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We calculate tree-level scattering amplitudes of massive spin-2 Kaluza-Klein (KK) particles in models of
stabilized compact extradimensional theories. Naïvely introducing a mass for the radion in an extra-
dimensional model without accounting for the dynamics responsible for stabilizing the extra dimension
upsets the cancellations relating the masses and couplings of the spin-2 modes, resulting in KK scattering
amplitudes which grow like E4 instead of E2. We therefore investigate scattering of the Kaluza-Klein states
in theories incorporating the Goldberger-Wise mechanism to stabilize the size of the extra dimension. We
demonstrate that the cancellations occur only when one includes not only the massive radion, but also the
massive spin-0 modes arising from the Goldberger-Wise scalar. We compute the revised sum rules which
are satisfied in a stabilized model to ensure a consistent high-energy scattering amplitude. We introduce a
simple model of a stabilized extra dimension which is a small deformation of a flat (toroidal) five-
dimensional model, and demonstrate the cancellations in computations performed to leading nontrivial
order in the deformation. These results are the first complete KK scattering computation in an extra-
dimensional model with a stabilized extra dimension, with implications for the theory and phenomenology
of these models.
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I. INTRODUCTION

Examining the possibility of extra spatial dimensions has
a long history [1–3], and has been of particular interest for
constructing possible solutions to the hierarchy problem
[4–8]. To be consistent with observation, four of the
dimensions must correspond to ordinary spacetime, and
viable backgrounds must include (at least approximate)
Poincaré invariance in these extended directions. Each of
the fields on the full spacetime can then be decomposed
into an infinite Kaluza-Klein (KK) tower of four-
dimensional states of different masses, with the mass-scale
of the tower of states (typically) set by the size of the
transverse extra dimensions. The effective four-
dimensional theory then consists of interacting KK modes.

The higher-dimensional graviton field, in particular, gives
rise to many 4D states: the ordinary four-dimensional
graviton and an infinite KK tower of massive spin-2 states,
and potentially 4-vector and scalar states as well. In the
five-dimensional theories which we consider here, we
impose an orbifold symmetry on the internal space and
use a gauge freedom to eliminate any gravitational 4-vector
states from the higher-dimensional metric; a scalar portion
of the metric remains unfixed, however, giving rise to a
(five-dimensional) radion field.
In recent work we examined the scattering amplitudes of

the massive spin-2 modes [9–12] in compactified five-
dimensional theories.1 We demonstrated that an intricate set
of canceling contributions from the exchange of KK modes
of different levels enables these scattering amplitudes to
avoid the bad high-energy behavior that typically plagues
models with interacting massive spin-2 particles [14–16].
In particular, the elastic scattering amplitudes of interacting
helicity-0 massive spin-2 states have individual contribu-
tions which grow as fast as E10. We have shown that a set of
four independent sum rules relating the masses and
couplings of the various KK modes reduces these
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amplitudes to the E2 growth which would be expected in a
consistent theory including four-dimensional gravity.
In models where gravity propagates in the extra spatial

dimension, the overall size of the extra dimension is
undetermined. This size can be associated with the back-
ground value of the radion field. Therefore, after compac-
tification, perturbations corresponding to fluctuations in the
size of the transverse extra dimension manifest as a
massless four-dimensional radion scalar field (for a review,
see [17]).2 Note there are two very different classes of
problems where a 5D compactified theory of gravity might
be relevant: as an extra-dimensional model of spacetime
[7,8], or as the “dual” of a TeV-scale strongly coupled 4D
theory [18–20]. In either case, a massless radion is
phenomenologically forbidden. In the case of ordinary
gravity, a massless radion contributes to long-range gravi-
tational interactions as a Brans-Dicke scalar [21] and thus
generates significant deviations from general relativistic
predictions already confirmed by experiments, including
the gravitational deflection of light. In the case of a warped
model dual to a strongly coupled conformal theory at the
TeV scale (and in which one considers adjusting parameters
to decouple the graviton), the massless radion has TeV-
scale couplings and runs into conflict with astrophysical
constraints [22]. Consequently, any phenomenologically
relevant model must include additional dynamics to stabi-
lize the size of the extra dimension and give mass to the
radion.
Our previous computations of the amplitudes describing

massive spin-2 KK mode elastic scattering were performed
in unstabilized five-dimensional theories and included
contributions to the scattering amplitudes from a massless
radion. Indeed, contributions from a massless radion were
crucial in these calculations to prevent the scattering
amplitudes from growing like E6 or E4. Simply introducing
a radion mass by hand (and assuming its couplings are
otherwise unchanged) breaks the underlying higher-
dimensional diffeomorphism invariance and results in
scattering amplitudes which diverge like E4 [9–11,23].
In a theory with a properly stabilized extra dimension,
however, divergences beyond E2 growth should not occur.
Goldberger and Wise (GW) [24,25] introduced a simple

dynamical mechanism for stabilizing the size of an extra
dimension. In the GW model, one adds a bulk scalar field
whose dynamics are chosen so that the vacuum of the
system has a nonconstant profile for the scalar field in the
extra dimension. On energetic grounds, Goldberger and
Wise showed that competition between the contributions
from the scalar kinetic energy and potential energy (e.g.,
from a mass term) imply that there is a preferred size for the
extra dimension. Since the radion field can be identified

with fluctuations in the size of the extra dimension, the
existence of a preferential extra-dimensional distance scale
in the GW model directly generates a radion mass [26,27].
In this paper, we compute the tree-level elastic 2-to-2

scattering amplitude of helicity-0, KK level-n, massive
spin-2 KK modes in a GW model with a stabilized extra
dimension; we identify generalized sum rules controlling
the growth of the scattering amplitude; and we show that
the cancellations between the different contributions to the
scattering amplitude persist once one includes the new
contributions to massive spin-2 KK mode scattering from
the GW sector. Our calculation hinges on properly
identifying the propagating degrees of freedom in the
scalar part of the five-dimensional metric and bulk scalar
sectors, after accounting for diffeomorphism invariance
[27–31].
Radion mass generation in the GW model is similar, in

principle, to what happens in a spontaneously broken gauge
theory. In that case, the longitudinal components of the
massive gauge bosons (which correspond to the broken
symmetries) mix with derivatives of the Goldstone bosons
through terms proportional to the vacuum expectation value
responsible for the gauge symmetry breaking. Gauge-fixing
eliminates one combination of these fields, and the physical
degrees of freedom which remain are massive spin-1 fields.
Accounting for additional contributions from the symmetry
breaking sector (e.g., the Higgs boson) is thus crucial to
understanding why the scattering amplitudes of the massive
spin-1 bosons do not diverge at high energies.
In the case of the GW mechanism, scalar particles

seemingly originate from either of two unrelated scalar
towers: the scalar perturbation of the five-dimensional
metric (which generates the radion mode) and the fluc-
tuation of the bulk scalar field configuration. However, as
emphasized by a particular gauge choice that fixes a certain
linear combination of these fields, the metric perturbation
actually mixes with the derivative of the bulk scalar
fluctuation, ultimately yielding a single physical 4D scalar
tower. We will refer to the lightest mode in this tower as the
“radion” and the higher modes as “GW scalars.”3 Properly
identifying and normalizing these modes [28–31] is crucial
in order to compute their couplings to the massive spin-2
modes. We explicitly compute the revised sum rules that are
satisfied in a stabilized GW model to ensure a consistent
high-energy scattering amplitude.
Having identified the generalized sum rules which must

be satisfied, we next introduce a simple model of a
stabilized extra dimension in which we can explicitly
demonstrate these cancellations. To do so, we cannot treat
the background spacetime geometry as fixed: ignoring the

2In extra-dimensional models dual to conformal field theories
[18–20], the radion is dual to the dilaton expected after the
spontaneous breaking of scale symmetry.

3The gauge-fixing described is the analog of the choice of
coordinates that reduces the physical degrees of freedom in scalar
metric perturbations down to a single massless 4D radion field in
the unstabilized model [32].
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“backreaction” of the background scalar field on the
geometry leaves the radion massless [26,27]. DeWolfe,
Freedman, Gubser, and Karch (DFGK) [33] determined an
entire class of exact solutions wherein a bulk scalar field
and standard five-dimensional gravity successfully and
self-consistently exhibit the GW mechanism. In this paper,
we introduce a simple limit of the DFGK model, which we
dub the “flat stabilized model.” As we will detail, the flat
stabilized model results in a geometry which is a small
deformation of a five-dimensional orbifolded toroidally
compactified space; in this geometry, all quantities pertain-
ing to the spin-2 and scalar KK modes can be computed
analytically to the required order in the deformation
parameter. As the deformation parameter goes to zero,
the radion becomes massless (justifying our labeling it as a
radion) while the GW scalars remain massive. The flat
stabilized model provides a simple explicit realization of
the GW mechanism and allows us to illustrate how the sum
rules maintain their validity as the stabilized geometry
becomes relevant.
These results are the first complete scattering computa-

tion in an extra-dimensional model with a stabilized extra
dimension. The generalization of our results to the case of a
stabilized warped model, a description of phenomenologi-
cal implications, and a more detailed derivation and
analysis of the bulk scalar and scalar metric sector will
be presented in [31].
In Sec. II, we describe the Goldberger-Wise mechanism,

and also the spin-2 and spin-0 KK modes that result.
Section II B 2, in particular, describes the scalar modes
which result after mixing between the bulk scalar and scalar
metric sectors of the theory. In Sec. III, we describe the KK
mode couplings and compute the elastic scattering ampli-
tude of helicity-0, KK level-n, massive spin-2 KK modes.
In Sec. III C, we identify the generalized sum rules: the
combinations of masses and couplings which must vanish
if the scattering amplitude is to grow no faster than OðsÞ.
We describe how we can prove three out of four of these
sum rules analytically for any model incorporating the GW
mechanism. Section IV introduces the flat stabilized model;
summarizes the KK mode wave functions, masses, and
couplings that result; and demonstrates that the sum rules
are explicitly satisfied in this model to second order in the
deformation parameter. Our conclusions are presented
in Sec. V.

II. KK MODES AND THE GW MECHANISM

In this section, we review the dynamics of the GW
mechanism [24,25] for stabilizing the geometry of a five-
dimensional theory and generating the mass of the radion.
We set our notation for the metric, specify the interactions
of the model, describe the origin of mixing between the
bulk scalar and scalar metric modes, and establish the mode
expansion for the physical four-dimensional modes in the
gravitational and scalar sectors [28–31].

A. Notation, dynamics, and gauge fixing

The metric for a space having a warped extra dimension
is ds2 ¼ GMNdxMdxN with coordinates xM ¼ ðxμ; yÞ,
where xμ parametrizes the usual 4D spacetime. We
take the coordinate of the extra dimension to be
y≡ φrc ∈ ½−πrc;þπrc�, and impose an orbifold symmetry
y ↔ −y. Brane-localized dynamics are present at the
orbifold fixed points φ ∈ f0; πg, and the metric and
brane-projected metric equal

½GMN � ¼
�
wgμν 0

0 −v2

�
; ½ḠMN � ¼

�
wgμν 0

0 0

�
;

ð1Þ

respectively, where

w ¼ e−2½AðyÞþûðx;yÞ�; v ¼ 1þ 2ûðx; yÞ; ð2Þ

gμν ¼ ημν þ κĥμνðx; yÞ; û ¼ e2AðyÞ

2
ffiffiffi
6

p κr̂ðx; yÞ: ð3Þ

The function AðyÞ is the warp factor for the background
geometry and is determined by solving the Einstein field
equations, while ĥμνðx; yÞ and r̂ðx; yÞ represent tensor
and scalar metric perturbations around this geometry.4,5

We will denote inverse matrices with tildes, e.g.,
½G̃MN � ¼ Diagðg̃μν=w;−1=v2Þ. The Lorentz metric is in
the mostly minus convention: ημν ≡ Diagðþ1;−1;−1;−1Þ.
The general Lagrangian for a GW model consists of

three parts

L5D ≡ LEH þ LΦΦ þ Lpot; ð4Þ

which we now define. First, the theory includes the
gravitational five-dimensional Einstein-Hilbert Lagrangian

LEH ≡ −
2

κ2
ffiffiffiffi
G

p
R; ð5Þ

which provides the dynamics of the metric, where κ2 ¼
4=M3

Pl;5D defines the five-dimensional gravitational con-
stant.MPl;5D is the 5D Planck scale. Next, a bulk real scalar
field Φ̂ðx; yÞ is included via a standard bulk scalar kinetic
Lagrangian

4The form in which the radion perturbations are introduced
eliminates kinetic mixing between the tensor and scalar metric
perturbations [32].

5The definition of the field û used here differs slightly from the
corresponding definition used in [11,12] for the unstabilized
Randall-Sundrum model: the definition used here is more
convenient for analyzing the mixed bulk scalar and scalar metric
sectors of the stabilized theory.
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LΦΦ ≡ ffiffiffiffi
G

p �
1

2
G̃MNð∂MΦ̂Þð∂NΦ̂Þ

�
: ð6Þ

Finally, there are potential energy terms for the bulk scalar
field both in the bulk and at the branes,

Lpot ≡ −
4

κ2
½

ffiffiffiffi
G

p
V½Φ̂� þ

ffiffiffiffi
Ḡ

p
V1½Φ̂�δðφÞ

þ
ffiffiffiffi
Ḡ

p
V2½Φ̂�δðφ − πÞ�: ð7Þ

The index i ∈ f1; 2g will generally indicate the φ ¼ 0 and
φ ¼ π branes, respectively.

We will show that the lightest state in the scalar tower
generated by r̂ðx; yÞ should be identified with the radion. In
order to stabilize the geometry and give mass to the radion,
the brane potential terms V1;2 cause the field Φ̂ðx; yÞ to gain
a nonconstant background value.6 This scalar background
will be some y-dependent function ϕ0ðyÞ, relative to which
we measure an ðx; yÞ-dependent scalar fluctuation f̂ðx; yÞ.
Explicitly, we define

Φ̂ðx; yÞ≡ 1

κ
ϕ̂ðx; yÞ≡ 1

κ
½ϕ0ðyÞ þ f̂ðx; yÞ�; ð8Þ

where we have included a factor of κ so that ϕ0 and f̂ are
dimensionless. This also neatly absorbs factors of κ that
will emerge from the gravitational sector of the calculation.
In the presence of a y-dependent scalar background

ϕ0ðyÞ, the scalar kinetic Lagrangian of Eq. (6) induces
mixing between bulk scalar fluctuations and the scalar
sector of the metric as described in the interaction

LΦΦ ⊃
ffiffiffiffi
G

p

2
G̃55ð∂yΦ̂Þð∂yΦ̂Þ ⇒ r̂ð∂yϕ0Þð∂yf̂Þ: ð9Þ

The scalar metric modes also have three-point couplings to
the massive spin-2 KK modes. In the unstabilized RS
model, those three-point couplings enable exchanges of
particles from the scalar metric sector that are crucial to
canceling the otherwise bad high-energy behavior of
massive spin-2 KK mode scattering amplitudes [9–12].
The mixing here implies that in an extra-dimensional model
stabilized via the GW mechanism, the bulk scalar inherits
three-point couplings to the massive spin-2 modes through
mixing and thereby generates important contributions to
their scattering amplitudes.
Analyzing the dynamics of the theory specified byL5D is

therefore reduced to determining the background metric
function AðyÞ and scalar field configuration ϕ0ðyÞ consis-
tent with the equations of motion; writing the theory in

terms of the fluctuation fields ĥ, r̂, and f̂; expanding these
into KK modes; and “diagonalizing” the kinetic terms of
these 4D fields. The analysis of the spin-2 fluctuations is
straightforward and, as we describe below, proceeds in
parallel with the analyses used previously in [11,12].
The analysis of the mixed bulk scalar and scalar metric

sector, however, is more complicated. Due to the diffeo-
morphism invariance of the action [27–31], the bulk scalar
f̂ðx; yÞ, and scalar metric r̂ðx; yÞ fluctuation fields are not
truly independent dynamical degrees of freedom—only a
single linear combination of the bulk scalar and scalar
metric modes remains in the physical spectrum. In par-
ticular, we choose a gauge such that f̂ and ð∂φr̂Þ are
proportional (recall that y≡ rcφ):

ð∂φϕ0Þf̂ðx; yÞ≡
ffiffiffi
6

p
e2A½κð∂φr̂Þ�; ð10Þ

and will compute the spectrum and couplings in this
gauge.7

After applying this gauge, extremizing the Lagrangian
implies the following background field equations
[26,27,33],

ð∂2
φAÞ ¼

1

12
ð∂φϕ0Þ2 þ 2ð∂φAÞ½δðφÞ − δðφ − πÞ�; ð11Þ

ð∂2
φϕ0Þ ¼ 4

dV

dϕ̂

����
ϕ̂¼ϕ0

þ 4ð∂φAÞð∂φϕ0Þ

þ 2ð∂φϕ0Þ½δðφÞ − δðφ − πÞ�; ð12Þ

V½ϕ0� ¼
1

8
ð∂φϕ0Þ2 − 6ð∂φAÞ2; ð13Þ

and the following jump conditions,

V1;2½ϕ0� ¼ �6ð∂φAÞ;
dV1;2

dϕ̂

����
ϕ̂¼ϕ0

¼ � 1

2
ð∂φϕ0Þ; ð14Þ

at the φ ¼ 0 and φ ¼ π branes, respectively. These con-
strain the scalar field background configuration ϕ0; the
scalar potentials V, V1, and V2; and the warp factor A.
In the next section we outline the results of the analysis

needed for our computations here. More details will be
given in a subsequent publication [31].

B. The Kaluza-Klein modes

We now determine the Kaluza-Klein spin-0 and spin-2
mode equations and orthonormality conditions. Here we

6In the unstabilized limit, in which the bulk scalar field has no
y-dependent background value and the radion is massless, the
potential energy terms include the bulk and brane cosmological
constants of the RS model [7,8].

7Note that in the unstabilized limit, in which ϕ0 becomes
constant in the extra dimension, this gauge choice implies ð∂φr̂Þ
vanishes and therefore the field r̂ gives rise to the single
(massless) 4D radion field which is present in the unstabilized
model [32].

R. SEKHAR CHIVUKULA et al. PHYS. REV. D 103, 095024 (2021)

095024-4



present the results of our computations, which build on the
results of [28–30], and discuss how they are related to our
previous computations [9–12]. For details of the deriva-
tions, see [31].

1. Spin-2

The spin-2 KK mode decomposition proceeds in the
usual way and as described in [11,12], except with the
Randall-Sundrum warp factor ε ¼ ekrcjφj used there
replaced here with the more generic ε ¼ eAðφÞ. In particular,
the spin-2 modes can be decomposed via

ĥμνðx; y ¼ rcφÞ ¼
1ffiffiffiffiffiffiffi
πrc

p
Xþ∞

n¼0

ĥðnÞμν ðxÞψnðφÞ; ð15Þ

where the spin-2 particle described by ĥðnÞμν ðxÞ has mass

mn ¼ μn=rc and ĥð0Þμν ðxÞ describes the massless graviton.
The wave functions ψnðφÞ satisfy the mode equation

∂φ½e−4Að∂φψnÞ� ¼ −μ2ne−2Aψn; ð16Þ
subject to the boundary conditions ð∂φψnÞ ¼ 0 at
φ ∈ f0; πg. The Sturm-Liouville nature of the problem
defined by this mode equation and boundary conditions
ensures that the modes are orthogonal and complete, and
we obtain canonical kinetic energy terms for the 4D modes
if the spin-2 wave functions are normalized according to

1

π

Z þπ

−π
dφe−2Aψmψn ¼ δm;n: ð17Þ

2. Spin-0

Using the gauge condition in Eq. (10), we can eliminate
the bulk scalar fluctuation field f̂ðx; yÞ in favor of the scalar
metric fluctuation field r̂ðx; yÞ. We decompose the r̂ðx; yÞ
field using the mode expansion8

r̂ðx; y ¼ rcφÞ ¼
1ffiffiffiffiffiffiffi
πrc

p
Xþ∞

i¼0

r̂ðiÞðxÞγiðφÞ: ð18Þ

Each extra-dimensional spin-0 wave function γi solves the
Sturm-Liouville- like equation [28–31]

∂φ

�
e2A

ð∂φϕ0Þ2
ð∂φγnÞ

�
−
e2A

6
γn ¼ −μ2ðnÞ

e4A

ð∂φϕ0Þ2
γn; ð19Þ

where each γi corresponds to a 4D scalar state r̂ðiÞ
with mass mðiÞ ≡ μðiÞ=rc, subject to the mixed boundary
conditions

��
2
d2V1

dϕ̂2
−
ð∂2

φϕ̂Þ
ð∂φϕ̂Þ

�
ð∂φγnÞ þ μ2ðnÞe

2Aγn

	����
ϕ̂¼ϕ0;φ¼0þ

¼ 0;

��
2
d2V2

dϕ̂2
þ ð∂2

φϕ̂Þ
ð∂φϕ̂Þ

�
ð∂φγnÞ − μ2ðnÞe

2Aγn

	����
ϕ̂¼ϕ0;φ¼π−

¼ 0:

ð20Þ

By including contributions from both the bulk scalar and
scalar metric sectors of the theory, using the equations of
motion, attending to boundary contributions, and imposing
the normalization condition

6

π

Z
π

−π
dφ

�
e2A

ð∂φϕ0Þ2
ð∂φγmÞð∂φγnÞ þ

e2A

6
γmγn

�
¼ δmn;

ð21Þ

the quadratic scalar mode Lagrangian can be written as
[28–31]

Lγγ ¼
Xþ∞

n¼0

�
1

2
ð∂μr̂ðnÞðxÞÞð∂μr̂ðnÞðxÞÞ −

μ2ðnÞ
2r2c

r̂ðnÞðxÞr̂ðnÞðxÞ
	
:

ð22Þ

The second term in the integrand of Eq. (21) arises from the
scalar metric sector of the theory, while the unconventional
first term arises from the bulk scalar sector via the gauge
condition Eq. (10) used to eliminate f̂ in favor of ∂φr̂.
While these orthogonality and normalization conditions are
consistent [28–30] with the mode differential equation and
boundary conditions of Eqs. (19) and (20), they are not the
normalization conditions required if we were to interpret
them as defining a Sturm-Liouville problem. Therefore,
while completeness of the mode expansion in (18) is
physically reasonable, it is not mathematically guaranteed.
The sum rules we consider in the next section apply so long
as the mode expansion in Eq. (18) is valid.
The mathematical uncertainties of the scalar sector are

eliminated, however, if we work in the “stiff-wall” limit
[24,25], such that

d2V1

dϕ̂2

����
φ¼0þ

and
d2V2

dϕ̂2

����
φ¼π−

→ þ∞: ð23Þ

In this case, the boundary conditions of Eq. (20) reduce to
the Neumann conditions ð∂φγnÞ ¼ 0 at φ ∈ f0; πg. Using
Eqs. (19) and (20) as well as integrating by parts, we
find that the orthonormality conditions can be rewritten
as [28–30]

8In our analysis of the unstabilized RS model [9–12], the
corresponding field contained (after gauge-fixing [32]) only the
massless four-dimensional radion field with a constant radion
wave function. For convenience, in that work we chose û such
that the radion wave function equaled the graviton wave function
ψ0. The choice of the field û in Eq. (3) differs from the one we
made previously, and the mode γ0 here reduces, in limit of an
unstabilized RS model, to eþkrcπψ0.
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6

π
μ2ðnÞ

Z þπ

−π
dφ

e4A

ð∂φϕ0Þ2
γmγn ¼ δm;n ð24Þ

in the stiff wall limit. Hence, so long as μ2ðnÞ > 0, the inner

product has the proper form to interpret the spin-0 mode
equation Eq. (19) as a Sturm-Liouville equation with
weight function e4A=ð∂φϕ0Þ2—and completeness in the
stiff wall limit is assured. The explicit model we analyze in
Sec. IV will employ the stiff wall limit in order to simplify
our results, and we will confirm that the sum rules we
derive are explicitly satisfied in that case.
Because both forms of the orthonormality conditions,

Eqs. (21) and (24), contain derivatives of the scalar back-
ground ð∂φϕ0Þ2 in denominators, taking the limit of ϕ0

going to a constant—and thereby connecting with the
computations in the unstabilized model [9–12]—is not
straightforward. In the unstabilized limit, the mixing
between the bulk scalar and scalar metric sectors van-
ishes—and, physically, the theory reduces to one with a
massless radion and a tower of massive scalar KK modes
which couple conventionally (through their energy-
momentum tensor) with the gravitational sector. As we
will demonstrate when we consider an explicit model, in
the limit that ð∂φϕ0Þ → 0, the wave function γ0 remains
finite while μ2ð0Þ vanishes. We therefore associate the

lightest scalar KK mode r̂ð0Þ with the radion.
Conversely, in this same limit, the wave functions of the
higher scalar modes (γn for n > 0) vanish—indicating that
their mixing with the scalar metric sector vanishes9—while
their masses μ2ðnÞ remain finite. We will therefore distin-

guish the higher states r̂ðnÞ as “GW scalars.”
In the next section, we consider the sum rules that must

be satisfied in order to obtain consistent behavior for the
high-energy massive spin-2 scattering amplitudes.

III. KK SCATTERING AMPLITUDES
AND SUM RULES

In this section, we compute the scattering amplitude for
elastic scattering of helicity-0, KK level-n, massive spin-2
KK bosons in a general GW model, specifically for the
process n; n → n; n. We demonstrate that requiring this
amplitude to grow no faster than OðsÞ imposes sum rules
that relate the masses and couplings of the spin-2 and spin-
0 KK modes. These sum rules generalize those presented in
[10,13], in order to apply to models incorporating the GW
mechanism, which stabilizes the size of the extra dimension

and makes the radion massive. Crucially, the Oðs3Þ and
Oðs2Þ growth of this amplitude each only cancel once one
includes contributions from the GW scalars and their
masses.
The tree-level scattering amplitude receives contribu-

tions from a four-point contact interaction between the
spin-2 modes, as well as from the exchange of intermediate
spin-2 and spin-0 modes in the s, t, and u channels as
shown in Fig. 1. We write the total scattering amplitude as

M ¼ Mc þ
Xþ∞

i¼0

MðiÞ þ
Xþ∞

j¼0

Mj; ð25Þ

where Mc denotes the contribution from the contact
interaction, MðiÞ the contributions from the intermediate
spin-0 states with KK number i, and Mj the contributions
from the intermediate spin-2 states with KK number j.

A. KK mode couplings

In any extra-dimensional theory, an effective four-dimen-
sional theory is attained by replacing each extra-dimen-
sional field with a Kaluza-Klein decomposition in terms of
four-dimensional KK modes and subsequently integrating
over the extra dimensions. In this way, interactions between
extra-dimensional fields yield couplings between four-
dimensional states. For a single warped extra dimension,
the procedure is explained in detail in [11,12] and, as
explained there, the three- and four-point couplings
between the spin-2 and spin-0 KK modes are attained
from overlap integrals of products of corresponding extra-
dimensional wave functions. In the stabilized case, these
integrals are

almn ≡ 1

π

Z þπ

−π
dφe−2Aψ lψmψn; ð26Þ

bl0m0n ≡ 1

π

Z þπ

−π
dφe−4Að∂φψ lÞð∂φψmÞψn; ð27Þ

aklmn ≡ 1

π

Z þπ

−π
dφe−2Aψkψ lψmψn; ð28Þ

bk0l0mn ≡ 1

π

Z þπ

−π
dφe−4Að∂φψkÞð∂φψ lÞψmψn; ð29Þ

FIG. 1. Feynman diagrams contributing to n; n → n; n massive
spin-2 KK boson scattering. In a model incorporating the GW
mechanism, the intermediate states x include the radion, the
graviton, massive spin-2 KK bosons, and GW scalars of various
levels.

9Note that any couplings arising from the interactions of Φ̂,
encoded in the fluctuations f̂, remain finite because of the form of
Eq. (10). This also implies that the stiff wall Neumann boundary
conditions on γn are Dirichlet boundary conditions for the GW
scalars, and therefore the GW scalar tower has no massless mode
in the limit ð∂φϕ0Þ → 0.
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al0m0ðnÞ ≡ 1

π

Z þπ

−π
dφe−2Að∂φψ lÞð∂φψmÞγn: ð30Þ

Note that these couplings differ from one-another both in
terms of warp factor dependence (e−2A versus e−4A) and in
which wave functions are differentiated.10 As we have
noted in prior work [11,12], we can use the spin-2 mode
equation Eq. (16) to rewrite

bl0m0n ¼
1

2
½μ2l þ μ2m − μ2n�almn; bn0n0nn ¼

1

3
annnn:

ð31Þ

In what follows, we utilize these wherever possible.

B. Scattering amplitudes

We now turn to the central results of this paper: reporting
the scattering amplitude for elastic scattering of helicity-0,
KK level-n, massive spin-2 KK bosons in a general GW
model (as expressed in terms of the KK mode couplings),
including the individual contributions from the four-point
KK interaction, the exchange of spin-2 KK modes, and the
exchange of spin-0 KK modes. Our kinematic and helicity
conventions follow those in [9–12]. As in this prior work,
we examine the scattering amplitudes for fixed center-of-
mass scattering angle θ and examine the components which
grow as different powers sσ of the center-of-mass energy
squared11

Mðs; θÞ ¼
X
σ∈Z

M̄ðσÞðθÞsσ and MðσÞ ≡ M̄ðσÞsσ: ð32Þ

In the subsections which follow, we compute the contri-
butions to the scattering amplitude at each order (M̄ðσÞðθÞ
for σ ∈ f2; 3; 4; 5g) and isolate the sum rule relationships
between the couplings and masses that must be satisfied so
that the contributions cancel at each order. We summarize
these sum rules in the last subsection.

1. Oðs5Þ and Oðs4Þ
The only contributions to the scattering amplitude at

Oðs5Þ and Oðs4Þ come from the contact interaction and
exchange of intermediate spin-2 modes [10,13–15].
Therefore, the form of the scattering amplitude at these
orders and the resulting sum rules are unchanged from
[9,13]. We include them here for completeness.

At order s5, we find the following contributions:

Mð5Þ
j ¼ κ2s5r7c

2304πμ8n
fa2nnjgð7þ c2θÞs2θ; ð33Þ

Mð5Þ
ðiÞ ¼ 0; ð34Þ

Mð5Þ
c ¼ κ2s5r7c

2304πμ8n
f−annnngð7þ c2θÞs2θ: ð35Þ

Combining these, we get

Mð5Þ ¼ Mð5Þ
c þ

Xþ∞

j¼0

Mð5Þ
j þ

Xþ∞

i¼0

Mð5Þ
ðiÞ ;

¼ κ2s5r7c
2304πμ8n

�
−annnn þ

X
j¼0

a2nnj

	
ð7þ c2θÞs2θ: ð36Þ

The Oðs5Þ contributions collectively cancel only if the
coupling quantity in curly brackets vanishes. That vanish-
ing defines the Oðs5Þ sum rule [10–12].
Next, at order s4, we find

Mð4Þ
j ¼ κ2s4r5c

27648πμ8n
f−3a2nnj½ð7þ c2θÞ2μ2j

þ 2ð9 − 140c2θ þ 3c4θÞμ2n�g; ð37Þ

Mð4Þ
ðiÞ ¼ 0; ð38Þ

Mð4Þ
c ¼ κ2s4r5c

27648πμ8n
f4annnn½63 − 196c2θ þ 5c4θ�μ2ng: ð39Þ

Applying theOðs5Þ sum rule to simplify their sum, we find

Mð4Þ ¼ Mð4Þ
c þ

Xþ∞

j¼0

Mð4Þ
j þ

Xþ∞

i¼0

Mð4Þ
ðiÞ

¼ κ2s4r5c
27648πμ8n

�
4μ2nannnn − 3

Xþ∞

j¼0

μ2ja
2
nnj

	
ð7þ c2θÞ:

ð40Þ
The vanishing of the coupling combination found in the
curly brackets above defines the Oðs4Þ sum rule [10–12].
Because the scalar tower is not relevant at Oðs5Þ

and Oðs4Þ, these sum rules are identical to those quoted
in [10–12]. As demonstrated in [10,13], the orthogonality
and completeness of the spin-2 modes—which is guaran-
teed by the Sturm-Liouville form of the spin-2 mode
equation—is sufficient to prove these sum rules are
satisfied in any model with the structure we described.
In particular, the sum rules are satisfied for any background
warp function AðyÞ and are satisfied in any model incor-
porating the GW mechanism which produces the required
stabilized geometry.

10In our previous work [9–12] there was only a single massless
radion mode; the coupling bnnr from that prior work has been
relabeled as an0n0ð0Þ here.

11In the helicity-0 amplitudes considered here, σ is an integer
only; however, other helicity combinations can yield half-integer
powers of s [11,12].
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2. Oðs3Þ
At order s3, we find the following contributions:

Mð3Þ
0 ¼ κ2s3r3c

6912πμ8n
f6a2nn0½15 − 270c2θ − c4θ�μ4ng; ð41Þ

Mð3Þ
j ¼ κ2s3r3c

6912πμ8n
f3a2nnj½ð10s2θÞμ4j þ ð69þ 60c2θ − c4θÞμ2nμ2j

þ 2ð13− 268c2θ − c4θÞμ4n�g; ð42Þ

Mð3Þ
ðiÞ ¼ κ2s3r3c

6912πμ8n
f−216a2n0n0ðiÞs2θg; ð43Þ

Mð3Þ
c ¼ κ2s3r3c

6912πμ8n
f2annnn½−185þ 692c2θ þ 5c4θ�μ4ng:

ð44Þ

Summing these, and applying the Oðs5Þ and Oðs4Þ sum
rules, we find

Mð3Þ ¼ Mð3Þ
c þ

Xþ∞

j¼0

Mð3Þ
j þ

Xþ∞

i¼0

Mð3Þ
ðiÞ ;

¼ κ2s3r3c
3456πμ8n

�
4μ4nð3a2nn0 − 4annnnÞ

− 108
X∞
i¼0

a2n0n0ðiÞ þ 15
Xþ∞

j¼0

μ4ja
2
nnj

	
s2θ: ð45Þ

At this order, the scalars (through the couplings an0n0ðiÞ)
begin to yield nonzero contributions [10,13–15]. The
vanishing of the combination of couplings in the curly
brackets above generalizes the Oðs3Þ sum rule found
previously [10–12]. In particular, this new Oðs3Þ sum rule
contains contributions from the exchange of GW scalars:
the results at Oðs3Þ in the unstabilized RS model [10]
amount to truncating the scalar tower sum to a single
massless radion (see footnote 10).

3. Oðs2Þ
Finally, at order s2 we find

Mð2Þ
0 ¼ κ2s2rc

6912πμ8n
f12a2nn0½175þ 624c2θ þ c4θ�μ6ng; ð46Þ

Mð2Þ
j ¼ κ2s2rc

6912πμ8n
fa2nnj½−8ð7þ c2θÞμ6j þ 20ð7þ c2θÞμ2nμ4j

− ð1291þ 1132c2θ þ 9c4θÞμ4nμ2j
þ 4ð553þ 1876c2θ þ 3c4θÞμ6n�g; ð47Þ

Mð2Þ
ðiÞ ¼ κ2s2rc

6912πμ8n
f72a2n0n0ðiÞð7þ c2θÞ½2μ2n − μ2ðiÞ�g; ð48Þ

Mð2Þ
c ¼ κ2s2rc

6912πμ8n
f−128annnn½5þ 47c2θ�μ6ng: ð49Þ

Applying the Oðs5Þ, Oðs4Þ, and newly generalized Oðs3Þ
sum rules, we find

Mð2Þ ¼ Mð2Þ
c þ

Xþ∞

j¼0

Mð2Þ
j þ

Xþ∞

i¼0

Mð2Þ
ðiÞ

¼ −
κ2s2rc
864πμ8n

�
4μ6na2nn0 þ 9

Xþ∞

i¼0

ðμ2ðiÞ − 4μ2nÞa2n0n0ðiÞ

þ
Xþ∞

j¼0

μ6ja
2
nnj

	
ð7þ c2θÞ: ð50Þ

The vanishing of the expression in the curly brackets above
generalizes theOðs2Þ sum rule of [10–12]. At this order, the
masses of all scalar modes contribute directly. In particular,
not only do the massive GW scalars contribute but so does
the mass of the radion, μ2ð0Þ, which vanished in the

unstabilized model.

4. OðsÞ
Following the cancellations at Oðs5Þ through Oðs2Þ, the

overall n; n → n; n scattering amplitude of helicity-0, KK
level-n, massive spin-2 KK bosons grows only like OðsÞ at
high energies. After applying the sum rules we isolated
above, we find the leading high energy behavior of the
amplitude is

Mð1Þ ¼ κ2s
34560πrcμ8n

�
4μ8nð36a2nn0 þ 7annnnÞ

− 216
Xþ∞

i¼0

μ2nð6μ2n − 5μ2ðiÞÞa2n0n0ðiÞ

þ 15
Xþ∞

j¼0

μ8ja
2
nnj

	 ð7þ c2θÞ2
s2θ

: ð51Þ

This generalizes the result that was given previously in
[11,12], by now including contributions from the entire
scalar tower.

C. Sum rules

To summarize, by requiring the scattering amplitude to
grow no faster than OðsÞ in the GW model, we determine
the following general sum rules should be satisfied:

X
j¼0

a2nnj ¼ annnn; ð52Þ
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X
j¼0

μ2ja
2
nnj ¼

4

3
μ2nannnn; ð53Þ

Xþ∞

j¼0

μ4ja
2
nnj ¼

4

15
μ4nð4annnn − 3a2nn0Þ þ

36

5

Xþ∞

i¼0

a2n0n0ðiÞ;

ð54Þ

Xþ∞

j¼0

μ6ja
2
nnj ¼ −4μ6na2nn0 þ 9

Xþ∞

i¼0

ð4μ2n − μ2ðiÞÞa2n0n0ðiÞ: ð55Þ

The first two sum rules, Eqs. (52) and (53), follow from the
Sturm-Liouville form of the spin-2 KK mode equation,
Eq. (19)—so the proofs given in [10–12] apply to any model
producing a geometry defined by a warp function AðyÞ. The
sum rules in Eqs. (54) and (55), however, are new—they
involve the scalar tower newly present in the GW model.
By combining the last two sum rules, Eqs. (54) and (55),

to eliminate the common sum
P

i a
2
n0n0ðiÞ, we find a mixed

rule:

Xþ∞

j¼0

½5μ2n − μ2j �μ4ja2nnj ¼
16

3
μ6nannnn þ 9

Xþ∞

i¼0

μ2ðiÞa
2
n0n0ðiÞ:

ð56Þ

The only scalar tower sum
Pþ∞

i¼0 μ
2
ðiÞa

2
n0n0ðiÞ remaining in

this particular combination of the Oðs3Þ and Oðs2Þ sum
rules can be eliminated via properties of the spin-0 wave
functions. In particular, using the spin-0 mode equation,
Eq. (19); the corresponding normalizations, Eqs. (21) and
(24); and assuming completeness, we can prove that the
mixed sum rule Eq. (56) holds in any GW model. Details
and further discussion will be given in [31].
In the next section, we introduce the flat stabilized

model, which implements the GW mechanism and in
which we can directly verify the sum rules.

IV. THE FLAT STABILIZED MODEL

DFGK [33] have given a general prescription for
producing solutions to the coupled bulk scalar and five-
dimensional gravity field equations within theories that
implement the Goldberger-Wise [24,25] mechanism. Using
this prescription, we can build self-consistent models
having a stabilized extra dimension. In this section, we
begin by reviewing the DFGK construction. We then define
the flat stabilized model and the (small) parameter which
deforms the geometry away from a five-dimensional
orbifolded toroidal space. We subsequently compute the
wave functions and masses of the spin-0 and spin-2 KK
modes. Finally, we compute the KK mode couplings and
demonstrate that the sum rules defined above are satisfied
to leading nontrivial order in the deformation parameter.

A. The DFGK Model

The DFGK model is determined in terms of a super-
potential W½ϕ̂�. The authors of [33] demonstrate that W
guarantees self-consistent background solutions to the
coupled gravity-scalar theory if

ð∂φAÞ ¼
W
12

����
ϕ̂¼ϕ0

signðφÞ; ð∂φϕ0Þ ¼
dW

dϕ̂

����
ϕ̂¼ϕ0

signðφÞ;

ð57Þ

and, for the bulk and brane potentials,

Vr2c ¼
1

8

�
dW

dϕ̂

�
2

−
W2

24
; ð58Þ

V1rc ¼ þW
2
þ β21½ϕ̂ðφÞ − ϕ1�2;

V2rc ¼ −
W
2
þ β22½ϕ̂ðφÞ − ϕ2�2; ð59Þ

where ϕ1 ≡ ϕ̂ð0Þ and ϕ2 ≡ ϕ̂ðπÞ. In particular, for the
choice12 [33]

W½ϕ̂ðφÞ� ¼ 12krc −
1

2
ϕ̂ðφÞ2urc; ð60Þ

Eq. (57) become exactly solvable, satisfied by background
solutions

ϕ0ðφÞ ¼ ϕ1e−urcjφj; ð61Þ

AðφÞ ¼ krcjφj þ
1

48
ϕ2
1½e−2urcjφj − 1�; ð62Þ

where, consistent with Eq. (59),

urc ¼
1

π
log

ϕ1

ϕ2

: ð63Þ

For small urc, we find

AðφÞ ¼ krcjφj −
�
ϕ2
1

24
jφj

�
ðurcÞ

þ
�
ϕ2
1

24
jφj2

�
ðurcÞ2 þOððurcÞ3Þ; ð64Þ

¼
�
k −

ϕ2
1u
24

�
rcjφj þ

�
ϕ2
1ðurcÞ2
24

�
jφj2 þOððurcÞ3Þ; ð65Þ

and thus we have a stabilized model which is a small (in urc)
deformation of the usual Randall-Sundrum model [7,8] with
an effective warp parameter k̃≡ k − ϕ2

1u=24 [33].

12Here u is a parameter, and not the û field of Eq. (3).
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B. The flat stabilized limit

Inspired by this, we rewrite the DFGK model in terms of
k̃ and replace the dimensionless small parameter urc with a
new dimensionless small parameter ϵ≡ ϕ1ðurcÞ=

ffiffiffiffiffi
24

p
.

This yields, to all orders in ϵ,

W½ϕ̂ðφÞ� ¼ 12k̃rc þ
ffiffiffi
6

p

ϕ1

½ϕ2
1 − ϕ̂ðφÞ2�ϵ; ð66Þ

ϕ0ðφÞ ¼ ϕ1 exp

�
−
2

ffiffiffi
6

p

ϕ1

ϵjφj
�
; ð67Þ

and

AðφÞ ¼ k̃rcjφj þ
ϕ2
1

48

�
exp

�
−
4

ffiffiffi
6

p

ϕ1

ϵjφj
�
− 1

�
þ ϕ1

2
ffiffiffi
6

p ϵjφj;

ð68Þ

¼ k̃rcjφj þ ϵ2jφj2 þOðϵ3Þ: ð69Þ

The flat stabilized model is the k̃ → 0 limit of the above
theory, in which the warp factor becomes

AðφÞ ¼ ϵ2jφj2 þOðϵ3Þ ð70Þ

and the scalar background is given by Eq. (67). When
ϵ ¼ 0, this theory reduces to the (unstabilized) five-
dimensional orbifold torus model, a model we have
previously analyzed with respect to massive spin-2 KK
mode scattering [9]. The flat stabilized model is therefore a
deformation (in ϵ) of a flat unstabilized model.

C. Wave functions and eigenvalues

Next, we perturbatively compute all wave functions and
masses squared of the spin-2 and spin-0 KK modes in the
flat stabilized model to Oðϵ2Þ. Before quoting our results,
let us first understand the form of the results we should
expect. In the spin-2 sector, the analysis is relatively
straightforward: the mode equation and normalization
conditions, Eqs. (16) and (17) behave smoothly as
ϵ → 0, and the usual expectations from Rayleigh-
Schrödinger perturbation theory apply.
The spin-0 sector is trickier. First we use the stiff-wall limit

defined in Eq. (23) to simplify the scalar boundary conditions
and to ensure that the scalar system defines a Sturm-Liouville
problem. Next, we note that Eq. (67) directly implies that the
quantity ð∂φϕ0Þ2 present in the denominators of either form
of the scalar normalization condition, Eqs. (21) and (24), is an
Oðϵ2Þ quantity, thereby yielding divergences in the ϵ → 0
limit if not handled with care.13

In the case of the radion, we know on general grounds
[26,27] that the mass squared of the radion must vanish if
one neglects the backreaction of the scalar field configu-
ration on the geometry. As we demonstrate explicitly, the
mass squared of the radion begins at Oðϵ2Þ: computing in
perturbation theory, we find that

μ2ð0Þ ¼ 4ϵ2 þOðϵ3Þ: ð71Þ

Since the radion mass μ2ð0Þ isOðϵ2Þ to leading order in ϵ, the
radion wave function γ0 must be Oð1Þ in order to be
consistent with the spin-0 normalization condition as
written in Eq. (24).
By contrast, the GW scalar masses μ2ðiÞ are Oð1Þ to

leading order in ϵ, and therefore the normalization con-
ditions, Eqs. (21) and (24), imply that the GW scalar wave
functions γi must be OðϵÞ. Physically, the fact that each
GW scalar wave function γðiÞ vanishes as ϵ → 0 reflects the
fact that the GW scalars decouple from the scalar metric
sector in the unstabilized limit.
In order to verify the sum rules Eqs. (52)–(55) to

nontrivial order, we need wave functions and masses of
the spin-2 and spin-0 modes to Oðϵ2Þ. These can be
calculated by applying the defining equations of the flat
stabilized model, Eqs. (70) and (67), to the appropriate
mode equations and normalization conditions. For the spin-
2 modes, these are Eqs. (16) and (17), respectively. For the
spin-0 modes, these are either Eqs. (19) and (21) or
Eqs. (19) and (24), where the former (latter) normalization
condition is more useful for the radion mode (GW scalar
modes). The results of this perturbative calculation are
summarized in Table I, while details of the calculation are
supplied in Appendix.14

We next compute the couplings between these modes
relevant to the sum rules.

D. KK mode couplings and sum rules

In the flat stabilized model, we can directly evaluate the
integrals present in the couplings relevant to the sum rules
throughOðϵ2Þ. Using the wave functions in Table I, we find

annj ¼

8>>>>>>><
>>>>>>>:

j ¼ 0∶ 1ffiffi
2

p þ
�

π2

3
ffiffi
2

p
�
ϵ2

j ¼ 2n∶ − 1
2
þ
�
− 27

32n2 −
π2

6

�
ϵ2

else∶
�
− 96ð−1Þjn4

ðj3−4jn2Þ2

�
ϵ2

; ð72Þ

13The limit ϵ → 0 corresponds to the “unstabilized” limit
discussed at the end of Sec. II B 2.

14Because the sum rules only involve the GW scalar mass in
the combination μ2ðnÞγ

2
n and the GW scalar wave functions γn are

OðϵÞ, we actually only need the GW scalar mass squared toOð1Þ.
Its Oðϵ2Þ contribution is included in Table I forcompleteness.
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an0n0ðiÞ ¼

8>>>>>>><
>>>>>>>:

i ¼ 0∶ n2ffiffi
2

p þ
�
6−π2n2
3
ffiffi
2

p
�
ϵ2

i ¼ 2n∶
�
n
2

�
ϵþ

�
−

ffiffi
3
2

q
πn
ϕ1

�
ϵ2

else∶
�
64

ffiffi
6

p ½ð−1Þþð−1Þi�n4½2n2−i2�
i3ði2−4n2Þ2

�
ϵ2

; ð73Þ

annnn ¼
3

4
þ
�
27

32n2
þ π2

2

�
ϵ2: ð74Þ

At zeroth order in ϵ, the theory inherits the discrete
momentum conservation present in the five-dimensional
orbifold torus model, and only the level-0 modes (the
graviton and radion) and the level-2n modes (specific
massive spin-2 and GW scalar states) contribute. At higher
orders in ϵ, the background scalar field breaks discrete
momentum conservation; however, as the above computa-
tions demonstrate, any contributions to the scattering
amplitude from the exchange of modes at levels other than
0 and 2n are suppressed beyond Oðϵ2Þ. Therefore, for the
purposes of calculating the scattering amplitude to Oðϵ2Þ,
we need only include corrections to masses and couplings
relating to the radion, graviton, level-2nmassive spin-2 KK
mode, and the level-2n GW scalar.
In Table II, we report the combinations of these cou-

plings which arise in our computation of the n; n → n; n
scattering amplitude. Using these results we verify all of the
sum rules through Oðϵ2Þ. As we discuss below, all
contributions identified above are essential at Oðϵ2Þ in
demonstrating the cancellations necessary for an OðsÞ
scattering amplitude.
Neither radion nor GW scalar exchange contributes

directly to the scattering amplitude at Oðs5Þ and Oðs4Þ
[14,15]. However, the stabilization procedure does impact
the sum rules in a less obvious way: for the Oðs5Þ and

Oðs4Þ sum rules, Eqs. (52) and (53), there are Oðϵ2Þ
contributions to the spin-2 KK mode wave functions,
masses, and couplings coming from the deformed geom-
etry. As noted previously, the cancellations of Oðs5Þ and
Oðs4Þ contributions to the scattering amplitude are guar-
anteed by the Sturm-Liouville structure of the spin-2 mode
system [10]. Therefore, these various Oðϵ2Þ corrections
must all be connected in such a way that the sum rules
remain satisfied. Verification of the Oðs5Þ and Oðs4Þ sum
rules can, in this sense, be considered a cross-check of our
perturbative computation.
At Oðs3Þ, the spin-0 KK modes become directly rel-

evant. Consider the Oðs3Þ sum rule, Eq. (54), in combi-
nation with the results of Table II. At leading order, only the
radion (i ¼ 0) contributes, and the couplings are the same

TABLE II. Sum rule coupling combinations: this table lists the
values of the combinations of couplings that appear in the sum
rules—Eqs. (52), (53), (54), and (55)—which ensure that the
n; n → n; n scattering amplitude of helicity-0, KK level-n,
massive spin-2 KK bosons grows no faster than s in the flat
stabilized model including contributions throughOðϵ2Þ. AtOð1Þ,
these results agree with those found in [9].

Oð1Þ Oðϵ2Þ
a2nn0

1
2

π2

3P
j≠0 a

2
nnj

1
4

27
32n2 þ π2

6P
j¼0 μ

2p
j a2nnj

n2p

41−p
22p−5

3n2−2p ½9ð9þ 2pÞ þ 16ð1 − pÞn2π2�
a2n0n0ð0Þ n4

2
2n2 − n4π2

3

μ2ð0Þa
2
n0n0ð0Þ � � � 2n4P

i≠0 a
2
n0n0ðiÞ � � � n2

4P
i≠0 μ

2p
ðiÞa

2
n0n0ðiÞ � � � n2þ2p

41−p

annnn 3
4

27
32n2 þ π2

2

μ2pn annnn
3n2p
4

1
32n2−2p ½9ð3þ 8pÞ þ 16ð1 − pÞn2π2�

TABLE I. Wave functions and eigenvalues: perturbative results for the spin-2 and spin-0 KK wave functions and masses up toOðϵ2Þ in
the flat stabilized model. The leading-order results for the spin-2 KK masses correspond to those of the five-dimensional toroidal
orbifold model used in [9]. The radion mass μ2ð0Þ starts at orderOðϵ2Þ [26,27]. Due to the normalization conditions of Eqs. (21) and (24),

the radion wave function γ0 starts at Oð1Þ, whereas the GW scalar wave functions γn start at OðϵÞ. Here cnφ ≡ cosðnφÞ and
snφ ≡ sinðnφÞ, and “wfxn” stands for wave function. At Oð1Þ these results agree with those found in [9].

Oð1Þ OðϵÞ Oðϵ2Þ
graviton wfxn ψ0

1ffiffi
2

p � � � π2

3
ffiffi
2

p

graviton mass2 μ20 � � � � � � � � �
spin-2 KK wfxn ψn −cnφ � � � 1

6n2
½9þ n2ðπ2 − 9φ2Þ�cnφ þ φ

3n ½9þ n2ðφ2 − π2Þ�snφ
spin-2 KK mass2 μ2n n2 � � � 3 − 2n2π2

3

radion wfxn γ0 1ffiffi
2

p � � � − π2

3
ffiffi
2

p

radion mass2 μ2ð0Þ � � � � � � 4

GW scalar wfxn γn � � � − 2
n cnφ 4

ffiffi
6

p
n2ϕ1

½ðnφÞcnφ − snφ�
GW scalar mass2 μ2ðnÞ n2 � � � 1 − 2n2π2

3
þ 24

ϕ2
1
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as those in the five-dimensional orbifolded torus model [9].
At Oðϵ2Þ, corrections to both the radion (i ¼ 0Þ and GW
scalar ði > 0Þ couplings are important. TheOðs3Þ sum rule
ultimately remains satisfied because these Oðϵ2Þ scalar
corrections exactly cancel the previously mentioned mass
and wave function corrections within the spin-2 KK sector.
Finally, both the radion mass-squared μ2ð0Þ and GW scalar

masses-squared μ2ðiÞ (for i > 0) contribute directly to the

Oðs2Þ sum rule, Eq. (55). As was the case at Oðs3Þ, the
Oðϵ2Þ scalar contributions exactly balance the Oðϵ2Þ
coupling and mass corrections of the spin-2 KK tower,
thereby ensuring the cancellations described by Eq. (55)
remain satisfied despite new nontrivial contributions origi-
nating from the stabilized geometry.
Therefore, we have directly demonstrated that any

contributions to the n; n → n; n scattering amplitude of
helicity-0, KK level-n, massive spin-2 KK bosons which
grow faster than OðsÞ are canceled in the flat stabilized
model atOðϵ2Þ. By applying all of the sum rules previously
derived, we obtain

Mð1Þ ¼ κ2s
2048n2πrc

f24n2 þ ½−69þ 16n2π2�ϵ2g ð7þ c2θÞ2
s2θ

þOðϵ3Þ ð75Þ

as the leading high-energy scattering amplitude in the flat
stabilized model at Oðϵ2Þ.

V. CONCLUSIONS

In this paper, we calculated the scattering amplitude for
tree-level elastic scattering of helicity-0, level-n, massive
spin-2 Kaluza-Klein states within models implementing a
dynamical mechanism for stabilizing the size of an extra
dimension, in which the radion mode is massive. The
cancellations occur only when one includes not only the
massive radion, but also the massive spin-0 modes arising
from the Goldberger-Wise bulk scalar introduced to stabi-
lize the size of the extra dimension. We have derived the
sum rules between the masses and couplings of the spin-2
and spin-0 KK modes of the model which must be satisfied
such that the overall elastic scattering amplitude grows like
E2, despite individual contributions to the amplitude
growing as fast as E10. We introduced a simple model
of a stabilized extra dimension which is a small deforma-
tion of a flat (toroidal) five-dimensional model, and we
directly confirmed cancellations in the high-energy scatter-
ing amplitude to leading nontrivial order in the deforma-
tion. These results extend previous work [9–12] which
demonstrated related cancellations in unstabilized models.
In future work [31], we will present technical details

regarding the interplay of components of the spin-0 sector,
including how the bulk scalar and scalar metric sectors
combine into a single scalar sector, and attending to

contributions from the boundaries (building on the work
of [13,28,30]). We will also examine the scattering of
massive spin-2 states in the phenomenologically motivated
case of perturbing around a warped background [33] and
discuss the phenomenological implications, in particular
for the thermal history of the early universe and models
involving a spin-2 dark matter portal.
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APPENDIX: PERTURBATIVE ANALYSIS OF THE
FLAT STABILIZED MODEL

In this appendix, we describe the perturbative calcula-
tions leading to the wave functions and eigenvalues listed in
Table I for the flat stabilized model. In particular, while the
analysis of the spin-2 sector proceeds along the familiar
lines of Rayleigh-Schrödinger perturbation theory, the
analysis of the spin-0 sector is complicated by the
ð∂φϕ0Þ2 ¼ Oðϵ2Þ quantity in the denominator of both
forms of the spin-0 normalization condition, Eqs. (21)
and (24).

1. Spin-2

In combination with the boundary conditions ð∂φψnÞ ¼
0 at φ ∈ f0; πg, the spin-2 mode equation, Eq. (16), defines
a Sturm-Liouville problem. To evaluate this equation
through Oðϵ2Þ in the flat stabilized model, we note the
warp factor equals AðφÞ ¼ ϵ2jφj2 þOðϵ3Þ. Expanding in
powers of ϵ, the mode equation becomes, in the bulk,

∂φ½ð1 − 4φ2ϵ2 þOðϵ3ÞÞð∂φψnÞ�
¼ −μ2nð1 − 2φ2ϵ2 þOðϵ3ÞÞψn; ðA1Þ

subject to the orthonormality condition, Eq. (17),

1

π

Z þπ

−π
dφð1 − 2jφj2ϵ2 þOðϵ3ÞÞψmψn ¼ δm;n; ðA2Þ

and the boundary conditions ð∂φψnÞ ¼ 0 at φ ∈ f0; πg.
To evaluate this in perturbation theory, we expand the

spin-2 eigenfunctions and eigenvalues in powers of ϵ.
Because there is no OðϵÞ term in Eqs. (A1) and (A2),
we need not include such a term in these expansions:

ψn ¼ ψn;0 þ ϵ2ψn;2 þOðϵ3Þ; ðA3Þ

μ2n ¼ μ2n;0 þ ϵ2μ2n;2 þOðϵ3Þ: ðA4Þ

At leading order, i.e., Oðϵ0Þ, the spin-2 mode equation
equals
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½∂2
φ þ μ2n;0�ψn;0 ¼ 0: ðA5Þ

Imposing the normalization and boundary conditions to
leading order, we obtain the usual graviton and KK modes
in the five-dimensional orbifolded torus model, as shown in
the second column of Table I.
At order ϵ2, Eq. (A1) implies

½∂2
φ þ μ2n;2�ψn;2 ¼ ½4φ2∂2

φ þ 8φ∂φ þ ð2φ2μ2n;0 − μ2n;2Þ�ψn;0:

ðA6Þ

Using the previously obtained eigenfunctions and eigen-
values, and then imposing the Neumann boundary con-
ditions ð∂φψnÞ ¼ 0 at φ ∈ f0; πg and the normalization
condition Eq. (A2) at Oðϵ2Þ, we obtain the spin-2 correc-
tions listed in the last column of Table I.

2. Spin-0

Next, we analyze the spin-0 mode equation defined in
Eq. (19), subject to the normalization conditions in
Eqs. (21) and (24). By applying the stiff-wall limit
described in Eq. (23), these equations yield a Sturm-
Liouville problem with boundary conditions ð∂φγnÞ ¼ 0
at φ ∈ f0; πg. To perturbatively solve these equations,
we need—in addition to the warp factor AðφÞ ¼
ϵ2jφj2 þOðϵ3Þ—the scalar background ϕ0 defined in
Eq. (67). For our present purposes, we rewrite ϕ0 in terms
of a convenient parameter α ¼ 2

ffiffiffi
6

p
=ϕ1, such that

ϕ0ðφÞ ¼ ϕ1e−αϵjφj ⇒ ð∂φϕ0Þ2 ¼ 24ϵ2e−2αϵjφj: ðA7Þ

The presence of ð∂φϕ0Þ2 in multiple denominators thus
yields several factors of 1=24ϵ2, which are inconvenient for
our perturbative analysis; to eliminate these, we multiply
the spin-0 mode equation by 24ϵ2. Having done so,
expanding the spin-0 mode equation Eq. (19) through
Oðϵ2Þ yields

∂φ½ð1þ 2αφϵþ 2ð1þ α2Þφ2ϵ2 þOðϵ3ÞÞð∂φγnÞ�
− ð4ϵ2 þOðϵ3ÞÞγn

¼ −μ2ðnÞð1þ 2αφϵþ 2ð2þ α2Þφ2ϵ2 þOðϵ3ÞÞγn;
ðA8Þ

in the bulk. We next solve for γn and μ2ðnÞ perturbatively in

ϵ; however, we consider the radion and GW scalars
separately because of their different behaviors with respect
to ϵ.
First, we consider the GW scalars, which have eigen-

functions γn and eigenvalues −μ2ðnÞ with n > 0. We normal-
ize the GW scalar wave functions according to the form of
the orthonormality condition as defined in Eq. (24), which
already implicitly uses the stiff-wall limit. Once we have

expanded in ϵ and both sides are multiplied by 24ϵ2 as
before, this yields:

12

π
μ2ðnÞ

Z
π

0

dφð1þ 2αφϵþ 2ð2þ α2Þφ2ϵ2

þOðϵ3ÞÞγmγn ¼ 24ϵ2δm;n; ðA9Þ

where γn is subject to the Neumann boundary conditions
ð∂φγnÞ ¼ 0 at φ ∈ f0; πg. Note the orbifold-symmetric
integral has been rewritten to be over φ ∈ ð0; πÞ as to
enable the replacement jφj → φ.
We expand the spin-0 eigenfunctions and eigenvalues

perturbatively in ϵ as

γnðφÞ ¼ γn;0 þ ϵγn;1ðφÞ þ ϵ2γn;2ðφÞ þOðϵ3Þ; ðA10Þ

μ2ðnÞ ¼ μ2ðn;0Þ þ ϵμ2ðn;1Þ þ ϵ2μ2ðn;2Þ þOðϵ3Þ: ðA11Þ

The normalization condition Eq. (A9) reveals that so long
as μ2ðn;0Þ is nonzero the wave functions γn must start atOðϵÞ.
Therefore, because the masses of the GW scalars are
nonzero in the unstabilized limit, they satisfy γn;0 ≡ 0,
and the first nonzero contribution to the spin-0 mode
equation Eq. (A8) occurs at OðϵÞ:

½∂2
φ þ μ2ðn;0Þ�γn;1 ¼ 0: ðA12Þ

Imposing the boundary conditions and the normalization
of Eq. (A9) to leading nontrivial order, we calculate the
GW mode contributions listed in the third column of
Table I. As discussed in the text, due to the discrete
momentum conservation of the unperturbed toroidal
background, this computation of the GW scalar wave
functions and masses to OðϵÞ is sufficient for the verifi-
cation of the sum rules discussed in this paper. We have
also computed the next order corrections, however, and
they are listed in the fourth column of Table I for
completeness.
Lastly, we consider the radion. Here, the situation

reverses that of the GW scalars: in the ϵ → 0 limit, the
stabilized RS model maps onto the unstabilized five-
dimensional orbifolded torus model discussed in [9],
wherein it is the radion mass that vanishes and the wave
function that becomes a nonzero constant. Hence, a
perturbative expansion of the radion eigenfunction and
eigenvalue similar to those defined in Eqs. (A10)–(A11)
begins with μ2ð0;0Þ ¼ 0 and γ0;0 ¼ C ≠ 0—which is con-

sistent with the leading order perturbative equation

½∂2
φ þ μ2ð0;0Þ�γ0;0 ¼ 0; ðA13Þ

defined by the spin-0 mode equation, Eq. (A8), atOðϵ0Þ. At
next order, using the fact that γ0;0 is a constant, the OðϵÞ
contributions to the spin-0 mode equation yield
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∂2
φγ0;1 ¼ −μ2ð0;1Þγ0;0: ðA14Þ

The right-hand side of this equation is a constant, so γ0;1
could in principle be a quadratic function of φ. Imposing
the Neumann boundary conditions ð∂φγnÞ ¼ 0 at
φ ∈ f0; πg, however, we find that γ0;1 must also be a
constant, and thus μ2ð0;1Þ ≡ 0. Finally, at Oðϵ2Þ, the spin-0
mode equation yields

∂2
φγ0;2 ¼ ½4 − μ2ð0;2Þ�γ0;0: ðA15Þ

The same reasoning that led us through theOðϵÞ computation
applies once again here. Thus, after imposing the boundary
conditions, we conclude γ0;2 must be a constant; however,
now we find a nonzero eigenvalue contribution: μ2ð0;2Þ ¼ 4

[27]. In this way, the radion has become massive at Oðϵ2Þ.
Because μ2ð0Þ ¼ Oðϵ2Þ, the radion wave function

must be normalized via the orthonormality condition as

written in Eq. (21). That is, we apply the orthonormality
condition

12

π

Z þπ

0

dφ

�
ð1þ 2αφϵþ 2ð1þ α2Þφ2ϵ2

þOðϵ3ÞÞ ð∂φγmÞð∂φγnÞ
24ϵ2

þ 1

6
ð1þ 2φ2ϵ2 þOðϵ3ÞÞγmγn

�
¼ δm;n: ðA16Þ

Note the orbifold-symmetric integral has been rewritten to
be over φ ∈ ð0; πÞ so as to enable the replacement jφj → φ.
For the radion, the first term in the integrand begins at
Oðϵ4Þ since the radion wave function is a constant through
Oðϵ2Þ; in other words, each ð∂φγnÞ is Oðϵ3Þ at largest.
Keeping this in mind, we use Eq. (A16) to normalize the
radion wave function and thereby obtain the radion results
shown in Table I.
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