in [28]. Furthermore, the obtained results showed that the EM 437 

classification of cancer in freshly excised tumors seems to be underpredicted by showing more 438 

false negatives than false positives.  439 

The future work focuses on implementing machine learning and deep learning algorithms on 440 

THz imaging to perform better cancer classification and better assessment of tumor margins. 441 

Machine learning, as known, requires establishing a large database of tumor tissues. The use of 442 

ENU-tumor in rats has shown a potential to provide an adequate amount of data instead of relying 443 

on human breast tumors. Furthermore, a spectroscopy procedure in the reflection mode will be 444 

conducted to extract the refractive index and absorption coefficient of the xenograft, transgenic, 445 

and rat tumor models and compare with human breast tumors. 446 

Append A: Microscopic Imaging and Image Analysis 447 

The analysis of each rat mammary tumor is performed via microscopic imaging of the H&E-448 

stained tissue slide (Fig. 8a). The first step in this process is to construct the low power microscopic 449 
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image of the tissue slide. This is achieved by taking ~ 10-15 subsection images of the H&E slide 450 

at 6.7x magnification, as shown in Fig. 8b. The size of each sub-image obtained at 6.7x 451 

magnification is 3.28 × 3.28 mm. The images are taken such that every two adjacent subsection 452 

images have a common region between them. These images are then uploaded in open-source 453 

software (Hugin-Panorama Stitcher [36]). To map the common regions among all images, one 454 

image is taken as a reference image and is compared one on one with other images. For example,  455 

in Fig. 8c, image #1 is taken as a reference image, and it is further compared with all other images. 456 

The common regions between the reference image and the other images are marked as different 457 

colored boxes in Fig. 8c. Every image is made a reference image, and this mapping process is 458 

repeated for all images. Upon completion of the common region mapping process, the software 459 

then compiles the stitching of the images to provide the complete pathology image of the tissue at 460 

6.7x magnification, as shown in Fig. 8d. To assess the tissue, few regions on the low power image 461 

are selected, for which 100x magnification images are obtained to have the cellular level 462 

information of the selected region. For example, at the regions marked (1) and (2) in Fig. 8d, the 463 

high-power images are presented in Fig. 8e. The size of each high-power image obtained at 100x 464 

 
 
Fig. 8. Stitching microscopic images of mammary tumor from rat # 1. (a) H&E-stained tissue slide of rat tumor 
#1- section 2, (b) Low power microscopic images of the slide in (a) at 6.7x magnification, (c) compiled image in 
the software after mapping of common points between all images in (b), (d) Stitched pathology image, and (e) 
High power images obtained at 100x magnification for the tissue regions marked (1) and (2) in (d).  
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magnification is 0.22 × 0.22 mm. Several such images are taken that covers most of the tissue 465 

regions to be assessed.  466 
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