User-Defined Cloud

Yiying Zhang Ardalan Amiri Sani Guoqing Harry Xu
UCSD UC Irvine UCLA
ABSTRACT Today’s cloud platforms see an unprecedentedly rapid

Since its creation, cloud computing has always taken a provider-

dictated approach, where cloud providers define and manage
the cloud to accommodate the user needs they deem impor-
tant. We propose “User-Defined Cloud”, or UDC, a new cloud
scheme that allows users to define their own “clouds”, by
defining hardware resource needs, system software features,
and security requirements of their applications, and to do so
without the need to build or manage low-level systems.

CCS CONCEPTS

« Computer systems organization — Cloud comput-
ing.

KEYWORDS

user-defined cloud, cloud computing, system customization

ACM Reference Format:

Yiying Zhang, Ardalan Amiri Sani, and Guoging Harry Xu. 2021.
User-Defined Cloud. In Workshop on Hot Topics in Operating Systems
(HotOS °21), May 31-Fune 2, 2021, Ann Arbor, MI, USA. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3458336.3465304

1 INTRODUCTION

Since the launch of AWS in 2006, the evolution of cloud
ecosystems has so far been following a provider-dictated
approach summarized in the following three steps: 1) the
cloud provider identifies the need to support a new type of
application workload or a new type of hardware; 2) the cloud
provider develops new software and/or adapts an existing
software/hardware infrastructure to support the need; and 3)
the cloud provider launches a new service or a variation of
an existing service to integrate the new hardware/software.
This approach has successfully transformed the cloud from
a niche market into a dominant computing platform that em-
powers small and large organizations to run their businesses
at scale.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

HotOS ’21, May 31-June 2, 2021, Ann Arbor, MI, USA

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8438-4/21/05.
https://doi.org/10.1145/3458336.3465304

growth in both workload diversity and hardware heterogene-
ity. On the one hand, a broader community of users are em-
bracing the cloud and many come from domains with specific
needs of efficiency, scalability, and security. Some example
domains are military [1], hospitals [38], farms [24], financial
firms [11], entertainment companies [13], and police depart-
ments [12]. On the other hand, new hardware devices emerge
at an unprecedented speed. Examples are TPU [23] and
other ASICs [4, 33] for compute acceleration, Optane [15, 20]
and 3D-stacked [31] memory for making memory persis-
tent and high-bandwidth, and programmable [9]/circuit [35]
switches/NICs for offloading computation to network infras-
tructures and making them cheaper.

Looking forward, a critical question we ask is: would the
aforementioned cloud evolution pattern still work? In par-
ticular, it boils down to the following two subquestions: 1)
from the perspective of cloud users, would they be all happy
with a number of services each with a fixed configuration even
if new services keep getting added? 2) from the perspective
of cloud providers, would they be able (and willing) to cus-
tomize their infrastructures in a timely fashion when new
hardware and workloads quickly emerge? Unfortunately,
today’s cloud computing model falls short of both aspects.

From the cloud users’ perspective, there are three major
issues. First, users pay for extra (35% according to [14]) com-
puting resources they do not need because no cloud service
matches their precise needs. For instance, to use 8 GPUs in
a VM to run a big machine-learning workload, AWS users
must select an EC2 p3.16xlarge or p3dn.24xlarge instance,
which come with 64 and 96 vCPUs, respectively, even if they
need only a small number of vCPUs to run the GPU orches-
tration software. Second, niche domain users are unable to
run their workloads as desired in the cloud, often because the
cloud does not provide the right combination of hardware
or is too slow in incorporating new hardware features into
their services. For example, many ML inference tasks are
event-triggered and could benefit from serverless computing
and GPU acceleration. Despite the high demand for such
applications, no cloud provider has yet supported GPU in
their serverless computing offerings. Finally, users cannot
properly specify their security needs and they have to trust
the cloud provider. Unfortunately, providing enhanced secu-
rity and strong isolation often comes at the cost of reduced
resource utilization or performance. As a result, security is
often sacrificed, resulting in severe compromises and data

https://doi.org/10.1145/3458336.3465304
https://doi.org/10.1145/3458336.3465304

HotOS 21, May 31-June 2, 2021, Ann Arbor, MI, USA

Code Functions

Code Functions

Application

Application

Yiying Zhang, Ardalan Amiri Sani, and Guoqing Harry Xu

System Software System Software

VM / Container VM / Container

Networking Networking

il

Storage Server Storage Server

()
()
()
()
[OS / Hypervisor] [OS / Hypervisor
()
()
()

Compute Server Compute Server j

VM-/Container-Based

Local Datacenter (laaS / Caa$)

OS / Hypervisor
Networking
Storage Server
Compute Server

Serverless Computing
(FaaS)

Code Functions [Code modules]
Application Distributed | [ExecEnv | [Resource
Aspect Aspect Aspect
System Software e e
VM / Container 3 [Distributed Midd|eware j System
|] Softare

Verification

User-Defined Cloud

< more control & flexibility

less IT burden> ‘ great control and flexibility, little IT burden ‘

Figure 1: UDC Architecture. Red boxes represent user-defined and user-managed modules. Blue boxes represent cloud-defined and cloud-managed modules.

Red-blue boxes represent user-defined and cloud-managed modules.

breaches [34]. For all the above cases, users have to build a
dedicated cluster with their desired features, incurring high
development and maintenance costs.

The way today’s clouds run also creates problems for cloud
providers. On the one hand, when there is new hardware to
deploy or a security feature to add, the cloud provider needs
to integrate them into every single one of its existing services.
On the other hand, launching a new service dictates that the
service must be compatible with different types of hardware,
system software, and security features that users would want
to access. These two problems collectively create a “cloud
DevOps matrix from hell”, similar to the DevOps matrix from
hell that motivated the creation of containers [22]. Every time
a change is about to be made on the cloud, the provider must
go through this matrix from hell, incurring exceedingly high
development costs and slowing down the time to market.

We observe that the root cause of the aforementioned is-
sues is that it is always the cloud providers that define and
manage the cloud to accommodate the user needs they deem
popular. The mere role of cloud users is to use the predefined
cloud, as is. However, users are the ones who understand
their workloads and know what is needed to run them. In
this paper, we argue that users can and should define their
own clouds. Cloud providers continue to create and manage
the cloud, but in a way that is flexible enough for users to
customize it. To be more specific, each user defines what
computing resources and features of these resources
the cloud should provide for their own workloads, and
cloud providers take care of how these resources are
provided by supplying software and hardware infrastruc-
tures under the hood. In doing so, users can actively cus-
tomize software and hardware in a public cloud, and they
only need to understand what their workloads need, as op-
posed to how to meet these needs with predefined service

types. In the meantime, cloud providers only need to build
a customizable (software and hardware) infrastructure that
allows users to create their own “services”, as opposed to
tirelessly adding services for each emerging user group.

Building on this insight, we propose User-Defined Cloud,
or UDC, a new cloud scheme that allows a user to define 1)
the hardware resources they need to run their workloads
(e.g., number of CPU cores, type and number of GPUs, and
amount of memory) in arbitrary combinations and amounts,
2) the execution environment and security requirements for
their workloads (e.g., the level of isolation, confidentiality,
and integrity), and 3) system features for running their work-
loads in a distributed way (e.g., the degree of replication,
consistency level, and failure handling strategy). Further-
more, we propose a fine-grained approach that allows users
to define what resources and features each individual stage
of their workloads need, instead of claiming (and paying
for) excessive resources for the entire workload. Based on
these specifications, the cloud provider puts together a cloud
service for the user on the fly, which includes the desired
set of hardware resources, system configurations, as well as
security features.

One implication of UDC is that when users have more
freedom in defining their own “cloud”, they need to under-
stand both their own applications and to some extent, what
computing resources and features they need. We envision
a typical user of UDC to have a division of responsibility
within them: application developers who write applications
in a modularized way that fits their application, and a small
IT team that defines various UDC specifications for each
module. Users could also choose to not define any specifica-
tions, in which case the cloud provider makes the decisions
instead (i.e., falling back to today’s cloud).

User-Defined Cloud

generated at
real time

v
Medical
Image

Preprocessing
NLP Inference

CNN Inference ecord/Image

Figure 2: An Example of Medical Information Processing. Each
node represents a compute task or a data component, and arrows represent
data flows.

b Patient
Medical
Record

]

Patient
Consent
Form

B1

Anonymized

2 A CASE FOR USER-DEFINED CLOUD

Figure 1 illustrates the high-level differences between UDC
and existing cloud schemes. In today’s clouds, VM-/container-
based services (also known as IaaS and CaaS) give cloud users
more (but not complete) control over how to run their work-
loads, but they require huge efforts from users to manage
their IT. Paa$S (Platform as a Service) and serverless comput-
ing eliminate most of the IT cost but leave users with no
way to control their workloads. Our proposal takes a radi-
cally different approach to solving the pain points in today’s
cloud computing: giving control to cloud users and keeping
management for cloud providers at all the layers in the cloud
ecosystem — from hardware to system software and security.
Overall, UDC will provide tremendous benefits to both cloud
users and cloud providers in the following ways.

Benefits to cloud users. Users can choose' to customize
the entire stack from software to hardware of a public cloud
in a way that matches exactly what they need. They can
quickly build their own cloud environments to launch their
applications without waiting for cloud providers to create the
service that may or may not fully meet their needs. Neither
do they need to build or maintain any customized cluster
software or hardware. Moreover, users obtain and pay only
for the resources and features they need, instead of prede-
fined packages that contain unnecessary resources. Finally,
security can be granted according to the needs of the users,
enabling security-critical applications to move to the cloud.
Benefits to cloud providers. By decoupling different lay-
ers in the software-hardware stack and allowing users to
define each of them separately, cloud providers can indepen-
dently add/remove a hardware/software feature without the
need to change the rest of the system, essentially avoiding
the cloud DevOps matrix from hell and saving development

1Users can also choose to not define one or more layers, in which case we
fall back to traditional cloud solutions.

HotOS 21, May 31-June 2, 2021, Ann Arbor, MI, USA

Resource [Exec Env & Security [Distributed
Al Fastest Single-tenant (or SGX encalve if | No replication
CPU)
A2 GPU Single-tenant No rep, Checkpoint
A3 GPU Single-tenant No rep, Checkpoint
A4 CPU Single-tenant & SGX enclave Rep 2X, Checkpoint
B1 Cheapest Single-tenant (or SGX encalve if | No replication
CPU)
B2 Cheapest | Containers No rep, Checkpoint
s1 SSD Encryption & integrity protec- | Replicate 3X, Sequen-
tion tial consistency
s2 Cheapest Ejncryptlon & integrity protec- | Replicate 2X, Reader
tion preference
S3 DRAM Encryption & integrity prot. Replicate 2x
sS4 Cheapest Integrity protection No rgphcatlon, Release
consistency

Table 1: Example of User Definition. Corresponds to Figure 2.

cost. Moreover, UDC enables significantly more users to use
the cloud, which directly creates revenue for cloud providers.
Indeed, supporting these new customers comes at almost no
additional cost for cloud providers, as providers do not need
to create new instance types or services for them. Finally,
with UDC, although cloud providers cannot charge users
for the resources they do not use, they can increase the unit
price of their computing resources to the extent that still
offers users a lower total cost than today’s cloud. Moreover,
without resource wastes, providers could potentially consol-
idate more applications to the same amount of computing
resources and shutting down the remaining ones.

A motivating example. We motivate UDC using the fol-
lowing case in the healthcare industry (Figure 2). Table 1
shows the corresponding specifications for UDC, which we
expect the user to create. To use UDC, there are two tasks
the user must perform.

e Application Semantics Development: we expect a user
development team to develop application code in the
form of modules and specify the module relationship
as shown in Figure 2 (more details in §3.1).

e UDC Aspect Specification: we expect a user IT team
to specify how each module should be executed on
UDC (e.g., resource demands, security requirements,
and distributed semantics).

In this example, a hospital wants to use the cloud to per-
form three tasks: securely storing patients’ medical records,
securely and quickly diagnosing patients’ medical images
(e.g., CT scans), and occasionally performing analytics over
anonymized patient data (e.g., results of clinical trials).

First, the hospital needs to securely store all patients’ medi-
cal records (S1, e.g., previous diagnoses in a natural language)
and consent forms (S2, e.g., whether or not a patient is okay
with providing their medical records, after anonymization,
for research) in the cloud.

Second, the hospital performs image-based auto-diagnosis
in a secure manner in the cloud. When a medical image is

HotOS 21, May 31-June 2, 2021, Ann Arbor, MI, USA

taken, it is sent to the cloud (S3), which launches a process of
automatic diagnosis. This process involves A1 pre-processing
of the medical image (e.g., resizing and greyscaling), A2 object
detection (e.g., CNN inference) on the pre-processed image,
A3 retrieving the patient’s medical record and performing
natural language analysis (e.g., BERT inference) to automati-
cally generate relevant previous diagnosis, and A4 automated
diagnosis with detected objects and results of NLP on the
medical record. All these steps must be done securely.

Finally, the hospital performs data analytics over anonymized

patient records. This involves B1 fetching consent forms, fil-
tering records/images based on user consents, and anonymiz-
ing them, and S4 passing the anonymized records/images to
a data-processing system (possibly a third-party framework)
for analytics (B2). The first step must be secured (i.e., confi-
dentiality and integrity), while the last step does not need
security (although integrity-protection might be desirable).

3 A PROPOSAL OF UDC

We now offer one proposal for UDC; we do not claim it to be
the only way to realize UDC or that it solves all challenges.
Overall, our ideas center around three design principles.
Design Principle 1: Expressing definitions of low-level
layers as runtime aspects. Today, programmers write their
cloud applications in languages designed for local machines,
which are then compiled and tested in a local (non-cloud) en-
vironments. A separate group (either an IT team or the cloud
provider) builds the underlying systems and hardware to
execute these applications. As a result, there is no way to cus-
tomize how applications run on the cloud with application-
specific knowledge. We propose a new cloud-native application
development model, by exposing low-level system definitions
to application developers in a way that is tied but orthogonal
to application semantics. Specifically, programmers develop
program modules based on application semantics. They (or
a separate I'T team) can then define the desired features of
each module as different aspects of it (i.e., inspired by aspect
orientation [25, 40]). We include three types of aspects: 1)
hardware resource demands, 2) execution environments in-
cluding security specifications, and 3) distributed semantics.
These aspects will be fed to the cloud runtime, which cus-
tomizes the infrastructure, runs the program, collects the
feedback, and performs adaptive optimizations.

Design Principle 2: Decouple specifications from their
realization and decouple different aspects. When allow-
ing the IT team to define aspects of their intended UDC, we
should not expect them to implement these aspects (i.e., build
or manage low-level systems). Thus, we propose to let the
IT team specify aspects in a declarative way and to decouple
these specification from their low-level implementation. The
cloud provider is the party responsible for the implemen-
tation, and they can choose different ways to implement a

Yiying Zhang, Ardalan Amiri Sani, and Guoging Harry Xu

specification. Furthermore, we propose to decouple the three
types of aspects. The user’s IT team can freely define one
aspect without changing others, and they can also choose to
not define an aspect (i.e,, fall back to provider’s default).
Design Principle 3: Fine granularity at each layer. To
allow users to freely define and associate aspects to their
applications, we argue to make every layer of the application-
software-hardware stack fine-grained. Each fine-grained piece
can be independently declared, configured, and managed.
Users can then choose their desired combination of pieces
and put them together to run their applications, similar to
building Lego toys. Decomposing a layer into fine-grained
pieces improves flexibility and resource utilization, but it
increases the scale of hardware, system software, and user
code that the cloud provider must manage. To tackle this
challenge, we propose to vertically bundle layers of fine-
grained pieces into a self-sustained resource unit. For example,
we can combine some amount of compute resources (e.g.,
a CPU core), an execution environment (e.g., a container),
and some distributed API library into one low-level resource
unit for allocation, scheduling, and failure handling. We also
propose to bundle a fine-grained code/data module and its
aspects into a high-level object, which can be executed on
one or more resource units. This vertical bundling reduces
the complexity and overhead of resource management.

A recent proposal, Hydro [10], advocates a new cloud pro-
gramming model that lets users specify four “facets” in a
declarative way, including programming semantics, availabil-
ity, consistency, and targets of optimization. Unlike Hydro,
which focuses on new programming models and program-
ming language supports on top of existing cloud infrastruc-
tures, UDC aims to support existing programming models
but with a much more disruptive approach underneath these
programming models: making every layer in the cloud in-
frastructure customizable and fine grained.

3.1 Specifying Application Semantics

What can users define? To use UDC, a user’s development
team write programs for their application logic. To meet
our fine-granularity goal (Principle 3), a user program is
expressed as a DAG of modules. A module could be a code
block representing a task (e.g., A1 to A4, B1 and B2) or one
or more data structures representing a set of data (S1 to S4),
and edges across modules represent their dependencies (e.g.,
one task follows another task, one task module accessing a
data module).

A key to efficiently executing workloads on a fine-grained
distributed platform (§3.2) is good locality. To this end, we
enhance the module DAG representation with locality rela-
tionship. For example, developers (or a compiler) can specify
computation tasks that should be executed together on the
same hardware unit (e.g., A1 and A2). Similarly, they can

User-Defined Cloud

also hint that a data object (e.g., S1) is frequently used by a
computation task (e.g., A3). Such information will be used
to guide our runtime scheduler to make intelligent com-
pute/data placement.

How to achieve the definition? There are many ways to
represent an application as a DAG of modules, for example,
by compiling an existing program into a DAG of code pieces,
by letting users annotate their existing programs to define
the boundaries of modules, or by using a new programming
model that is native to this representation. For the third
option, one promising model could be based on the Actor
framework [3, 5-7, 17, 19], which is supported by many
popular languages. Each actor represents a module that could
run on a hardware resource unit. These (distributed) actors
communicate via input and output messages and there is
no shared state between actors. Evidence [36, 37] shows
that explicit messages are more efficient for a disaggregated
setting than shared-memory implementations. Furthermore,

messages could be reliably recorded for faster recovery.

To allow developers to use their favorite languages for
programming UDC applications, we could build libraries
in different languages that offer annotations for expressing
module scopes and locality hints, APIs for specifying actor-
based operations, and/or language/compiler support for spec-
ifying aspects. We will then extend their compilers to compile
them into a uniform intermediate representation (in units
of IR modules) for resource allocation and execution. Our IR
is defined as high-level modules and their relationships, not
low-level code instructions. For example, each language can
have a different type of IR module that specifies the execu-
tion environment for programs in this language. Different
IR modules communicate via well-defined interfaces.

3.2 Defining Hardware Resources

What can users define? UDC allows users to specify the
type and amount of computing resources they want/expect
each module in their applications to use. However, how can
users know their applications’ resource usage? On the one
hand, the amounts and types of resources that different parts
of an application need are related to application logic (i.e.,
partially known at static time by the application developers).
On the other hand, input data also influences the resources
needed to run a workload (i.e., only known at runtime).

We believe a viable solution is a combination of developer
knowledge, program analysis, and “dry-run” profiling, with
the first performed by application developers and the latter
two by the IT team or the cloud provider with UDC’s tool
support. Specifically, we expect the developer team to use
their understanding of applications to define the scope of
different tasks and to specify a set of possible hardware
(e.g., CPU, GPU) or the type of hardware (e.g., compute)

HotOS 21, May 31-June 2, 2021, Ann Arbor, MI, USA

that each task may need. The IT team or the cloud provider
will then use tools that UDC provides (e.g., profilers, cross-
platform compilers, etc.) to perform dry runs that execute
the program with developer-supplied test inputs on different
types of hardware within the developer-defined set. The
actual resource usage observed for each task is then used as
the resource aspect of the task.

How to achieve the user definition? UDC’s hardware in-
frastructure needs to be fine grained to allow users to freely
combine resources in the amount and type that they de-
sire. We identify hardware resource disaggregation as the
right fit for our goal. Resource disaggregation splits tradi-
tional servers into different types of network-attached de-
vices, often organized as resource pools. Fulfilling users’ re-
source demands would then simply be allocating the exact
amount from the corresponding resource pools (instead of a
bin-packing problem with traditional servers). Our runtime
scheduler would use the user-supplied resource aspect, exe-
cution environment aspect (§3.3), and locality information
from the application semantic aspect to decide the location(s)
to execute a module and initialize it with the resource amount
as user specified. Since user specified resources may be in-
accurate when executing with real (and changing) inputs,
UDC would perform fine tuning (enlarging or shrinking the
amount of resources for a module, migrating modules across
hardware units, etc.) based on telemetry data collected at the
run time. If a user specifies a set of hardware that a module
could potentially execute on or if users only provide a per-
formance/cost goal, then UDC will select resources based on
load and available hardware at the run time.

3.3 Defining Execution Environment

What can users define? With UDC, users can define the
execution environment of their workloads in fine granularity
(for each module), without the complexity of managing the
environment. In addition, they can specify the security re-
quirements of their execution environment without the need
to trust cloud providers. They could also specify protection
options for their data (e.g., encryption, integrity protection,
and replay protection) when these data leave the execution
environment (to the network, storage, or another module).

Unlike other UDC aspects, security features should not
be specified in a declarative way, as doing so allows cloud
providers to choose how to implement the specification. Se-
curity features specified by a user should be verifiable by the
user in case they do not trust the provider (e.g., for security-
critical modules). However, high-level, declarative specifica-
tions lack preciseness and hence are hard to verify.

Below are some examples of how users could be more

precise when specifying isolation features. For strongest iso-
lation, users could specify a single-tenant Trusted Execution

HotOS 21, May 31-June 2, 2021, Ann Arbor, MI, USA

Environments (TEE) environment. TEEs (e.g., Intel SGX en-
claves and AMD SEV VMs) provide protection against system
software and physical attacks, while single-tenant execution
(where the entire hardware is dedicated to one tenant) pro-
tects against hardware-based side-channel attacks [8, 21, 28,
29, 41]. For strong (but not the strongest) isolation, users
could choose either TEEs or single-tenant, providing pro-
tection against a subset of the aforementioned attacks. For
medium-level isolation, users could let providers choose from
different options like unikernel [32], lightweight VMs [2],
or sandboxed containers [18]. For weak isolation, users could
choose containers. The first two options (strongest and strong)
can enable verification by the user (§4). The last two require
trust in the provider, which provides the system software.
How to achieve the user definition? Many existing exe-
cution environments like virtual machines, lightweight VMs,
unikernels, containers, and TEEs could be used to fulfill
different user requirements. Similarly, existing data confi-
dentiality and integrity measurements could be used. One
new challenge is the goal of allowing users to freely combine
security/execution features with other aspects such as the
resource aspect. For example, today’s TEEs only work with
CPUs, but with UDC, TEEs need to work with other hard-
ware like GPUs and FPGAs. One possible solution is to add
hardware support to specific hardware devices [39]. Another
possibility is to create physically-isolated (disaggregated)
device clusters that can only be occupied by one tenant at
a time and keep data protected when leaving the cluster.
Another new challenge relates to the goal of fine granularity.
As secure environments are usually slower to start up, (cold)
starting many environments for many modules can signifi-
cantly slow down the entire application. Moreover, single-
tenant environments could cause large resource wastes as a
module is not likely to occupy the entire hardware unit.

3.4 Defining Distributed Semantics

What can users define? Users should be able to define how
their applications run distributedly, but without the need to
build complex distributed systems. For example, users (de-
velopers) can define the failure domains in their programs,
with the understanding that different domains could fail in-
dependently while code and data within a domain will fail
as a whole. The user IT team can then control the avail-
ability/reliability of each failure domain by specifying the
replication factor, with the understanding that more replicas
is more expensive. They can also define how failures are han-
dled for each domain (e.g., whether to re-execute a module
or recover from a user-defined checkpoint). Finally, users
can define the consistency level of concurrent accesses to
their data modules (e.g., sequential consistency), and what
type of operations they want to give preferences to (e.g., read
preference over write).

Yiying Zhang, Ardalan Amiri Sani, and Guoging Harry Xu

How to achieve the user definition? There are a few chal-
lenges in realizing the goal of allowing users to freely define
fine-grained distributed semantics in a UDC data center. First,
users may define conflicting specifications for different mod-
ules, e.g., two modules sharing data and one specified as
sequential consistency and the other as release consistency.
UDC needs to detect such conflicts and either chooses the
strictest specification or returns an error to the user.
Second, unlike today’s distributed systems that run on
a cluster of servers, we expect UDC to run on a cluster of
disaggregated devices some of which may not have compu-
tation power or could run any software. Thus, traditional
software systems that implement distributed protocols would

not directly work. A promising direction is to explore the
programmability in the network to enforce the distributed
specifications [26, 27, 30].

Finally, UDC’s fine-grained and fully customizable ap-
proaches require a distributed execution environment that is
highly scalable and flexible. Existing distributed management
frameworks like Kubernetes [16] often take coarse-grained,
application-oblivious approaches, e.g., treating a container
as the unit of replication, and thus will fall short for UDC.

4 DISCUSSION AND CONCLUSION

We proposed UDC, a radical approach to cloud computing
that shifts the control from cloud providers to cloud users.
UDC has many promising benefits and research opportuni-
ties. At the same, many key challenges remain to be solved.
Below we pick four to elaborate further.

Verifying the fulfillment of user definitions. UDC must
enable users to verify that the cloud vendor is correctly pro-
viding their selected features. This is especially important
when the selected features have security implications. We
believe this can be achieved through comprehensive remote
attestation primitives, similar to the ones available in TEEs
today. Using these primitives, users can verify important
properties without trusting the vendor and by just trusting
the hardware itself (i.e., hardware root of trust). Existing re-
mote attestation primitives can help users verify some of the
execution environments and the software running in them.
However, many features that UDC allows users to define
cannot be verified with today’s remote attestation primitives
(e.g., whether or not resources were provided as specified).
Supporting legacy software. Most legacy cloud applica-
tions can run as is on UDC. However, without splitting these
programs into smaller modules, their executions would not
benefit from the fine-grained treatments UDC enables at each
layer, leading to suboptimal performance and/or resource
utilization. An interesting idea is to transform them into
programs under our model. We could potentially develop
static program analysis that performs semi-automated trans-
formation of an existing program by involving developers

User-Defined Cloud

in the loop and with the help of a run-time profiler. For ex-
ample, our static analysis can infer dependencies and cuts
a program into segments to minimize the number of cross-
segment dependencies, while developers can provide hints
on where application semantics transition in their code and
a profiling run could capture where resource usage patterns
change in the code.

Economics and adoption. For cloud providers to adopt
UDC, it needs to have economic incentives for them. At
a glance, UDC may seem to impose additional costs for
providers as they need to develop a new set of software and
hardware infrastructures and UDC’s fine-grained approach
could incur higher management costs. However, deploying
fine-grained application modules on disaggregated clusters
would largely improve resource utilization (by 2x as shown
by [36]). Meanwhile, providers only need to pay a one-time
cost to develop a infrastructure that is flexible to fulfill dif-
ferent user definitions instead of repeatedly developing new
services for new user needs. Finally, we expect UDC to en-
able significantly more workloads to migrate to the cloud,
and providers could charge a higher unit price that is still
attractive to users since they can tailor their cloud usages
and only pay for what is used.

Deployment to existing clouds. Although UDC is a rev-
olutionary idea, we believe that we should take an evolu-
tionary approach to integrating it into existing clouds. Fortu-
nately, today’s clouds and data centers are already adopting
some of the approaches we propose in UDC. For example,
many data centers are already organizing servers into re-
source pools. Serverless computing and microservices are
already making cloud users write modularized code for their
applications. Cloud providers could also partially adopt UDC,
e.g., with a hybrid cluster that contains both regular servers
and disaggregated devices; by combining the UDC service
with existing cloud services.

Conclusion. This paper proposed User-Defined Cloud, a
new cloud-computing paradigm that promises to increase
the flexibility and customizability of today’s public cloud
by allowing users to define the computing resources their
applications run on. Although there are many challenges
in fully realizing the promises of UDC, we hope that this
paper is a good starting point that will motivate future cloud-
computing researchers and practitioners.

ACKNOWLEDGMENTS

We thank the HotOS reviewers for their comments. This
work is supported by NSF grants CNS-2022675, CNS-1703598,
CNS-1763172, CNS-1907352, CNS-2007737, CNS-2006437,
CNS-2106838, ONR grants N00014-16-1-2913 and N00014-18-
1-2037.

HotOS 21, May 31-June 2, 2021, Ann Arbor, MI, USA

REFERENCES

[1] The Department of Defense and the Power of Cloud Computing -
Weighing Acceptable Cost versus Acceptable Risk.

[2] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony
Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. Fire-
cracker: Lightweight Virtualization for Serverless Applications . In
17th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 20), Santa Clara, CA, February.

[3] Gul Agha. Actors: A Model of Concurrent Computation in Distributed
Systems. MIT Press, Cambridge, MA, USA, 1986.

[4] Amazon Web Services, Inc. AWS Nitro System. https://aws.amazon.
com/ec2/nitro/.

[5] William C. Athas and Charles L. Seitz. Multicomputers: Message-
passing concurrent computers. Computer, 21(8):9-24, August 1988.

[6] Russell Atkinson and Carl Hewitt. Synchronization in actor systems. In

Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles

of Programming Languages, POPL 77, pages 267-280, 1977.

Phil Bernstein, Sergey Bykov, Alan Geller, Gabriel Kliot, and Jorgen

Thelin. Orleans: Distributed Virtual Actors for Programmability and

Scalability. Technical Report MSR-TR-2014-41, March 2014.

F. Brasser, U. Miiller, A. Dmitrienko, K. Kostiainen, S. Capkun, and

A. Sadeghi. Software Grand Exposure: SGX Cache Attacks Are Prac-

tical. In Proc. USENIX Workshop on Offensive Technologies (WOOT),

2017.

A. Caulfield, P. Costa, and M. Ghobadi. Beyond smartnics: Towards a

fully programmable cloud: Invited paper. In 2018 IEEE 19th Interna-

tional Conference on High Performance Switching and Routing (HPSR),

2018.

[10] Alvin Cheung, Natacha Crooks, Joseph M. Hellerstein, and Matthew
Milano. New Directions in Cloud Programming. In 11th Conference on
Innovative Data Systems Research (CIDR’ 21), January 2021.

[11] CloudSecureTech. Cloud Computing in the Financial Indus-
try. https://www.cloudsecuretech.com/cloud-computing-financial-
industry/, 12/2016.

[12] DSM. How the Cloud is Helping to Solve Law Enforcement Chal-
lenges. https://www.dsm.net/it-solutions-blog/how-the-cloud-is-
helping-to-solve-law-enforcement-challenges, 09/2018.

[13] Sophia Fiorino. Cloud technology for TV and filmmakers. https:
//www.smpte.org/blog/cloud-technology-tv-and-filmmakers, 05/2020.

[14] Flexera Blog. ~ Where Is the $10B in Waste in Public Cloud
Costs?, 2017. https://www.flexera.com/blog/cloud/where-is-the-10b-
in-waste-in-public-cloud-costs/.

[15] Google. Available first on Google Cloud: Intel Optane DC Persistent
Memory. https://tinyurl.com/y4ghuvda.

[16] Google Inc. Kubernetes. http://kubernetes.io/.

[17] Irene Greif and Carl Hewitt. Actor semantics of planner-73. In Pro-
ceedings of the 2nd ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, POPL 75, pages 67-77, 1975.

[18] gVisor. gVisor, Accessed 1/2021. https://gvisor.dev/.

[19] Carl Hewitt, Peter Bishop, Irene Greif, Brian Smith, Todd Matson, and
Richard Steiger. Actor induction and meta-evaluation. In Proceedings
of the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, pages 153-168, 1973.

[20] Intel. INTEL OPTANE DC PERSISTENT MEMORY.
https://www.intel.com/content/www/us/en/products/memory-
storage/optane-dc-persistent-memory.html, 2019.

[21] G.Irazoqui, T. Eisenbarth, and B. Sunar. S$A: A Shared Cache Attack
that Works Across Cores and Defies VM sandboxing-and its Applica-
tion to AES. In Proc. IEEE Symposium on Security and Privacy (S&P),
2015.

[7

—

[8

[t

[o

—

https://aws.amazon.com/ec2/nitro/
https://aws.amazon.com/ec2/nitro/
https://www.cloudsecuretech.com/cloud-computing-financial-industry/
https://www.cloudsecuretech.com/cloud-computing-financial-industry/
https://www.dsm.net/it-solutions-blog/how-the-cloud-is-helping-to-solve-law-enforcement-challenges
https://www.dsm.net/it-solutions-blog/how-the-cloud-is-helping-to-solve-law-enforcement-challenges
https://www.smpte.org/blog/cloud-technology-tv-and-filmmakers
https://www.smpte.org/blog/cloud-technology-tv-and-filmmakers
https://www.flexera.com/blog/cloud/where-is-the-10b-in-waste-in-public-cloud-costs/
https://www.flexera.com/blog/cloud/where-is-the-10b-in-waste-in-public-cloud-costs/
https://tinyurl.com/y4ghuvda
http://kubernetes.io/
https://gvisor.dev/
https://www.intel.com/content/www/us/en/products/memory-storage/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/products/memory-storage/optane-dc-persistent-memory.html

HotOS 21, May 31-June 2, 2021, Ann Arbor, MI, USA

[22] Jerome Petazzoni, dotCloud Inc. LXC, Docker, and the future of soft-

(23]

[24

[25

[26

[27

[28

[29

(30

(31

(32

(33

(34

(35

[l

=

[l

—

]

—

[t

—

—

[t

=

[

ware delivery, 2013. Linuxcon.

N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P. Cantin, C. Chao,
C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaem-
maghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg,
J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan,
H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy,]J. Laudon, J. Law,
D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore,
M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix,
T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross,
A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter,
D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tut-
tle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox, and D. H. Yoon.
In-datacenter performance analysis of a tensor processing unit. In
2017 ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA), 2017.

Arul karuppannan. The New Age: Cloud Computing In Agricul-
ture Sectors. https://www.w2ssolutions.com/blog/new-age-cloud-
computing-in-agriculture-sectors/.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented
programming. In Mehmet Aksit and Satoshi Matsuoka, editors, Eu-
ropean Conference on Object-Oriented Programming, pages 220-242,
1997.

Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, and Dan
R. K. Ports. Just say NO to paxos overhead: Replacing consensus with
network ordering. In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), Savannah, GA, November 2016.
Jialin Li, Jacob Nelson, Ellis Michael, Xin Jin, and Dan R. K. Ports.
Pegasus: Tolerating skewed workloads in distributed storage with
in-network coherence directories. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20), November
2020.

M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard. AR-
Mageddon: Cache Attacks on Mobile Devices. In Proc. USENIX Security
Symposium, 2016.

F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-Level Cache Side-
Channel Attacks are Practical. In Proc. IEEE Symposium on Security
and Privacy (S&P), 2015.

Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li, Changhoon Kim,
Vladimir Braverman, Xin Jin, and Ion Stoica. Distcache: Provable load
balancing for large-scale storage systems with distributed caching. In
17th USENIX Conference on File and Storage Technologies (FAST 19),
Boston, MA, February 2019.

Gabriel H. Loh. 3D-Stacked Memory Architectures for Multi-core
Processors. In 2008 International Symposium on Computer Architecture
(ISCA °08), Beijing, China, June 2008.

Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David
Scott, Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand,
and Jon Crowcroft. Unikernels: Library Operating Systems for the
Cloud. In Proceedings of the Eighteenth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems
(ASPLOS ’13), Houston, Texas, March 2013.

I. Magaki, M. Khazraee, L. V. Gutierrez, and M. B. Taylor. ASIC Clouds:
Specializing the Datacenter. In 2016 ACM/IEEE 43rd Annual Interna-
tional Symposium on Computer Architecture (ISCA), August 2016.
National Security Agency. Mitigating Cloud Vulnerabilities,
2020. https://media.defense.gov/2020/Jan/22/2002237484/-1/-1/0/CSI-
MITIGATING-CLOUD-VULNERABILITIES_20200121.PDF.

George Porter, Richard Strong, Nathan Farrington, Alex Forencich,
Pang Chen-Sun, Tajana Rosing, Yeshaiahu Fainman, George Papen,

[36]

[37]

[38]

[39]
[40]

[41]

Yiying Zhang, Ardalan Amiri Sani, and Guoqing Harry Xu

and Amin Vahdat. Integrating Microsecond Circuit Switching into the
Data Center. In Proceedings of the ACM SIGCOMM 2013 Conference on
SIGCOMM (SIGCOMM ’13), Hong Kong, China, August 2013.

Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. Legoos:
A disseminated, distributed OS for hardware resource disaggregation.
In 13th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI ’18), Carlsbad, CA, October 2018.

Yizhou Shan, Shin-Yeh Tsai, and Yiying Zhang. Distributed shared
persistent memory. In Proceedings of the 8th Annual Symposium on
Cloud Computing (SOCC ’17), Santa Clara, CA, USA, September 2017.
Arkenea Vinati Kamani. 5 Ways Cloud Computing Is Impacting Health-
care. https://www.healthitoutcomes.com/doc/ways-cloud-computing-
is-impacting-healthcare-0001, 10/2019.

S. Volos, K. Vaswani, and R. Bruno. Graviton: Trusted Execution
Environments on GPUs. In Proc. USENIX OSDI, 2018.

Guoqing Xu and Atanas Rountev. Regression test selection for aspectj
software. In ICSE, pages 65-74, 2007.

Y. Yarom and K. Falkner. FLusH+RELoAD: A High Resolution, Low
Noise, L3 Cache Side-Channel Attack. In Proc. USENIX Security Sym-
posium, 2014.

https://www.w2ssolutions.com/blog/new-age-cloud-computing-in-agriculture-sectors/
https://www.w2ssolutions.com/blog/new-age-cloud-computing-in-agriculture-sectors/
https://media.defense.gov/2020/Jan/22/2002237484/-1/-1/0/CSI-MITIGATING-CLOUD-VULNERABILITIES_20200121.PDF
https://media.defense.gov/2020/Jan/22/2002237484/-1/-1/0/CSI-MITIGATING-CLOUD-VULNERABILITIES_20200121.PDF
https://www.healthitoutcomes.com/doc/ways-cloud-computing-is-impacting-healthcare-0001
https://www.healthitoutcomes.com/doc/ways-cloud-computing-is-impacting-healthcare-0001

	Abstract
	1 Introduction
	2 A Case for User-Defined Cloud
	3 A Proposal of UDC
	3.1 Specifying Application Semantics
	3.2 Defining Hardware Resources
	3.3 Defining Execution Environment
	3.4 Defining Distributed Semantics

	4 Discussion and Conclusion
	References

