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ABSTRACT. This paper investigates conditions under which canonical
cofinal maps of the following three types exist: continuous, generated
by finitary end-extension preserving maps, and generated by finitary
maps. The main theorems prove that every monotone cofinal map on an
ultrafilter from a certain class of ultrafilters is actually canonical when
restricted to some cofinal subset. These theorems are then applied to find
connections between Tukey, Rudin-Keisler, and Rudin-Blass reducibili-
ties on large classes of ultrafilters.

The main theorems on canonical cofinal maps are the following. Under
a mild assumption, basic Tukey reductions are inherited under Tukey
reduction. In particular, every ultrafilter Tukey reducible to a p-point
has continuous Tukey reductions. If ¢ is a Fubini iterate of p-points,
then each monotone cofinal map from U to some other ultrafilter is
generated (on a cofinal subset of U) by a finitary map on the base tree
for U which is monotone and end-extension preserving - the analogue
of continuous in this context. Further, every ultrafilter which is Tukey
reducible to some Fubini iterate of p-points has finitely generated cofinal
maps. Similar theorems also hold for some other classes of ultrafilters.

1. INTRODUCTION

In this paper, ultrafilters on countable base sets are considered to be
partially ordered by reverse inclusion. A map from an ultrafilter / to another
ultrafilter V is cofinal if every image of a cofinal subset of i/ is a cofinal subset
of V. We say that V is Tukey reducible to U and write V <p U if and only
if there is a cofinal map from U to V. When U <V and V <y U, then we
say that U is Tukey equivalent to 'V and write U =7 V. It is clear that =7 is
an equivalence relation, and < on the equivalence classes forms a partial
ordering. The equivalence classes are called Tukey types. We point out that
since D is a directed partial ordering on an ultrafilter, two ultrafilters are
Tukey equivalent if and only if they are cofinally similar; that is, there is
a partial ordering into which they both embed as cofinal subsets (see [18]).
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2 N. DOBRINEN

Thus, for ultrafilters, Tukey equivalence is the same as cofinal similarity.
An equivalent formulation of Tukey reducibility, noticed by Schmidt in [14],
shows that V < U if and only if there is a Tukey map from V to U; that
is a map ¢ : V — U such that every unbounded (with respect to the partial
ordering D) subset of V is unbounded in U.

This paper focuses on the existence of canonical cofinal maps of three
types: continuous, approximated by basic maps (end-extension and level
preserving finitary maps - see Definitions 2.2 and 4.2), and approximated
by monotone finitary maps (see Definition 6.2). In each of these cases, the
original cofinal map is generated by the approximating finitary map.

The notion of Tukey reducibility between two directed partial orderings
was first introduced by Tukey in [18] to study the Moore-Smith theory of
net convergence in topology. This naturally led to investigations of Tukey
types of more general partial orderings, directed and later non-directed.
These investigations often reveal useful information for the comparison of
different partial orderings. For example, Tukey reducibility preserves calibre-
like properties, such as the countable chain condition, property K, precalibre
Ny, o-linked, and o-centered (see [16]). For more on classification theories of
Tukey types for certain classes of ordered sets, we refer the reader to [18],
3], [11], [15], and [16]. As the focus of this paper is canonical cofinal maps
on ultrafilters, and as we have recently written a survey article giving an
overview of the motivation and the state of the art of the Tukey theory of
ultrafilters (see [5]), we present here only the background and motivations
relevant for this work.

For ultrafilters, we may restrict our attention to monotone cofinal maps.
A map f : U — V is monotone if for any X, Y € U, X D Y implies
f(X) D f(Y). It is not hard to show that whenever U >7 V), then there is
a monotone cofinal map witnessing this (see Fact 6 of [8]).

As cofinal maps between ultrafilters have domain and range of size con-
tinuum, a priori, the Tukey type of an ultrafilter may have size 2°. In-
deed, this is the case for ultrafilters which have the maximum Tukey type
([e]<«, C). However, if an ultrafilter has the property that every Tukey re-
duction from it to another ultrafilter may be witnessed by a continuous
map, then it follows that its Tukey type, as well as the Tukey type of each
ultrafilter Tukey reducible to it, has size at most continuum. This is the
case for p-points.
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Definition 1.1. An ultrafilter &/ on w is a p-point iff for each decreasing
sequence Xg O X7 O ... of elements of U, there is an U € U such that
UCrX,, forall n <w.

Definition 1.2. An ultrafilter U on w has continuous Tukey reductions if
whenever f : U4 — V is a monotone cofinal map, there is a cofinal subset
C C U such that f | C is continuous.

The following Theorem 20 in [8] has provided a fundamental tool for all
subsequent research on the classification of Tukey types of p-points.

Theorem 1.3 (Dobrinen/Todorcevic [8]). Suppose U is a p-point on w.
Given a monotone cofinal map f from U into another ultrafilter, there is
an X € U such that f is continuous on C = {Y e U : Y C X}. In
particular, U has continuous Tukey reductions. Moreover, these continuous

Tukey reductions are generated by monotone basic functions.

Remark 1.4. The proof of Theorem 20 in [8] shows that p-points have the

stronger property of monotone basic Tukey reductions (see Definition 2.2).

It was later proved by Raghavan® in [13] that any ultrafilter Tukey re-
ducible to some basically generated ultrafilter has Tukey type of cardinality
at most ¢. The notion of a basically generated ultrafilter first appeared as
Definition 15 in [8]. The slightly modified version from [13] will be used in
this paper, as it will simplify statements. In this paper, by a filter base for
an ultrafilter U, we mean a cofinal subset of & which is closed under finite

intersections.

Definition 1.5 (Definition 13, [13]). An ultrafilter & on w is basically gen-
erated if it has a filter base B C U such that each sequence (4, : n < w) of
members of B converging to another member of B has a subsequence whose

intersection is in .

It was shown in [8] that the class of basically generated ultrafilters con-
tains all p-points and is closed under taking Fubini products. It is still
unknown whether the class of all Fubini iterates of p-points is the same as
or strictly contained in the class of all basically generated ultrafilters.

Continuous cofinal maps provide one of the main keys to the analysis of
the structure of the Tukey types of p-points (see for instance [8], [13] and

n this joint paper of Raghavan and Todorcevic, it is clearly stated which results in
the paper are due to each of the authors. In accordance with the wishes of the second

author expressly stated to the author of this paper in 2011, whenever citing results from
[13], we clearly state to whom the result is due.
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[12]). Moreover, continuous cofinal maps are crucial to providing a mech-
anism for applying Ramsey-classification theorems on barriers to classify
the initial Tukey structures and Rudin-Keisler structures within these for
a large class of p-points: selective ultrafilters in [13]; weakly Ramsey ultra-
filters and a large hierarchy of rapid p-points satisfying partition relations
in [9] and [10]; and k-arrow ultrafilters, hypercube ultrafilters, and a large
class of p-points constructed using products of Fraissé classes satisfying the
Ramsey property in [7]. Similar methods were developed for a hierarchy of
non-p-points above a Ramsey ultrafilter in [6].

Continuous cofinal maps are also used in the following theorem, which
reveals the surprising fact that the Tukey and Rudin-Blass orders sometimes
coincide. Recall that V <gp U if and only if there is a finite-to-one map
f :w — wsuch that V = f(U), where f(U) is defined to be the set of all
X C w such that f~'[X] is a member of . The following is Theorem 10 in
[13].

Theorem 1.6 (Raghavan [13]). Let U be any ultrafilter and let V be a g¢-
point. If V <r U and this is witnessed by a continuous, monotone cofinal
map from U toV, thenV <rp U.

In Section 2, we prove in Theorem 2.5 that, under a mild assumption, the
property of having basic cofinal maps is inherited under Tukey reduction.
The proof uses the Extension Lemma 2.4 showing that any basic monotone
map on a cofinal subset of an ultrafilter may be extended to a basic mono-
tone map on all of P(w). In particular, p-points satisfy the mild assumption;
hence we obtain the following theorem.

Theorem 2.6. Every ultrafilter Tukey reducible to a p-point has basic, and

hence continuous, Tukey reductions.
Combined, Theorems 1.6 and 2.6 imply the following.

Theorem 2.7. If U is Tukey reducible to some p-point, then any q-point
Tukey below U is actually Rudin-Blass below U.

The rest of the paper involves finding the analogues of Theorems 1.3 and
2.6 for countable iterations of Fubini products of p-points and applying them
to connect Tukey reduction with Rudin-Keisler and Rudin-Blass reductions.
We now delineate these results.

Section 3 is a primer, explicitly showing how any countable iteration of
Fubini products of p-points, which we also simply call a Fubini iterate of

p-points, can be viewed as an ultrafilter generated by trees on a front on
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w. This precise way of viewing Fubini iterates of p-points sets the stage for
finding the analogue of Theorem 1.3 for this more general class of ultrafilters.
It is not possible to show that Fubini iterates of p-points have continuous
Tukey reductions. In particular, Corollary 11 of Raghavan in [13] shows that
the Fubini product of two non-isomorphic selective ultrafilters does not have
a continuous cofinal map into one of the selective ultrafilters. However, we
will show that key properties of continuous maps still hold for this class of
ultrafilters.

In Section 4 we define the notion of a basic map for Fubini iterates, which
is in particular an end-extension preserving map from finite subsets of the
tree B of initial segments of members of a front B into finite subsets of w
(see Definition 4.2). This is the analogue of continuity for Fubini iterates of
p-points. One of the main results of this paper is the following.

Theorem 4.4. Fubini iterates of p-points have basic Tukey reductions.

Thus, monotone cofinal maps on Fubini iterates of p-points are continu-
ous, with respect to the product topology on the space 28, As basic maps
on fronts have the key property (end-extension preserving) of continuous
maps used to convert Tukey reduction to Rudin-Keisler reduction in [13],
9], [10], [7], and [6], it seems likely that they will play a crucial role in ob-
taining similar results for ultra-Ramsey spaces of Chapter 6 of Todorcevic’s
book [17].

Sections 5 and 6 contain applications of Theorem 4.4 to a broad class
of ultrafilters. In Section 5, we directly apply Theorem 4.4 to obtain an
analogue of Theorem 10 of Raghavan in [13]. In Theorem 5.1, we prove that
if U is a Fubini iterate of p-points and V is a g-point Tukey reducible to
U, then there is a finite-to-one map on a large subset of B, where B is the
front base for U, such that its image on U generates a subfilter of V. One

of the consequences of this is the following.

Theorem 5.3. Suppose U is a finite iteration of Fubini products of p-points.
If V is a g-point and V <p U, then V <gx U.

This improves one aspect of Corollary 56 of Raghavan in [13] as V' is only
required to be a g-point, not a selective ultrafilter. The improvement though
comes at the expense of limiting U to a finite Fubini iterate of p-points. It
is unknown whether this can be extended to all Fubini iterates of p-points.

In Section 6 we prove the analogue of Theorem 2.5 for ultrafilters Tukey
reducible to a Fubini iterate of p-points. (See Definition 6.2 for finitely

generated Tukey reductions.)
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Theorem 6.3. Let U be any Fubini iterate of p-points. If V <r U, then V
has finitely generated Tukey reductions.

These finitary maps are an improvement on the maps ¢, used in [13]
(see Definition 7 in [13]) in the sense that our finitary maps are shown to
generate the original cofinal maps. Theorem 6.3 is used to extend Theorem
17 of Raghavan in [13] to the class of all ultrafilters Tukey reducible to some
Fubini iterate of p-points, in contrast to his result where U is assumed to be
basically generated. It is still open whether every ultrafilter Tukey reducible
to a p-point is basically generated (see discussion around Problem 7.6), as
the class of basically generated ultrafilters and the class of ultrafilters Tukey

reducible to a Fubini iterate of p-points may be very different.

Theorem 6.4. IfU is Tukey reducible to a Fubini iterate of p-points, then
for each V <r U, there is a filter U(P) =1 U such that V <gx U(P).

The paper closes with a list of open problems in Section 7.

The results in Sections 2, 3 and 4 were completed in 2010, presented at
the Logic Colloquium in Paris that year, and have appeared in the unpub-
lished preprint [4]. The present paper includes much revised presentations
and proofs of those results, new extensions of them, and additional appli-
cations.

Acknowledgement. Profuse thanks go to the referee, whose thorough
reading and suggestions greatly improved this paper, especially the presen-
tation in Section 4.

2. BAsic TUKEY REDUCTIONS INHERITED UNDER TUKEY REDUCIBILITY

One of the crucial tools used to determine the structure of the Tukey
types of p-points is the existence of continuous cofinal maps (Theorem 20
in [8]). Continuity contributes to the analysis of the structure of the Tukey
types of p-points by essentially reducing the number of cofinal maps un-
der consideration from 2° to ¢, with the immediate consequence that there
are at most ¢ many ultrafilters Tukey reducible to any p-point. Continu-
ity further contributes to finding exact Tukey and Rudin-Keisler struc-
tures below certain classes of p-points satisfying partition relations. The
fact that each monotone cofinal map on a p-point is approximated by a
finitary end-extension preserving function is what allows for application of
Ramsey-classification theorems to find the exact Tukey and Rudin-Keisler
structures below the p-points forced by certain topological Ramsey spaces
(see [13], [9], [10], and [7]). Other applications of cofinal maps represented
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by finitary end-extension preserving maps appear in Dobrinen’s contribu-
tions in [2], and further in [6] where the precise Tukey and Rudin-Keilser
structures below ultrafilters forced by P(w*)/Fin®" were found.

The notion of a basic map is a strengthening of continuity, and is the
same as continuity when the domain is a compact subset of 2¢ (see Definition
2.2 below). The Extension Lemma 2.4 shows that all basic Tukey reductions
on some cofinal subset of an ultrafilter extend to a basic map on P(w). This
will be employed in the proof of the main theorem of this section, Theorem
2.5, which shows that, under mild assumptions, the property of having basic
Tukey reductions is inherited under Tukey reducibility. Theorem 2.6 then
follows: Every ultrafilter Tukey reducible to a p-point has basic, and hence
continuous, Tukey reductions. Combining Theorem 2.6 with Theorem 10 of
Raghavan in [13] yields that whenever W is Tukey reducible to a p-point
and V is a ¢-point, then W >¢ V implies W >gp V (see Theorem 2.7).

We begin with some basic definitions. The following standard notation
is used: 2<¢ denotes the collection of finite sequences s : n — 2, for n < w.
We use s,t,u,... to denote members of 2<¢. Note that given s,t € 2<%,
the inclusion s C ¢ simply means that s is an initial segment of ¢; that is,
dom (s) < dom (t) and ¢ [ dom (s) = s. Write s C ¢ if and only if s C ¢
and s # t; that is, s is a proper initial segment of . We use a C X for sets
a, X C w to denote that, given their strictly increasing enumerations, a is
an initial segment of X. a C X denotes that a is a proper initial segment
of X.

We would like to identify subsets of w with their characteristic functions,
as this will greatly simplify notation in the proofs. For X C w, we let xx
denote the characteristic function of X with domain w. If X is infinite, we
shall often abuse notation and use X to denote both the set X and its
characteristic function yx. Given m < w, we let xyx | m denote the charac-
teristic function of X N'm with domain m. Whenever no ambiguity arises,
we shall abuse notation and use X [ m to denote both the characteristic
function xx [ m and the set X N'm. For precision throughout, for s € 2<%,
we use the notation [[s]] to denote s71({1}), the set of i in the domain of s
for which s(i) = 1. For pointwise images of a function f on a set S, we shall
use the notation f[S] to denote {f(x) : € S}. In Sections 3 and follow-
ing, for a tree T' C [w]<¥, we shall use [T] to denote the set of all branches
through 7', meaning the collection of all maximal branches (if there are any
finite maximal branches) and all cofinal branches (if there are any infinite
branches) through 7'. This will not cause any ambiguity.
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Definition 2.1. Given a subset C of 2<“, we shall call a map f : C' — 2<¢
level preserving if there is a strictly increasing sequence (ky,)m<, such that
f takes each member of C'N 2¥" to a member of 2™. A level preserving
map f is end-extension preserving if whenever m < n, s € C N 2F», and
t € CN2k, then s C ¢ implies f(s) € f(t). A level and end-extension
preserving map shall be called basic. A level-preserving map f is monotone
if for each m < w and s,t € C'N 2% [[s]] C [[¢]] implies [[f(s)]] € [[f(#)]]-

Definition 2.2. Let f be a map from a subset C C 2¥ into 2¥. We say
that f is represented by a basic map if there is a strictly increasing sequence
(km)m<w such that, letting

(2.1) C={XTk,:XeCl, m<uw},
there is a basic map f : C' — 2<% such that for each X € C,
(2.2) F) = J F(X T k).

m<w

In this case, we say that f generates f. If each monotone cofinal function
from an ultrafilter U to another ultrafilter is represented by a basic map on

some cofinal subset of U, then we say that U has basic Tukey reductions.

Note that if f | C is generated by a basic map f , then for each X € C
and m < w, f(X) | m = f(X | k). This fact will be used throughout the
paper.

For a set C' C 2<% [C] denotes the set of all branches through C. If
C={Xkn:X el m<w}, where C C 2% and (kn,)m<s is a strictly
increasing sequence, then [C] C 2“.

Lemma 2.3. Let f be a monotone basic map with domain C C 2<“. Then
f induces a monotone continuous map f* on [C] by f*(X) = Unm<w f(X )
km), for X € [C]. Further, if f generates f on C and C D {X Tky:Xe€
C, m <w}, then f* 1 C= f|C; hence f | C is continuous.

Proof. That f* is continuous on [C] is trivial, since f is basic. Since f is
monotone, it follows that f* is monotone. If f generates f on C, then trivially
f1Cissimply f | C. U

In the next results, members of ultrafilters are identified with their char-
acteristic functions. Then each function f : &4 — V, where U and V are
ultrafilters on w, is identified with the function F': {xy : U € U} — {xv :
V € V}, where F(xu) = xyw)- Rather than using more notation, we shall

use f to denote both of these functions. Since all ultrafilters considered in
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this paper are nonprincipal, the notation f(U) C f(U’) will always refer to
f(U) and f(U’) as subsets of w.

Lemma 2.4 (Extension). Suppose U and V are nonprincipal ultrafilters,
f:U —V is a monotone cofinal map, and there is a cofinal subset C C U
such that f | C is represented by a monotone basic map f Let (kp)m<w be
the strictly increasing sequence such that the domain, C, of f s contained
in Uew 2km . Then there is a continuous monotone map f : 2¥ — 2 such
that

km .

(1) f is represented by a monotone basic map § on U< 27

(2) f1C=f1C;and
(3) f I U is a cofinal map from U to V.

Proof. Let f be a monotone basic map generating f | C, and let (kp,)m<w
be the levels on which f is defined. Thus, the domain of f isC={X[ky:
X €C, m < w}, and for each s € C' N2k, f(s) € 2m.

Claim. There is a monotone basic map ¢, with domain (J,,_,, 2Fm - which
generates a function f : 2¥ — 2¢ such that f | C = f | C.

Proof. Since C is cofinal in & and U is nonprincipal, the finite sequence of
zeros of length k,, is in C, for each m < w. Let D = J,,_ 2" and define
g on D as follows: For t € 28 define §(t) to be the function from m into 2
such that for ¢ € m,

(2.3) 3(6)(i) = max{ f(s)(i) : s € C, [s| < k. and [[s] < [[f]]}-

That is, g(t)(z) = 1 if and only if there is some s € C such that |s| < k,,,
[[s]] C [[#]], and f(s)(i) = 1. It follows from the definition that § is monotone
and level preserving. Since f is monotone, g | C' equals f :

To see that § is end-extension preserving, suppose t C t', where t € 2Fm
and ¢ € 2= for some m < m/. Fix i < m. Suppose that §(¢')(i) = 1.
Then there is some s’ € C N 2" such that i« < n < m/, [[¢']] C [[t']],
and f(s')(i) = 1. Letting j = min{m,n} and s = s | k;, we see that
s € Cand [[s]] C [[t' | km]], where ¢ | k,, = t; moreover, f(s)(i) = 1,
since f(s) = f(s') | j. It follows that §(t)(i) = 1. On the other hand, if
§(t')(i) = 0, then by the definition of §, f(s)(i) = 0 for all s € C'NJ, ., 2*»
such that [[s]] C [[t]]. Hence, §(¢)(i) = 0. Therefore, §(t') | m = Q(t)._

Now define f : 2 — 2¢ by

(2.4) F2) = 9(Z I k).
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Then f is generated by the basic map g. It follows that f is monotone. Since
g | C equals f, it follows that f | C= f | C. O

Thus, f is continuous on 2 and (1) and (2) of the Lemma hold. To show
(3), it suffices to show that f I U has range inside of V, since f | C equals
f I C which is monotone and cofinal in V. Let U € U be given. Fix S € C
such that U D S. Then f(U) D f(S) = f(S) € V, which concludes the
proof. O

In the main theorem of this section, we show that the property of hav-
ing basic Tukey reductions is inherited under Tukey reducibility below any
ultrafilter having monotone basic Tukey reductions and satisfying the prop-

erty (%) below.

Theorem 2.5. Suppose that the ultrafilter U has monotone basic Tukey
reductions. Suppose further that for each monotone cofinal map f from U
to another ultrafilter, there s some cofinal subset C C U such that f | C is
represented by a monotone basic function on some levels (ky,)m<w Satisfying
the following property:

(¥) For each X € C and each m < w, there is a Z € C such that Z O X
and Z | kp, = X | k.

Then every ultrafilter V Tukey reducible to U also has basic Tukey reduc-

tions.

Proof. Suppose that U satisfies the hypotheses and let V <; U. We may
assume that U is nonprincipal, for the result holds immediately if U is
principal. By Lemma 2.4, there is a map f : 2 — 2¢ generated by a
monotone basic map f U, w 2km s 2<@ for some increasing sequence
(Km)m<w, such that flU:U—Vis a cofinal map. We shall let f denote
the restricted map f | U. Suppose W <r V, and let h : V — W be a
monotone cofinal map. Extend A to the map h : 2¢ — 2 defined as follows:
For each X € 2¥/ let

(2.5) h(X)={nV):VeVandV DX}

Notice that & is monotone. Furthermore, it follows from A being monotone
that h | V = h.

Define § = ho f. Then §: 2% — 2% and is monotone. Letting ¢ denote
g | U, we see that g = ho f; hence g : Y — VW is a monotone cofinal map.
By the hypotheses, there is a cofinal subset C C U and a monotone basic
map ¢ : C — 2<¢ generating ¢ [ C such that (x) holds, where (k.,)m<w 1S
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the strictly increasing sequence associated with g and C' = {X [ k,, : X €
C and m < w}.

Without loss of generality, we may assume that f and g are defined on the
same levels (k;,)m<w and that kg = 0: For if § is defined on {X [ j,, : X € C
and m < w}, we can take [,, = max(kn,, j,,) and define f'(s) = f(s | kn)
for s € 2 and §(X | l,) = (X | jm) for X € C and m < w. Notice
that whenever s € C N2 and s C X € C, then f(s) = f(X) | m and
g(s) = g(X) [ m.

Define

(2.6) D ={f(s):seC}and D= f[C].

Notice that in fact D ={Y [ m:Y € D, m < w}, and D is cofinal in V
since f : U — V is monotone cofinal and C is a cofinal subset of . Let C

denote the closure of C in the topological space 2¢. Since f is continuous on
the compact space 2 and f | C = f | C, it follows that D = flCl = f[E]

Claim 1. For each Y € D and each m < w, there is an m > m satisfying
the following: For each Z € C such that f(Z) | i = Y | 7, there is an
X e Csuch that f(X)=Y and X [ ky, = Z | k..

Proof. Let Y € D and suppose the claim fails. Then there is an m such that
for each n > m, there is a Z, € C such that f(Zn) mn=Y | n, but for each
X € C such that f(X) =Y, Z, | km # X | ky,. C is compact, so there is a
subsequence (Z,,,)i«., which converges to some X € C. Since f is continuous,
f(Z,,) converges to f(X). Since for each i < w, f(Z,,) | n; =Y | n, it
follows that f (Z,,) converges to Y. Therefore, f(X) = Y. Further, since
Zn, — X, there is a j such that for all « > 5, Z,,. | k,, = X | ky,,. But this
is a contradiction since X € C and f(X) =Y. O

Claim 2. There is a strictly increasing sequence (J,; )m<. such that for each
m < w, forall Y € D and Z € C with f(Z) | jmu = Y | jm, there is an
X eCsuch that f(X)=Y and X [k = Z | k.

Proof. Let jo = 0 and note that j, vacuously satisfies the claim. Now sup-
pose that m > 1 and suppose we have chosen jj < - -+ < j,,,_1 satisfying the
claim. For each Y € D, there is an 7 (Y’) > m satisfying Claim 1. The finite
characteristic functions Y [ m(Y") determine basic open sets in 2¢; and the
union of these open sets (over all Y € D) covers D. Since D is compact,
there is a finite subcover, determined by some Yy [ m(Yp),...,Y; | m(Y)).
Take jp, > max{jm,_1,m(Yp),...,m(Y;)}. By this inductive construction,

we obtain a sequence (J,)m<, Which satisfies the claim. O
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Recall that the notation (X)) [ m (and analogues) has the dual meaning
of both a characteristic function with domain m and also the set [[§(X)]]Nm.
For clarity, in the next few claims, we shall use the precise notation of
[[g(X)]] "' m to denote the set, and g(X) | m to denote the characteristic

function.

Claim 3. For each X € C and m < w,
(2.7) (gD nm C[[g(X T k)]

Proof. Let X € C and m < w be given, and let s denote X [ k,,. Then s € C,
and for any Z € C such that Z | k,,, = s, we have that §(Z) | m = g(s).
Since the property (%) on C implies there is a Z € C such that Z O X and
Z | k,, = s, and since ¢ is monotone, it follows that

[GEONNm S (WG2)INm: Z € Cand Z 2 X} = [[§(s)]].

Claim 4. Let Y € D and m be given, and let £ =Y | j,,. Then

[A(Y)]) vm S [[g(s) T m],
for each s € C'N 2%m such that f(s) =

Proof. Let Y € D and m be given, and let t =Y [ j,,. Let s be any member
of C'N 2%m such that f(s) = t. By Claim 2, there is an X € C such that
f(X) =Y and X | k,, = s [ k. To prove the claim, we shall show that
the following holds:

(2.8) [A(Y)]) nm = [[g(X)]] N [[ (

) X
The first equality holds since f(X) =Y and ho f(X) = §(X). The last
equality holds since (X [ k) = g(s [ k ) g(s) [ m. The inclusion holds
by Claim 3. U

Finally, we define the finitary function h which will represent h on D.

Let D' = {t € D:3m < w(|t| = jn)}. For t € D' N 29m define h(t) to be
the function from m into 2 such that for : € m,

(2.9) h(t)(i) = min{g(s)(i) : s € C N 2%m and f(s) = t}.

In words, h(t) is the characteristic function with domain m of the intersec-
tion of the subsets a of m for which there is some s € C'N2%m with f(s) = ¢
such that g(s) [ m is the characteristic function of a with domain m. By
definition, % is level preserving.

Claim 5. & is basic and generates h [ D.
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Proof. Let Y € D, Z be a member of C such that f(Z) =Y, and m < w be
given. Since Z € C, f(Z) = f(Z). Let t =Y | jp and u = Z | kj,,. Then
f(u) =t,s0 [[g(u) [ m]} 2 [[MB)]]. Since Z € C, [[g(Z)]] vm = [[g(u) | m]].
Thus,

~

(2.10) [[n(V)NJNm = [[ho f(Z)]INm = [[g(Z)]I0m = [[g(w) T m]] 2 [[A(1)].

Now suppose s € C' N 2¥m and f(s) = t. By Claim 4, since h | V = h,
we see that [[R(Y)]]Nm = [A(Y)]]Nnm C [[§(s) | m]]. Since s was arbitrary,
it follows that [[2(Y)]] N'm C [[A(t)]]. Therefore, A(Y | jn) = h(Y) | m.

Thus, h generates h on D. It follows that h is end-extension preserving:
If t C t" are members of D’ of lengths j,, and j,, respectively, then letting
Y be any member of D such that ¢’ is an initial segment of Y, we see that
ht)=h(Y) | m=(hY) | m) | m=h(t')] m. Therefore, h is basic. [

Thus, h | D is generated by the basic map hon D' Thus, V has basic
Tukey reductions. O

Every p-point has monotone basic Tukey reductions satisfying the addi-
tional property (x) of Theorem 2.5, as was shown in the proof of Theorem
20 of [8], the cofinal set C there being of the simple form P(X)NU for some
X € U. Hence, the following theorem holds.

Theorem 2.6. Every ultrafilter Tukey reducible to a p-point has basic, and
hence continuous, Tukey reductions.

Recall that an ultrafilter V is Rudin-Blass reducible to an ultrafilter W
if there is a finite-to-one map h : w — w such that V = h(W). Thus,
Rudin-Blass reducibility implies Rudin-Keisler reducibility. Our Theorem
2.6 combines with Theorem 10 of Raghavan in [13] (see Theorem 1.6 for the
statement) to yield the following.

Theorem 2.7. Suppose U is Tukey reducible to a p-point. Then for each
g-point V, V <p U implies ¥V <rp U.

Remark 2.8. Stable ordered-union ultrafilters are the analogues of p-points
on the base set FIN = [w]<* \ {0} (see [1]). In Theorems 71 and 72 of [8],
it was shown that for each stable ordered union ultrafilter ¢, both U and
its projection Upmin max have continuous Tukey reductions, with respect to
the metric topology on the Milliken space of infinite block sequences. It
is of interest that the ultrafilter Upin max is rapid, but is neither a p-point
nor a ¢-point, and condition (x) of Theorem 2.5 is satisfied. Further, all

ultrafilters selective for some topological Ramsey space have monotone basic
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Tukey reductions, under a mild assumption which is satisfied in all known
topological Ramsey spaces, Dobrinen and Trujillo showed in Theorem 56 of
in [7]. Many such ultrafilters are not p-points.

It should be the case that by arguments similar to those in Theorem
2.5, one can prove that every ultrafilter Tukey reducible to some stable
ordered union ultrafilter, or more generally, any ultrafilter selective for some
topological Ramsey space, also has continuous Tukey reductions. We leave

this as an open problem in Section 7.

3. ITERATED FUBINI PRODUCTS OF ULTRAFILTERS REPRESENTED AS
ULTRAFILTERS GENERATED BY /-TREES ON FRONTS

Fubini products of ultrafilters on base set w are commonly viewed as
ultrafilters on base set w x w. As was pointed out to us by Todorcevic, Fubini
products of nonprincipal ultrafilters on base set w may also be viewed as
ultrafilters on base set [w]?. This view leads well to precise investigations of
ultrafilters constructed by iterating the Fubini product construction. In this
section, we review Fubini products of ultrafilters and countable iterations
of this construction. After reviewing the notion of front, we then show how
every ultrafilter obtained by iterating the Fubini product construction can
be viewed as an ultrafilter generated by certain subtrees of a base set which
is a tree, and in particular, a front. This section is a primer for the work in
Section 4.

Definition 3.1. Let ¢/ and V,, (n < w) be ultrafilters on w. The Fubini
product of V,, over U, denoted lim,,_;; V,, is defined as follows:

(3.1) liI%Vn:{Agwxw:{nEw:{jew:(n,j)GA}EVH}GU}.
n—r
When all V,, =V, then we let U - V denote lim,,_; V,,.

Let U and V be ultrafilters on countable base sets I and J, respectively.
We say that U is isomorphic to V if there exists a bijection 7 : [ — J such
that V = {rn[U] : U € U}. Up to isomorphism, Definition 3.1 also defines
Fubini products of ultrafilters on arbitrary countable infinite sets.

The Fubini product construction can be iterated countably many times,
each time producing an ultrafilter. For example, given an ultrafilter V. let
V! denote V, and let V"1 denote V - V™. Naturally, V* denotes lim,,_,, V™.
Continuing in this manner, we obtain V¢, for all 2 < o < w-2. At this point,
it is ambiguous what is meant by V2. It is standard practice for countable
a limit ordinal a to let V* denote any ultrafilter constructed by choosing

(arbitrarily) an increasing sequence (o)<, converging to o and defining V¢
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to be lim,_.y, V%, but this is ambiguous, since the choice of the sequence
(tn)n<w is completely arbitrary.

However, each countable iteration of Fubini products of ultrafilters (in-
cluding the choice of sequence at limit stages) can be represented as an
ultrafilter generated by U-trees (see Definition 3.3) on a base set which is a
front. This representation is unambiguous at limit stages. For this reason,
Theorem 4.4 in the next section, showing that iterations of Fubini prod-
ucts of p-points have Tukey reductions which are as close to continuous as
possible, will be carried out in the setting of U-trees.

We now recall the definition of front. The reader desiring more back-
ground on fronts and U-trees than presented here is referred to [17], pages
12 and 190, respectively.

Definition 3.2. A family B of finite subsets of some infinite subset I of w

is called a front on [ if

(1) a iZ b whenever a,b are in B; and
(2) For every infinite X C [ there exists b € B such that b C X.

Recall the following standard set-theoretic notation: [w]® denotes the
collection of k-element subsets of w, [w]<* denotes the collection of subsets
of w of size less than k, and [w]=* = [w]<F*1. Tt is easy to see that for each
k < w, [w]* is a front.

Every front is lexicographically well-ordered, and hence has a unique
lexicographic rank associated with it, namely the ordinal length of its lexi-
cographical well-ordering. For example, rank({0}) = 1, rank([w|') = w, and
rank([w]?) = w - w. We shall usually drop the adjective ‘lexicographic’ when
talking about ranks of fronts.

Given a front B, for each n € w, we define B, = {b € B : n = min(b)}
and B,y = {b\{n} : b € B,}. Then B = J, ., Bn, and each B, = {{n}Ua :
a € By, ). Note that for each n € w, Byyy is a front on [n 4 1, w) with rank
strictly less than the rank of B. Conversely, given any collection of fronts
By on [n + 1,w), the union {J,, ., By is a front on w, where B, is defined
as above to be {{n} Ua:a € By,}.

Given any front B, we let B denote the collection of all initial segments
of members of B. Let B~ denote the collection of all proper initial segments
of members of B; that is, B~ =B \ B. Both B and B~ form trees under
the partial ordering C.
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Definition 3.3. Given a front B and a sequence U = U, : c € B‘) of
nonprincipal ultrafilters Y. on w, a U-tree is a tree T C B such that ) € T
and for each c € TN B, {n €ew:cU{n} e T} € U..

Notation. Given a front B and a sequence U = U, :ce B*) of nonprin-
cipal ultrafilters on w, let T = T(Uf) denote the collection of all U-trees. For
any c€ B~ and T € %, let T,={t €T :tCcortc}, the tree with stem
¢ consisting of all nodes in 7' comparable with c. If T' is a U-tree, then the
set of maximal branches through 7", denoted [T, is exactly T'N B.

Todorcevic pointed out to us the following correspondence between Fu-
bini iterates and ultrafilters on fronts. Start by fixing a collection Py of
nonprincipal ultrafilters on w. Given a < wy, define P,i1 = {lim,_,, V, :
U € Py and V, € P,}. For each limit ordinal o, define P, = (J;.,, Ps. Then
Pew, = U{Pa : @ < wi} is the collection of all iterated Fubini products of
nonprincipal ultrafilters on w. Each W € P_,, has a well-defined notion of
rank, namely rank(W) is the least a < w; for which it is a member of P,.
The following lemma will be used in the next section, with P, being the
collection of all p-points.

Lemma 3.4. If W € P_,,,, then there is a front B and ultrafilters U. € Py,
¢ € B, such that W is 1somorphic to the ultrafilter on B generated by the
(U, : ¢ € B™)-trees.

Proof. We prove by induction on a < w; that the fact holds for every
ultrafilter in P,. If W € Py, then W is represented on the front B = [w]!
via the obvious isomorphism n — {n}.

Let 1 < o < wy and assume the fact holds for each ultrafilter in U,Y <o Py
If v is a limit ordinal, then there is nothing to prove, so assume o = 41 for
some 3 < wy. Suppose that W € P,. Then W = lim,,_,yy W,,, where U € P,
and for each n, W,, € Pg. By the induction hypothesis, for each n < w there
is a front By,y on w and there are ultrafilters U, . € Py, c € B/{;}’, such
that W, is isomorphic to the ultrafilter generated by (U, . : ¢ € E{Z}_)—trees
on By,. Without loss of generality, we may assume that By, is a front on
[n+1,w). In the standard way, we glue the fronts together to obtain a new
front: Let B = J,,.,{{n} Ub:b € By, }. Then B is a front on w.

Let Uy = U and Upyue = Uy e, for each ¢ € By,y. It is straightforward
to check that W is isomorphic to the ultrafilter on B generated by the
Uy : b € B™)-trees. O

The case when a = 2 of the proof of Lemma 3.4 yields the following

result, which seems interesting in its own right.
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Lemma 3.5. The Fubini product lim,,_y; V,, of nonprincipal ultrafilters on
w is isomorphic to the ultrafilter on B = [w]* generated by U= U, :c €
[w]=1)-trees, where Uy = U and for each n € w, Upy = V,.

4. BASIC COFINAL MAPS ON ITERATED FUBINI PRODUCTS OF P-POINTS

Fubini products of p-points do not in general have continuous Tukey re-
ductions, as pointed out in the introduction (see below for more discussion).
However, we will show that they do have canonical cofinal maps satisfying
many of the properties of continuous maps, which we call basic (see Defini-
tion 4.2 below). Making use of the natural representation of a Fubini iterate
of p-points as an ultrafilter generated by U-trees on some front B (recall
Lemma 3.4), we show in Theorem 4.4 that countable iterates of Fubini
products of p-points have basic Tukey reductions. Such Tukey reductions
are continuous on the space 2B with the Cantor topology, where B is the
tree consisting of all initial segments of members of the front B. This ex-
tends a key property of p-points (recall Theorem 1.3) to a large class of
ultrafilters. Theorem 4.4 will be applied in Sections 5 and 6.

Corollary 11 of Raghavan in [13] shows that it is impossible for a Fu-
bini product of two non-isomorphic selective ultrafilters to have continuous
cofinal Tukey reductions. The next proposition shows that Fubini products
of nonprincipal ultrafilters do not have monotone basic Tukey reductions
given by an approximating map on the finite subsets of the base for the
ultrafilter. Thus, it is impossible to attain Theorem 1.3 for Fubini products
of nonprincipal ultrafilters.

2UJ><UJ

Recall that the Cantor topology on is the topology generated by
basic open sets of the form {h € 29*“ : s C h}, where s is a function from
some finite subset of w X w into 2. Equivalently, letting (w; : ¢ < w) be any
linear order of the members of w X w in order type w, the Cantor topology
on 2“*¢ ig generated by basic open sets of the form {h € 2“*¥ : s C h},
where s is a function from (w; : i < k) into 2 for some k < w. For k < w,
let Wy denote {w; : i < k}, so that 2"+ denotes the set of all functions with
domain {w; : i < k} into 2. Given k < w and X C w X w, let X [ W}, denote

the characteristic function of {w; € X : i < k} on domain W.

Proposition 4.1. Let U and V be any nonprincipal ultrafilters and let 7 :
wXw — w be defined by m(m,n) = m. Let f : 2°%“ — 2% be defined by
f(A) = 7[A]. Then for any cofinal subset C of U -V, f | C is not generated

by a monotone basic map in the sense of Definition 2.2: There is no strictly
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increasing sequence (km)m<w and monotone basic map f : |J 2Wkm s

m<w

2<% generating f | C.

Proof. Let g denote the restriction of f to the ultrafilter ¢ - V. Notice that
g is a monotone cofinal map onto U. Suppose toward a contradiction that
there is a cofinal subset C of U -V for which g [ C is represented by a
monotone basic function. In this context, using the Cantor topology on
2% in place of 2%, Definitions 2.1 and 2.2 are interpreted as follows: There
is a strictly increasing sequence (k,,)m<w. such that letting C' = {X [ Wy, :
X € C, m < w}, there is a monotone basic map g : C' — 2<% such that for
each X € C,

(4.1) 9(X)=J a(X 1 Wy,).

m<w

To be clear in this context, ¢ is level preserving means that for each s €
C N 2%em  g(s) is a member of 2™. For two members s and ¢ of C, t end-
extends s, written s C ¢, if and only if the domain of s is W and the domain
of t is Wy, for some j <[, and for each i < j, s(w;) = t(w;).

By the Extension Lemma 2.4, there is a monotone map f DWW oW
2Wkm such that
f1C=g]C. As seen in the proof of Lemma 2.4, modified to the current

which is represented by a monotone basic map f on J,,,

context, the map f is defined by

(42)  f(t)(w;) = max{g(s)(w;) : s € O, |s| < Ky and [[s]] € [[]]},

for t € 2Wem and i < m.

Claim. There is a j < w and an infinite collection {s; : [ < w} C C, satisfy-
ing the following: For each | < w, letting d; denote [[s;]], 7 = min(7[d}]), and

letting ¢; denote the least ¢ such that both w; € d; and j = 7(w;), (i1)i<w

forms a strictly increasing sequence.

Proof. For s € C, let dy denote [[s]]. Suppose toward a contradiction that
for each j < w, there is an 4; such that for each s € C with j = min(7[d,]),
there is an 7 < Ej such that w; € dy and 7 = 7w(w;). Fix X € C. Since C
is a cofinal subset of the Fubini product of two nonprincipal ultrafilters, it
follows that the set

(4.3) J = {min(r[ds]) : s € C' and ds, C X'}
is infinite. For j € J let

(4.4) S;={seC:ds C X and min(n[ds]) = j}.
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Then for each j € J and s € S}, there is some w; € d, with i < Ej. Thus,
every member of C has infinite intersection with {w; : 35 (j = 7(w;) and i <
%j)}. This contradicts the fact that ) is nonprincipal.

Thus, the negation of the supposition holds: There is a j < w such that
for each ¢ < w, there is an s € C with min(7[d,]) = j such that, whenever
w; € dy and j = w(w;), then i > i. Fix such a j. Take sy € C such that
min(7[ds,]) = j. Take ig least such that w;, € ds, and 7w(w;,) = j. Using i
as the next i, there is an s; € C with min(r[d,,]) = j and i; > iy, where
iy is least such that w;, € ds, and 7(i;) = j. In this way, one constructs a
collection {s; : | < w} satisfying the Claim. O

Take j < w and {s; : | < w} as in the Claim. Define Y; € U - V by
Y, = 51U (j,w) Xw. Then ¥; — Y, where Y = (j,w) X w, which is a member
of U - V. Since f is generated by a basic map, f is continuous on 2<%
Hence, f(V;) converges to f(Y).

On the other hand, we shall show that for each | < w, j is in f(Y;) while
7 is not in f (Y), contradicting continuity of f. Note that for each | < w,
s; € C implies there is an X € C whose characteristic function extends s;.
Since g is generated by the basic map ¢, and j € 7[X] implies j € g(X),
it follows that j € [[¢(s;)]]. By the definition of f in (4.2), it follows that
jellf(s)]] € f(Y)). However, j is not in f(Y), since f is generated by f,
it follows from the definition of f in (4.2) that j & [[f(Y | k)] for any
m < w.

Thus, there is no cofinal C C U -V for which g | C is generated by a
monotone basic map on the topological space 2“*%. U

However, we will soon show that each ultrafilter YW which is an iterated
Fubini product of p-points has finitely generated Tukey reductions which,
moreover, are basic, and hence continuous, with respect to the topology
on the appropriate tree space. Toward this end, we proceed to give the
definition of basic for this context, and then prove the main results of this

section.

Notation. For any subset A C [w]<¥, recall that A denotes the set of all
initial segments of members of A. For any front B, we let B~ denote B \ B.
For any subset A C [w]<* and k < w, let A [ k denote {a € A : max(a) < k}.
For A C B and k < w, we shall abuse notation and also use A | k to denote
the characteristic function of the set A | £ on domain B | k. For each k < w,
let 25'F denote the set of all functions from B | k into {0,1}. Notice that
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this is exactly the collection of characteristic functions of subsets of B | k
on domain B | k.

Definition 4.2. Let B be a front on w, T C B be a tree, and (nk)k<w be an
increasing sequence. We say that a function f C Ukew 9Tk _y 9<w ig Jevel
preserving if f c ol 2F for each k < w. f is end-extension preserving
if whenever k < m and A C T then f(A | ng) = f(A | ny) | k. fis
basic if it is level and end-extensions preserving. f is monotone if whenever
ACCCTand k < w, then [f(A | n)]] C [f(C T m)]].

Let U be an ultrafilter on B generated by (U, : ¢ € é_)—trees, let f :
U — V be a monotone cofinal map, where V is an ultrafilter on base w, and
let T' € ‘Z(Zj) Let T | T denote the set of all U-trees contained in 7. We
say that f : Us<w 9T _y 9<w generates f on T | T if for each T € T | T,
(4.5) £ = F(T 1),

k<w

We say that U has basic Tukey reductions if whenever f : U — V is a
monotone cofinal map, then there is a 7 € T(U) and a basic map f which
generates fon X | T.

Remark 4.3. Note that if f witnesses that f is basic on T | T, then f
generates a continuous map on the collection of trees in T | T, continuity
being with respect to the Cantor topology on 2B, Moreover, we may define
amap ¢ on B as follows: For each finite subset A C B, define §(A) = f (fl),
where A is the collection of all initial segments of members of A. Then
¢ is finitary, but not necessarily continuous on 27, and § generates f on
{[T] : T € T | T} which is a base for the ultrafilter. Thus, for ultrafil-
ters generated by U-trees, basic Tukey reductions imply finitely represented
Tukey reductions on the original base set B.

Now we prove the main theorem of this section. Fix a total order of [w]<*
in order type w such that maxa < maxb implies a < b for all a,b € [w]<¥.
Note that for each k < w, the set {¢ € [w]<¥ : maxc = k} forms a finite

interval in ([w]<¥, <).

Theorem 4.4. Let B be any front and U= U, :ce 3_) be a sequence of
p-points. Then the ultrafilter U on base B generated by the U-trees has basic
Tukey reductions. Therefore, every countable iteration of Fubini products of

p-points has monotone basic Tukey reductions.

Proof. Let V be some ultrafilter Tukey reducible to U, and let f : U — V be

a monotone cofinal map. If V is a principal ultrafilter, say generated by the
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singleton {r}, then we claim that the theorem trivially holds. Since the set
consisting of {r} is cofinal in V, there is some X € U such that f(X) = {r}.
Set ny = k and define f : Uk<w 2Bk, 2<¢ ag follows: For k < w and
s € 2Bk f(s) is the sequence in 2% such that for each i < k, f(s)(i) = 0
if and only if i # r. Then f is monotone basic and generates f on U | X.
Thus, we shall assume from now on that V is nonprincipal.

We let T denote T(U, : ¢ € B~), the set of all U-trees. Recall that T is
a base for the ultrafilter /. We make the convention that max () = —1. For
each k < w, let B | k£ denote the collection of all b € B with maxb < k.
Thus, B | 0= {0}, B | 1 = {0, {0}}, and so forth. Fix an enumeration of the
finite, non-empty C-closed subsets of B as (A; i < w) sothat for each i < j,
max | J A; < max|JA;. Let (pr)r<w denote the strictly increasing sequence
so that for each k, the sequence (A; : i < pg) lists all C-closed subsets of
B | k. (For example, if B = [w]?, then B = [w]=2 and B~ = [w]=!, and we
may let Ao = {0}, Ay = {0, {0}}, As = {0, {0}, {1}}, A3 = {0, {0}, {0, 1}},
Ay = {0,{0},{0,1},{1}}, A5 = {0,{1}}. Note that py = 1, p; = 2, and
p2 =6.)

For k < w and 7 < py, define

(4.6) BfF = A;U{be B:3a € Aj(bTaand min(b\ a) > k)}.

Thus, Bf is the maximal tree in ¥ for which T [ k = A;. For a tree T' C B
and ce TN l—?‘, define the notation

(4.7) U(T) = {l > max(c) : cU{l} € T}.

We refer to U.(T') as the set of immediate extensions of ¢ in T. Note that
if T €%, then for each c € TN B~, U.(T) is a member of U,.. For ¢ € B-,
recall that BC denotes the tree of all @ € B such that either a C ¢ or else
a Jc.

Our goal is to construct a tree T € T and find a sequence (ny)g<, of
good cut-off points such that the following (®) holds.

®) ForeachTCTin %, k <w, and 4 < pp, such that A; =T | ng, for
k
every j <k,
j € f(T]) <= j € f(ITNB™)).

Claim 1. The property (®) implies that f has monotone basic Tukey re-
ductions.

Proof. For k < w and T € T | T, define

~

(4.8) F(T 1) = f(IT N BM*]) |k,
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where ¢ is the integer below p,, such that T' | n;, = A;. By definition, f
is level preserving. Let [ > k and let m be such that T' | n; = A,,. Then
A, | ng = A;. For j < k, (®) implies that j € f([T N B™]) if and only
if j € f([T)) if and only if j € f([T'N B™]). Thus, j € [[f(T | ny)]] if
and only if j € [[f(T | n;)]]. Therefore, f is end-extension preserving; that
is, f(TA b)) | k= f(T ] n~k). Furthermore: fT]) = Usew F(T 1 ng):;
thus, f generates f on ¥ | T. To see that f is monotone, suppose that
S 1 ng CT | ngfor some S,T € T | T. Let i,j < pi be such that
A; =S [ ngand A; =T | ng. Then

(4.9)  f(STm)=f(TNB*) 1k f(TNB™) k= f(Tn),

where C holds because of (®) and the fact that f is monotone and TOBZ" b C
TN Bj”’“ Therefore, f is a monotone basic map generating f on ¥ [ 7. O
The construction of T and (nk)r<w takes place in three stages.

Stage 1. In the first stage toward the construction of T, we will choose
some RF € T with A; C RF such that for all k < w, the following holds:

(%) For all i < pp and T C RF in T with T | k = A,, for each j < k,

j € f([T1) <= j € f([RY)).

We point out that for any front, Ag is always {0} and py = 1. Since we
are assuming V is nonprincipal, choose an R)) in ¥ so that 0 & f([R]). Now
let £ > 0, and suppose we have chosen Ré- for all | < k and j < p;. For
i < pr_1, if there is an R C R¥'in T such that R | k = A; and k & f([R]),
then let R* be such an R; if not, let R¥ = RF' N B¥. Now suppose that
Pr—1 <1 < pg. If there is an R € T such that R [ k= A; and 0 & f([R]), let
R, be such an R; if not, let R, = BF. Given R}, for j < k, if there is an
R e T such that R C R};, R | k= A;, and j + 1 ¢ f([R]), then let R},
be such an R; if not, then let R}, = R ;. Finally, let R} = R;,.

It follows from the construction that for all 1 <[ < k and p;_1 <1i < py,
(4.10) R.,2R,,D...2R,, =R DR},
and moreover, for any j <,

(4.11) R, TI=R|1l=Ri|k=A.

Fix k < w: we check that (x), holds. Let ¢ < pg, T C RF in T with
T | k= A; and j < k be given. If j € f([T]), then j must be in f([R}]),
since T C R¥ and f is monotone. Now suppose that j ¢ f([T]); we will
show that j & f([RF]). Let p_; = 0, and let | < k be the integer satisfying
pi—1 < i < p;. Note that max|JA; =1 —1. Thus, T [ k= A; =T | . We

now have two cases to check.
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Case 1: j < I. Notice that T C R} C RL C R} ;. If j = 0, then R ; C B!
and we let R’ denote B!; if j > 0, then R,; C R, | and we let R’ denote
R.; ). Since j is not in f([T]) and T' [ I = A;, T is a witness that there
is an R C R with R | [ = A; such that j € f([R]). Thus, R, was chosen
so that j & f([R};]). It follows that j & f([R}]), since Rf C R]; and f is
monotone.

Case 2: | < 7 < k. In this case, T' C Rf - R{ - Rg_l. Since T is a
witness that there is an R C R)™' with R | | = A; and j ¢ f([R]), R}
was chosen so that j & f([R’]). Thus, j & f([RF]), since RF C R’ and f is
monotone.

Therefore, j € f([T]) if and only if j € f([R¥]); hence (*); holds. This

concludes Stage 1 of our construction.
Given k < w and ¢ € B~ [ k, define
(4.12) SE=(WR:1<k i<p, and c € R}.

We claim that S¥ is a member of T and that ¢ € S¥. To see this, notice that
for c € B~ I k, letting [ < k be least such that [ > maxc, then ¢ is in A; for
at least one i < p;. Since A4; C R, the set {(I,4) : 1 < k, i < p;, and c € R}
is nonempty; hence, ¢ € S*. Moreover, S* is a member of T, since it is a
finite intersection of members of ¥. It follows that for each a € S¥NB~, the
set of {{ > max(a) : aU {I} € S¥} is a member of the ultrafilter U,. Define

(4.13) UF .= U.(S*) = {l > maxc: cU{l} € S¥}.

C

Thus, for each ¢ € B~ and j = max(c) 4 1, we have S/ D 89t1 D ... each
of which is a member of T; and U? 2 U7 O ... each of which is a member

of the p-point U,.

Stage 2. In this stage we construct a tree 7™ in ¥ which will be thinned
down one more time in Stage 3 to obtain a subtree 7 C T* in ¥ such that
frer T is basic. The tree T* which we construct in this stage will have

sets of immediate successors
(4.14) U.:=U(T") ={l > max(c) + 1: cU{l} € T"},

for ¢ € T* N B~. The sets U, will have interval gaps which have right
endpoints which line up often and in a useful way (meshing). This will
aid in finding good cut-off points n; needed in Stage 3 to thin T down
to T. Toward obtaining these interval gaps, we will construct a family of
functions which we call meshing functions m(c,-) : w — w satisfying the

following ‘meshing property’:
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(t) For each ¢ € B~ and j < w, if a € B~ is such that a < ¢, then there
exists ¢ < w such that m(a,2i) = m(c, 2j).
The meshing functions of (1) will aid in obtaining a tree T* € T with the
following properties:

(1) Forallce T*N B,
(a) U, C U™ and
(b) For all i < w, U.\ m(c,2i) = U, \ m(c,2i + 1) C U2,

We now begin the construction of the meshing functions m(c, -) and the
sets U, proceeding by recursion on the well-ordering (B ,<). Since 0 is
~-minimal in B, we start by choosing gy, m(0, -), and Y} as follows. Since
Up is a p-point, we may choose a Uj € Uy such that Uy C* Ué“ for each
k. (Recall the definition of U from equation (4.13).) Let gy : w — w be a
strictly increasing function such that for each k, Uj \ gp(k+1) C Ug”(k), and
gp(0) > 0. If U, [90(27), 90(2i + 1)) € Up, then define m(D, k) = go(k + 1);
otherwise, | J;c,,[g0(2¢ + 1), g9(2i + 2)) € Uy, and we define m(0, k) = go(k).
Let Yy = U, [m(0,2i + 1), m(0, 2i 4 2)) and define

(4.15) Up=UyNU; NYy.

Note that for each k, Uy \ m(0,k + 1) C Ug"(w’k).

Now suppose ¢ € B~ and for all b < ¢ in B~, g, and m(b, -) have been
defined. Since U, is a p-point, there is a U} € U, for which U C* U¥, for all
k > maxc. Let a denote the immediate <-predecessor of ¢ in B~. Let g, :
w — w be a strictly increasing function such that g.(0) > max{maxc, g,(2)},
and

(1,,) For each i < w, Ur\ ge(i + 1) C UZ"; and

(24.) For each j < w, there is an ¢ > 0 such that g.(j) = m(a, 21).
Let Y. denote the one of the two sets (., [9:(27), gc(2i +1)) or |, [9.(2 +
1), 9.(2i+2)) which is in U,. In the first case define define m(c, i) = g.(i+1);
in the second case m(c,i) = ¢.(7). Then

(4.16) Yo = JIm(e,2i + 1), m(c, 2 + 2))

1<w

and is in U,.. Let
(4.17) U, = Uma@+l 0 sy,

This concludes the recursive definition.
We check that (f) holds. Let ¢ € B~ and let ag < --- < a; < ¢ be the
enumeration of all <-predecessors of ¢ in B~. Let J < w be given. Either

m(c,2j) = gc(27) or m(c,27) = g.(2j + 1). By (2,.), 9.(2j) = m(a, 2i) for
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some i, and ¢.(27 + 1) = m(ay, 2i) for some i. Thus, there is an i such that
m(ar, 2i) = m(c, 2j). Let 4, denote this i. Likewise, either m(a;, 2i;) = gq,(241)
or m(ar,2i) = go, (2 + 1). By (24,,)s 9a,(20) = m(a;—1,2t) for some i,
and g,,(24; + 1) = m(a;—y,2i) for some i. Let ¢, denote the ¢ such that
m(a;—1,2i—1) = m(ay,2¢;). Continuing in this manner, we obtain numbers
i, k <, such that

(4.18) m(c,27) = m(ay, 24;) = m(a;_1,2i;_1) = - - - = m(ayg, 2ip).
Hence, (1) holds.

Claim 2. There exists a strictly increasing sequence (my)r<w such that, for

all £,
(4.19) Ve € BT | my, Ir (m(c, 2r) = mpsq).

Proof. Let myg be arbitrary, and let ¢y be the <-maximum of B~ | my. Since
m(co, +) is strictly increasing, we can fix jp € w such that m(co, 2j0) > my.
Let m; = m(cy, 2jo). In general, given my, let ¢; be the <-maximum of B~
my. Since m(cy, -) is strictly increasing, we can fix some j; < w such that
m(cg, 2Jxk) > my, and let my 1 = m(ck, 2jx). In this manner, we inductively
construct the sequence (my)x<,. To check that this sequence has the desired
property, let k& < w be given and fix ¢ € B~ [ my. Since ¢ X ¢, it follows
from () that there exists an r such that m(c, 2r) = m(cg, 2Jx) = mg1. O

Let T* be the tree in T defined by declaring for each ¢ € B~ N T*,
U (T*) = U,. If the reader is not satisfied with this top-down construction
(which is precise as ) is in every member of ¥ and this completely determines
the rest of T*), we point out that 7™ can also be seen as being constructed
level by level as follows. Let ) € T*, and for each | € Uy, put {iI} in T*,
so that the first level of 7™ is exactly {{l} : | € Up}. Suppose we have
constructed the tree T™ up to level k, meaning that we know exactly what
T*N BN [w]=* is. For each ¢ € B~ NT* N [w]*, let the immediate successors
of ¢ in T* be exactly the set U,; in other words, for each | > maxc, put
cU{l} € T* if and only if I € U,.. Recalling that maxc < ¢.(0) < m(c,0)
and U. C Y. = Y.\ m(c,0), we see that each element of U, is strictly greater
than max c. Hence, by constructing 7™ in this manner, we obtain a member
of T such that for each ¢ € T* N B~, U,(T*) is exactly UL,.

We now check that (1) holds. Let ¢ € T* N B~ be given. By (4.17),
U. C UM% g5 (1) (a) holds. By equation (4.16), we see that Y, N
[m(c,2i),m(c,2i + 1)) = 0 for each i. Thus,

(4.20) Ue N [m(e,2i),m(c,2i + 1)) = 0,
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since U, C Y, by (4.17). Recall that U* diagonalizes the collection of sets U*
for all k£ > maxc, and the function g. was chosen to witness this diagonal-
ization so that (1,.) holds. Either m(c, i) = g.(¢) and m(c,i+1) = g.(i + 1),
or else m(c,i) = g.(¢ + 1) and m(c,i 4+ 1) = g.(¢ + 2). In either case, (1,,)
implies that U* \ m(c,i+ 1) € U7“?. Thus

(4.21) U\ m(c,i+1) cumed,

since U, C U by (4.17). (1) (b) follows from (4.20) and (4.21). This finishes
Stage 2 of our construction.

Stage 3. We will show that there is a strictly increasing sequence (ny)g<y,
and a subtree T C T™* in T so that for all k,

~

(4.22) Vee TN (B~ | ng) 3r(mlc,2r) = ng).

The following lemma uses induction on the rank of the front.

Lemma 4.5. Let B be a front on w, and let T* be a ﬁ—tree, where U =
U, :ce B*> 15 a sequence of non-principal ultrafilters on w. Suppose that
strictly increasing functions m(c,-) : w — w for every c € B~ and a strictly
increasing sequence (Mmy)g<, are given such that, for all k,

(4.23) Ve e BT [ my Ir (m(e,2r) = mesq).

Then there exist T C T* such that T is a U-tree and a subsequence (ng)g<w
of (My)k<w such that, for all k,

(4.24) Vee TN (B | ng) Ir(m(e,2r) = ng).

Proof. The proof will be by induction on the rank of B. First assume
rank(B) = 1. In this case, B = B = {#} and B~ = {}. Also notice that the
only ()-tree is {#}. Therefore, setting T = {0} and (np)recw = (M )pew Will
work.

Now assume that rank(B) > 1. Then, for every | < w, By, is a front
on [l 4+ 1,w) of rank strictly less than rank(B). Given | < w, set my(c,-) =

m({l} Ue,-) for c € Eﬁ} For [ € Uy(T*), define

(4.25) Ty ={ce By : {I}Uce T},
and observe that T}" is a Uj-tree, where U = (Unyue : c € B{_l})

Next, we will inductively define subsequences (ni)k@ of (my)g<w for
every j < w. We will also make sure that (n)., is a subsequence of
(ni) k<w Whenever h > j. Furthermore, we will obtain a U-tree T) C Ty for
every | € Uy(T™*), such that, for all &,

(4.26) Yee TN (Bﬁ} k) 3r (my(c,2r) = nk).
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Let (m)icw = (Mi)kew- I 0 & Uy(T*), simply let (n))r<w = (M) pew. If
0 € Up(T™), apply the induction hypothesis to Bygy and T, with respect to
the functions mg(c,-) and the sequence (m0);<,,. This will yield a Uy-tree
Ty C Ty and a subsequence (1)<, of (M%) r<w.

Let (mp)kcw = () kew- If 1 & Up(T*), simply let (n})pcw = (M) )p<w- If
1 € Uyp(T*), apply the induction hypothesis to By} and Ty, with repsect to
the functions my(c, ) and the sequence (m})y<,. Continue as in these first
two steps to complete the inductive construction.

Set h(0) = nd. Given h(k), fix ¢(k) such that nZ((,l:)) > h(k), then set
hk +1) = ng((:)) Notice that exactly one of (J,_,[h(2k), h(2k + 1)) and
Uk<wP(2k+1), h(2k+2)) will belong to Uy, and denote it by Z. Set Uy(T") =
Up(T*) N Z, then define
(4.27) T={0u |J {{Buc:ceT}.

€Uy (T)

It is straightforward to check that T is a U-tree contained in T*. If Z =
Ui<o[P(2k), h(2Fk + 1)), then define nj, = h(2k + 2), otherwise define n;, =
h(2k + 1). We will only complete the proof in the first case, as the other
case is similar.

Fix £k < w and ¢ € Tﬂ(é_ I ng). If ¢ = (), then ¢ € B~ I mj_q,
where j > 0 is such that m; = nj;. Therefore, there exists r such that
m(c, 2r) = m; = ng. Now assume that ¢ # (), and let [ = minc. Since [ € Z
and [ < h(2k+2), we must have [ < h(2k+1). In particular, (n"*1), _ is
a subsequence of (n!)g<,. Therefore, there exists ¢ such that ”252211:11)) = fl.

Finally, since ¢\ {l} € T} N (B{_l} | n), we see that there exists r such that

(4.28)  mle,2r) = my(e\ {I},2r) = nl = n)oy 1) = h(2k +2) = ny,

which is what we needed to show. U
Taking 7" as in Lemma 4.5 concludes Stage 3 of the construction.

Finally, we check that (®) holds. Toward this, we first show that for all
k<wandi<p,,TNB™C R™ It will follow that for each T € ¥ | T
with T' [ n, = A;, we in fact have 7' C R*. This along with (x),, for all
k < w will yield (®).

Claim 3. Let k < w and ¢ < p,, be given, and suppose that A; C T. Then
TNB™C R™.

Proof. Let @ denote T'N B’:”“ Since A; C T, we see that Q | ny = A; which

equals R} | ny. Thus, to prove the claim it is enough to show that for each
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ceQnB,

(4.29) Ue(Q) \ . C Ue(R}™).

Since Q C T C T*, we see that for all c € QN B,

(4.30) Ue(Q) \ e € Ue(T) \ 1 © Ue(T") \ 1.

We have two cases for c.

Case l: c€e QN (B‘ [ ng). Then by Lemma 4.5, there is an r such that
m(c,2r) = ng. By (1) (b), we have that
(4.31) U(T*)\ ng = U(T*) \ m(c, 2r + 1) C UM = g,

Since @ | nx = A; € R, ¢is in R, and hence, S C R, recalling
(4.12). Therefore, recalling (4.13),

(4.32) UM = Ue(S2%) C Ue(R™).
Hence, by (4.30), (4.31), and (4.32), we see that
(4.33) Ue(Q) \ i € Ue(T™) \ g, C U C U(R™).

Case 2: For ¢ € Q N B~ such that maxc > ng, it follows from (1) (a)
that U.(T*) C Uc(SglaX(C)H). The proof will proceed by induction on the
cardinality of ¢\ ng.

Suppose |c¢ \ ng| = 1. Let [ = maxe, and let a denote ¢ \ {{}. Then
[ € Uy(Q) \ ng. Further, a is a member of R}, since a € Q | n, = A; C R;™.
Since by Case 1, U,(Q) \ ny is contained in U, (R.*), we have that ¢ € R'*.
Further,

(4.34) Ue(Q) C Ue(T*) C Ue(SEH) C Ue(R}™).

since [ +1 > ng, i < p,, and ¢ € R imply that S C RI* by the
definition (4.12) of SX1. Thus, Case 2 holds for the basis of our induction
scheme.

Now assume that Case 2 holds for all ¢ € QN B~ with 1 < |¢\ ngx| < m.
Suppose ¢ € QN B~ with |¢\ ng| = m+1. Letting { = maxc and a = ¢\ {I},
the induction hypothesis applied to a yields that a € R;* and U,(Q) C
U,(R!*). Thus, ¢ € R™. Again, as in (4.34), we find that U.(Q) C U.(R;™*),
which finishes the proof of Case 2. U

To finish the proof of the theorem, we prove that (®) holds. Let T'€ ¥ |
T, k < w, and suppose @ < p,, is the integer such that 7' | n, = A;. Letting
Q denote T N Bf’“, we see that T C (. By Claim 3, Q@ C R;™; so for all
J <k,

(4.35) j € [(T]) <= j € f([R"])
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by (%)n,. Since Q | ny = A;, it follows from (x),, that for all j < k,

(4.36) j € f(Q) < j € f([R™]).
Equations (4.35) and (4.36) complete the proof of (®). By Claim 1, f is
monotone basic on ¥ | T. The concludes the proof of the theorem. Il

We conclude this section pointing out how f may be basic on 28 while
being only finitely generated on 2”. Given a front B and a set C C 25,
let C denote {X : X € C}, a subset of 25. Letting C' denote {X | ky, :
X € C and m < w}, we point out that any finitary function f.C -2
determines functions f/ : C — 2% and f* : C — 2¢ by setting f/(X) =

F(X) = Upeo, F(X | k). In particular, f/(X) = f*(X) for each X € C.
The following is straightforward to prove.

Proposition 4.6. Suppose B is a front, C is a subset of 2, and C' = {X [
km:X €C, m <w}. If f: C = 2<% is a basic map, then [* is continuous

on C as a subspace of 2B,

In particular, given a map f : & — V in the setting of Theorem 4.4, the
map f*: T [ T — V defined by f*(T) = U,,-., f(T 1 k) is a continuous
map on its domain € [ 7. This map f* is equivalent to f in the following
sense: For each T € X [ T, f*(T) = f([T]). In contrast, letting C = {[T] :
Te%| T}, the map f : C — V is not necessarily continuous. However,
f | C is still represented by the monotone finitary map f ; given X € C,

5. FURTHER CONNECTIONS BETWEEN TUKEY, RUDIN-BLASS, AND
RUDIN-KEISLER REDUCTIONS

In Lemma 9 of [13], Raghavan distilled properties of cofinal maps which,
when satisfied, yield that Tukey reducibility above a g-point implies Rudin-
Blass reducibility. He then showed that continuous cofinal maps satisfy these
properties, thus yielding Theorem 10 in [13], (see Theorem 1.6 in Section 1).
The proof of the next theorem follows the general structure of Raghavan’s
proofs. The key differences are that we start with a weaker assumption,
basic maps on Fubini iterates of p-points, and obtain a finite-to-one map
on the base tree B for the ultrafilter rather than the base B itself. While
the following theorem may be of interest in itself, we will apply it to prove
Theorems 5.3 and 5.4 showing that for finite Fubini iterates of p-points, and
for generic ultrafilters forced by P(w*)/Fin®*, Tukey reducibility above a

g-point is equivalent to Rudin-Keisler reducibility.
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Theorem 5.1. Suppose U is a Fubini iterate of p-points and 'V is a q-point.
IfV <7 U, then there is a finite-to-one function T : T — w, for some T € X,
such that {T[T]: T € T [T} C V.

Proof. Let B be the front which is a base for U, and as usual, let ¥ denote
the set of all -trees on B. We begin by establishing some useful notation:
Given m <n and T' C [w]<¥, let T' | [m,n) denote the set of all a € T such
that m < maxa < n.

Let f : U — V be a monotone cofinal map. Let T € ¥ be given by
Theorem 4.4, so that f is generated on T | T by some monotone basic map
fe Unn<w 9Tlkm _y 9<w Tet 1p : P(T) — P(w) be defined by

(5.1) YA ={kcw: VT €T T(ACT — ke f([T])},

for each A C T. Note that 1) is monotone and further that foreach 7' € ¥ | T
and each m < w, [[f(T | kw)]] = (T | kn) N'm. By the same argument
as in Lemma 8 in [13], we may assume that for each finite A C T', ¥(A) is
finite.

Notice that for any pair m,j < w, if j & (T | m), then there is a
T e | T suchthat T 37T [ mand j & f([T]); hence, j & [[f(T | k). It
follows that for all S € T | T satisfying S I T | kj, j & f([S]) and hence
also j & ¥(S5). Without loss of generality, assume that T' | [m, k;) = 0; that
is, each a € T has maxa & [m, k;). Now if A is a finite C-closed subset of T
and A | [m, k;) = 0, then there is an S € T | T such that T [ mU A C S,
S| [m,k;)=0,and S 3T | k;. Then j & £([S]), s0 j € (T | mU A).

Define g : w — w by ¢(0) = 0; and given g(n), choose g(n+1) > g(n) so
that

(5.2) g(n+ 1) > max{kyem), max(¢(T | kgn)))}-

Since V is a g-point, there is a Vi € V such that for each n < w, [Vp N
[g(n), g(n +1))| = 1. We may, without loss of generality, assume that V; =
Uneolg(2n),9(2n + 1)) is in V, and let V = V5 N V;. Enumerate V' as {v;
i < w}. Notice that for each i < w,

(5.3) 9(2i) <v; < g(2i +1).

Without loss of generality, assume that vy > 0. Then vy & (), since
assuming V is nonprincipal, ¢ () must be empty.

Our construction ensures the following properties: For all ¢ < w,

(1) g(i + 1) > max(ky, max((T | kg@)));

(2) 9(20) < v < g(2i +1);

(3) ko, < g(2i+2);
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(4) (T [ ko) € 9(2i +2).

We will now define a strictly increasing function h : w — w so that for
each i < w, the following hold:

(a) h(i) < ky,;

(b) v & $(T | h(i)); )

(c) For each finite, C-closed set A C T, if v; € ¥(A) then A | [h(7), h(i+

1) £0.

Define h(0) = 0. Then (a) - (c) trivially hold. Suppose h(i) has been
defined so that (a) - (c) hold. Define h(i+1) = k,,. Then h(i+1) > h(i), since
k,, > h(i) by (a) of the induction hypothesis. (a) holds, since k,, < k
To see that (b) holds, note that
(54) (T Th(i+1) =o(T [ ko) SOT | kgainn) C 920+ 2) < viia,
where the inclusions hold by (3) and (1), and the inequality holds by (2).
Thus, v & Y(T T h(i +1)).

To check (c), fix a finite C-closed set A C T such that A | [h(3), h(z +
1)) = 0; that is, for all @ € A, maxa 9_1 [R(i),h(i +1)). Let A" = \ (T 1
h(i +1)). We claim that v; & (T | k(i) U A'). By (b), v; & (T | h(3)).
Therefore, v; & [f(T | h(i))]]. Now (T rh( JUA) [ h(i+1) =T [h(i),since
A" [ [h(i), h(i + )) 0. So v; & [f((T | k(i) U A") | h(i +1))]]. Therefore,

[
S

Vit+1°

(T

for each S € ¥ | T such that S | h(i +1) = (T | h(i) U A") | h(i + 1),
which we point out is the same as 7' | h(i), we have v; ¢ f([S]). Thus, if
S 3T | h(i) U A" and satisfies S | [h(i),h(i + 1)) = @, then v; & f([5]),
since this gets decided by height k,, which equals h(i + 1). Therefore, v; ¢
(T | h(i) U A"), which proves (c).

Now we define a function 7 : T — w as follows: For i < w and a € T, if
maxa € [h(i), h(i + 1)), then 7(a) = v;.

Claim. For each T € T [ T, 7[T] € V.

Proof. Suppose not. Then there is a T € T | T such that 7[T] ¢ V; so
7[T] € V*. Then there is an S € T | T such that f([S]) C (w\7[T])NV €
V. Let j be least such that f(xg | k;j) # 0 and let s = S | k;. Then
0 # [[f(xs | k)]] € ¥(s). Fix some v; € 1(s). Then v; & 7[T] since v; €
¥(s) C f([S]) Cw\7[T]. However, v; € ¥(s) implies s | [h(i), h(i+1)) # 0,
by (c). For each a € s | [h(i),h(i + 1)), 7(a) = v;. Since s C T', we have
v; € T[T, a contradiction. Thus, 7[T] € V. O

Therefore, 7 is a finite-to-one map from 7" into w, and the set of 7-images

of members of T | T generate a filter contained inside V. O
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The previous theorem does not necessarily imply that the 7-image of
T T generates V. However, under certain conditions, it does. In the case
that | T generates an ultrafilter on base set the tree T, as is the case
when all the p-points are the same selective ultrafilter, then the 7-image of
U is V. The following is a Rudin-Blass analogue, but on B instead of B.

Corollary 5.2. IfU is a Fubini power of some selective ultrafilter V, where
the base set for U is the front B, then there is a finite-to-one map 7 : B — w
such that {T[T): T € ¥} generates V.

It is useful to point out the connection and contrast between this corol-
lary and the following previously known results. Every Fubini power of some
selective ultrafilter is Tukey equivalent to that selective ultrafilter (Corol-
lary 37 in [8]). Thus, if & is a Fubini iterate of one selective ultrafilter,
then the g-point V in Theorem 5.1 must be that selective ultrafilter. On the
other hand, the only ultrafilters Tukey reducible to a selective ultrafilter are
those ultrafilters isomorphic to some Fubini power of the selective ultrafilter
(Theorem 24 of Todorcevic in [13]). Thus, the collection of ultrafilters Tukey
equivalent to a given selective ultrafilter is exactly the collection of Fubini
powers of that selective ultrafilter; and any Fubini power of a selective ul-
trafilter is trivially Rudin-Keisler above that same selective ultrafilter.

In Corollary 56 of [13], Raghavan showed that if ¢/ is some Fubini iterate
of p-points and V is selective, then V <; U implies V <px U. We now
generalize this to g-points, though at the cost of assuming I/ is only a finite

Fubini iterate of p-points.

Theorem 5.3. Suppose U is a finite iterate of Fubini products of p-points.
If V is a g-point and V <p U, then V <grx U.

Proof. Let k denote the length of the Fubini iteration, so [w]* is the front
which is a base for U. Let 7 be the finite-to-one map from Theorem 5.1,
and without loss of generality, assume 7 is defined on all of [w]=*. For each
T € %, we notice that | J,.,.,. 7[T N [w]'] = 7[T] € V. For each T € %, let
LT)={1<1<k:7]T ﬂ_[(,_u]l] € V}. Then there is a T' € T such that for
all Se T[T, L(S) = L(T). Let | = max(L(T)).

Now {SN[w]': S € F | T} generates an ultrafilter on base set [w]' N T
further, for each S € T | T, 7[S N [w]'] is a member of V (since | € L(95)).
Thus, {7[SN[w]'] : S € T | T} generates an ultrafilter, and each of these -
images is in V. It follows that {r[SN[w]']: S € T | T} generates V. If | = k,

we are done, and in fact we have a Rudin-Blass map from U to V. If | < k,
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then define o : [w]* — w by o(a) = 7(m/(a)). Then ¢ is a Rudin-Keisler map
from U into V. 0

We point out that the basic maps on the generic ultrafilters G, forced by
P(w*)/Fin®*, 2 < k < w, in [6] have exactly the same properties as basic
maps on [w]* in this paper. (See Definition 37 and Theorem 38 in [6].) Hence,
Theorem 5.1 also applies to these ultrafilters. Since for each 1 <[ < k, the
projection of G, to [w]' yields the generic ultrafilter G;, the same proof as in
Theorem 5.3 yields the following theorem.

Theorem 5.4. Suppose Gy, is a generic ultrafilter forced by P(w*)/Fin®*,
forany 2 <k <w. If V is a ¢-point and V <r G, then V <gx G.

Remark 5.5. We cannot in general weaken the requirement of g-point to
rapid in Theorem 5.1. In [10], it is shown that there are Tukey equivalent
rapid p-points, and hence a Fubini iterate of such p-points Tukey equivalent
to a rapid p-point, which are Rudin-Keisler incomparable.

6. ULTRAFILTERS TUKEY REDUCIBLE TO FUBINI ITERATES OF
P-POINTS HAVE FINITELY GENERATED TUKEY REDUCTIONS

In this section, we prove the analogue of Theorem 2.6 for the class of
all ultrafilters which are Tukey reducible to some Fubini iterate of p-points.
Namely, in Theorem 6.3, we prove that every ultrafilter Tukey reducible
to some Fubini iterate of p-points has finitely generated Tukey reductions
(Definition 6.2). This sharpens a result of Raghavan (Lemma 16 in [13])
by obtaining finitary maps which generate the original cofinal map on some
filter base rather than some possibly different cofinal map. Also, the class on
which we obtain finitely generated Tukey reductions is closed under Tukey
reduction, whereas the class where his result applies (basically generated
ultrafilters) is not known to be closed under Tukey reduction. Theorem 6.3
allows us to extend Theorem 17 of Raghavan in [13] relating Tukey reduction
to Rudin-Keisler reduction for basically generated ultrafilters to the class
of all ultrafilters Tukey reducible to some Fubini iterate of p-points (see
Theorem 6.4 and the discussion preceding it).

The next lemma is the analogue of Lemma 2.4 for the space 25 in place
of 2¥. As the proof is almost verbatim by making the obvious changes, we

omit it.

Lemma 6.1 (Extension lemma for fronts). Suppose U is a nonprincipal
ultrafilter with base set a front B. Suppose f : U — V is a monotone cofinal
map, and there is a cofinal subset C C U such that f | C is represented by
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a monotone basic function, in the sense of Definition 4.2. Then there is a

continuous, monotone f: 2B 5 2 such that

(1) f is represented by a monotone basic map i U 2Blkm _y 9<w

in the sense of Definition 4.2.
Moreover, defining the function f':U — 2 by f'(U) = f(U), forU el,

(2) ["1C=f1C;and
(3) ' TU is a cofinal map fromU to V.

m<w

Definition 6.2 (Finitely generated Tukey reduction). We say that an ul-
trafilter ¥V on base set w has finitely generated Tukey reductions if for each
monotone cofinal map f : V — W, there is a cofinal subset C C V), a
strictly increasing sequence (k,)m<w, and a function f : C' — 2%, where
C={XTky,:XeC, m<uw},such that

~

(1) f is level preserving: For each m < w and s € C, |s| = k,, implies
Fs)] = m:
(2) f generates f on C: For each X € C,

(6.1) F0) = J I T R

m<w

The difference between a basic Tukey reduction and a finitely generated
Tukey reduction is that the map f in Definition 6.2 is not required to be
end-extension preserving.

Now we prove the main theorem of this section. This is the analogue of
Theorem 2.5 (which holds for ultrafilters Tukey reducible to some p-point)
to the setting of all ultrafilters Tukey reducible to some Fubini iterate of
p-points.

Theorem 6.3. Let U be any Fubini iterate of p-points. If V <p U, then V
has finitely generated Tukey reductions.

Proof. Suppose that U is an iteration of Fubini products of p-points and
that V <¢ U. Let B be a front which is a base for U, and without loss
of generality, assume that w is the base set for the ultrafilter V. By Theo-
rem 4.4, U has basic Tukey reductions. Applying Lemma 6.1, we obtain a
continuous monotone map f : 2B 5 9% which is generated by a monotone
basic map f : Uew 9Blkm _y 2<% for some increasing sequence (Km )m<w.-
Hence, for each A C B, f(A) = Um<w[[f(A | km)]]. Furthermore, defining

~ A

fWU) = f(U) for U € U, we see that f:U — V is a monotone cofinal map.
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Suppose W <r V., and let h : V — W be a monotone cofinal map.
Extend h to the map & : 2¢ — 2 defined as follows: For each X € 2, let

(6.2) hX)=[{nV):VeVandV 2 X}

It follows from h being monotone that h is monotone and that i [ V = h.
Letting g denote ho f , we see that the map g : 28 5 2% is monotone.
For U e U, §(U) = h(f(U)) = h(f(U)) = ho f(U). Thus, letting g denote
ho f, we see that g : Y — VV is a monotone cofinal map with the property
that for each U € U, g(U) = §(U). By Theorem 4.4, there is a U-tree T' and
an increasing sequence (ky,)m<. such that the restriction of g to C = {[T7] :

Tex|T } is generated by some monotone basic map g : C' — 2<%, where
C={T | kp:TeT|Tandm < w}

Notice that C' = (J 9TTkm  Without loss of generality, we may assume

that the levels k,, are the same for f and g, by taking the minimum of the

m<w

two m-th levels.

Let ¢* be the function on 27 into 2¢ determined by ¢ as follows: For

Ae 2T, define

(6.3) g (A) = | §(A T k).

m<w

Since ¢ is end-extension preserving, it follows that for each A € 2T and
m < w, g°(A) | m = g(A | k). We point out that the restriction of g* to
T | T yields exactly g, since § generates § on ¥ | 7.

Claim 1. For each A4 € 27,
(6.4) g (A) = ({g(X) : X € Cand X D A} D j(A).

Proof. Let A be any member of 27 Let m be given and note that A [ k,,, €
C. For any X € C such that X [ km = A | Ky, we have

~ A

(6.5) 9(A T k) = 9(X [ k) = §(X) [ = g(X) [ m.

Since C = {[T] : T € T | T}, there is an X € C such that X D A and
X [ km=AT kn. (This is the key property of C needed for this proof.)
Thus,

(6.6) [G(A T k)]l =Y I m 2 g(A) [ 'm,

where Y = ({g(X) : X € C and X D A}. Taking the union over all m < w
in (6.6) yields the claim. O
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Define
(6.7) D={f(s):seC}and D= f[C].

Then D is cofinal in V, and every member of D is a limit of members of D.
We point out that T | T is a subspace of 2B , and the closure of € | T in
28 is the compact space 27 Define a function i : D — 2<% as follows: For
t € DN2™ and i € m, define

(6.8) h(t)(i) = min{g(s)(i) : s € C N 25" and f(s) = t}.

That is, h(t) is the function from m into 2 such that for i € m, h(t)(i) = 1
if and only if g(s)(i) = 1 for all s € C N 2B satisfying f(s) = ¢. By
definition, & is level preserving.

We proceed to prove that h represents A on D. Fix Y € D. Then there
is an X € C such that f(X) =Y. For cach m < w, f(X [ kn) =Y | m, so

Ay T m)]] € [G(X T k)] = 5(X) I m
=9(X) I'm=ho f(X)[m=h()[m.
(6.9)
Thus, U, [(o(Y T m)]] € A(Y).
Next we show that for each [ € h(Y'), there is some n such that [ €
([R(Y [ n)]]. Let m=1+1andlett =Y | m . Let

(6.10) S ={seCn2Ph . vA el withsC A, f(A)#Y}.

Claim 2. For each s € S;, there is an n, such that each s’ € 2BIns with
' 7 s satisfies f(s') 7 Y.

Proof. 1f not, then for some s € S}, for each n there is an s’ € C' of length n
with s’ 3 s and some A € 2T with A 7 ¢ such that f(A) =Y. By Konig’s
Lemma, there is a sequence s C sg C s; C ... of strictly increasing lengths
such that for each ¢ < w, there is some A; € 27 such that A; 3 s; and
f(A;) =Y. Letting A’ = U<, 8i, we see that A’ € 9T and that f(4') =Y,
by continuity of f and the fact that f generates fon 9T But this contradicts
the fact that s € 5. O

Since S; is finite, we may take n = max{ns : s € S;}. Then for all s’ of
length k,, if f(s') C Y then s does not end-extend any s in .

Claim 3. For all &' € C of length k, such that f(s') =Y, [ € [[§(s')]].

Proof. For each ' € C'N 2B1kn satisfying f(s’) =Y | n, we see that s’ | k,,
is not in S. So there is some A € 27 such that A 35’ | k,, and f(A) =Y.
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It follows that

(6.11) [[g(s) Tm]] = [[§(s' | k)] 2 §(A) I m = ho f(A) | m = h(Y) [ m,

where the D follows from Claim 1, since [[§(s" | kn)]] = g*(A) [ m D g(A) |
m. Thus, | € [[g(s")]], for each s’ € 27T*» satisfying f(s/) =Y | n. O

Therefore, [ € [[A(Y | n)]]. Thus, for each [ € h(Y), there is an n; such

~

that [ € [[h(Y | ny)]]. It follows that, for any j < w, there is an n such that
lAz(Xy I'n) | j=h()]j. This n may be obtained by taking the maximum
of the ng over all s € {5, : 1 < j}, Hence, Um<w[[iz(Y I m)]] = h(Y).

Thus, h | D is finitely represented by h on D. O

Theorem 6.3 is now applied to extend Theorem 17 of Raghavan in [13] to
all ultrafilters Tukey reducible to some Fubini iterate of p-points. Raghavan
showed that for any basically generated ultrafilter U, whenever V <p U
there is a filter U (P) which is Tukey equivalent to U such that V <gx U(P).
It is routine to check that the maps in Theorem 6.3 satisfy the conditions of

the maps in Theorem 17 of Raghavan in [13]. Thus, we obtain the following.

Theorem 6.4. IfU is Tukey reducible to a Fubini iterate of p-points, then
for each YV <r U, there is a filter U(P) =r U such that V <gx U(P).

Here, assuming without loss of generality that the base set for U is w, P
is the collection of C-minimal finite subsets s of w for which h(s) # (), where
h witnesses that a given monotone cofinal h : U — V is finitely generated.
U(P) is the collection of all sets of the form {s € P:s C U}, for U € U.

Remark 6.5. The same proof of Theorem 6.3 works for the basic cofinal
maps for the generic ultrafilters Gy forced by P(w*)/Fin®* 2 < k < w,
in [6]. Thus, Theorem 6.4 also holds when U is an ultrafilter forced by
P(wF)/Fin®*.

7. OPEN PROBLEMS

We conclude this paper by highlighting some of the more important
open problems in this area. Theorem 2.6 showed that every ultrafilter Tukey
below a p-point has continuous Tukey reductions.

Problem 7.1. Determine the class of all ultrafilters that have continuous
Tukey reductions.

In particular, are there ultrafilters not Tukey reducible to a p-point which
satisfy the conditions of Theorem 2.57
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By Theorem 56 of Dobrinen and Trujillo? in [7], under very mild condi-
tions, any ultrafilter selective for some topological Ramsey space has basic,
an hence, continuous (with respect to its metric topology) Tukey reduc-
tions. This is especially of interest when the ultrafilter associated with the
topological Ramsey space is not a p-point. It should be the case that by
arguments similar to those in this paper one can prove the following.

Problem 7.2. Prove the analogues of Theorems 2.5, 4.4, and 6.3 for sta-
ble ordered union ultrafilters and their iterated Fubini products, and more
generally for ultrafilters selective for some topological Ramsey space, with
respect to the correct topologies.

More generally, we would like to know the following.

Problem 7.3. Determine the class of all ultrafilters which have finitely
generated Tukey reductions. Is this the same as the class of all ultrafilters
with Tukey type strictly below the maximum Tukey type?

In Section 5, we applied Theorem 5.1 to obtain more examples when
Tukey reducibility implies Rudin-Keisler reducibility. Theorem 5.3 improves
on one aspect of Corollary 56 in[13] of Raghavan provided that there are
g-points which are not selective and which are Tukey below some Fubini
iterate of p-points. Do such ultrafilters ever exist?

Problem 7.4. Is there a g-point which is not selective which is Tukey
reducible to some finite Fubini iterate of p-points? Or does V <; U with
U a Fubini iterate of p-points and V a g-point imply that V is actually
selective?

Problem 7.5. Can Theorem 5.3 be extended to all countable iterates of
Fubini products of p-points? Are similar results true for all ultrafilters Tukey
reducible to some Fubini iterate of p-points?

Question 25 in [8] asks whether asks whether every ultrafilter Tukey
reducible to a p-point is basically generated. Question 26 in [8] asks whether
the classes of basically generated and Fubini iterates of p-points the same, or
whether the former is strictly larger than the latter? Though these questions

in general are still open, we ask the even more general questions.

Problem 7.6. Is the property of being basically generated inherited under
Tukey reduction? That is, if V is Tukey reducible to a basically generated
ultrafilter, is V necessarily basically generated?

2Attributions of the results of the various authors are made clear in [7].
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Or the possibly weaker problem: If V is Tukey reducible to some Fubini
iterate of p-points, is V necessarily basically generated?

There are certain collections of p-points, in particular those associated
with the topological Ramsey spaces in [9], [10], and [7], for which every
ultrafilter Tukey below some Fubini iterate of these p-points is again a
Fubini iterate of these p-points and hence basically generated. However, the
above questions are in general still open.

Work in this paper and work in [13] found conditions when Tukey re-
ducibility implies Rudin-Keisler or even Rudin-Blass reducibility.

Problem 7.7. When in general doesUd >7 V imply U >gx V or U >gp V?

Finally, how closely related are the properties of having finitely generated
Tukey reductions and having Tukey type below the maximum?

Problem 7.8. Does (U, D) <7 ([w]=¥), €) imply that U has finitely gener-
ated Tukey reductions?
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