Dynamic Computation Offloading and Resource
Allocation for Multi-user Mobile Edge Computing

Samrat Nath and Jingxian Wu
Department of Electrical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
Email: {snath, wuj} @uark.edu

Abstract—We study the problem of dynamic computation
offloading and resource allocation in mobile edge computing
(MEC) systems consisting of multiple mobile users (MUs) with
stochastic task arrivals and wireless channels. Each MU can
execute its task either locally or remotely in an MEC server.
The objective is to identify the optimum scheduling scheme that
can minimize the long-term average weighted sum of energy
consumption and delay of all MUs, under the constraints of
limited transmission power per MU and limited computation
resources at the MEC server. The optimum design is performed
with respect to three decision parameters: whether to offload a
given task, how much transmission power to be allocated for
offloading, and how much MEC resources to be allocated for an
offloaded task. We propose to solve the problem by developing
a dynamic scheduling strategy based on deep reinforcement
learning (DRL) with deep deterministic policy gradient (DDPG).
Simulation results show that the proposed algorithm outperforms
other existing strategies such as deep Q-network (DQN).

Index Terms—mobile edge computing, computation offloading,
deep reinforcement learning, deep deterministic policy gradient

I. INTRODUCTION

The ever-growing popularity of smart mobile devices
(SMDs) and the emergence of the Internet-of-Things (IoT)
are driving the development of many new applications such as
online interactive gaming, face recognition, virtual/augmented
reality, etc. These applications typically require intensive com-
putation and high energy consumption. However, an SMD has
limited battery life and computational capacity (processing
speed), which makes it difficult for the SMD to meet the
stringent requirements of these mobile applications. Mobile
edge computing (MEC) has recently emerged as a promising
technology to bridge the gap between the resource-limited
SMDs and the computation-intensive applications [1].

Unlike conventional cloud computing systems, which rely
on remote public clouds with high transmission latency,
MEC offers computational capability within the radio access
network by deploying densely distributed high-performance
servers in proximity to mobile users (MUs) [1]. It allows MUs
to offload computational tasks to the MEC server connected
to a base station (BS) through the wireless network. MUs
can significantly reduce the computation latency and energy
consumption through computation offloading and thus improve
the Quality of Experience (QoE) of mobile applications.
Therefore, there have been growing interests on computation
offloading in MEC systems [1].

The work was supported in part by the U.S. National Science Foundation
(NSF) under Award Number ECCS-1711087.

The efficiency of computation offloading relies critically
on how the limited communication, power, and computational
resources are managed in an MEC system. Various computa-
tion offloading strategies with different design objectives and
resource allocation schemes have been studied extensively in
the literature [2]-[8]. Generally, the computation offloading
approaches in MEC can be classified into two types, namely,
partial computation offloading [2], [8], and binary compu-
tation offloading [3]-[7]. Specifically, in binary computation
offloading, an MU can either execute its computational task
on the local device or offload that task entirely to the MEC
server. On the other hand, in partial computation offloading,
the MU can offload fractional parts of the task and execute
the rest of it locally, which offers more flexibility. In [2], an
online algorithm based on Lyapunov optimization is developed
for joint radio and computational resource management for
multi-user MEC systems. The alternating direction method of
multipliers (ADMM) is applied to solve the joint optimization
problem of computation offloading, resource allocation, and
content caching strategy in [3]. An iterative search algorithm is
proposed to study the energy-latency tradeoff for energy-aware
offloading in [4]. The scheme designed in [7] jointly minimizes
energy consumption, delay, and deadline penalty of all the
users in a multi-channel MEC system. However, most of these
problems do not consider dynamic channel conditions and/or
dynamic task arrivals. In practice, the MEC systems have time-
varying stochastic channel conditions and task arrivals.

The complicated joint computation offloading and resource
allocation in MEC is usually formulated as non-convex opti-
mization problems, which are in general very challenging to
solve. With the explosive growth of interest in deep neural
networks (DNNG5), researchers have recently started adopting
Deep Reinforcement Learning (DRL) algorithms to solve these
problems [5]-[8]. The proposed solutions in [5], [6] exploits
the Deep Q-Network (DQN) method [9], while [7], [8] utilizes
the Deep Deterministic Policy Gradient (DDPG) algorithm
[10]. However, the work in [7] assumes the channel conditions
to be quasi-static, and no constraint on the computational
capacity of the MEC server is considered in [8].

In this paper, we propose to develop an online DRL-based
scheme for dynamic computation offloading and resource
allocation in a resource-constrained multi-user MEC system
by addressing three key questions: 1) whether a given task
should be executed locally at an MU or offloaded to MEC?
2) how much transmission power should be allocated to a

given MU for task offloading? and 3) how much computational
resources should be allocated by the MEC server for a given
task? In the proposed MEC framework, the time is divided into
slots, and the channel conditions and task arrivals are assumed
to be time-varying and stochastic. The offloading decision,
power allocation, and computational resource allocation are
determined centrally by the BS at the beginning of each
time slot, and then the results are forwarded to the MU.
Our objective is to design an online DRL-based solution for
efficient computation offloading and resource allocation. We
assume that the MEC server has a limited computation re-
source capacity and all the MUs have individual constraints on
transmission power. Specifically, we formulate an optimization
problem to minimize the long-term average of a cost function,
which is a weighted sum of energy consumption and delay of
all MUs. We propose to solve the problem by using a DDPG-
based method, which can deal with the continuous space
of optimization variables. Simulation results demonstrate that
the proposed DDPG-based solution outperforms other existing
strategies such as DQN, which requires the discretization of
the optimization variables.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a multi-user MEC system with one 5G small-
cell BS with M antennas, one MEC server, and a set of
N < M mobile users denoted by N' = {1,2,---, N}. The
BS is connected directly with the MEC server with a total
computation capacity of F' (in CPU cycles per second). The
system bandwidth is W (in Hz). We adopt a discrete-time
model, where the time domain is slotted with equal length 7’
(in seconds) and indexed by 7 = {0,1,---}.

A. Task Model

Assume there are K computation-intensive heterogeneous
tasks denoted by the set K = {1,2,---, K'}. Each task k € K
is characterized by two parameters; by (in bits) denotes the
size of computation input data (e.g. program codes and input
parameters) and dy, (in cycles per second) denotes the amount
of computing resources required for the task. At the beginning
of each time slot, each MU requests a single task randomly
from the set C, where one task may be requested by multiple
users simultaneously. The popularity of each task ¢ is
dynamic and follows Zipf distribution [11]. The popularity
profile vector is defined as ¢; = {®k.t}rei. Define the
popularity rank of task k during slot ¢ as z; € K, then the
popularity of the corresponding task can be expressed as

—-n
Pt

iy
D1 Zl,tn
where Zipf parameter > 0 controls the skewness of popu-

larity. As the value of 7 increases, the popularity difference
among the tasks becomes larger.

Dr,t ey

B. Communication Model

The BS and the MUs form a multi-user multiple-input
multiple-output (MIMO) system, with M antennas at the

BS serving N single-antenna MUs. The channel conditions
between the BS and MUs are described by the M x N channel
matrix H; = [hyy, -+ ,hy,4], where h,; € CM*L is the
channel vector of the n-th MU. The Gaussian Markov block
fading autoregressive model [12] is adopted to characterize the
temporal channel correlation between consecutive slots. The
channel vector for the n-th MU can be expressed as

hn,t = pnhn,t—l + V 1- p%eta (2)

where p,, is the normalized channel correlation coefficient for
the n-th MU, the error vector e, € CM*1 is uncorrelated with
h,.+, and it is distributed such that e; ~ CN'(0,021,;), with
Iy being a size M identity matrix.

Denote the transmission power of the n-th MU at the ¢-th
slot as p,,; € [0, P*¥], where P2®* is the maximum trans-
mission power of the n-th MU. The BS manages the uplink
transmissions of multiple single-antenna MUs by employing
the linear detection algorithm zero-forcing (ZF) [8], [13]. With
the ZF detector at the BS, the signal-to-interference-plus-noise
ratio (SINR) for the signal from the n-th MU is

pn,t
T)
o?((VP H{HiV/P)
where o2 is the noise power, P, = diag{p;} is a diagonal
matrix with p; = [p1+, -+ ,pn |7 on its main diagonal,
the operators AT and A respectively represent the matrix
transpose and Hermitian operations, and [A],, denotes the

(m,n)-th element of the matrix A. The transmission data rate
from the n-th MU to the BS at slot ¢ can be expressed as [8]

Tnt = Wlogs (1l + vnt). “)
C. Computation Model

Yt = 3)

Denote z,, ; € {0, 1} as the computation offloading decision
variable of the n-th MU at slot ¢. Specifically, if z,, ; = 1, then
the n-th MU chooses to offload its current computation task
to the MEC server via the wireless link; if x,; = 0, then the
n-th MU chooses to execute its task locally. The computation
offloading decision vector for all MUs is represented by x; =
[14, -+ ,2n4]T. Denote k' € K as the index of the task
requested by the n-th MU at the beginning of time slot ¢, and
ki 2 [k},--- ,kN]T as the task request vector.

1) Local Execution: In the local execution approach, the
n-th MU executes its computation task k' locally using its
own CPU. Let f! be the computation capability (in CPU
cycles per second) of MU n. Different MUs may have different
computational capabilities. The computation time of task &k}
by local execution can then be expressed as

dy
T) = o (&)
The corresponding energy consumption is
Ey 4 = Gudiy, ©)

where the coefficient (,, denotes the energy consumption per
CPU cycle, which depends on the chip architecture at the MU
device. We set (,, = 10727(f%)? in this paper [14].

2) MEC Server Execution: In this approach, the MEC
server will execute the computation task on behalf of the MU.
This approach is divided into three steps. First, the n-th MU
uploads its task data of size by to the BS through the wireless
channel, and the BS forwards that data to the MEC server.
Second, the MEC server allocates part of its computational
resources to execute the task. Finally, the MEC server returns
the execution results to the n-th MU.

In the first step, the transmission delay of task offloading
by the n-th MU during slot ¢ can be computed as

=, = % (7)

n,t Tt

The corresponding energy consumption of the first step is

pn,tbk?

xT _ T _
E = pn,tTn,t =
Tn,t

- ®)

In the second step during task execution, the processing
delay incurred by the MEC server is

dyn
Tn#t f n,t ’
where f,, ; denotes the computational resource (in CPU cycles
per second) allocated to the n-th MU by the MEC server
during slot ¢. Denote f, = [fie,- 5 fnva)? as the MEC
computational resource allocation vector for all the MUs.

In the final step, the n-th MU downloads the output data
from the MEC server. For many applications, the size of the
computation output data is much smaller than that of the input
data, and the download data rate is also much higher than
the upload rate. Therefore, we do not consider the delay and
energy consumption during this step [15], [16].

©)

D. Problem Formulation

Given the computation offloading decision vector x, the
energy consumption and computation delay for the n-th MU
during slot ¢ can be computed, respectively, as

Eny=1(2n = 0)EL , + Lzn, = 1)EL (10)
The = 1(1771-,15 = O)T7ll,t =+ 1(1771-,15 = 1)(ngf,t =+ Tff,t)a (11)

where 1(&) is the indicator function with 1(£) = 1 if the
event £ is true and O otherwise.
Define the overall cost of all MUs in the MEC system as

Cy = Z:;l En,t + Z:;l wnTn,tv

where the weight coefficient w, (in W/sec) controls the
tradeoff between energy and delay for the n-th MU. Different
MUs might have different delay requirements depending on
the task. For MUs dealing with time-sensitive tasks, w, can
be set to larger values to prioritize faster execution.

The objective of this paper is to minimize the long-term
average cost of the MEC system, which is defined as

_ . 1
C=E {71?3100 m ZtGT Ot} ’

12)

13)

where E(-) denotes mathematical expectation. The optimiza-
tion problem is formulated as follows.
P1: min C
z,p,f
st. (Cl) z,,€{0,1}, VneN, VteT
(C2) pnt < PP, VneN, VteT

N
€3 > Mene=Dfar<F VteT
(C4) Tny <Ts,VneN,VteT

Here, (C3) represents the constraint that the total amount of
allocated resources can not exceed the total computational
resource of the MEC server, and (C4) represents the constraint
that each MU must execute its task either locally or in the
MEC server within one time slot.

The optimal solution of P1 requires knowledge of the sta-
tistical distribution of the channel condition and task requests,
which are in general not available in a practical system.
Moreover, P1 is a mixed-integer nonlinear programming and it
is very challenging to solve even if the statistical information
is available. One possible way to overcome these challenges
is to adopt an online approach that can efficiently make
the decisions regarding computation offloading and resource
allocation in real-time by learning from past observations.
Hence, instead of applying conventional optimization methods
to solve the NP-hard problem P1, we propose a DRL-based
method to find the optimal x, p, and f.

III. DRL-BASED SOLUTION FOR COMPUTATION
OFFLOADING AND RESOURCE ALLOCATION

DRL is regarded as a combination of reinforcement learning
(RL) and DNN. We first formulate P1 in the RL framework,
and then present the proposed DRL-based solution.

A. RL Framework

Generally, the RL framework is well-suited for solving
complicated decision-making problems in real-time [17]. The
framework consists of three key elements, state, action, and
reward. An RL agent interacts with the environment in discrete
time domain. At each time step ¢, the agent’s behavior is
defined by a policy p, which maps states to actions g :
s¢ — a;. After the RL agent selects an action a; according
to the policy pu, the environment returns a scalar reward r;
and makes a transition from state s; to s;+1. The action-
value function Q* (s, a) (also known as)-function) represents
the expected infinite-horizon discounted accumulative reward
under the policy p with initial state s and initial action a:

Q"(s,a) =E [ZteTytrﬂso =s,a0=al, (14)

where v € [0, 1] is the discount factor. The goal of the RL
agent is to learn the optimal policy p* such that

lim
| T =00

p*(s) = argmax Q" (s, a), (15)
where Q*(s, a) is the optimal Q-function.

To interpret problem P1 in the RL framework, we define
the key elements according to the system model as follows.

1) State: The state of a system is a set of parameters that
can be used to describe a system. Hence, the system state at
an arbitrary time slot ¢ is defined as

s = {k¢, H;}, (16)

where the task request vector k; and the channel matrix H,
determine the stochasticity of system. At the start of each slot,
k. is known to the system, and the channel reciprocity can be
used to estimate H; for the upcoming uplink transmission [8].

2) Action: Based on the observed state s;, the RL agent
will select actions a; based on the decision variables in P1 as

a; = {x4, pi, f1}- (17

which includes the computation offloading decision vector x;,
the transmission power vector p;, and the MEC computational
resource allocation vector f; for each slot ¢t € 7.

3) Reward: Given a particular state s; and an action a; at
time slot ¢, it is evident that the overall system cost in (12)
can be expressed as a function of the state-action pair, i.e.,

Ct = C’(st,at). (18)

We define the reward function of the state-action pair (s, a;)
in the RL framework as

re = —CO(8¢, ay). 19)

It is worth noting that although RL algorithms maximize the
expected discounted long-term reward, these algorithms can
also approximate the true expected long-term undiscounted
reward when v — 1 [18]. Hence, the average system cost in
(13) is minimized by applying the policy learned via the RL
agent.

It is difficult to obtain the exact solution of the RL problem
in high-dimensional state and action spaces by directly maxi-
mizing the Q-function. We propose to tackle this challenge by
obtaining an approximate solution of the RL problem by using
DRL with DDPG. Details are given in the next subsection.

B. DRL with DDPG

A feasible method to solve the RL problem is the well-
known Q-learning algorithm [17], which solves the optimal
Q-function through a value iteration update approach as

Q(si,ay) «— Q(s1,ay)

+a 7't+’}/glaXQ(5t+laat+l)_Q(staat) ,
t+1

(20)

where « is the learning rate. However, as the dimensions of
the state space and action space increase, the complexity of
solving (20) grows exponentially. DQN provides an efficient
method to address this issue [9]. DQN exploits the architecture
of DNN in order to approximate the Q function with a
finite number of parameters in the neural network. However,
DQN can only handle discrete and low-dimensional action
spaces, because finding the optimal value according to (15) is
relatively simple with low-dimensional spaces. For problems
with continuous action and state spaces like P1, the action and

state spaces have to be discretized before applying DQN. The
complexity grows exponentially with discretization levels. The
discretization in DQN also causes loss of precision.

We propose to address this challenge by applying DDPG
[10], which is appropriate for problems with continuous action
and state spaces. In DDPG, an actor-critic approach is adopted
by using two separate DNNs, where the actor network pi(s|0*)
approximates the policy function u, and the critic network
Q(s,al@9) approximates the Q-function. Here, 8 and 8 are
the parameters of the actor and critic networks, respectively.

In the proposed DDPG framework, a four-layer fully con-
nected neural network with two hidden layers is considered
for both the actor and critic networks. The dimensions of
two hidden layers are 8N and 4N, respectively. The neural
networks use the ReLu as the activation function for all hidden
layers, while the final output layer of the actor uses a sigmoid
layer to bound the actions. Ornstein-Uhlenbeck process [19] is
adopted to generate random noise Ay for action exploration,
while adaptive moment estimation (Adam) method [20] is used
for updating the neural network parameters. Details of the
proposed solution are described in Algorithm 1.

IV. SIMULATION RESULTS

Simulation results are presented in this section to demon-
strate the performance of the proposed algorithm with DDPG.
Unless specified otherwise, the default settings of the MEC
system are set as follows: the number of MUs N = 6, the
number of antennas in BS M = 8, the coverage radius of
BS d,, = 50 m, the channel bandwidth W = 10 MHz, the
computational resource of MEC server F' = 5 GHz, the CPU
frequency of each MU f! = 1 GHz, and the duration of time
slot Ty = 1s.

At the beginning of every episode, the channel vector of
each MU is initialized as h, o ~ CN(0,ho(do/dn)?Ins),
where h— — 30 dB, dy = 1 m, the path-loss exponent 5 = 3
[8], d,, (in meters) denotes the distance from MU n to the
BS. In each episode, the locations of MUs are randomly set
such that they are uniformly scattered throughout the coverage
region, and the locations are independent in different episodes.
The channel vectors h,, ¢, Vn € N are updated according
to (2), where the channel correlation coefficient p,, = 0.95
and the error vector e; ~ CN(0, ho(do/d,,)? Ipr). The MU’s
maximum allowed transmission power P'** =2 W, Vn € N,
and the background noise power is 02 = 1072 W [8]. The
energy-delay tradeoff parameters are w,, = 1 for all MUs.

There are K = 4 computation tasks. We assume the
data sizes of the computation tasks by (in Mb) is uniformly
distributed between [50,100] and the number of CPU cycles
required to complete the tasks dj, (in Gigacycles) is uniformly
distributed between [0.1, 0.5]. Moreover, the popularity profile
¢, is modeled via a three-state Markov chain, represented
by three different popularity profiles ¢!, ¢ and ¢®
[21]. These profiles are modeled by Zipf distributions with
parameters 71 = 1,72 = 1.2, and i3 = 1.5, respectively. So, at
each time slot ¢, the popularity profile ¢, will follow one of the
three states and each task k£ € K will be assigned popularity

Algorithm 1 Proposed Solution using DDPG

Input: System model parameters, number of episodes K ax,
number of time steps in each episode Ty,.x, empty replay
buffer R, mini-batch size B, update rate for target networks
7, learning rate for critic network a® and actor network .

1: Initialization:

2: Initialize actor network p(s|@*) and critic network
Q(s,a|0?) with random weights 8 and 89, respectively,
drawn from a uniform distribution U[—3x 1073, 3x 1073].

3: Initialize associated target networks p’ and Q' with

weights 0" — ", 09 «— 6°.

for each episode £k = 1,2, -+, K ax do

Randomly generate an initial state s;
for each episode t = 1,2, - ,T}.x do
Determine the decision vectors by selecting an
action a; = p(s¢|0*)+ Ap using the current policy p and
exploration noise Ay, which is generated by followign the
Ornstein-Uhlenbeck process [19].

AN

8: Execute action a; and observe the reward r; =
—C/(s¢,at) and the new state Syi1.

9: Save the transition (s¢, at, r¢, S¢41) into the replay
buffer R.

10: Randomly sample a mini-batch of B transitions
{(Si, a;, T, Si-i-l)}iB;l from R.

11 Update the critic network Q(s,a|@?) by one-step

gradient descent as 09 < 09 — a®Vyo LY, where the
loss L9 is
Q_ L\F)) @
L=+ Zi:l [’f’i + /YQ (Si+17 H (Si+1|0H)|0)

B
— Q(s,ail69)]. @1)

12: Update the actor network p(s,a|0%) by using
one-step sampled policy gradient decent as 0+ < 6" —
al'Veu J*, where J#H £ Eq ,Q"(s,a), and

1 B
VouJt' ~ B Zi:l VaQ(si, a|0Q) la=a; Voupu(si|0").
(22)

13: Update the target networks:
0" «— 76" + (1 —7)6" and 09 « 769 + (1 — 7)<

14: end for
15: end for

Output: Optimal policy p*.

ranks zj; randomly. The Markov transition probabilities are
given by the transition matrix

Ti,1 T1,2 T1,3 0.5 0.3 0.2
T2 |1 T Ts| =01 06 03], (23
73,1 T3,2 73,3 0.25 0.35 04

where 7; ; indicates transition probability from state 7 to j, for
i,7 € {1,2,3}. Please note that these states are different from
the system states defined in our problem formulation.

LY —e-: Full Offload
554 S --A-+ Full Local

N —#- DON
N —m— Proposed DDPG

)
’

Average system cost C (W.

5.0

4.5+

4.0 4

MEC server computational capacity F (GHz)

Fig. 1. Average system cost v.s. the capacity of MEC server.

For learning the neural network parameters, we set the
hyper-parameters as follows: the number of training episodes
Kiax = 1500, the number of steps in each episode Thax =
100, the experience replay buffer size |R| = 50000, the mini-
batch size B = 128, the soft update rate for the target networks
7 = 1073, and the learning rate for actor network o = 10~*
and critic network a®@ = 1073,

To evaluate the performance of policy p* learned by the

proposed DDPG-based solution, testing results are averaged
from 1000 episodes, with each episode consisting of 100 steps.
Results obtained from the proposed DDPG-based algorithm
are compared to three baseline strategies described as follows.
(1) Full Local: all MUs execute their tasks locally.
(2) Full Offload: all MUs offload their tasks to the MEC server.
All MUs transmit with the maximum power available and the
computational resource F' is distributed uniformly to each MU.
(3) DON-based Solution: DQN [9] can only be implemented
on systems with discrete state and action spaces. The support
spaces for p and f are both discretized uniformly into finite L
levels each. Therefore, the size of the action space is (2L2)V
for N MUs. We arbitrarily set L = 3 and maintain the same
neural network architecture as mentioned in Section III-B. In
addition, e-greedy exploration method is adopted for exploring
the actions during network training with € = 0.01.

Fig. 1 shows the average system cost as a function of
the resource capacity of the MEC server (F') with different
algorithms. Since the MUs do not utilize the computational
resource of the MEC server in the ‘Full Local’ approach, the
performance remains constant regardless of F. The perfor-
mance of all the other algorithms improves as F' increases
due to the extra computational resources from MEC. The
proposed DDPG-based algorithm achieves the best perfor-
mance, followed by the DQN approach. The performance gap
between the DDPG-based algorithm and DQN algorithm be-
comes larger as F’ increases. This means that the DDPG-based
algorithm can better utilize the MEC resources. Although it
may be possible to get better results by DQN approach with
a larger number of discrete levels L, it will yield a very high-
dimensional action space with prohibitively high complexity.

Table I shows the effects of the number of MUs (/N) on

TABLE I)
EFFECT OF NUMBER OF MUS (N) ON AVERAGE SYSTEM COST C' (W)

[N]| Full Offload | Full Local | DQN [Proposed DDPG |

4 242 1.99 1.74 1.52
5 3.19 2.39 2.04 1.70
6 4.05 2.78 2.63 2.52
0.90 4 « -&- DQN
'\ —#— Proposed DDPG

0.85

0.80 1

0.75 4

0.70 4

0.65 4

0.60 4

Average energy consumption (W)

T T T T T
0.90 0.95 1.00 1.05 1.10 115

Average delay (seconds)

Fig. 2. Tradeoff between average energy consumption and average delay with
tradeoff parameter w, = w € [1,2] Vn € N.

the system cost averaged over time. As expected, the time-
averaged system cost becomes larger as N increases. The
proposed DDPG-based solution has the best performance,
followed by DQN, full local, and full offload, respectively.
The full offload approach has the worst performance because
the computation capacity at the MEC (F' = 5 GHz) is
not sufficient to support the computation demands from all
MUs, especially when N becomes larger. The DDPG-based
algorithm achieves 4%-16.7% performance improvement com-
pared to its DQN-based counterpart.

Fig. 2 illustrates the tradeoff relationship between the aver-
age energy consumption and the average delay of the system.
Different tradeoff points are obtained by varying the values of
wy, for all n € A/ MUs. It is worth noting that we consider
the time-average not the ensemble average across all the MUs.
With larger w,,, the average delay experienced by all the MUS
can be decreased at the cost of higher energy consumption.
Moreover, the policy learned by DDPG demonstrates better
tradeoff performance compared to the policy learned by DQN.
Since both the ‘Full Offload” and ‘Full Local’ approaches have
fixed policies, w,, doesn’t affect the decisions. Hence, these
approaches do not demonstrate tradeoff relationships between
energy consumption and delay.

V. CONCLUSION

We have studied the problem of dynamic computation
offloading and resource allocation in MEC systems with
stochastic wireless channel conditions, where computation-
intensive tasks at MUs can be executed either locally or
remotely in an MEC server. The problem was formulated
to minimize the long term average of the weighted sum of
energy consumption and delay of all the MUs. A DDPG-based

method has been proposed to solve the problem. Simulation
results have demonstrated that the proposed algorithm outper-
forms existing approaches such as DQN.

REFERENCES

[1] P. Mach and Z. Becvar, “Mobile edge computing: A survey on ar-
chitecture and computation offloading,” IEEE Communications Surveys
Tutorials, vol. 19, no. 3, pp. 1628-1656, Mar. 2017.

[2] Y. Mao, J. Zhang, S. H. Song, and K. B. Letaief, “Stochastic joint radio
and computational resource management for multi-user mobile-edge
computing systems,” [EEE Transactions on Wireless Communications,
vol. 16, no. 9, pp. 5994-6009, Sep. 2017.

[3] C. Wang, C. Liang, F. R. Yu, Q. Chen, and L. Tang, “Computation
offloading and resource allocation in wireless cellular networks with
mobile edge computing,” IEEE Transactions on Wireless Communica-
tions, vol. 16, no. 8, pp. 4924-4938, Aug. 2017.

[4] J. Zhang, X. Hu, Z. Ning, E. C.-H. Ngai, L. Zhou, J. Wei, J. Cheng, and
B. Hu, “Energy-latency tradeoff for energy-aware offloading in mobile
edge computing networks,” IEEE Internet of Things Journal, vol. 5,
no. 4, pp. 2633-2645, 2017.

[5] L. Huang, X. Feng, C. Zhang, L. Qian, and Y. Wu, “Deep reinforcement
learning-based joint task offloading and bandwidth allocation for multi-
user mobile edge computing,” Digital Communications and Networks,
vol. 5, no. 1, pp. 10-17, Feb. 2019.

[6] J. Wang, L. Zhao, J. Liu, and N. Kato, “Smart resource allocation for
mobile edge computing: A deep reinforcement learning approach,” IEEE
Transactions on Emerging Topics in Computing, 2019.

[71 S. Nath, Y. Li, J. Wu, and P. Fan, “Multi-user multi-channel computation
offloading and resource allocation for mobile edge computing,” in
IEEE International Conference on Communications (Accepted), Dublin,
Ireland, Jun. 2020.

[8] Z. Chen and X. Wang, “Decentralized computation offloading for multi-
user mobile edge computing: A deep reinforcement learning approach,”
arXiv preprint arXiv:1812.07394, 2018.

[9] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-

stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-

ing,” arXiv preprint arXiv:1312.5602, 2013.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,

D. Silver, and D. Wierstra, “Continuous control with deep reinforcement

learning,” arXiv preprint arXiv:1509.02971, 2015.

K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and

G. Caire, “Femtocaching: Wireless content delivery through distributed

caching helpers,” IEEE Transactions on Information Theory, vol. 59,

no. 12, pp. 8402-8413, Dec. 2013.

H. A. Suraweera, T. A. Tsiftsis, G. K. Karagiannidis, and A. Nallanathan,

“Effect of feedback delay on amplify-and-forward relay networks with

beamforming,” IEEE Transactions on Vehicular Technology, vol. 60,

no. 3, pp. 1265-1271, Mar. 2011.

H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Energy and spectral

efficiency of very large multiuser mimo systems,” IEEE Transactions

on Communications, vol. 61, no. 4, pp. 1436-1449, Apr. 2013.

Y. Wen, W. Zhang, and H. Luo, “Energy-optimal mobile application

execution: Taming resource-poor mobile devices with cloud clones,”

in Proc. IEEE Conference on Computer Communications (INFOCOM),

Orlando, FL, USA, Mar. 2012, pp. 2716-2720.

X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation

offloading for mobile-edge cloud computing,” IEEE/ACM Transactions

on Networking, vol. 24, no. 5, pp. 2795-2808, Oct. 2016.

J. Li, H. Gao, T. Lv, and Y. Lu, “Deep reinforcement learning based

computation offloading and resource allocation for mec,” in Wire-

less Communications and Networking Conference (WCNC), Barcelona,

Spain, Apr. 2018, pp. 1-6.

R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.

Cambridge, MA, USA: MIT press, 2018.

D. Adelman and A. J. Mersereau, “Relaxations of weakly coupled

stochastic dynamic programs,” Operations Research, vol. 56, no. 3, pp.

712-727, 2008.

G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the brownian

motion,” Physical review, vol. 36, no. 5, p. 823, 1930.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

arXiv preprint arXiv:1412.6980, 2014.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21] A. Sadeghi, F. Sheikholeslami, and G. B. Giannakis, “Optimal dynamic
proactive caching via reinforcement learning,” in [9th International
Workshop on Signal Processing Advances in Wireless Communications
(SPAWC). Kalamata, Greece: IEEE, 2018.

