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As we amass more LHC data, we continue to search for new and improved methods of visualizing search
results, in ways that are as model independent as possible. The simplified limits framework is an approach
developed to recast limits on searches for narrow resonances in terms of products of branching ratios (BRs)
corresponding to the resonance’s production and decay modes. In this work, we extend the simplified limits
framework to a multidimensional parameter space of BRs, which can be used to unfold an ambiguity in
the simplified parameter ζ introduced when more than one channel contributes to the production of the
resonance. It is also naturally applicable to combining constraints from experimental searches with
different observed final states. Constraints can be visualized in a three-dimensional space of branching
ratios by employing ternary diagrams, triangle plots which utilize the inherent unitarity of the sum of the
resonance’s BRs. To demonstrate this newmethodology, we recast constraints from recent ATLAS searches
in diboson final states for spin-0, -1, and -2 narrow resonances into constraints on the resonance’s width-to-
mass ratio and display them in the space of relevant branching ratios. We also demonstrate how to
generalize the method to cases where more than three branching ratios are relevant by using N-simplex
diagrams, and we suggest a broader application of the general method to digital datasets.
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I. INTRODUCTION

Narrow resonance searches have long been a staple of
experimental efforts to identify or constrain new physics
beyond the standard model (BSM). Typically, the invariant
mass of the system is measured and limits are placed on
the production cross section times the branching ratio,
σprod × BR, of new resonances and interpreted within the
context of specific benchmark (BM) models. In Refs. [1,2],
the authors explored recasting these model-independent
constraints in terms of a simplified parameter, ζ, which
depends only on the product of the branching ratios and the
ratio of the resonance width to its mass. This reparamet-
rization of narrow resonance limits in terms of partonic
quantities can often simplify the task of interpreting
constraints in terms of many models of interest.
Combining narrow resonance searches from multiple

channels can extend the exclusion limits of current and

future searches for BSM physics with more than one
dominant decay mode. This possibility has been explored
by both ATLAS [3] and CMS [4] in diboson and dilepton
channels at the LHC. The constraints from different
channels were combined in the context of specific BM
models where the relationships between BRs are known, a
necessity in order to cast constraints in terms of σprod × BR.
This, however, introduces an additional level of model
dependence to the results, compared to monochannel
searches, which makes it difficult to apply such constraints
to models whose BRs vary from the BM choices.
In this work, we extend the concept of simplified limits,

demonstrating a methodology by which one may display
constraints on the masses or widths of narrow resonances
within the parameter space of up to three BRs without
introducing new sources of model dependence. This
method can be applied to single-channel searches where
the production of a BSM resonance is predicted to receive
contributions from multiple channels. It can also be readily
applied to combined constraints on BSM scenarios with a
single production mode and several decay modes.
In Sec. II, we review the foundations of simplified limits

for a single experimental search. In Sec. III, we introduce
ternary diagrams as a method of unfolding constraints
coming from multiple production modes or final states.
In Sec. IV, we apply these methods to experimental
searches for spin-0, spin-1, and spin-2 resonances.
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Section V discusses the use of N-simplex diagrams as a
generalization of our method to cases where more than
three branching ratios are sources of experimental con-
straints on the properties of new resonances. We conclude
in Sec. VI and highlight the value of using the digital data
record to enable exploration of an arbirtrary-dimensional
parameter space of branching ratios.

II. SIMPLIFIED LIMITS ON NARROW
RESONANCES

In this section, we review the formulation, presented in
Refs. [1,2], leading to the model-independent simplified
parameter ζ allowing one to compare bounds from data
with the easily calculated product of BRs corresponding to
production and decay of a narrow resonance as well as its
width-to-mass ratio. We begin with the resonance’s par-
tonic cross section.
The tree-level cross section for resonant production of a

state R from initial state partons i, j and decaying to final
state x, y can be written in the Breit-Wigner form as

σ̂ij→R→xyðŝÞ ¼ 16πN ijð1þ δijÞ
ΓxyΓij

ðŝ −m2
RÞ2 þm2

RΓ2
R
;

ð2:1Þ

with Γab ≡ ΓðR → abÞ as the resonance’s partial decay
width, ΓR its total width, and mR its mass. Here, ŝ is the
partonic center-of-mass energy of the system, while N ij is
a ratio of spin and color factors,

N ij ≡ NSR

NSiNSj

CR

CiCj
; ð2:2Þ

with NS and C, respectively, counting the number of spin
and color states of the incoming partons and resonance. In
the narrow-width approximation (NWA), ΓR=mR ≪ 1 and

1

ðŝ −m2
RÞ2 þm2

RΓ2
R
≈

π

mRΓR
δðŝ −m2

RÞ: ð2:3Þ

Thus, the tree-level cross section in the NWA is given by

σ̂ij→R→xyðŝÞ ¼ 16π2N ijð1þ δijÞBRxyBRij
ΓR

mR
δðŝ −m2

RÞ;

ð2:4Þ

with BRab ≡ Γab=ΓR as the BR of the resonance.
For hadron colliders, the partonic cross section is related

to the experimentally observable cross section by convolv-
ing it with the hadrons’ parton distribution functions
(PDFs). For proton-proton colliders like the LHC, we have

σpp→R→xyðsÞ

¼ 16π2N ijð1þ δijÞBRijBRxy
ΓR

mR

�
1

s

dLij

dτ

�
τ¼m2

R
s

; ð2:5Þ

with s being the proton-proton center-of-mass energy.
Here, dLij=dτ is the parton luminosity function,

dLij

dτ
≡ 1

1þ δij

Z
1

τ

dx
x

�
fiðx; μ2FÞfj

�
τ

x
; μ2F

�

þ fjðx; μ2FÞfi
�
τ

x
; μ2F

��
; ð2:6Þ

with fi as the PDF for parton i, x the fraction of the proton’s
momentum carried by the parton, and μF the factorization
scale. If multiple partons contribute to the same exper-
imental signal (e.g., light quark production or decay), this
can be extended to a sum over initial- and/or final-state
partons,

σpp→R→XYðsÞ ¼ 16π2
X
i0j0

BRi0j0
X
xy∈XY

BRxy
ΓR

mR

×

�X
ij

ωijN ij
1þ δij

s

dLij

dτ

�
τ¼m2

R
s

; ð2:7Þ

with XY being the observable final state. The weight
function ωij,

ωij ≡ BRijP
i0j0BRi0j0

; ð2:8Þ

lies between 0 and 1 such that
P

ωij ¼ 1 by construction;
ωij represents the fraction of the resonance’s total produc-
tion rate due to each individual partonic channel.
We are now ready to define the ζ parameter1:

ζ ≡X
ij

BRij

X
xy∈XY

BRxy
ΓR

mR

¼ σpp→R→XYðsÞ
16π2

�X
ij

ωijN ij
1þ δij

s

dLij

dτ

�
−1

τ¼m2
R
s

: ð2:9Þ

Note that ζ retains much of the model independence of
the experimental search, which depends predominantly on
the spin and helicity of the resonance, while translating the
constraint into purely partonic quantities. As defined in
Eq. (2.9), ζ is bounded from above by ΓR=mR ðΓR=4mRÞ
when there is overlap (no overlap) between initial and final

1The arrangement of Kronecker deltas in this definition of
the ζ parameter differs slightly from that of Refs. [1,2]. This
definition of ζ is more convenient because it has two distinct
upper limits instead of four, depending only on whether or not the
production modes also contribute to the observed final state.
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states. As we are working in the NWA where
ΓR=mR ≲ 10%, this corresponds to an upper bound on ζ
of 1=10 ð1=40Þ when there is overlap (no overlap) between
initial and final states.

III. TERNARY DIAGRAMS

In this section, we introduce a prescription for extending
the simplified limits framework to situations which neces-
sitate considering constraints onmore than a one-dimensional
parameter. We begin by discussing the situations considered
in this paper: the limitations of the original simplified limits
formulation and combining constraints from multiple inde-
pendent experimental final states.
The simplified parameter ζ defined in Eq. (2.9) offers a

relatively model-independent conversion from the limits
on σprod × BR to partonic quantities which more directly
describe the properties of the resonance: its mass, width,
and BRs. There are, however, several situations that strain
the applicability of these one-dimensional limits, which we
will explore here. The first exception is in situations where
there may be more than one production mode. In these
situations, deconvolving the hadronic PDFs introduces an
ambiguity in constraints due to the weight factors ωij,
which are unknown a priori without the introduction of
additional model-dependent assumptions. An example of
this would be Drell-Yan (DY) production of a heavy Z0,
which leads to a band in limits on ζ. See the right panel of
Fig. 5 in Sec. IV B for an example of this scenario.
The second scenario we consider involves combining

searches from multiple experimentally distinguishable final
states. Combining the results of multiple searches offers
increased statistics and is particularly effective when the
experiments in question are similarly sensitive to two or
more distinguishable final states. While monochannel
searches place constraints on σprod × BR, doing so for
combined searches requires making an additional model-
dependent assumption about the relationship between the
various channels’ BRs. The question we therefore wish to
address is how best to represent model-independent con-
straints within the multidimensional space of parameters
necessitated by the above two situations.
In the framework of simplified limits, the relevant

model-independent quantities are the resonance’s BRs,
its mass, and its total width. In combining channels, a
model-independent scenario would be one where con-
straints on the properties of the resonance could be
displayed within the space of BRs. Consider first the
scenario of a resonance with one production mode and
two decay modes. Here, we are naively forced to place
limits within a three-dimensional space of BRs. However,
we also have the sum rule

X3
i¼1

BRi ¼ 1; ð3:1Þ

reducing the space of independent BRs by one. Ternary
diagrams,2 representations of the space of three variables
which sum to a constant, are ideally suited to displaying
constraints within this parameter space.
Figure 1 shows an example of a ternary diagram, where

at each point in the diagram the sum of BRs is 1. The tick
marks on the axes are skewed to indicate the lines of
constant BRi. Lines of constant BR2 run parallel to the BR1

axis, lines of constant BR3 are parallel to the BR2 axis,
and lines of constant BR1 are parallel to the BR3 axis. The
point P is labeled as an example, corresponding to
fBR1;BR2;BR3g ¼ f0.5; 0.4; 0.1g, with

P
3
i¼1 BRi ¼ 1

by construction. Within this parameter space, one may
then plot contours of upper limits on the remaining model
parameters. In the simplified limits framework, one may
therefore use ternary diagrams to display constraints on mR
for fixed values of ΓR=mR or on ΓR=mR for fixed values of
mR. We present examples of ternary diagrams, displaying
upper limits on ΓR=mR, in Sec. IV.
Above, we mentioned the scenario where one production

mode and two decay modes saturates all possible BRs.
Interpreting the ternary diagrams for models of resonances

FIG. 1. Example of a ternary diagram representing the space
of BRs, with each point within the diagram satisfying the
constraint

P
3
i¼1 BRi ¼ 1. The dashed lines represent hypo-

thetical experimental constraints from combining limits, show-
ing contours of constantmR or ΓR=mR. The point P corresponds
to fBR1;BR2;BR3g ¼ f0.5; 0.4; 0.1g.

2Perhaps the most familiar example of a ternary diagram in
particle physics is the Dalitz plot for three-body decays [5],
where the sum of the two-body invariant masses of the final state
is constrained by the kinematics of the system—e.g., for particle
0 decaying into particles 1, 2, and 3, the constraint is
m2

12 þm2
13 þm2

23 ¼
P

3
i¼0 m

2
i .
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with more than three BRs turns out to be straightforward.
For a resonance with n BRs, we instead have

P
3
i¼1 BRi ¼

1 −
P

n
i¼4 BRi. We can thus define “effective” BRs,

fBRi ≡ BRi

�
1 −

Xn
j¼4

BRj

�
−1
; ð3:2Þ

which satisfy the unitary sum rule,
P

3
i¼1

fBRi ¼ 1, implicit
in the construction of ternary diagrams. To interpret
constraints displayed on the ternary diagrams in the
framework of simplified limits, one must then also define
an effective width,

Γ̃R ≡ ΓR

�
1 −

Xn
j¼4

BRj

�
2

: ð3:3Þ

A ternary diagram with sides spanning the range [0, 1] in
this context generically displays the space of effective BRs,
where fBR ≥ BR and Γ̃R ≤ ΓR, with the equalities saturated
only when the resonance has exactly three decay modes. In
many cases it is expected that only a few channels will have
similar experimental sensitivity over a wide range of the
parameter space, and ternary diagrams then capture the
most interesting region of the possible decay modes.
However, a discussion of the generalization of this method
to N-simplexes is presented in Sec. V.
With this framework in place, we have introduced the

means of extending searches for narrow resonances into
the multidimensional parameter space of BRs. Within the
simplified limits framework, this allows us to unfold the
ambiguity introduced by deconvolving the hadronic PDFs
when there is more than one production mode. In the case
of multiple experimentally distinguishable final states, it
allows us to combine search results without introducing
further model-dependent assumptions about the relation-
ship between BRs. In what follows, we explore specific
examples of each of these situations.

IV. APPLICATIONS

Searches for resonances in the diboson final state have
been an important part of the search for BSM physics at the
LHC, having been studied in detail by both ATLAS [6–8]
and CMS [9]. Models usually considered for such searches
include composite and little Higgs models [10–12], heavy
vector triplet (HVT) models [13,14], and models of gravity
in warped extra dimensions [15,16]. The efficiency of a
given search depends primarily on the spin and helicity
of the resonance while remaining relatively model-
independent otherwise. In this section, we explore the
implications of searches for spin-0, -1, and -2 narrow
resonances, using diboson final states as examples. We
apply the simplified limits framework discussed above to
existing searches by the ATLAS Collaboration.

For the conversion of experimental constraints and the
calculation of the simplified limits parameter ζ we use the
CT18 NLO central PDF set [17]. The RS radion BM is
calculated using leading-order formulas given in Ref. [18].
Possible large higher-order corrections to the radion’s gg
coupling are parametrized by a K-factor, which we take to
be approximately 2.5 in the region of interest [19], and we
neglect any higher-order corrections to the radion’s heavy
quark couplings. The HVT BMs are calculated at leading
order using CalcHEP 3.8.7 [20] with the model file
provided by Ref. [14]. The RS graviton BM is calculated
at leading order using formulas given in Refs. [16,21].
Combining the statistics of multiple BSM physics

searches requires delicate attention to the details of each
experiment. In what follows, we do not attempt to repro-
duce a complete statistical analysis of the experiments
considered. Instead, we make the conservative assumption
that the combination of constraints from multiple channels
is simply given by the experimentally observed constraint
(σobs) from the channel with the strongest expected
limit (σexp),

σ95prod ¼
�
σobs1 =BR1 σexp1 =BR1 < σexp2 =BR2;

σobs2 =BR2 otherwise:
ð4:1Þ

A detailed combination of the statistics of each search will
in general produce stronger results; however, such an
analysis is beyond the scope of this paper. For more
thorough discussions of the statistics involved in such
searches, see, e.g., Refs. [22,23].

A. Spin-0 resonance

We first consider a neutral spin-0 resonance (ϕ) pro-
duced via gluon fusion. In Ref. [7], ATLAS reports
constraints on the production of a Randall-Sundrum
(RS) radion [24] in the combined WW þ ZZ channels,
with the ratio BRðϕ → WWÞ=BRðϕ → ZZÞ fixed by the
model. The neutral scalar radion is a feature of extradimen-
sional models which is predicted to stabilize the size of the
extra dimension. The radion coupling to SM fields is
inversely proportional to the vacuum expectation value
of the radion field, Λϕ, and proportional to the mass (mass
squared) of the SM fermions (bosons) it couples to. As the
light fermion couplings to the radion are suppressed by
their masses, the radion is predominantly produced via
gluon fusion. We use Λϕ ¼ 3 TeV and kL ¼ 35 as a BM,
where kL is the size of the extra dimension. The radion’s
BRs are roughly constant for masses above a few TeV, with
sizable BRs of

BRWW ¼ 48%; BRhh ¼ 24%; BRgg ¼ 3.1%;

BRZZ ¼ 24%; BRtt̄ ¼ 0.9% ð4:2Þ

at Mϕ ¼ 3 TeV.
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Figure 2 shows the ATLAS constraints from the indi-
vidual channels converted into the language of simplified
limits. Generally the constraints from each channel are
quite competitive, except below Mϕ ∼ 1 TeV and between
approximately 2.0 and 2.6 TeV, where the ZZ channel is
significantly more constraining. Above Mϕ ∼ 4.5 TeV, the
search does not constrain any model which satisfies the
NWA assumption. Also shown are the predictions for our
BM radion, which sets limits on the mass of the radion
of Mϕ ≳ 2.9ð2.3Þ TeV in the WW ðZZÞ channel. Other
models would be represented by different curves in ζ vs
Mϕ, corresponding to different limits on the mass of the
resonance.
Applying the principles of Sec. III, Fig. 3 shows

constraints on Γ̃ϕ=Mϕ for Mϕ ¼ 2.9 TeV, which is near
the experimental limit for our BM radion. The radion BM
values are labeled by a point in the plane of fBR s and by
a line on the legend of Γ̃ϕ=Mϕ. In general, one can see that
as the BRs for either the production mode or both
decay modes decrease, the constraints unsurprisingly also
weaken. Conversely, constraints are strongest whenfBRðϕ → ggÞ ∼ fBRðϕ → VVÞ for a single channel, with
the other channel’s BR negligible. Contours of constant
log10 Γ̃ϕ=Mϕ are shown in increments of 10−1, and the
BM value Γ̃ϕ=Mϕ ∼ 10−1.66 roughly corresponds to the
experimental limit, which is labeled by a solid black line
through the legend. The discontinuities in the contours
of constant Γ̃ϕ=Mϕ occur where the expected limits from
both channels are equivalent and highlight the region of
parameter space where one would expect to gain the most
from a proper statistical combination of the independent
searches. As the BM radion model also predicts a sizable

BRðϕ → hhÞ, we also see the application of effective
BRs, where fBRWWðBRWWÞ¼64%ð48%Þ, fBRZZðBRZZÞ ¼
32%ð24%Þ, and fBRggðBRggÞ ¼ 4.1%ð3.1%Þ.
To demonstrate how the diagrams change as a function

of mass, Fig. 4 shows constraints on Γ̃ϕ=Mϕ for several
choices of resonance mass within 1.0TeV≤Mϕ≤4.0TeV.
Here one can clearly see how the constraints weaken as
the mass of the resonance increases, while within the
space of fBR s, the relative trends remain similar to those
discussed above for Fig. 3. Because the radion couplings
are all proportional to Λ−1

ϕ , increasing Λϕ decreases the
radion’s total width and vice versa, while keeping
individual BRs constant at leading order. Therefore, each
point on the ternary diagram also translates directly into a
constraint on Λϕ for a fixed value of kL. Constraints on
Λϕ for the BM value kL ¼ 35 are also labeled to the left
of the legend of each diagram, and the experimental
constraint on the BM point is labeled by a solid black line
through the legend. For the BM value Λϕ ¼ 3 TeV, the
radion is shown to be excluded in the diagrams corre-
sponding to Mϕ ¼ 1.0 TeV and Mϕ ¼ 2.0 TeV, while it
is unconstrained in theMϕ ¼ 3.0 TeV andMϕ ¼ 4.0 TeV
diagrams.

FIG. 3. Ternary diagram showing constraints on a narrow scalar
resonance produced via gluon fusion and decaying to WW and
ZZ [7] for a resonance mass of 2.9 TeV. The colors depict
constraints on Γ̃ϕ=Mϕ (labeled on the right of the legend) which
have been translated to the corresponding constraint on Λϕ for the
BM value kL ¼ 35 (labeled to the left of the legend). The black
dot on the diagram and the tick mark to the left of the legend
labeled “RS” identify the properties of the radion in our BM
model. The black line through the legend labels the value of the
experimental constraint on the BM radion, with the arrow
indicating excluded values of Γ̃ϕ=Mϕ for the fBR s of the BM
radion. The BM prediction Γ̃ϕ=Mϕ ∼ 10−1.66 (corresponding to
Λϕ ¼ 3 TeV), being slightly below the experimental limit,
demonstrates that the model is almost, but not quite, excluded.

FIG. 2. Constraints on narrow scalar resonance production from
gluon fusion in the WW and ZZ channels [7]. Constraints from
ATLAS are converted to upper limits on the ζ parameter [Eq. (2.9)],
represented by solid red and blue lines for theWW andZZ channels,
respectively. The gray shaded region corresponds to the upper limit
on the product of branching ratios times Γϕ=Mϕ ¼ 10%, approx-
imately where the NWA breaks down. The dot-dashed lines show
the predictions for the radion in our BM model.
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B. Spin-1 resonance

For a spin-1 resonance, we consider the production and
decay of either a charged ðW0�Þ or neutral ðZ0Þ narrow
vector resonance. Here gluon fusion production is forbidden
by charge conservation or Yang’s theorem, so production
occurs via either Drell-Yan (DY) or vector boson fusion
(VBF) processes. For DY production of a charged vector
resonance, production occurs via qq̄0 annihilation and in
most cases is dominated by the valence quark combination
ud̄ or dū. For a neutral vector resonance, however, produc-
tion occurs via qq̄ and is dominated by a combination of
valence quarks, uūþ dd̄. As the ratio of couplings of the
neutral resonance to up and down quarks is not known
a priori, deconvolving the proton PDFs introduces an
ambiguity to the ζ parameter, as discussed in Sec. III.

The production and decay of W0� and Z0 can be
parametrized in terms of an HVT model, which is a
phenomenological framework proposed by the authors of
Ref. [14] to cover a variety of explicit BSM models. In the

HVT model, an SUð2ÞL vector triplet V 0 is introduced,
and its interactions with the SM fields are parametrized by a
variety of couplings. The parameter gV characterizes the
typical interaction strength of the new triplet, and the
parameters cH and cF characterize deviations from this
strength in coupling to the Higgs and fermion currents,
respectively. A factor of g2=g2V is inserted in the coupling of
V 0 to the SM fermions to make contact with many specific
extended gauge models in the literature, where g denotes
the SUð2ÞL gauge coupling. Therefore, the interaction of V 0

with the Higgs doublet current (and therefore with the
longitudinal components of the SM W and Z) is para-
metrized by ðcHgvÞ. Likewise, the coupling of V0 to the SM
fermions is controlled by the combination ðg2=gVÞcf.
BM values are typically chosen to represent the range

of various specific BSM extensions. Model A, with gV ¼ 1,
is representative of a weakly coupled scenario such as in
theories with an extended gauge symmetry. Model B,
with gV ¼ 3, is chosen to represent a strongly coupled

FIG. 4. Ternary diagrams showing constraints on scalar narrow resonance production from gluon fusion in the WW and ZZ channels
[7] for a selection of resonance masses. The colors depict constraints on Γ̃ϕ=Mϕ (labeled to the right of the legends), which have been
translated to the corresponding constraint on Λϕ for the BM value kL ¼ 35 (labeled to the left of the legends). The black dot on the
diagram and the tick mark to the left of the legend labeled “RS” identify the properties of the radion in our BM model. The black line
through the legend labels the value of the experimental constraint on the BM radion, with the arrow indicating excluded values of
Γ̃ϕ=Mϕ for the fBRs of the BM radion.
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composite Higgs scenario.3 In both BM scenarios we
assume a universal coupling of V 0 to all SM fermions; all
interactions not mentioned above, which only contribute to
the decay of V 0 via the small mixing between V 0 and the SM
weak gauge bosons, are turned off. The two BM models
predict dramatically different decays for the heavy spin-1
resonance. Model A predicts a BR of a few percent to
bosons, with dijets representing the dominant decay mode,
while model B predicts decays predominantly into dibosons.
We recast constraints from ATLAS narrow resonance

searches in theWV [7] and VH [6] channels in terms of the
simplified limits framework. The left plot of Fig. 5 shows
constraints on the production of a narrow W0 resonance in
the WZ and WH channels, as well as the W0 → WZ
predictions for the HVT BM models A and B. Although
not shown, predictions for theW0 → WH channel are quite
similar. We see that the WZ channel dominates the
constraints, with a narrow W0 excluded for masses below
3.8 (4.0) TeV for model A (model B). The right plot of
Fig. 5 shows constraints on the production of a narrow Z0

resonance in the WW and ZH channels, as well as the
Z0 → WW predictions for the HVT BM models A and B.
Here, the band in the constraints is due to the model-
dependent relationship between the up and down quark
couplings to Z0. The lower limit of ζ corresponds to
ωuū ¼ 1 and ωdd̄ ¼ 0, while the upper limit of ζ corre-
sponds to ωdd̄ ¼ 1 and ωuū ¼ 0 with other values of ω
falling between these two extremes. The HVT Z0 is seen to
be excluded for masses below 3.1ð3.3Þ TeV≲MZ0 ≲
3.7ð4.0Þ TeV for model A (model B).

As the production of a charged vector resonance suffers
no ambiguity in the initial state, we may apply the same
principles used in Sec. IVA to combine limits from theWZ
and WH channels. Figure 6 shows the combined con-
straints on Γ̃W0=MW0 for several choices of resonance mass.
At MW0 ¼ 1.0 TeV, there are no constraints from the WH
search, so the ternary diagram displays only constraints
from theWZ channel. AboveMW0 ¼ 1.5 TeV, where there
are also constraints on the WH channel, the expected
constraints from the WZ channel are roughly twice as
strong as those from theWH final state. This is reflected in
the ternary diagrams, where the discontinuity in the limits
lies near B̃RWZ ∼ 2B̃RWH. The HVT BMs are also dis-
played on the ternary diagrams, both by points labeling
their predicted branching ratios and by tick marks on the
left of the legend labeling the predicted values of
log10ðΓ̃W0=MW0 Þ. The solid lines through the legends label
the experimental constraints on the BM points, so that
one can more easily see that both BMs are excluded
for MW0 ≤ 3.0 TeV, while model A is unconstrained at
MW0 ¼ 4.0 TeV and model B is very close to the exper-
imental limit.
Conversely, while searches for a neutral vector resonance

via DY production may not be ideal candidates for model-
independent combined searches, one may instead probe its
coupling to light quarks via ternary diagrams. We take,
for example, the search for a DY-produced Z0 resonance in
the WW channel, which dominates the constraints when
compared to the ZH channel for a majority of the HVT
parameter space. The main production modes are via either
uū or dd̄ annihilation, and Fig. 7 shows constraints on
Γ̃Z0=MZ0 over a range of masses. The HVT BMs are also
displayed on the ternary diagrams, both by points labeling
their predicted branching ratios and by tick marks on
the left of the legend labeling the predicted values of

FIG. 5. Constraints on charged (left panel) and neutral (right panel) narrow vector resonances from DY production in theWV [7] and
VH [6] channels. Constraints from ATLAS are converted to upper limits on the ζ parameter [Eq. (2.9)], represented by solid red and blue
lines for the WV and VH channels, respectively. The shaded bands in the constraints of the right plot are due to the model-dependent
relationship between the production mode couplings of the Z0, with the lower constraint corresponding to purely uū production and the
upper constraint corresponding to purely dd̄ production. The gray shaded region corresponds to the upper limit on the product of
branching ratios times ΓV 0=MV 0 ¼ 10%, where the NWA is no longer valid. Also shown are the HVT pp → V 0 → WV theory
predictions for BM models A (black dot-dashed line) and B (black dotted line).

3Our BM values for cF and cH are calculated from the relations
in Appendix A of Ref. [14] with c̃VW ¼ −1, c̃H ¼ c̃F ¼ 0 for
model A and c̃VW ¼ −c̃H ¼ 1, c̃F ¼ 0 for model B.
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log10ðΓ̃Z0=MZ0 Þ. The solid lines through the legends label
the experimental constraints on the BM points, so that one
can more easily see that both BMs are excluded for
MZ0 ≤ 3.0 TeV, while they are both unconstrained at
MZ0 ¼ 4.0 TeV. In these examples, the tilt in the contours
of constant log10ðΓ̃Z0=MZ0 Þ follows from the roughly 2-to-1
luminosity ratio of u to d quarks in the proton’s PDF.4

C. Spin-2 resonance

For a spin-2 resonance, we consider the production of a
narrow resonance via gluon fusion in the WW and ZZ
channels. Heavy spin-2 resonances are a generic feature
of models of quantum gravity in extra dimensions, where
Kaluza-Klein (KK) towers of heavy gravitons (GKK) are
predicted. Typical BM models for considering the lightest
graviton mode are the original RS model, referred to as

RS1 [15], where all SM fields are localized on the IR brane,
and the bulk RS model [16], where the SM fields are
allowed to propagate in the bulk. In RS1, the localization of
the graviton in the warped bulk near the IR brane induces
couplings to all SM fields which are only TeV suppressed,
so the graviton has significant BRs to light fermions. On the
other hand, in the bulk RS model, light fields are localized
toward the UV brane, which greatly suppresses their
couplings to gravitons. Instead, the graviton is mainly
produced via gluon fusion or VBF and has significant BRs
to tt̄, WW, and ZZ. In what follows, we will therefore
consider the bulk RS model.
The graviton’s couplings to SM fields are determined by

the parameter k=MPl, where k is the warped curvature scale
and MPl is the reduced Planck mass. For our BM model of
graviton production, we assume k=MPl ¼ 1.0. Figure 8
shows constraints from ATLAS searches in the WW and
ZZ channels [7], converted into the language of simplified
limits. The constraints from each channel are competitive
except for the region belowMGKK

≲ 1.2 TeV, where the ZZ

FIG. 6. Ternary diagrams showing constraints on a charged vector narrow resonance from DY production in the WZ [7] and WH
channels [6]. The colors depict constraints on Γ̃W0=mW0 for a selection of resonance masses. Points labeled “HVTA” and “HVT B”mark
the locations in the parameter space corresponding to the BMs for model A and model B, respectively, while the tick marks to the left of
the legend show their predicted values of Γ̃W 0=MW0 . The black lines through the legend (labeled “A” and “B”) show the values of the
experimental constraints on the BM models, with the arrows indicating excluded values of Γ̃W 0=MW0 for each model.

4For a discussion of Z0 properties characterized in part by their
couplings to quarks, see, e.g., Ref. [25].
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channel dominates. Also shown is the prediction from the
bulk RS BM model, which sets a limit on the mass of the
graviton ofMGKK

≳ 1.7ð1.5Þ TeV in theWW ðZZÞ channel.
Figure 9 shows ternary diagrams associated with these

searches, displaying constraints on Γ̃GKK
=MGKK

for a
selection of graviton masses. The predictions from the
bulk RS BM are also shown, both by a point labeling
their predicted branching ratios and by a tick mark on
the left of the legend labeling the predicted value of
log10ðΓ̃GKK

=MGKK
Þ. The solid line through the legend labels

the experimental constraint on the BM point, so that one
can more easily see that the BM model is excluded for
MGKK

≤ 1.5 TeV and unconstrained for MGKK
≥ 2.0 TeV,

in agreement with Fig. 8.

V. FURTHER GENERALIZATION: N-SIMPLEXES

In this section, we indicate how to further extend the
simplified limits framework to situations in which more
than a few branching ratios are important sources of
experimental constraints on new resonances.

FIG. 7. Ternary diagrams showing constraints on a neutral vector narrow resonance from DY production in theWW [7] and ZH channels
[6]. The colors depict constraints on Γ̃Z0=mZ0 for a selection of resonance masses. Points labeled “HVTA” and “HVT B”mark the locations
in the parameter space corresponding to the BMs for model A and model B, respectively, while the tick marks to the left of the legend
(labeled “HVTA” and “HVT B”) show their predicted values of Γ̃Z0=MZ0 . The black lines through the legend (labeled “A” and “B”) show
the values of the experimental constraints on the BM HVT models, with the arrows indicating excluded values of Γ̃Z0=MZ0 for each model.

FIG. 8. Constraints on spin-2 narrow resonance production from
gluon fusion in the WW and ZZ channels [7]. Constraints from
ATLAS are converted to upper limits on the ζ parameter [Eq. (2.9)],
represented by solid red and blue lines for theWW andZZ channels,
respectively. The gray shaded region corresponds to the upper limit
on the product of branching ratios times Γϕ=Mϕ ¼ 10%, approx-
imately where the NWA breaks down. The dot-dashed lines show
the predictions from the bulk RS BM model.

NARROW RESONANCES REVISITED: SIMPLIFYING … PHYS. REV. D 103, 095008 (2021)

095008-9



In Sec. III, we introduced a means of extending searches
for narrow resonances into the multidimensional parameter
space of BRs, focusing on situations where only three BRs
were of greatest importance: either two production modes
and one primary decay mode, or one production mode
and a pair of experimentally distinguishable final states.
Section IV explored a number of specific examples,
showing how ternary diagrams can provide insight.
Let us now consider the situation where a new resonance

has N þ 1 branching ratios, all able to provide significant
experimental constraints. Then we can generalize the work
of Sec. III, by noting that the branching ratios now obey the
sum rule:

XNþ1

i¼1

BRi ¼ 1; ð5:1Þ

which tells us that the dimension of the space of indepen-
dent BRs is N. Just as compositional data in three variables
can be represented by a ternary plot, where the ratios

summing to 1 are plotted within a two-dimensional equi-
lateral triangle, so compositional data in N þ 1 variables
can be represented in a simplicial sample space where the
ratios summing to 1 are located within an N-simplex.5

Moreover, if the new resonance has M þ 1 branching
ratios, of which only N þ 1 are able to provide significant
experimental constraints, we can generalize the notion of
“effective” branching ratios from Sec. III as well. Now, we
have

PNþ1
i¼1 BRi ¼ 1 −

PMþ1
i¼Nþ2 BRi. We can thus define

“effective” BRs,

fBRi ≡ BRi

�
1 −

XMþ1

j¼Nþ2

BRj

�
−1
; ð5:2Þ

FIG. 9. Ternary diagrams showing constraints on spin-2 narrow resonance production from gluon fusion in theWW and ZZ channels
[7]. The colors depict constraints on Γ̃GKK

=MKK for a selection of resonance masses. The black dot represents the location in the
parameter space corresponding to the bulk RS BM model, while the tick mark to the left of the legend labeled “RS” shows its predicted
value of Γ̃GKK

=MGKK
. The black line through the legend shows the value of the experimental constraints on the bulk RS BMmodel, with

the arrow indicating excluded values of Γ̃GKK
=MGKK

for the BM graviton.

5A simplex generalizes a triangle to arbitrary dimensions; it is
the minimal polytope in the space of a given number of
dimensions. A 0-simplex is a point, a 1-simplex is a line segment,
a 2-simplex is a triangle, a 3-simplex is a tetrahedron, a 4-simplex
is a 5-cell, and so forth.
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which satisfy the unitary sum rule,
PNþ1

i¼1
fBRi ¼ 1, implicit

in the construction of simplex diagrams. To interpret
constraints displayed on the N-simplex diagrams in the
framework of simplified limits, one must then also define
an effective width,

Γ̃R ≡ ΓR

�
1 −

XMþ1

j¼Nþ2

BRj

�
2

: ð5:3Þ

An N-simplex diagram with sides spanning the range [0, 1]
in this context generically displays the space of effective
BRs, where fBR ≥ BR and Γ̃R ≤ ΓR with the equalities
saturated only when N ¼ M.

Again, within the simplified limits framework, this
construction allows us to handle a wider variety of
scenarios. On the one hand, we can unfold the ambiguity
introduced by deconvolving the hadronic PDFs when there
is more than one production mode. On the other hand, we
can combine search results for multiple experimentally
distinguishable final states without introducing further
model-dependent assumptions about the relationship
between BRs.
While one cannot easily plot a higher-dimensional

N-simplex as a two-dimensional image, one can nonetheless
still perform a statistical analysis to discern how the
experimental constraints shape the allowed region of the
N-simplex and check whether a given new resonance’s
location within the N-simplex is in the allowed region. One
might even illustrate this in a journal article by displaying the
ternary diagram subspace of the full N-simplex that provides
the strongest limit on the model in question.

VI. DISCUSSION

In this article, we have introduced a more integrative
method of presenting constraints on the production and
decay of narrow resonances when multiple branching ratios
yield valuable experimental information about the proper-
ties of new resonances. The method utilizes the NWA to
parametrize constraints in terms of products of BRs, the
mass of the resonance, and the total width of the resonance.
We have seen that representing the results of searches for
narrow resonances in terms of the parametrization of the
simplified limits framework—fBR s, Γ̃R, andmR—provides
a natural context for combining the statistics from multiple
search channels for a common resonance.
We have largely focused on cases where only three

channels (two production and one decay mode, or vice
versa) are relevant, by employing ternary diagrams to
display the combined constraints on the expanded space
of BRs. We have illustrated applications to resonances of
spin 0, spin 1, and spin 2, arising in a variety of beyond-the-
standard-model scenarios. Our approach clearly offers a
more model-independent method of interpreting constraints
from multiple channels compared to the traditional product

of production cross section times BR, which would require
making assumptions about the relationship between decay
BRs. It is also applicable to situations with multiple
production modes by unfolding the uncertainty inherent
in the one-dimensional simplified limits parameter ζ.
This method is complementary to traditional limits, with
σ × BR offering the cleanest display of constraints at
the expense of sometimes introducing specific model
assumptions, while ternary diagrams can encompass a
more model-independent parameter space, easily translat-
able to a variety of disparate models.
The general features of the ternary diagrams are straight-

forward to understand: constraints areweakened as the BR of
either the production mode or the decay modes becomes
small, while the strongest constraints are found when the
production mode’s BR is approximately equal to one of the
decay channel’s BRs with the other decay mode’s BR
negligible. Perhaps more interestingly, the ternary diagrams
also allow one to visualize where, within the parameter space
ofBRs, the combined reach ofmultiple channelsmay provide
significant improvement relative to monochannel searches.
While the applications we considered in detail had three-

channel parameter spaces, we have also discussed how the
use of ternary diagrams can be readily generalized to the
use of N-simplex diagrams for situations where additional
branching ratios also offer valuable experimental con-
straints on the properties of new resonances. Making use
of this more generalized method will, of course, rely on the
availability of data about the multiple branching ratios.
Indeed, having access to digital datasets for searches
combining multiple experimental channels would be
ideal for documenting and leveraging limits on a many-
dimensional parameter space, capable of encompassing all
of the initial- and final-state BRs relevant for the searches
being considered. Recently, there has been a tremendous
effort to make digitalized data available to all researchers
with the introduction of the HepData repository [26].
As a closing thought, we would like to advocate for

experimental collaborations to provide these larger digital
datasets (parametrized in terms of the BRs, total width, and
mass of the new resonance) to supplement the information
presentable in the traditional article format. This will enable
the data to be most fully leveraged to explore the widest
possible range of models in detail, enabling constraints to
be quickly understood for a plethora of interesting theories.
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