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Abstract— This study introduces a new multimodal deep
regression method to predict cognitive test score in a S-year
longitudinal study on Alzheimer’s disease (AD). The proposed
model takes advantage of multimodal data that includes
cerebrospinal fluid (CSF) levels of tau and beta-amyloid,
structural measures from magnetic resonance imaging (MRI),
functional and metabolic measures from positron emission
tomography (PET), and cognitive scores from neuropsychological
tests (Cog), all with the aim of achieving highly accurate
predictions of future Mini-Mental State Examination (MMSE)
test scores up to five years after baseline biomarker collection. A
novel data augmentation technique is leveraged to increase the
numbers of training samples without relying on synthetic data.
With the proposed method, the best and most encompassing
regressor is shown to achieve better than state-of-the-art
correlations of 85.07%(SD=1.59) for 6 months in the future,
87.39% (SD =1.48) for 12 months, 84.78% (SD=2.66) for 18
months, 85.13% (SD=2.19) for 24 months, 81.15% (SD=5.48) for
30 months, 81.17% (SD=4.44) for 36 months, 79.25% (SD=5.85)
for 42 months, 78.98% (SD=5.79) for 48 months, 78.93%(SD=5.76)
for 54 months, and 74.96% (SD=7.54) for 60 months.

Keywords—  Longitudinal analysis, Alzheimer’s disease,
Cerebrospinal fluid, Alzheimer’s Disease Neuroimaging Initiative
(ADNI), magnetic resonance imaging (MRI)
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I. INTRODUCTION

Alzheimer’s is a neurodegenerative disease characterized by
rapid decline in cognitive performance affecting approximately
5.5 million people in the United States [1]. Not only is the
disorder a leading cause of death, but it typically involves long-
term morbidity that largely affects individual’s quality of life.
Manifestations of AD are often expressed in brain atrophy with
concurrent amyloid plaques through the toxic buildup of
Amyloid-f (af) peptides and neural injury, resulting in
progressive memory decline [2-11].

This area of study has gathered the most attention by the
scientific community, and especially in exploring aplications of
machine learning, where numerous studies have shown great
prospects for augmenting our understanding of this complex
disease [12-17]. In [12], the authors use Support Vector
Machines (SVMs) to predict the Mini-Mental State Examination
(MMSE) score of patients 24 months after the initial visit, and
to further predict which patient will have an MMSE decline of
more than three (3) points, which they deemed to be medically
significant. They generate said predictions by only using
demographic data, genetic biomarkers, neuro psychological
tests, and baseline MMSE scores.

MRIs are used in [13] and [14]. The authors of [13], attempt
to predict the clinical scores of patients within three months of
their MRIs by using Relevance Vector Regression (RVC)
through a Bayesian inference framework . They report that the
predicted MMSE, CDR, and ADAS test scores are highly
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correlated within one another, which is to be expected as they
all measure different aspects of cognitive performance. Whereas
[14] uses two key MRI biomarkers to predict the MMSE at
baseline and ADAS clinical scores at baseline and at the year’s
mark (12 months after). They instead employ an anatomically
partitioned artificial neural network (APANN) composed of
multiple hidden layers to encode the latent features of the input
data.

Other studies such as [15-17] use multiple biomarker
modalities to estimate the changes or future MMSE scores at
different timepoints. The method suggested in [15] utilizes MRI,
CSF, and FDG-PET to attain a classification of the subject under
consideration along with their two-year (24 months) prognosis
for MMSE and ADAS-Cog. They present a multimodal-
multitask regressor-classifier in an attempt to simultaneously
learn multiple tasks from multimodal data while taking
advantage of the existing collinearities of the different
modalities. While [16] expands the number of features used to
include certain cognitive test scores to generate a running
MMSE prediction from baseline to 48 months at 6-month
intervals. In their paper, a Distributed Multitask Multimodal
(DMM) approach is suggested to tackle the hard problem of
learning useful features from distinct but correlated data.
However, they ignore valuable cognitive data (MMSE, CDR,
ADASI13) at baseline that would be relevant when trying to
predict the progression of such scores at future time point.
Finally, [17] uses gradient boosting of decision trees to generate
MMSE predictions for the 24" month after baseline by using
multimodal data from the previous 18" months.

Unlike previous approaches, we propose to make use of all
available data at any given time point, through the use of a novel
data augmentation technique, to predict the MMSE progression
for an entire 5-year span, starting six months after the relevant
features are measured. Our approach uses a simple and tested
multilayer perceptron neural network with a newly-designed
architecture. Therein generating a multitask single-shot
regressor that can effectively tackle this difficult problem in a
simple but yet most effective manner.

II. METHODS

A. Study participants and Data description

In this work, all individuals were participating in the
Alzheimer’s Diseases Neuroimaging Initiative (ADNI) study
which aims to obtain and maintain MRI, PET, CSF, biochemical
biomarkers, and neuropsychological tests for the early detection
and study of the progression of Alzheimer’s disease
(http://adni.loni.usc.edu). We include 1845 ADNI participants
between the ages of 55 and 90, from whom 487 are cognitively
normal (CN), 71 converted from a cognitively normal state to
mild impairment (CNc), 497 with mild cognitive impairment
(MCI), 337 converted from mild cognitive impairment state to
AD (MClc), 331 subjects diagnosed with Alzheimer’s disease
(AD), and 26 individuals who converted from CN to AD. The
differentiation of clinical diagnosis depends on MMSE and
Clinical Dementia Rating (CDR) cutoffs from ADNI protocols,
among others. Due to the inherent variability of some subjects’
performance on the MMSE test at different examinations, it is
possible to have backwards reversal in clinical groups (i.e. from
MCTI to CN). We also include those subjects as CN unstable (78)
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and MCI unstable (18) in our study to explore the complexity of
the ADNI dataset without artificially manipulating its
distribution, as cleaning the data of “outlier” could possibly
result in better performance metric for the proposed model than
those attained from realistic subsets of the population at large
that would inherently contain these types of samples.

The proposed longitudinal multimodal deep learning model
uses four main modalities from the ADNI dataset:

e Neuroimaging measurements from MRIs: ventricular
volume, hippocampus volume, whole brain volume,
entorhinal cortical thickness, fusiform gyrus, middle
temporal gyrus. Where the volumetric measurements are

normalized by the intracranial volume (ICV).

CSF measurements: amyloid-f 1-42 peptide (Ap1-42),
total tau (tTau), and tau phosphorylated at the threonine
181 (pTau).

PET measurements: FDG (18-Fluoro-DeoxyGlucose),
Pittsburgh Compound-B (PIB), and AV45.

Cognitive scores (Cog): Rey Auditory Verbal Learning
Tests, Functional Activities Questionnaires, Everyday
Cognition (Ecog) scales, ADAS13, CDR, and MMSE.

One of the main challenges in longitudinal studies is panel
attrition which requires additional preprocessing steps for the
handling of missing data. In our study, we include subjects who
have at least two separate visits, as we need at least one more
datum after initial admission in order to validate our predictions.
Fig. 1 depicts the percentage of available samples for
neuroimaging, cognitive, CSF, and PET modalities for the
different visits at At=6 months intervals. Understandably, the
total available CSF samples is the smallest of all modalities for
month 30 (0.1%), month 42 (0.2%), and month 54 (1%). While
MRI samples are the most available data points over the duration
of the study.
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Figure 1. Percent of samples with available data for MRI, CSF, PET, and
cognitive tests biomarkers for the different time points.
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Figure 2. Dataset Augmentation Example

B. Data Preparation

Although the ADNI cohort is quite extensive, deep-learning
models like the one presented in this study require large amounts
of data, but as this study demonstrates it is still possible to
achieve better performance even with a somewhat limited
number of samples. ADNI usually follows patients for an
extended period of time lasting for at most 168 months at the
time of this study. However, the current literary work aimed at
longitudinal prognosis tends to only use the biomarkers gathered
at the baseline visit to predict trends in MMSE [12-16]. This
practice effectively ignores valuable data collected from further
visits that could be used to enhance training and provide greater
variability for generalization. Therefore, to address this issue,
we introduce a dataset augmentation technique that will make
use of the data collected from all available follow-up visits.
Herein producing a richer dataset to be used for testing and
training. This augmentation technique is described in general
terms by (1) and an example of its usage is displayed in Fig. 2.

UL [Xinels [Yasnae Yas2)ae -0 Yarmacl (D

At =6,n=10

Where X; stands for the input features and Y; stands for the
target or predicted values at the i visit. In our particular case,
we link a set of features X at any given time with a
corresponding set of targets Y at times ranging from six (6) to
sixty (60) months after X is collected.

By following (1), we generate the set of all possible [Xi] —
[Yirae Yie2as, --- , Yirtoad for every single available follow-up
visit from month 0 (baseline) to month 108 of every single
available patient. Thereby generating a sample rich dataset from
which to train and test the proposed network. Fig. 2 shows in
practical details how data from a single subject can generate 18
different samples when using the method proposed herein.

Once the dataset has been augmented using (1), we are left
with 8066 distinct samples from the original 1845 patients.
Thereafter, we proceed to split these samples into training and
testing sets by following a 90-10 split (90% train and 10% test).
We repeat this process 10 times in accordance with the 10-fold
cross-validation technique to generate 10 distinct and non-
overlapping testing sets along with their associated training sets.
All results presented through this paper display the mean and
standard deviation of the reported metrics on the different testing
sets. It is especially relevant to point out that, although the data
split is random, special care has been taken to ensure that no data
from subjects seen during the training of the model is seen in
testing phase. That is to say, that if any given sample of a
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particular patient is used for training, no other samples from that
same individual can be used for testing.

C. Network Architecture

A deep fully connected neural network is trained as a
regressor to predict MMSE progression at multiple future time
points. The prediction window of interest spans from six (6)
months through the full duration of sixty (60) months. The
model itself uses four biomarker modalities (MRI, PET, CSF,
and Cognitive test scores) with a total of thirty-three (33)
biomarkers to produce MMSE scores for ten distinct future time
points at six-month intervals.

The network’s architecture is shown in Fig. 3. A five (5)
layer network is used with four (4) hidden layers. The first layer
is composed of 50 neurons, the second and third consist of 100
layers, the fourth has 50, and the last has 10 (one for each of the
predicted timepoints). Layers one through five have Rectified
Linear Units (ReLU) activations and employ L2 regularization
[18] to help the network weights remain small and avoid weight
saturation. Weights are randomly initialized using the approach
described by Golorot in [19].

Stochastic gradient descent is used for training the model
with an RMSprop optimizer [20], learning rate of 0.01, and a 0.8
weight decay. Early stopping is employed to prevent the
network from excessively overfitting the training data and
prolong the training for an unnecessarily long time after no new
features are being learned. Therefore, we stop learning and
revert back to the best set of weight after 100 epochs (run
through the training set) of no accuracy improvement when
evaluating the testing dataset.

Neural Network Model

) Layer3  Layerd
100 Units 100 Units 50 Units

Figure 3. Proposed Neural Network Architecture

Furthermore, as not all timesteps are available for every
single sample (Y matrix has missing values), we employ a
masking technique to prevent missing values in the Y matrix
from influencing the learning process. This masking algorithm
effectively nullifies any gradient contribution from only the



output neurons that have missing data during any particular
sample and only for that instance.

This missing data problem is also present for the X input
matrix, as previously shown in Fig. 1. In this case we simply
replace the missing values with the mean of that feature for the
training set. This allows our model to generate predictions even
for cases where data is missing from the input features. And by
doing so we are able to learn valuable information from samples
that would be otherwise discarded.

III. RESULTS

We use ten-fold cross validation to avoid reporting on any
particularly beneficial or detrimental dataset split. We train the
network on a 64bit Windows 10 machine with an AMD FX-
8350 Eight-Core Processor, 16 GB of DDR3 RAM, and an
NVIDIA GeForce RTX2070 graphics card. The network is
deployed in a Python 3.7 environment, using Keras 2.3.1, and
TensorFlow GPU 1.14.0.

Performance was measured using three standard metrics
widely used for regression problems, Correlation, Root-Mean-
Squared Error (RMSE), and the Coefficient of Determination
R?).

In Table 1 we report these metrics for each individually
predicted timepoint along with their respective standard
deviations for the 10 folds cross validation. Fig. 4 displays the
scatter plots of predicted versus actual Mini-Mental State
Examination scores for the ten different periods (from 6 to 60
months after the feature measurement) and across subgroups.

It is worth noting that there is a significant correlation spike
at the twelfth month mark that would not be expected, as the
correlation tends to go down over time due to the growing
uncertainty of initial measurements. However, this fluctuation
can be partially explained by an increased number of subjects
present at the twelfth month (M12 in Fig. 4), especially in the
low end of the MMSE scores. This added data helps the
algorithm better fit the trend line and yields higher correlation,
RMSE, and R? values. Other such spikes, although less
significant, can also be observed at M24, M48, and to a very
lesser extent M36, where there is a marked increase in the
number of available datapoints that stretches to the lower ends
of the MMSE scale.

Table 2 has an in-depth comparison between the current
state-of-the-art MMSE regression algorithms and the proposed
method. We provide a detailed overview of the approaches,
datasets, and predicted correlations, along with standard
deviations, for different timepoints.

It is evident from this table that the proposed model
outperforms the competition across time, except for the sixth
(6) month, where [17] outperforms. This is most likely due to
the fact that [17] uses input features that stretch across multiple
timepoints to generate a prediction six months after the last
measurement. Therefore, taking advantage of the timeseries
correlation to better approximate the progression rate of the
MMSE.
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Figure 4. Scatter Plots of Predicted vs Actual MMSE for the different
subgroups
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TABLE II. EXPERIMENTAL RESULTS
Time(months): 6 12 18 24 30 36 42 48 54 60
Correlation ,% 85.3 87.6 85.3 85.6 81.9 81.7 79.4 79.9 78.4 76.3
(SD) (1.5) (1.2) (2.6) (1.8) “4.7) (4.8%) (4.8) (5.2) (6.5) (7.3)
RMSE 2.42 2.52 2.76 2.71 3.00 2.87 3.11 3.05 3.64 3.23
(SD) (0.30) (0.28) (0.36) (0.32) (0.43) (0.38) (0.47) (0.31) (0.40) (0.39)
R?, % 56.01 65.06 60.66 61.71 54.12 54.85 47.98 48.25 43.05 43.43
(SD) (12.01) (7.50) (8.75) (7.75) (12.68) (14.41) (18.33) (18.16) (15.92) (22.49)
TABLE 1. PREDICTION CORRILATION COMPARISON ACROSS MULTIPLE METHODS , % (SD)
. Time (month)
Method Subjects Approach Modalities
(Samples) 6 12 18 24 30 36 42 48 54 60
167 MRIL FDG- 51.1
[15] (167) M3T PET, CSF n/a n/a n/a ) n/a n/a n/a n/a n/a n/a
MRI, PET,
CSF, Cog,
[16] 1620 (1620) DMM Dermog 85.8 79.8 n/a 81.2 n/a 79.0 n/a 75.9 n/a n/a
APOE4
MRI, PET,
CSF, Cog,
[17] 1141 (1141) GBDT 90.4 n/a n/a n/a n/a n/a n/a n/a n/a n/a
Demog,
APOE4
MRI, PET, 85.7 87.4 84.8 85.1 81.2 81.1 79.3 78.9 78.9 75.0
Proposed | 1845 (8066) ANN CSF,Cog | (1.6) | a8 | @D | @2 | G5 | @4 | 59 | 8 | 68 | (7.5
[2] J. Becker and et al., "Amyloid-f associated cortical thinning in clinically
IV. CONCLUSION normal elderly," Ann Neurol, vol. 69, no. 6, pp. 1032-1042, 2011.
The proposed model, along with its accompanying data [3] K. Blennow, B. Dubois, A. Fagan, P. Lewczuk, M. de Leon and H.

augmentation technique achieve better than state-of-the-art
testing metrics for predicting Mini-Mental State Examination
scores up to five years (sixty months) after the examination date.
Our results further highlight the power of combining multiple
biomarker modalities, as had been demonstrated by previous
studies.

However, more investigation and added scrutiny remain to
be performed pertaining the design of such network
architectures and the ability to combine them with augmentation
techniques such as gradient boosting in an effort to attain even
higher prediction accuracy than those reported in this new study.
Although the prediction results are nearly 85% or higher in
correlation for up to 24 months and exceed 80% correlation for
time points as far as 30 months from baseline, more
investigation is needed in terms of determining what more could
be done to overcome the missing data challenge and what other
means could rigorously address the co-linearity issue inherent to
longitudinal studies.
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