
Dynamic Computation Offloading and Resource

Allocation for Multi-user Mobile Edge Computing

Samrat Nath and Jingxian Wu

Department of Electrical Engineering, University of Arkansas, Fayetteville, AR 72701, USA

Email: {snath, wuj}@uark.edu

Abstract—We study the problem of dynamic computation
offloading and resource allocation in mobile edge computing
(MEC) systems consisting of multiple mobile users (MUs) with
stochastic task arrivals and wireless channels. Each MU can
execute its task either locally or remotely in an MEC server.
The objective is to identify the optimum scheduling scheme that
can minimize the long-term average weighted sum of energy
consumption and delay of all MUs, under the constraints of
limited transmission power per MU and limited computation
resources at the MEC server. The optimum design is performed
with respect to three decision parameters: whether to offload a
given task, how much transmission power to be allocated for
offloading, and how much MEC resources to be allocated for an
offloaded task. We propose to solve the problem by developing
a dynamic scheduling strategy based on deep reinforcement
learning (DRL) with deep deterministic policy gradient (DDPG).
Simulation results show that the proposed algorithm outperforms
other existing strategies such as deep Q-network (DQN).

Index Terms—mobile edge computing, computation offloading,
deep reinforcement learning, deep deterministic policy gradient

I. INTRODUCTION

The ever-growing popularity of smart mobile devices

(SMDs) and the emergence of the Internet-of-Things (IoT)

are driving the development of many new applications such as

online interactive gaming, face recognition, virtual/augmented

reality, etc. These applications typically require intensive com-

putation and high energy consumption. However, an SMD has

limited battery life and computational capacity (processing

speed), which makes it difficult for the SMD to meet the

stringent requirements of these mobile applications. Mobile

edge computing (MEC) has recently emerged as a promising

technology to bridge the gap between the resource-limited

SMDs and the computation-intensive applications [1].

Unlike conventional cloud computing systems, which rely

on remote public clouds with high transmission latency,

MEC offers computational capability within the radio access

network by deploying densely distributed high-performance

servers in proximity to mobile users (MUs) [1]. It allows MUs

to offload computational tasks to the MEC server connected

to a base station (BS) through the wireless network. MUs

can significantly reduce the computation latency and energy

consumption through computation offloading and thus improve

the Quality of Experience (QoE) of mobile applications.

Therefore, there have been growing interests on computation

offloading in MEC systems [1].

The work was supported in part by the U.S. National Science Foundation
(NSF) under Award Number ECCS-1711087.

The efficiency of computation offloading relies critically

on how the limited communication, power, and computational

resources are managed in an MEC system. Various computa-

tion offloading strategies with different design objectives and

resource allocation schemes have been studied extensively in

the literature [2]–[8]. Generally, the computation offloading

approaches in MEC can be classified into two types, namely,

partial computation offloading [2], [8], and binary compu-

tation offloading [3]–[7]. Specifically, in binary computation

offloading, an MU can either execute its computational task

on the local device or offload that task entirely to the MEC

server. On the other hand, in partial computation offloading,

the MU can offload fractional parts of the task and execute

the rest of it locally, which offers more flexibility. In [2], an

online algorithm based on Lyapunov optimization is developed

for joint radio and computational resource management for

multi-user MEC systems. The alternating direction method of

multipliers (ADMM) is applied to solve the joint optimization

problem of computation offloading, resource allocation, and

content caching strategy in [3]. An iterative search algorithm is

proposed to study the energy-latency tradeoff for energy-aware

offloading in [4]. The scheme designed in [7] jointly minimizes

energy consumption, delay, and deadline penalty of all the

users in a multi-channel MEC system. However, most of these

problems do not consider dynamic channel conditions and/or

dynamic task arrivals. In practice, the MEC systems have time-

varying stochastic channel conditions and task arrivals.

The complicated joint computation offloading and resource

allocation in MEC is usually formulated as non-convex opti-

mization problems, which are in general very challenging to

solve. With the explosive growth of interest in deep neural

networks (DNNs), researchers have recently started adopting

Deep Reinforcement Learning (DRL) algorithms to solve these

problems [5]–[8]. The proposed solutions in [5], [6] exploits

the Deep Q-Network (DQN) method [9], while [7], [8] utilizes

the Deep Deterministic Policy Gradient (DDPG) algorithm

[10]. However, the work in [7] assumes the channel conditions

to be quasi-static, and no constraint on the computational

capacity of the MEC server is considered in [8].

In this paper, we propose to develop an online DRL-based

scheme for dynamic computation offloading and resource

allocation in a resource-constrained multi-user MEC system

by addressing three key questions: 1) whether a given task

should be executed locally at an MU or offloaded to MEC?

2) how much transmission power should be allocated to a



given MU for task offloading? and 3) how much computational

resources should be allocated by the MEC server for a given

task? In the proposed MEC framework, the time is divided into

slots, and the channel conditions and task arrivals are assumed

to be time-varying and stochastic. The offloading decision,

power allocation, and computational resource allocation are

determined centrally by the BS at the beginning of each

time slot, and then the results are forwarded to the MU.

Our objective is to design an online DRL-based solution for

efficient computation offloading and resource allocation. We

assume that the MEC server has a limited computation re-

source capacity and all the MUs have individual constraints on

transmission power. Specifically, we formulate an optimization

problem to minimize the long-term average of a cost function,

which is a weighted sum of energy consumption and delay of

all MUs. We propose to solve the problem by using a DDPG-

based method, which can deal with the continuous space

of optimization variables. Simulation results demonstrate that

the proposed DDPG-based solution outperforms other existing

strategies such as DQN, which requires the discretization of

the optimization variables.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a multi-user MEC system with one 5G small-

cell BS with M antennas, one MEC server, and a set of

N ≤ M mobile users denoted by N = {1, 2, · · · , N}. The

BS is connected directly with the MEC server with a total

computation capacity of F (in CPU cycles per second). The

system bandwidth is W (in Hz). We adopt a discrete-time

model, where the time domain is slotted with equal length Ts

(in seconds) and indexed by T = {0, 1, · · · }.

A. Task Model

Assume there are K computation-intensive heterogeneous

tasks denoted by the set K , {1, 2, · · · ,K}. Each task k ∈ K
is characterized by two parameters; bk (in bits) denotes the

size of computation input data (e.g. program codes and input

parameters) and dk (in cycles per second) denotes the amount

of computing resources required for the task. At the beginning

of each time slot, each MU requests a single task randomly

from the set K, where one task may be requested by multiple

users simultaneously. The popularity of each task φk,t is

dynamic and follows Zipf distribution [11]. The popularity

profile vector is defined as φt , {φk,t}k∈K. Define the

popularity rank of task k during slot t as zk,t ∈ K, then the

popularity of the corresponding task can be expressed as

φk,t =
z−η
k,t

∑K
l=1 z

−η
l,t

, (1)

where Zipf parameter η ≥ 0 controls the skewness of popu-

larity. As the value of η increases, the popularity difference

among the tasks becomes larger.

B. Communication Model

The BS and the MUs form a multi-user multiple-input

multiple-output (MIMO) system, with M antennas at the

BS serving N single-antenna MUs. The channel conditions

between the BS and MUs are described by the M×N channel

matrix Ht = [h1,t, · · · ,hN,t], where hn,t ∈ CM×1 is the

channel vector of the n-th MU. The Gaussian Markov block

fading autoregressive model [12] is adopted to characterize the

temporal channel correlation between consecutive slots. The

channel vector for the n-th MU can be expressed as

hn,t = ρnhn,t−1 +
√

1− ρ2net, (2)

where ρn is the normalized channel correlation coefficient for

the n-th MU, the error vector et ∈ CM×1 is uncorrelated with

hn,t, and it is distributed such that et ∼ CN (0, σ2
eIM ), with

IM being a size M identity matrix.

Denote the transmission power of the n-th MU at the t-th
slot as pn,t ∈ [0, Pmax

n ], where Pmax
n is the maximum trans-

mission power of the n-th MU. The BS manages the uplink

transmissions of multiple single-antenna MUs by employing

the linear detection algorithm zero-forcing (ZF) [8], [13]. With

the ZF detector at the BS, the signal-to-interference-plus-noise

ratio (SINR) for the signal from the n-th MU is

γn,t =
pn,t

σ2[(
√
Pt

T
HH

t Ht

√
Pt)−1]nn

, (3)

where σ2 is the noise power, Pt = diag{pt} is a diagonal

matrix with pt = [p1,t, · · · , pN,t]
T on its main diagonal,

the operators AT and AH respectively represent the matrix

transpose and Hermitian operations, and [A]mn denotes the

(m,n)-th element of the matrix A. The transmission data rate

from the n-th MU to the BS at slot t can be expressed as [8]

rn,t = W log2(1 + γn,t). (4)

C. Computation Model

Denote xn,t ∈ {0, 1} as the computation offloading decision

variable of the n-th MU at slot t. Specifically, if xn,t = 1, then

the n-th MU chooses to offload its current computation task

to the MEC server via the wireless link; if xn,t = 0, then the

n-th MU chooses to execute its task locally. The computation

offloading decision vector for all MUs is represented by xt ,

[x1,t, · · · , xN,t]
T . Denote knt ∈ K as the index of the task

requested by the n-th MU at the beginning of time slot t, and

kt , [k1t , · · · , kNt ]T as the task request vector.

1) Local Execution: In the local execution approach, the

n-th MU executes its computation task knt locally using its

own CPU. Let f l
n be the computation capability (in CPU

cycles per second) of MU n. Different MUs may have different

computational capabilities. The computation time of task knt
by local execution can then be expressed as

T l
n,t =

dkn
t

f l
n

. (5)

The corresponding energy consumption is

El
n,t = ζndkn

t
, (6)

where the coefficient ζn denotes the energy consumption per

CPU cycle, which depends on the chip architecture at the MU

device. We set ζn = 10−27(f l
n)

2 in this paper [14].



2) MEC Server Execution: In this approach, the MEC

server will execute the computation task on behalf of the MU.

This approach is divided into three steps. First, the n-th MU

uploads its task data of size bkn
t

to the BS through the wireless

channel, and the BS forwards that data to the MEC server.

Second, the MEC server allocates part of its computational

resources to execute the task. Finally, the MEC server returns

the execution results to the n-th MU.

In the first step, the transmission delay of task offloading

by the n-th MU during slot t can be computed as

T x
n,t =

bkn
t

rn,t
. (7)

The corresponding energy consumption of the first step is

Ex
n,t = pn,tT

x
n,t =

pn,tbkn
t

rn,t
. (8)

In the second step during task execution, the processing

delay incurred by the MEC server is

T p
n,t =

dkn
t

fn,t
, (9)

where fn,t denotes the computational resource (in CPU cycles

per second) allocated to the n-th MU by the MEC server

during slot t. Denote ft , [f1,t, · · · , fN,t]
T as the MEC

computational resource allocation vector for all the MUs.

In the final step, the n-th MU downloads the output data

from the MEC server. For many applications, the size of the

computation output data is much smaller than that of the input

data, and the download data rate is also much higher than

the upload rate. Therefore, we do not consider the delay and

energy consumption during this step [15], [16].

D. Problem Formulation

Given the computation offloading decision vector x, the

energy consumption and computation delay for the n-th MU

during slot t can be computed, respectively, as

En,t = 1(xn,t = 0)El
n,t + 1(xn,t = 1)Ex

n,t, (10)

Tn,t = 1(xn,t = 0)T l
n,t + 1(xn,t = 1)(T x

n,t + T p
n,t), (11)

where 1(E) is the indicator function with 1(E) = 1 if the

event E is true and 0 otherwise.

Define the overall cost of all MUs in the MEC system as

Ct =
∑N

n=1
En,t +

∑N

n=1
ωnTn,t, (12)

where the weight coefficient ωn (in W/sec) controls the

tradeoff between energy and delay for the n-th MU. Different

MUs might have different delay requirements depending on

the task. For MUs dealing with time-sensitive tasks, ωn can

be set to larger values to prioritize faster execution.

The objective of this paper is to minimize the long-term

average cost of the MEC system, which is defined as

C̄ = E

[

lim
|T |→∞

1

|T |
∑

t∈T
Ct

]

, (13)

where E(·) denotes mathematical expectation. The optimiza-

tion problem is formulated as follows.

P1 : min
x,p,f

C̄

s.t. (C1) xn,t ∈ {0, 1}, ∀n ∈ N , ∀t ∈ T
(C2) pn,t ≤ Pmax

n , ∀n ∈ N , ∀t ∈ T

(C3)
∑N

n=1
1(xn,t = 1)fn,t ≤ F, ∀t ∈ T

(C4) Tn,t ≤ Ts, ∀n ∈ N , ∀t ∈ T
Here, (C3) represents the constraint that the total amount of

allocated resources can not exceed the total computational

resource of the MEC server, and (C4) represents the constraint

that each MU must execute its task either locally or in the

MEC server within one time slot.

The optimal solution of P1 requires knowledge of the sta-

tistical distribution of the channel condition and task requests,

which are in general not available in a practical system.

Moreover, P1 is a mixed-integer nonlinear programming and it

is very challenging to solve even if the statistical information

is available. One possible way to overcome these challenges

is to adopt an online approach that can efficiently make

the decisions regarding computation offloading and resource

allocation in real-time by learning from past observations.

Hence, instead of applying conventional optimization methods

to solve the NP-hard problem P1, we propose a DRL-based

method to find the optimal x,p, and f .

III. DRL-BASED SOLUTION FOR COMPUTATION

OFFLOADING AND RESOURCE ALLOCATION

DRL is regarded as a combination of reinforcement learning

(RL) and DNN. We first formulate P1 in the RL framework,

and then present the proposed DRL-based solution.

A. RL Framework

Generally, the RL framework is well-suited for solving

complicated decision-making problems in real-time [17]. The

framework consists of three key elements, state, action, and

reward. An RL agent interacts with the environment in discrete

time domain. At each time step t, the agent’s behavior is

defined by a policy µ, which maps states to actions µ :
st → at. After the RL agent selects an action at according

to the policy µ, the environment returns a scalar reward rt
and makes a transition from state st to st+1. The action-

value function Qµ(s,a) (also known as Q-function) represents

the expected infinite-horizon discounted accumulative reward

under the policy µ with initial state s and initial action a:

Qµ(s,a) = E

[

lim
|T |→∞

∑

t∈T
γtrt|s0 = s,a0 = a

]

, (14)

where γ ∈ [0, 1] is the discount factor. The goal of the RL

agent is to learn the optimal policy µ∗ such that

µ∗(s) = argmax
a

Q∗(s,a), (15)

where Q∗(s,a) is the optimal Q-function.

To interpret problem P1 in the RL framework, we define

the key elements according to the system model as follows.



1) State: The state of a system is a set of parameters that

can be used to describe a system. Hence, the system state at

an arbitrary time slot t is defined as

st , {kt,Ht}, (16)

where the task request vector kt and the channel matrix Ht

determine the stochasticity of system. At the start of each slot,

kt is known to the system, and the channel reciprocity can be

used to estimate Ht for the upcoming uplink transmission [8].

2) Action: Based on the observed state st, the RL agent

will select actions at based on the decision variables in P1 as

at , {xt,pt,ft}. (17)

which includes the computation offloading decision vector xt,

the transmission power vector pt, and the MEC computational

resource allocation vector ft for each slot t ∈ T .

3) Reward: Given a particular state st and an action at at

time slot t, it is evident that the overall system cost in (12)

can be expressed as a function of the state-action pair, i.e.,

Ct = C(st,at). (18)

We define the reward function of the state-action pair (st,at)
in the RL framework as

rt , −C(st,at). (19)

It is worth noting that although RL algorithms maximize the

expected discounted long-term reward, these algorithms can

also approximate the true expected long-term undiscounted

reward when γ → 1 [18]. Hence, the average system cost in

(13) is minimized by applying the policy learned via the RL

agent.

It is difficult to obtain the exact solution of the RL problem

in high-dimensional state and action spaces by directly maxi-

mizing the Q-function. We propose to tackle this challenge by

obtaining an approximate solution of the RL problem by using

DRL with DDPG. Details are given in the next subsection.

B. DRL with DDPG

A feasible method to solve the RL problem is the well-

known Q-learning algorithm [17], which solves the optimal

Q-function through a value iteration update approach as

Q(st,at) ← Q(st,at) (20)

+ α

[

rt + γmax
at+1

Q(st+1,at+1)−Q(st,at)

]

,

where α is the learning rate. However, as the dimensions of

the state space and action space increase, the complexity of

solving (20) grows exponentially. DQN provides an efficient

method to address this issue [9]. DQN exploits the architecture

of DNN in order to approximate the Q function with a

finite number of parameters in the neural network. However,

DQN can only handle discrete and low-dimensional action

spaces, because finding the optimal value according to (15) is

relatively simple with low-dimensional spaces. For problems

with continuous action and state spaces like P1, the action and

state spaces have to be discretized before applying DQN. The

complexity grows exponentially with discretization levels. The

discretization in DQN also causes loss of precision.

We propose to address this challenge by applying DDPG

[10], which is appropriate for problems with continuous action

and state spaces. In DDPG, an actor-critic approach is adopted

by using two separate DNNs, where the actor network µ(s|θµ)
approximates the policy function µ, and the critic network

Q(s,a|θQ) approximates the Q-function. Here, θµ and θQ are

the parameters of the actor and critic networks, respectively.

In the proposed DDPG framework, a four-layer fully con-

nected neural network with two hidden layers is considered

for both the actor and critic networks. The dimensions of

two hidden layers are 8N and 4N , respectively. The neural

networks use the ReLu as the activation function for all hidden

layers, while the final output layer of the actor uses a sigmoid

layer to bound the actions. Ornstein-Uhlenbeck process [19] is

adopted to generate random noise ∆µ for action exploration,

while adaptive moment estimation (Adam) method [20] is used

for updating the neural network parameters. Details of the

proposed solution are described in Algorithm 1.

IV. SIMULATION RESULTS

Simulation results are presented in this section to demon-

strate the performance of the proposed algorithm with DDPG.

Unless specified otherwise, the default settings of the MEC

system are set as follows: the number of MUs N = 6, the

number of antennas in BS M = 8, the coverage radius of

BS dm = 50 m, the channel bandwidth W = 10 MHz, the

computational resource of MEC server F = 5 GHz, the CPU

frequency of each MU f l
n = 1 GHz, and the duration of time

slot T0 = 1s.

At the beginning of every episode, the channel vector of

each MU is initialized as hn,0 ∼ CN (0, h0(d0/dn)
βIM ),

where h= − 30 dB, d0 = 1 m, the path-loss exponent β = 3
[8], dn (in meters) denotes the distance from MU n to the

BS. In each episode, the locations of MUs are randomly set

such that they are uniformly scattered throughout the coverage

region, and the locations are independent in different episodes.

The channel vectors hn,t, ∀n ∈ N are updated according

to (2), where the channel correlation coefficient ρn = 0.95
and the error vector et ∼ CN (0, h0(d0/dm)βIM ). The MU’s

maximum allowed transmission power Pmax
n = 2 W, ∀n ∈ N ,

and the background noise power is σ2 = 10−9 W [8]. The

energy-delay tradeoff parameters are ωn = 1 for all MUs.

There are K = 4 computation tasks. We assume the

data sizes of the computation tasks bk (in Mb) is uniformly

distributed between [50, 100] and the number of CPU cycles

required to complete the tasks dk (in Gigacycles) is uniformly

distributed between [0.1, 0.5]. Moreover, the popularity profile

φt is modeled via a three-state Markov chain, represented

by three different popularity profiles φ(1),φ(2), and φ(3)

[21]. These profiles are modeled by Zipf distributions with

parameters η1 = 1, η2 = 1.2, and η3 = 1.5, respectively. So, at

each time slot t, the popularity profile φt will follow one of the

three states and each task k ∈ K will be assigned popularity



Algorithm 1 Proposed Solution using DDPG
Input: System model parameters, number of episodes Kmax,
number of time steps in each episode Tmax, empty replay
buffer R, mini-batch size B, update rate for target networks
τ , learning rate for critic network αQ and actor network αμ.

1: Initialization:
2: Initialize actor network μ(s|θμ) and critic network

Q(s,a|θQ) with random weights θμ and θQ, respectively,
drawn from a uniform distribution U [−3×10−3, 3×10−3].

3: Initialize associated target networks μ′ and Q′ with
weights θμ′ ← θμ, θQ′ ← θQ.

4: for each episode k = 1, 2, · · · ,Kmax do
5: Randomly generate an initial state s1
6: for each episode t = 1, 2, · · · , Tmax do
7: Determine the decision vectors by selecting an

action at = μ(st|θμ)+Δμ using the current policy μ and
exploration noise Δμ, which is generated by followign the
Ornstein-Uhlenbeck process [19].

8: Execute action at and observe the reward rt =
−C(st,at) and the new state st+1.

9: Save the transition (st,at, rt, st+1) into the replay
buffer R.

10: Randomly sample a mini-batch of B transitions
{(si,ai, ri, si+1)}Bi=1 from R.

11: Update the critic network Q(s,a|θQ) by one-step
gradient descent as θQ ← θQ − αQ∇θQLQ, where the
loss LQ is

LQ =
1

B

∑B

i=1

[
ri + γQ′

(
si+1, μ

′(si+1|θμ′

)|θQ′)
−Q(si,ai|θQ)

]2
. (21)

12: Update the actor network μ(s,a|θQ) by using
one-step sampled policy gradient decent as θμ ← θμ −
αμ∇θμJμ, where Jμ � Es,aQ

μ(s,a), and

∇θμJμ ≈ 1

B

∑B

i=1
∇aQ(si,a|θQ) |a=ai

∇θμμ(si|θμ).

(22)

13: Update the target networks:

θμ′ ← τθμ + (1 − τ)θμ′

and θQ′ ← τθQ + (1− τ)θQ′

14: end for
15: end for
Output: Optimal policy μ∗.

ranks zk,t randomly. The Markov transition probabilities are
given by the transition matrix

τ �

⎡
⎣τ1,1 τ1,2 τ1,3
τ2,1 τ2,2 τ2,3
τ3,1 τ3,2 τ3,3

⎤
⎦ =

⎡
⎣ 0.5 0.3 0.2
0.1 0.6 0.3
0.25 0.35 0.4

⎤
⎦ , (23)

where τi,j indicates transition probability from state i to j, for
i, j ∈ {1, 2, 3}. Please note that these states are different from
the system states defined in our problem formulation.

5 7 9 11 13 15

MEC server computational capacity F (GHz)

3.0

3.5

4.0

4.5

5.0

5.5

A
v
e
ra

g
e
 s

y
s
te

m
 c

o
s
t 
C

 (
W

)

Full Offload

Full Local

DQN

Proposed DDPG

Fig. 1. Average system cost v.s. the capacity of MEC server.

For learning the neural network parameters, we set the
hyper-parameters as follows: the number of training episodes
Kmax = 1500, the number of steps in each episode Tmax =
100, the experience replay buffer size |R| = 50000, the mini-
batch size B = 128, the soft update rate for the target networks
τ = 10−3, and the learning rate for actor network αμ = 10−4

and critic network αQ = 10−3.
To evaluate the performance of policy μ∗ learned by the

proposed DDPG-based solution, testing results are averaged
from 1000 episodes, with each episode consisting of 100 steps.
Results obtained from the proposed DDPG-based algorithm
are compared to three baseline strategies described as follows.
(1) Full Local: all MUs execute their tasks locally.
(2) Full Offload: all MUs offload their tasks to the MEC server.
All MUs transmit with the maximum power available and the
computational resource F is distributed uniformly to each MU.
(3) DQN-based Solution: DQN [9] can only be implemented
on systems with discrete state and action spaces. The support
spaces for p and f are both discretized uniformly into finite L
levels each. Therefore, the size of the action space is (2L2)N

for N MUs. We arbitrarily set L = 3 and maintain the same
neural network architecture as mentioned in Section III-B. In
addition, ε-greedy exploration method is adopted for exploring
the actions during network training with ε = 0.01.

Fig. 1 shows the average system cost as a function of
the resource capacity of the MEC server (F ) with different
algorithms. Since the MUs do not utilize the computational
resource of the MEC server in the ‘Full Local’ approach, the
performance remains constant regardless of F . The perfor-
mance of all the other algorithms improves as F increases
due to the extra computational resources from MEC. The
proposed DDPG-based algorithm achieves the best perfor-
mance, followed by the DQN approach. The performance gap
between the DDPG-based algorithm and DQN algorithm be-
comes larger as F increases. This means that the DDPG-based
algorithm can better utilize the MEC resources. Although it
may be possible to get better results by DQN approach with
a larger number of discrete levels L, it will yield a very high-
dimensional action space with prohibitively high complexity.

Table I shows the effects of the number of MUs (N ) on



TABLE I
EFFECT OF NUMBER OF MUS (N ) ON AVERAGE SYSTEM COST C̄ (W)

N Full Offload Full Local DQN Proposed DDPG

4 2.42 1.99 1.74 1.52
5 3.19 2.39 2.04 1.70
6 4.05 2.78 2.63 2.52

0.90 0.95 1.00 1.05 1.10 1.15

Average delay (seconds)

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

A
v
e
ra

g
e
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti

o
n
 (

W
)

DQN

Proposed DDPG

Fig. 2. Tradeoff between average energy consumption and average delay with
tradeoff parameter ωn = ω ∈ [1, 2] ∀n ∈ N .

the system cost averaged over time. As expected, the time-
averaged system cost becomes larger as N increases. The
proposed DDPG-based solution has the best performance,
followed by DQN, full local, and full offload, respectively.
The full offload approach has the worst performance because
the computation capacity at the MEC (F = 5 GHz) is
not sufficient to support the computation demands from all
MUs, especially when N becomes larger. The DDPG-based
algorithm achieves 4%-16.7% performance improvement com-
pared to its DQN-based counterpart.

Fig. 2 illustrates the tradeoff relationship between the aver-
age energy consumption and the average delay of the system.
Different tradeoff points are obtained by varying the values of
ωn for all n ∈ N MUs. It is worth noting that we consider
the time-average not the ensemble average across all the MUs.
With larger ωn, the average delay experienced by all the MUS
can be decreased at the cost of higher energy consumption.
Moreover, the policy learned by DDPG demonstrates better
tradeoff performance compared to the policy learned by DQN.
Since both the ‘Full Offload’ and ‘Full Local’ approaches have
fixed policies, ωn doesn’t affect the decisions. Hence, these
approaches do not demonstrate tradeoff relationships between
energy consumption and delay.

V. CONCLUSION

We have studied the problem of dynamic computation
offloading and resource allocation in MEC systems with
stochastic wireless channel conditions, where computation-
intensive tasks at MUs can be executed either locally or
remotely in an MEC server. The problem was formulated
to minimize the long term average of the weighted sum of
energy consumption and delay of all the MUs. A DDPG-based

method has been proposed to solve the problem. Simulation
results have demonstrated that the proposed algorithm outper-
forms existing approaches such as DQN.

REFERENCES

[1] P. Mach and Z. Becvar, “Mobile edge computing: A survey on ar-
chitecture and computation offloading,” IEEE Communications Surveys
Tutorials, vol. 19, no. 3, pp. 1628–1656, Mar. 2017.

[2] Y. Mao, J. Zhang, S. H. Song, and K. B. Letaief, “Stochastic joint radio
and computational resource management for multi-user mobile-edge
computing systems,” IEEE Transactions on Wireless Communications,
vol. 16, no. 9, pp. 5994–6009, Sep. 2017.

[3] C. Wang, C. Liang, F. R. Yu, Q. Chen, and L. Tang, “Computation
offloading and resource allocation in wireless cellular networks with
mobile edge computing,” IEEE Transactions on Wireless Communica-
tions, vol. 16, no. 8, pp. 4924–4938, Aug. 2017.

[4] J. Zhang, X. Hu, Z. Ning, E. C.-H. Ngai, L. Zhou, J. Wei, J. Cheng, and
B. Hu, “Energy-latency tradeoff for energy-aware offloading in mobile
edge computing networks,” IEEE Internet of Things Journal, vol. 5,
no. 4, pp. 2633–2645, 2017.

[5] L. Huang, X. Feng, C. Zhang, L. Qian, and Y. Wu, “Deep reinforcement
learning-based joint task offloading and bandwidth allocation for multi-
user mobile edge computing,” Digital Communications and Networks,
vol. 5, no. 1, pp. 10–17, Feb. 2019.

[6] J. Wang, L. Zhao, J. Liu, and N. Kato, “Smart resource allocation for
mobile edge computing: A deep reinforcement learning approach,” IEEE
Transactions on Emerging Topics in Computing, 2019.

[7] S. Nath, Y. Li, J. Wu, and P. Fan, “Multi-user multi-channel computation
offloading and resource allocation for mobile edge computing,” in
IEEE International Conference on Communications (Accepted), Dublin,
Ireland, Jun. 2020.

[8] Z. Chen and X. Wang, “Decentralized computation offloading for multi-
user mobile edge computing: A deep reinforcement learning approach,”
arXiv preprint arXiv:1812.07394, 2018.

[9] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

[10] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[11] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and
G. Caire, “Femtocaching: Wireless content delivery through distributed
caching helpers,” IEEE Transactions on Information Theory, vol. 59,
no. 12, pp. 8402–8413, Dec. 2013.

[12] H. A. Suraweera, T. A. Tsiftsis, G. K. Karagiannidis, and A. Nallanathan,
“Effect of feedback delay on amplify-and-forward relay networks with
beamforming,” IEEE Transactions on Vehicular Technology, vol. 60,
no. 3, pp. 1265–1271, Mar. 2011.

[13] H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Energy and spectral
efficiency of very large multiuser mimo systems,” IEEE Transactions
on Communications, vol. 61, no. 4, pp. 1436–1449, Apr. 2013.

[14] Y. Wen, W. Zhang, and H. Luo, “Energy-optimal mobile application
execution: Taming resource-poor mobile devices with cloud clones,”
in Proc. IEEE Conference on Computer Communications (INFOCOM),
Orlando, FL, USA, Mar. 2012, pp. 2716–2720.

[15] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Transactions
on Networking, vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

[16] J. Li, H. Gao, T. Lv, and Y. Lu, “Deep reinforcement learning based
computation offloading and resource allocation for mec,” in Wire-
less Communications and Networking Conference (WCNC), Barcelona,
Spain, Apr. 2018, pp. 1–6.

[17] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
Cambridge, MA, USA: MIT press, 2018.

[18] D. Adelman and A. J. Mersereau, “Relaxations of weakly coupled
stochastic dynamic programs,” Operations Research, vol. 56, no. 3, pp.
712–727, 2008.

[19] G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the brownian
motion,” Physical review, vol. 36, no. 5, p. 823, 1930.

[20] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.



[21] A. Sadeghi, F. Sheikholeslami, and G. B. Giannakis, “Optimal dynamic
proactive caching via reinforcement learning,” in 19th International

Workshop on Signal Processing Advances in Wireless Communications

(SPAWC). Kalamata, Greece: IEEE, 2018.


