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The universal homogeneous triangle-free graph, constructed by Henson [A family of
countable homogeneous graphs, Pacific J. Math. 38(1) (1971) 69-83] and denoted Hs,
is the triangle-free analogue of the Rado graph. While the Ramsey theory of the Rado
graph has been completely established, beginning with Erdés—Hajnal-Posd [Strong em-
beddings of graphs into coloured graphs, in Infinite and Finite Sets. Vol. 1, eds. A.
Hajnal, R. Rado and V. Sés, Colloquia Mathematica Societatis Janos Bolyai, Vol. 10
(North-Holland, 1973), pp. 585-595] and culminating in work of Sauer [Coloring sub-
graphs of the Rado graph, Combinatorica 26(2) (2006) 231-253] and Laflamme—Sauer—
Vuksanovic [Canonical partitions of universal structures, Combinatorica 26(2) (2006)
183-205], the Ramsey theory of H3 had only progressed to bounds for vertex colorings
[P. Komjath and V. Rédl, Coloring of universal graphs, Graphs Combin. 2(1) (1986)
55-60] and edge colorings [N. Sauer, Edge partitions of the countable triangle free ho-
mogenous graph, Discrete Math. 185(1-3) (1998) 137-181]. This was due to a lack of
broadscale techniques. We solve this problem in general: For each finite triangle-free
graph G, there is a finite number T'(G) such that for any coloring of all copies of G
in Hs into finitely many colors, there is a subgraph of Hs which is again universal
homogeneous triangle-free in which the coloring takes no more than T(G) colors. This
is the first such result for a homogeneous structure omitting copies of some nontrivial
finite structure. The proof entails developments of new broadscale techniques, including
a flexible method for constructing trees which code H3 and the development of their
Ramsey theory.
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0. Overview

Ramsey theory of finite structures is a well-established field with robust current
activity. Seminal examples include the classes of finite linear orders [30], finite
Boolean algebras [12], finite vector spaces over a finite field [10], finite ordered
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graphs [1, 24, 25|, finite ordered k-clique-free graphs [24, 25], as well as many
more recent advances. Homogeneous structures are infinite structures in which any
isomorphism between two finitely generated substructures can be extended to an
automorphism of the whole structure. A class of finite structures may have the
Ramsey property, while the homogeneous structure obtained by taking its limit
may not. The most basic example of this is linear orders. The rational numbers are
the Fraissé limit of the class of all finite linear orders. The latter has the Ramsey
property, while the rationals do not: There is a coloring of pairs of rational numbers
into two colors such that every subset of the rationals forming another dense linear
order without endpoints has pairs taking each of the colors [2].

A central question in the theory of homogeneous relational structures asks the
following: Given a homogeneous structure S and a finite substructure A, is there a
number bound T'(A) such that for any coloring of all copies of A in S into finitely
many colors, there is a substructure S’ of S, isomorphic to S, in which all copies of A
take no more than T'(A4) colors? This question, of interest for several decades since
Laver’s and Devlin’s work on the rational numbers, has gained recent momentum
as it was brought into focus by Kechris et al. in [16]. This is interesting not only as
a Ramsey-type property for infinite structures, but also because of its implications
for topological dynamics, as shown in [38].

Prior to work in this paper, this problem had been solved for only a few types
of homogeneous structures: the rationals [2], the Rado graph and similar binary re-
lational simple structures such as the random tournament [32], ultrametric spaces
[26], and enriched versions of the rationals and related circular directed graphs [18].
According to [28], “so far, the lack of tools to represent ultrahomogeneous structures
is the major obstacle towards a better understanding of their infinite partition prop-
erties.” This paper addresses this obstacle by providing new tools to represent the
universal homogeneous triangle-free graph and developing the necessary Ramsey
theory to prove upper bounds for the Ramsey degrees T(A) for colorings of copies
of a given finite triangle-free graph A within Hs. The methods developed are ro-
bust enough that modifications should likely apply to a large class of homogeneous
structures omitting some finite substructure; particularly, in a forthcoming paper,
the author is extending these methods to all k-clique free universal homogeneous
graphs.

1. Introduction

The premise of Ramsey theory is that complete disorder is nearly impossible. By
beginning with a large enough structure, it is often possible to find substructures in
which order emerges and persists among all smaller structures within it. Although
Ramsey-theoretic statements are often simple, they can be powerful tools: in recent
decades, the heart of many problems in mathematics have turned out to have at
their core some Ramsey-theoretic content. This has been seen clearly in Banach
spaces and topological dynamics.
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The field of Ramsey theory opened with the following celebrated result.

Theorem 1.1 ([30]). Let k and r be positive integers, and suppose P;, i < r, is a
partition of all k-element subsets of N. Then there is an infinite subset M of natural
numbers and some i < r such that all k-element subsets of M lie in P;.

The finite version of Ramsey’s theorem states that given positive integers k, m, r,
there is a number n large enough so that given any partition of the k-element subsets
of {0,...,n — 1} into r pieces, there is a subset X of {0,...,n — 1} of size m such
that all k-element subsets of X lie in one piece of the partition. This follows from
the infinite version using a compactness argument. The set X is called homogeneous
for the given partition.

The idea of partitioning certain subsets of a given finite set and looking for a
large homogeneous subset has been extended to structures. A Fraissé class K of
finite structures is said to have the Ramsey property if for any A, B € K with A
embedding into B, (written A < B), and for any finite number k, there is a finite
ordered graph C such that for any coloring of the copies of A in C into k colors,
there is a copy B’ < C of B such that all copies of A in B’ have the same color.
We use the standard notation

C — (B)¢ (1)

to denote that for any coloring of the copies of A in C, there is a copy B’ of B
inside C' such that all copies of A in C have the same color. Examples of Fraissé
classes of finite structures with the Ramsey property, having no extra relations,
include finite Boolean algebras (Graham and Rothschild, [12]) and finite vector
spaces over a finite field (Graham et al. [10, 11]). Examples of Fraissé classes with
extra structure satisfying the Ramsey property include finite ordered relational
structures (independently, Abramson and Harrington, [1] and Nesetfil and Rédl,
[24, 25]). In particular, this includes the class of finite ordered graphs, denoted G<.
The papers [24, 25] further proved the quite general result that all set-systems of
finite ordered relational structures omitting some irreducible substructure have the
Ramsey property. This includes the Fraissé class of finite ordered graphs omitting
n~cliques, denoted K.

In contrast, the Fraissé class of unordered finite graphs does not have the Ramsey
property. However, it does possess a nontrivial remnant of the Ramsey property,
called finite Ramsey degrees. Given any Fraissé class KC of finite structures, for each
A € K, let t(A, K) be the smallest number ¢, if it exists, such that for each B € K
with A < B and for each k > 2, there is some C € K, into which B embeds, such
that

C = (B)iu, (2)

where this means that for each coloring of the copies of A in C' into k colors, there is
a copy B’ of B in C such that all copies of A in B’ take no more than ¢ colors. Then
K has finite (small) Ramsey degrees if for each A € K the number ¢(A4, K) exists.
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The number ¢(A, K) is called the Ramsey degree of A in K [9]. Note that K has the
Ramsey property if and only if ¢(A,K) = 1 for each A € K. A strong connection
between Fraissé classes with finite Ramsey degrees and ordered expansions is made
explicit in [16, Sec. 10], where it is shown that if an ordered expansion K< of a
Fraissé class K has the Ramsey property, then K has finite small Ramsey degrees,
and the degree of A € K can be computed from the number of non-isomorphic
order expansions it has in <. A similar result holds for pre-compact expansions
(see [28]). It follows from the results stated above that the classes of finite graphs
and finite graphs omitting n-cliques have finite small Ramsey degrees.

At this point, it is pertinent to mention recent advances connecting Ramsey
theory with topological dynamics. A new connection was established in [16], which
accounts for previously known phenomena regarding universal minimal flows. In
that paper, Kechris et al. proved several strong correspondences between Ramsey
theory and topological dynamics. A Fraissé order class is a Fraissé class which has
at least one relation which is a linear order. One of their main theorems (Theo-
rem 4.7) shows that the extremely amenable (fixed point property on compacta)
closed subgroups of the infinite symmetric group S, are exactly those of the form
Aut(F*), where F* is the Fraissé limit of some Fraissé order class satisfying the
Ramsey property. Another main theorem (Theorem 10.8) provides a way to com-
pute the universal minimal flow of topological groups which arise as the automor-
phism groups of Fraissé limits of Fraissé classes with the Ramsey property and
the ordering property. That the ordering property can be relaxed to the expansion
property was proved by Nguyen Van Thé in [27].

We now turn to Ramsey theory on infinite structures. One may ask whether
analogues of Theorem 1.1 can hold on more complex infinite relational structures,
in particular, for Fraissé limits of Fraissé classes. The Fraissé limit F of a Fraissé
class KC of finite relational structures is said to have finite big Ramsey degrees if for
each member A in I, there is a finite number T'(A, K) such that for any coloring ¢
of all the substructures of F which are isomorphic to A into finitely many colors,
there is a substructure F’ of F which is isomorphic to F and in which ¢ takes no
more than T'(A4, K) colors. When this is the case, we write

F— (F);?,T(A,IC)' (3)

This notion has been around for several decades, but the terminology was initiated
in [16].

The first homogeneous structure shown to have finite big Ramsey degrees is
the rationals, which are the Fraissé limit of the class of finite linear orders LO.
That the upper bounds exist was known by Laver, following from applications of
Milliken’s theorem (see Theorem 2.5). The lower bounds were proved by Devlin
in 1979 in his thesis [2], where he showed that the numbers T'(k, LO) are actually
tangent numbers, coefficients of the Talyor series expansion of the tangent function.
In particular, T(1,Q) = 1, as any coloring of the rationals into finitely many colors
contains a copy of the rationals in one color; thus, the rationals are indivisible.
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On the other hand, T'(2, Q) = 2, so immediately for colorings of pairsets of rationals,
one sees that there is no Ramsey property for the rationals when one requires that
the substructure Q' of Q be “big”, meaning isomorphic to the original infinite one.

The next homogeneous structure for which big Ramsey degrees have been proved
is the Rado graph, denoted R. Also known as the random graph, R is the countable
graph which is universal for all countable graphs, meaning each countable graph
embeds into R as an induced substructure. Equivalently, the Rado graph is the
Fraissé limit of the class of finite graphs, denoted G. It is an easy exercise from the
defining property of the Rado graph to show that the Rado graph is indivisible,
meaning that the big Ramsey degree for vertices in the Rado graph is 1. The first
nontrivial lower bound result for big Ramsey degrees was proved by Erdéds et al. in
[6] in 1975, where they showed there is a coloring of the edges in R into two colors
such that for any subgraph R’ of the Rado graph such that R’ is also universal
for countable graphs, the edges in R’ take on both colors. That this upper bound
is sharp was proved over two decades later in 1996 by Pouzet and Sauer in [29],
and thus, the big Ramsey degree for edges in the Rado graph is 2. The problem of
whether every finite graph has a finite big Ramsey degree in the Rado graph took
another decade to solve. In [32], Sauer proved that the Rado graph, and in fact
any simple binary relational homogeneous structure, has finite big Ramsey degrees.
As in Laver’s result, Milliken’s theorem plays a central role in obtaining the upper
bounds. The sharp lower bounds were proved the same year by Laflamme et al.
in [19].

Sauer’s result on the Rado graph in conjunction with the attention called to
big Ramsey degrees in [16] sparked new interest in the field. In 2008, Nguyen Van
Thé investigated big Ramsey degrees for homogeneous ultrametric spaces. Given
S a set of positive real numbers, Us denotes the class of all finite ultrametric
spaces with strictly positive distances in S. Its Fraissé limit, denoted Qg, is called
the Urysohn space associated with Us and is a homogeneous ultrametric space. In
[26], Nguyen Van Thé proved that Qg has finite big Ramsey degrees whenever S
is finite. Moreover, if S is infinite, then any member of Ug of size greater than
or equal to 2 does not have a big Ramsey degree. Soon after, Laflamme et al.
proved in [18] that enriched structures of the rationals, and two related directed
graphs, have finite big Ramsey degrees. For each n > 1, Q,, denotes the structure
(Q,Q1,...,Qn, <), where Q1,...,Q, are disjoint dense subsets of Q whose union
is Q. This is the Fraissé limit of the class P, of all finite linear orders equipped with
an equivalence relation with n many equivalence classes. Laflamme et al. proved
that each member of P,, has a finite big Ramsey degree in Q,,. Further, using the
bi-definability between @Q,, and the circular directed graphs S(n), for n = 2, 3, they
proved that S(2) and S(3) have finite big Ramsey degrees. Central to these results
is a colored version of Milliken’s theorem which they proved in order to deduce the
big Ramsey degrees. For a more detailed overview of these results, the reader is
referred to [28].
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A common theme emerges when one looks at the proofs in [2, 18, 32]. The first
two rely in an essential way on Milliken’s theorem, Theorem 2.5 in Sec. 2. The third
proves a new colored version of Milliken’s theorem and uses it to deduce the results.
The results in [26] use Ramsey’s theorem. This would lead one to conclude or at least
conjecture that, aside from Ramsey’s theorem itself, Milliken’s theorem contains the
core combinatorial content of big Ramsey degree results. The lack of such a result
applicable to homogeneous structures omitting nontrivial substructures posed the
main obstacle to the investigation of their big Ramsey degrees. This is addressed
in this paper.

This paper is concerned with the question of big Ramsey degrees for the ho-
mogeneous countable triangle-free graph, denoted Hs. A graph G is triangle-free if
for any three vertices in G, there is at least one pair with no edge between them;
in other words, no triangle embeds into G as an induced subgraph. A triangle-free
graph H on countably many vertices is a homogeneous if each isomorphism between
two finite (triangle-free) subgraphs can be extended to an automorphism of H. It
is universal if every triangle-free graph on countably many vertices embeds into
it. Universal homogeneous triangle-free graphs were first constructed by Henson
n [15]. Such graphs are also seen to be the Fraissé limit of K3, the Fraissé class of
all countable triangle-free graphs, and any two universal homogeneous triangle-free
graphs are isomorphic.

As mentioned above, Nesetiil and Rodl proved that the Fraissé class of finite
ordered triangle-free graphs, denoted K5, has the Ramsey property. It follows that
the Fraissé class of unordered finite triangle-free graphs, denoted K3, has finite
small Ramsey degrees. In contrast, whether or not every finite triangle-free graph
has a finite big Ramsey degree in H3 had been open until now. The first result on
colorings of vertices of H3 was obtained by Henson in [15] in 1971. In that paper,
he proved that Hs is weakly indivisible: Given any coloring of the vertices of Hs
into two colors, either there is a copy of Hsz in which all vertices have the first
color, or else a copy of each member of K3 can be found with all vertices having
the second color. From this follows a prior result of Folkman in [8], that for any
finite triangle-free graph G and any number k > 2, there is a finite triangle-free
graph H such that for any partition of the vertices of H into k pieces, there is a
copy of GG in having all its vertices in one of the pieces of the partition. In 1986,
Komjath and Rodl proved that Hgs is indivisible; thus, the big Ramsey degree for
vertex colorings is 1. It then became of interest whether this result would extend
to colorings of copies of a fixed finite triangle-free graph, rather than just colorings
of vertices.

In 1998, Sauer proved in [31] that edges have finite big Ramsey degree of 2 in
Hs, leaving open the general question:

Question 1.2. Does every finite triangle-free graph have finite big Ramsey degree
in H3?

This paper answers this question in the affirmative.
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Ideas from Sauer’s proof in [32] that the Rado graph has finite big Ramsey
degrees provided a strategy for our proof in this paper. A rough outline of Sauer’s
proof is as follows: Graphs can be coded by nodes on trees. Given such codings,
the graph coded by the nodes in the tree consisting of all finite length sequences of
0’s and 1’s, denoted as 2<%, is bi-embeddable with the Rado graph. Only certain
subsets, called strongly diagonal, need to be considered when handling tree codings
of a given finite graph G. Any finite strongly diagonal set can be enveloped into
a strong tree, which is a tree isomorphic to 25 for some k. The coloring on the
copies of G can be extended to color the strong tree envelopes. Applying Milliken’s
theorem for strong trees finitely many times, one obtains an infinite strong subtree
S of 2<% in which for all diagonal sets coding G with the same strong similarity
type have the same color. To finish, take a strongly diagonal D subset of S which
codes the Rado graph, so that all codings of G in D must be strongly diagonal. Since
there are only finitely many similarity types of strongly diagonal sets coding G, this
yields the finite big Ramsey degrees for the Rado graph. See Sec. 2 for more details.

This outline seemed to the author the most likely to succeed if indeed the
universal triangle-free graph were to have finite big Ramsey degrees. However, there
were difficulties involved in each step of trying to adapt Sauer’s proof to the setting
of Hgz, largely because Hs omits a substructure, namely triangles. First, unlike the
bi-embeddability between the Rado graph and the graph coded by the nodes in
2<% there is no bi-embeddability relationship between #3 and some triangle-free
graph coded by some tree with a very regular structure. To handle this, rather
than letting certain nodes in a tree code vertices at the very end of the whole proof
scheme as Sauer does in [32], we introduce a new notion of strong triangle-free tree
in which we distinguish certain nodes in the tree (called coding nodes) to code the
vertices of a given graph, and in which the branching is maximal subject to the
constraint of these distinguished nodes not coding any triangles. We further develop
a flexible construction method for creating strong triangle-free trees in which the
distinguished nodes code H3. These are found in Sec. 3.

Next, we wanted an analogue of Milliken’s theorem for strong triangle-free trees.
While we were able to prove such a theorem for any configuration extending some
fixed stem, the result simply does not hold for colorings of stems, as can be seen
by an example of a bad coloring defined using interference between splitting nodes
and coding nodes on the same level (Example 3.18). The means around this was to
introduce the new notion of strong coding tree, which is a skew tree that stretches a
strong triangle-free tree while preserving all important aspects of its coding struc-
ture. Strong coding trees are defined and constructed in Sec. 4. There, the fun-
damentals of the collection of strong coding trees are charted, including sufficient
conditions guaranteeing when a finite subtree A of a strong coding tree T" may be
end-extended into 7" to form another strong coding tree.

Having formulated the correct kind of trees to code Hs, the next task is to
prove an analogue of Milliken’s theorem for strong coding trees. This is accom-
plished in Secs. 5 and 6. First, we prove analogues of the Halpern—Lé&uchli theorem
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(Theorem 2.2) for strong coding trees. There are two cases, depending on whether
the level sets being colored contain a splitting node or a coding node. In Case (a) of
Theorem 5.2, we obtain the direct analogue of the Halpern—Lauchli theorem when
the level set being colored has a splitting node. A similar result is proved in Case (b)
of Theorem 5.2 for level sets containing a coding node, but some restrictions ap-
ply, and these are taken care of in Sec. 6. The proof of Theorem 5.2 Sec. 5 uses
the set-theoretic method of forcing, using some forcing posets created specifically
for strong coding trees. However, one never moves into a generic extension; rather
the forcing mechanism is used to do an unbounded search for a finite object. Once
found, it is used to build the next finite level of the tree homogeneous for a given
coloring. Thus, the result is a ZFC proof. This builds on ideas from Harrington’s
forcing proof of the Halpern—Lauchli theorem.

In Sec. 6, after an initial lemma obtaining end-homogeneity, we achieve the
analogue of the Halpern-Lauchli theorem for Case (b) in Lemma 6.8. The proof
introduces a third forcing which homogenizes over the possibly different end-
homogeneous colorings, but again achieves a ZFC result. Then, using much in-
duction and fusion, we obtain the first of our two Milliken-style theorems.

Theorem 6.3. Let T be a strong coding tree and let A be a finite subtree of T
satisfying the Strong Parallel 1’s Criterion. Then for any coloring of all strictly
similar copies of A in T into finitely many colors, there is a strong coding tree
S < T such that all strictly similar copies of A in S have the same color.

The Strong Parallel 1’s Criterion is made clear in Definition 6.1. Initial seg-
ments of strong coding trees automatically satisfy the Strong Parallel 1’s Criterion.
Essentially, it is a strong condition which guarantees that the finite subtree can be
extended to a tree coding Hs.

Developing the correct notion of strong subtree envelope for the setting of
triangle-free graphs presented a further obstacle. The idea of extending a subset
X of a strong coding tree 1" to an envelope which is a finite strong triangle-free tree
and applying Theorem 6.3 (which would be the direct analogue of Sauer’s method)
simply does not work, as it can lead to an infinite regression of adding coding nodes
in order to make an envelope of that form. That is, there is no upper bound on
the number of similarity types of finite strong triangle-free subtrees of T" which are
minimal containing copies of X in T'. To overcome this, in Secs. 7 and 8, we de-
velop the notions of incremental new parallel 1’s and strict similarity type for finite
diagonal sets of coding nodes as well as a new notion of envelope. Given any finite
triangle-free graph G, there are only finitely many strict similarity types of diagonal
trees coding G. Letting ¢ be any coloring of all copies of G in H3 into finitely many
colors, we transfer the coloring to the envelopes and apply the results in previous
sections to obtain a strong coding tree 7 < T' in which all envelopes encompassing
the same strict similarity type have the same color. The next new idea is to thin
T’ to an incremental strong subtree S < T’ while simultaneously choosing a set
W C T’ of witnessing coding nodes. These have the property that each finite subset
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X of S is incremental, and furthermore, one can add to X coding nodes from W
to form an envelope satisfying the Strong Parallel 1’s Criterion. Then, we arrive at
our second Milliken-style theorem for strong coding trees, extending the first one.

Theorem 8.9 (Ramsey Theorem for Strict Similarity Types). Let Z be a
finite antichain of coding nodes in a strong coding tree T, and let h be a coloring
of all subsets of T which are strictly similar to Z into finitely many colors. Then
there is an incremental strong coding tree S < T such that all subsets of S strictly
stmilar to Z have the same h color.

After thinning to a strongly diagonal subset D C S still coding H3, the only sets
of coding nodes in D coding a given finite triangle-free graph G are automatically
antichains which are incremental and strongly diagonal. Applying Theorem 8.9
to the finitely many strict similarity types of incremental strongly diagonal sets
coding G, we arrive at the main theorem.

Theorem 9.2. The universal triangle-free homogeneous graph has finite big Ram-
sey degrees.

For each G € K3, the number T(G, K3) is bounded by the number of strict
similarity types of diagonal sets of coding nodes coding G, which we denote as
StrSim (G, T), T referring to any strong coding tree (see Sec. 4). It is presently open
to see if StrSim(G, T) is in fact the lower bound. If it is, then recent work of Zucker
would provide an interesting connection with topological dynamics. In [38], Zucker
proved that if a Fraissé structure F has finite big Ramsey degrees and moreover, F
admits a big Ramsey structure, then any big Ramsey flow of Aut(F) is a universal
completion flow, and further, any two universal completion flows are isomorphic.
His proof of existence of a big Ramsey structure a Fraissé structure presently relies
on the existence of colorings for an increasing sequence of finite objects whose
union is F exhibiting all color classes which cannot be removed and which cohere
in a natural way. In particular, the lower bounds for the big Ramsey numbers are
necessary to Zucker’s analysis. His work already applies to the rationals, the Rado
graph, lower bounds being obtained by Laflamme et al. in [19] and calculated for
each class of graphs of fixed finite size by Larson in [20], finite ultrametric spaces
with distances from a fixed finite set, Q,, for each n > 2, S(2), and S(3). As the
strict similarity types found in this paper satisfy Zucker’s coherence condition, the
precise lower bounds for the big Ramsey degrees of H3 would provide another such
example of a universal completion flow.

2. Background: Trees Coding Graphs and the Halpern—Lauchli
and Milliken Theorems

This section provides background and context for the developments in this paper. It
contains the method of using trees to code graphs, the Halpern—L&uchli and Milliken
theorems, and a discussion of their applications to previously known results on big
Ramsey degrees for homogeneous structures.
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2.1. Trees coding graphs

In [6], Erdds et al. gave the vertices in a graph a natural lexicographic order and
used it to solve problems regarding strong embeddings of graphs. The set of vertices
of a graph ordered by this lexicographic order can be viewed as nodes in the binary
tree of finite sequences of 0’s and 1’s with the usual tree ordering. This was made
explicit in [31] and is described below.

The following notation is standard in mathematical logic and shall be used
throughout. The set of all natural numbers {0, 1,2, ...} is denoted by w. Each nat-
ural number k € w is equated with the set of all natural numbers strictly less
than k. Thus, 0 denotes the emptyset, 1 = {0}, 2 = {0, 1}, etc. For each natu-
ral number k, 2¥ denotes the set of all functions from {0,...,k — 1} into {0, 1}.
A finite binary sequence is a function s : k — 2 for some k € w. We may write s
as (s(0),...,s(k — 1)); for each i < k, s(i) denotes the ith value or entry of the
sequence s. We shall use 2<* to denote the collection | J, ., 2k of all finite binary
sequences. For s € 2<%, we let |s| denote the length of s; this is exactly the domain
of s. For nodes s,t € 2<% we write s C ¢ if and only if |s| < |t| and for each
i < |s], (i) = t(7). In this case, we say that s is an nitial segment of t, or that t
extends s. If t extends s and |t| > |s|, then we write s C t, and we say that s is a
proper initial segment of ¢. For i < w, we let s[4 denote the function s restricted
to domain ¢. Thus, if ¢ < |s|, then s [ is the proper initial segment of s of length
i, 511 =1(s(0),...,s(i — 1)); if ¢ > |s|, then s [i equals s. The set 2<“ forms a tree
when partially ordered by inclusion.

Let v, w be vertices in some graph. Two nodes s,t € 2<% are said to represent v
and w, respectively, if and only if, without loss of generality, assuming that |s| < [¢],
then v and w have an edge between them if and only if ¢(]s|) = 1. The number
t(]s]) is called the passing number of t at s. Thus, if ¢ has passing number 1 at s,
then s and t code an edge between v and w; and if ¢ has passing number 0 at s,
then s and ¢ code a non-edge between v and w.

Using this idea, any graph can be coded by nodes in a binary tree as follows.
Let G be a graph with N vertices, where N < w, and let (v, : n < N) be any
enumeration of the vertices of G. Choose any node ty € 2<“ to represent the vertex
vg. For n > 0, given nodes tq, . ..,t,_1 in 2<% coding the vertices vg, ..., v,_1, take
t,, to be any node in 2<“ such that |t,| > |t,—1| and for all i < n, v, and v; have an
edge between them if and only if ¢,(|¢;]) = 1. Then the set of nodes {t,, : n < N}
codes the graph G. Note that any finite graph of size k£ can be coded by a collection
of nodes in J,;,,
the nodes in a tree used to code a graph will have different lengths. Figure 1 shows
a set of nodes {tg,1,t2,t3} from 2<% coding the four-cycle {vg, v1, v, v3}.

2. Throughout this paper, we shall hold to the convention that

2.2. The Halpern—Lauchli and Milliken theorems

The theorem of Halpern and Lauchli below was established as a technical lemma
containing core combinatorial content of the proof that the Boolean Prime Ideal

2050012-10



J. Math. Log. 2020.20. Downloaded from www.worldscientific.com

by UNIVERSITY OF DENVER on 07/15/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

The Ramsey theory of the universal homogeneous triangle-free graph

Fig. 1. A tree with nodes {to, t1,t2,t3} coding the 4-cycle {vo, v1,v2,v3}.

theorem, the statement that any filter can be extended to an ultrafilter, is strictly
weaker than the Axiom of Choice, assuming the Zermelo—Fraenkel axioms of set
theory. (See [14].) The Halpern-L&uchli theorem forms the basis for a Ramsey
theorem on strong trees due to Milliken, which in turn forms the backbone of all
previously found finite big Ramsey degrees, except where Ramsey’s theorem itself
suffices. An in-depth presentation of the various versions of the Halpern—L&uchli
theorem as well as Milliken’s theorem can be found in [34]. An account focused
solely on the aspects relevant to this work can be found in [3]. Here, we merely give
an overview sufficient for this paper, and shall restrict to subtrees of 2<“, though
the results hold more generally for finitely branching trees.

In this paper, we use the definition of tree which is standard for Ramsey theory
on trees. The meet of two nodes s and ¢ in 2<%, denoted s At, is the longest member
u € 2<% which is an initial segment of both s and ¢t. Thus, u = s A t if and only
if u=sllul =t[|ul and s|(Ju| +1) # ¢t[(Ju] + 1). In particular, if s C ¢ then
sAt=s. A set of nodes A C 2<% is closed under meets if s At is in A, for each pair
s, t € A.

Definition 2.1. A subset T' C 2<% is a tree if T' is closed under meets and for each
pair s,t € T with |s| < |¢], ¢ [|s] is also in T

Given n < w and a set of nodes A C 2<%, define
An)={te A:|t| =n}. (4)

A set X C Ais a level setif X C A(n) for some n < w. Note that a tree T does not
have to contain all initial segments of its members, but for each s € T', the level set
T(|s|) must equal {t [|s|:¢t € T and |t| > |s|}.

Let T'C 2<% be a tree and let L = {|s| : s € T'}. If L is infinite, then T is a
strong tree if every node in T splits in T'; that is, for each t € T, there are u,v € T
such that v and v properly extend ¢, and u(|t|) = 0 and v(|t|]) = 1. If L is finite,
then T is a strong tree if for each node ¢ € T with [¢| < max(L), ¢ splits in T. A
finite strong tree subtree of 2<“ with k& many levels is called a strong tree of height
k. Note that each finite strong subtree of 2<% is isomorphic as a tree to some binary

2050012-11



J. Math. Log. 2020.20. Downloaded from www.worldscientific.com

by UNIVERSITY OF DENVER on 07/15/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

N. Dobrinen

000 001 010 011 100 101 110 111

00 0 0 11

Fig. 2. A strong subtree of 2<% of height 3.

tree of height k. In particular, a strong tree of height 1 is simply a node in 2<%. See
Fig. 2. for an example of a strong tree of height 3.

The following is the strong tree version of the Halpern—L&uchli theorem. It is a
Ramsey theorem for colorings of products of level sets of finitely many trees. Here,
we restrict to the case of binary trees, since that is sufficient for the exposition in
this paper.

Theorem 2.2 ([13]). Let T; = 2<% for each i < d, where d is any positive integer,

and let
c: U HTi(n)—Hs (5)
n<w i<d
be a given coloring, where k is any positive integer. Then there is an infinite set of
levels L C w and infinite strong subtrees S; C T;, each with nodes exactly at the
levels in L, such that ¢ is monochromatic on

U H Si(n). (6)
neli<d
This theorem of Halpern and Lauchli was applied by Laver in [21] to prove that
given k£ > 2 and given any coloring of the product of k¥ many copies of the rationals
Q" into finitely many colors, there are subsets X; of the rationals which again are
dense linear orders without endpoints such that Xy x --- x X;_1 has at most k!
colors. Laver further proved that k! is the lower bound. Thus, the big Ramsey degree
for the simplest object (single k-length sequences) in the Fraissé class of products
of finite linear orders has been found. The full result for all big Ramsey degrees
for Age(QF) would involve applications of the extension of Milliken’s theorem to
products of finitely many copies of 2<%; such an extension has been proved by Vlitas
in [36].
Harrington produced an interesting method for proving the Halpern—L&auchli
theorem which uses the set-theoretic technique of forcing, but which takes place
entirely in the standard axioms of set theory, and most of mathematics, ZFC.
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No new external model is actually built, but rather, finite bits of information,
guaranteed by the existence of a generic filter for the forcing, are used to build the
subtrees satisfying the Halpern—Lauchli theorem. This proof is said to provide the
clearest intuition into the theorem (see [34]). Harrington did not publish his proof,
though the ideas were well-known in certain circles. A version close to Harrington’s
original proof appeared in [3], where a proof was reconstructed based on an outline
provided to the author by Laver in 2011. This proof formed the starting point for our
proofs in Secs. 5 and 6 of Halpern-Lauchli style theorems for strong coding trees.
An earlier proof appeared in [35]. That proof uses the weaker assumption £ — (Xo)%
instead of Harrington’s original £ — (X;)3? (see Definition 2.3), necessitating more
involved arguments.

Harrington’s proof for d many trees uses the forcing which adds x many Cohen
subsets of the product of level sets of d many copies of 2<%, where x satisfies a
certain partition relation, depending on d. For any set X and cardinal u, [X]*
denotes the collection of all subsets of X of cardinality pu.

Definition 2.3. Given cardinals r, o, , A,

A= (k)L (7)

means that for each coloring of [A]" into ¢ many colors, there is a subset X of A

such that |X| = x and all members of [X]|" have the same color.

The following ZFC result guarantees cardinals large enough to have the Ramsey
property for colorings into infinitely many colors.

Theorem 2.4 ([7]). Forr < w and p an infinite cardinal,
()t = (W

For d many trees, letting x = Jag_1(No)T suffices for Harrington’s proof. A
modified version of Harrington’s proof appears in [35], where the assumption on
k is weaker, only J;_1(Rg)T, but the construction is more complex. This proof
informed the approach in [4] to reduce the large cardinal assumption for obtaining
the consistency of the Halpern—L&uchli theorem at a measurable cardinal. Building
on this and ideas from [5, 33], Zhang proved the consistency of Laver’s result for
the x-rationals, for k measurable, in [37].

The Halpern—L&uchli theorem forms the essence of the next theorem; the proof
follows by a several step induction applying Theorem 2.2.

Theorem 2.5 ([22]). Let k > 1 be given and let all strong subtrees of 2<% of
height k be colored by finitely many colors. Then there is an infinite strong subtree
T of 2<% such that all strong subtrees of T of height k have the same color.

In Sec. 1, an outline of Sauer’s proof that the Rado graph has finite big Ramsey
degrees was presented. Knowledge of his proof is not a pre-requisite for reading
this paper, but the reader with knowledge of that paper will have better context
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for and understanding of this paper. A more detailed outline of the work in [32]
appears in [3, Sec. 3], which surveys some recent work regarding Halpern—Léauchli
and Milliken theorems and variants. [34, Chapter 6] provides a solid foundation for
understanding how Milliken’s theorem is used to attain big Ramsey degrees for both
Devlin’s result on the rationals and Sauer’s result on the Rado graph. Of course,
we recommend foremost Sauer’s original paper [32].

We point out that Milliken’s theorem has been shown to consistently hold at
a measurable cardinal by Shelah in [33], using ideas from Harrington’s proof. An
enriched version was proved by Dzamonja et al. in [5] and applied to obtain the
consistency of finite big Ramsey degrees for colorings of finite subsets of the x-
rationals, where k is a measurable cardinal. They obtained the consistency of finite
big Ramsey degrees for colorings of finite subgraphs of the x-Rado graph for &
measurable in [5]. The uncountable height of the tree 2<% coding the r-rationals
and the k-Rado graph renders the notion of strong similarity type more complex
than for the countable cases.

There is another theorem stronger than Theorem 2.5, also due to Milliken in [23],
which shows that the collection of all infinite strong subtrees of 2<“ forms a topolog-
ical Ramsey space, meaning that it satisfies an infinite-dimensional Ramsey theorem
for Baire sets when equipped with its version of the Ellentuck topology (see [34]).
Though not outrightly used, this fact informed some of our intuition when ap-
proaching this work.

3. Strong Triangle-Free Trees Coding H3

In Sec. 2, it was shown how nodes in binary trees may be used to code graphs, and
strong trees and Milliken’s theorem were presented. In this section, we introduce
strong triangle-free trees, which seem to be the correct analogue of Milliken’s strong
trees suitable for coding triangle-free graphs.

Sauer’s proof in [32] that the Rado graph has finite big Ramsey degrees uses
the fact that the Rado graph is bi-embeddable with the graph coded by the col-
lection of all nodes in 2<“  where nodes with the same length code vertices with
no edges between them. Colorings on the Rado graph are transferred to the graph
represented by the nodes in 2<%, Milliken’s theorem for strong trees is applied, and
then the homogeneity is transferred back to the Rado graph. In the case of the
universal triangle-free graph, there is no known bi-embeddability between H3 and
some triangle-free graph coded by nodes in a tree with some kind of uniform struc-
ture. Indeed, this may be fundamentally impossible precisely because the absence
of triangles disrupts any uniformity of a coding structure. Thus, instead of looking
for a uniform sort of structure which codes some triangle-free graph bi-embeddable
with H3 and trying to prove a Milliken-style theorem for them, we define a new
kind of tree in which certain nodes are distinguished to code the vertices of a given
triangle-free graph. Moreover, nodes in the tree branch as much as possible, subject
to the constraint that at each level of the tree, no node is extendible to another
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distinguished node which would code a triangle with previous distinguished nodes.
The precise formulation of strong triangle-free tree appears in Definition 3.9.

Some conventions and notation are now set up. Given a triangle-free graph G,
finite or infinite, let (v, : n < N) be any enumeration of the vertices of G, where
N < w is the number of vertices in G. We may construct a tree 7" with certain
nodes (¢, : n < N) in T coding the graph G as follows. Let ¢y be any node in 2<%
and declare cg to code the vertex vg. For n > 0, given nodes cq,...,c,_1 in 2<%
coding the vertices vp,...,v,_1, let ¢, be any node in 2<% such that the length
of ¢,, denoted |cy,|, is strictly greater than the length of ¢,—1 and for all i < n,
en(Jei|) = 1 if and only if v, and v; have an edge between them. The set of nodes
{¢n : n < N} codes the graph G.

Definition 3.1 (Tree with Coding Nodes). A tree with coding nodes is a struc-
ture (T, N;C, <,¢) in the language of £L = {C, <, ¢}, where C and < are binary
relation symbols and c is a unary function symbol, satisfying the following: 7" is a
subset of 2<“ satisfying that (T, C) is a tree (recall Definition 2.1), N < w and <
is the usual linear order on N, and ¢ : N — T is an injective function such that
m < n < N implies |c(m)| < |e(n)].

Convention 3.2. We shall use ¢, to denote ¢(n) and call it the nth coding node

in T. The length of ¢, shall be denoted by [,,. When necessary to avoid confusion
T

no

between more than one tree, the nth coding node of a tree T will be denoted as ¢
and its length as (I = |c1].

Definition 3.3. A graph G with vertices enumerated as (v, : n < N) is represented
by a tree T' with coding nodes (¢, : n < N) if and only if for each pair i <n < N,
v Ev; 5 ¢ (l;) = 1. We will often simply say that T codes G.

The next step is to determine which tree configurations code triangles, for those
are the configurations that must be omitted from any tree coding a triangle-free
graph. Notice that if v;, v;, v;, are the vertices of some triangle, c;, ¢, ¢;; are coding
nodes coding these vertices, respectively, and the edge relationships between them,
and |¢;| < |¢j] < |ex|, then it must be the case that ¢;(|c;|) = cx(|ci|) = er(|e;]) = 1.
Moreover, this is the only way a triangle can be coded by coding nodes.

Now, we present a criterion which, when satisfied, guarantees that any node ¢
in the tree may be extended to a coding node without coding a triangle with any
coding nodes of length less than |¢|.

Definition 3.4 (Triangle-Free Criterion). Let T'C 2<% be a tree with coding
nodes (¢, : n < N), where N < w. T satisfies the Triangle-Free Criterion (TFC) if
the following holds: For each t € T, if I, < |¢t| and t(I;) = ¢,,(I;) = 1 for some i < n,
then t(1,) = 0.

In words, a tree T with coding nodes (¢, : n < N) satisfies the TFC if for
each n < N, whenever a node v in T has the same length as coding node c,, and
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u and ¢, both have passing number 1 at the level of a coding node ¢; for some
i < n, then v1 must not be in 7. In particular, the TFC implies that if ¢, has
passing number 1 at ¢; for any ¢ < n, then ¢, cannot split; that is, ¢, 1 must not
be in T.

Remark 3.5. The point of the TFC is as follows: Whenever a finite tree T satisfies
the TFC, then any maximal node of 7' may be extended to a new coding node
without coding a triangle with the coding nodes in T'.

The next proposition provides a characterization of tree representations of
triangle-free graphs.

Proposition 3.6 (Triangle-Free Tree Representation). Let T C 2<% be a
tree with coding nodes {c, : n < N) coding a countable graph G with vertices
(Up : n < N), where N < w. Assume that the coding nodes in T are dense in T,
meaning that for each t € T, there is some coding node ¢, € T such that t C c,.
Then the following are equivalent:

(1) G is triangle-free.
(2) T satisfies the TFC.

Proof. Note that if IV is finite, then the coding nodes in T" being dense in T implies
that every maximal node in 7' is a coding node; in this case, the maximal nodes in
T have different lengths.

Suppose (2) fails. Then there are i < j < N and t € T with length greater
than I; such that ¢(l;) = ¢;j({;) = 1 and ¢(l;) = 1. Since every node in T ex-
tends to a coding node, there is a & > j such that ¢, O t. Then ¢, has passing
number 1 at both ¢; and ¢;. Thus, the coding nodes ¢;, ¢;, ¢, code that the vertices
{vi, vj, vx } have edges between each pair, implying G contains a triangle. Therefore,
(1) fails.

Conversely, suppose that (1) fails. Then G contains a triangle, so there are
1 < j < k < N such that the vertices v;, v}, v have edges between each pair. Since
the coding nodes ¢;, ¢j, ¢, code these edges, it is the case that ¢;(l;) = cx(l;) =
cx(l;) = 1. Hence, the nodes ¢;, ¢j, ¢ witness the failure of the TFC. O

Definition 3.7 (Parallel 1’s). For two nodes s,t € 2<%, we say that s and ¢ have
parallel 1’s if there is some [ < min(]s|, |[t|) such that s(I) = ¢(l) = 1.

Definition 3.8. Let T be a tree with coding nodes (¢, : n < N) such that, above
the stem of T, splitting in 7" occurs only at the levels of coding nodes. Then T
satisfies the Splitting Criterion if for each n < N and each non-maximal ¢ in T with
[t| = |en|, t splits in T if and only if ¢ and ¢, have no parallel 1’s.

Notice that whenever a tree T' with coding nodes satisfies the Splitting Criterion,
each coding node which is not solely a sequence of 0’s will not split in 7. Thus, the
Splitting Criterion produces maximal splitting subject to ensuring that no nodes
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can be extended to code a triangle, while simultaneously reducing the number of
similarity types of trees under consideration later for the big Ramsey degrees, if we
require each coding node to have at least one passing number of 1.

Next, strong triangle-free trees are defined. These trees provide the intuition
and the main structural properties of their skewed variant defined in Sec. 4.

Definition 3.9 (Strong Triangle-Free Tree). A strong triangle-free tree is a
tree with coding nodes, (T, N; C, <, ¢) such that for each n < N, the length of the
nth coding node ¢, is I, =n+ 1 and

(1) If N = w, then T has no maximal nodes. If N < w, then all maximal nodes of
T have the same length, which is [n_1.

(2) stem(T) is the empty sequence ().

(3) ¢o = (1), and for each 0 <n < N, ¢,,(In—1) = 1.

(4) For each n < N, the sequence of length I,, consisting of all 0’s, denoted 0=, is
anode in T

(5) T satisfies the Splitting Criterion.

T is a strong triangle-free tree densely coding Hs if T is an infinite strong triangle-
free tree and the set of coding nodes is dense in 7T'.

Strong triangle-free trees can be defined more generally than we choose to
present here, for instance, by relaxing conditions (2) and (3), leaving off the re-
striction that l,, = n + 1, and letting ¢y be any node. The notion of strong subtree
of a given strong triangle-free tree can also be made precise, and the collection
of such trees end up forming a space somewhat similar to the Milliken space of
strong trees. However, as Milliken-style theorems are impossible to prove for strong
triangle-free trees, as will be shown in Example 3.18, we restrict here to a simpler
presentation with the aim of building the reader’s understanding of the essential
structure of strong triangle-free trees, as the strong coding trees defined in Sec. 4
are skewed and slightly relaxed versions of trees in Definition 3.9.

We now set up to present a method for constructing strong triangle-free trees
densely coding Hs. Let K3 denote the Fraissé class of all triangle-free countable
graphs. Given a graph H and a subset Vj of the vertices of H, the notation H|V;
denotes the induced subgraph of H on the vertices in Vj. In [15], Henson proved
that a countable graph H is universal for s if and only if H satisfies the following

property.

(A3) (i) H does not admit any triangles.
(i) If Vo, V1 are disjoint finite sets of vertices of H and H |V does not admit
an edge, then there is another vertex which is connected in H to every
member of Vi and to no member of V7.

Henson used this property to construct a universal triangle-free graph Hjz in
[15], as well as universal graphs for each Fraissé class of countable graphs omitting
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k-cliques, as the analogues of the Rado graph for countable k-clique free graphs.
The following property (As)’ is a reformulation of Henson’s property (As):

(A3) (i) H does not admit any triangles.
(ii) Let (v, : n < w) enumerate the vertices of H, and let (F; : i < w) be
any enumeration of the finite subsets of w such that for each ¢ < w,
max(F;) < ¢ and each finite set appears infinitely many times in the
enumeration. Then there is a strictly increasing sequence (n; : i < w)
such that for each i < w, if H|{v,, : m € F;} has no edges, then for all
m <1, U, Ev, < meF;.

It is straightforward to check the following fact.

Fact 3.10. Let H be a countably infinite graph. Then H is universal for K3 if and
only if (As)" holds.

The following re-formulation of property (As)’ will be used to build trees with
coding nodes which code Hs. Let T' C 2<% be a tree with coding nodes (¢, : n < w).
We say that T satisfies property (As)t e if the following holds:

(Az)™ee (i) T satisfies the TFC.
(ii) Let (F; : i < w) be any enumeration of finite subsets of w such that
for each i < w, max(F;) < 4, and each finite subset of w appears as
F; for infinitely many indices i. For each i < w, if for all pairs j < k
in F; it is the case that cx(l;) = 0, then there is some n > ¢ such that
for all m < i, ¢, () = 1 if and only if m € F;.

Fact 3.11. A tree T with coding nodes {(c, : n < w) codes Hg if and only if T
satisfies (Ag)tree.

Remark 3.12. Any strong triangle-free tree in which the coding nodes are dense
automatically satisfies (A3)* ¢, and hence codes Hs.

The next lemma shows that any finite strong triangle-free tree can be extended
to a tree satisfying (As)*e°.

Lemma 3.13. Let T be a finite strong triangle-free tree with coding nodes {c,, :
n < N), where N < w. Given any F C N — 1 for which the set {c, : n € F'} codes
no edges, there is a maximal node t € T such that for alln < N — 1,

tl)=1cneF 8)

Proof. The proof is by induction on N over all strong triangle-free trees with N
coding nodes. For N < 1, the lemma trivially holds but is not very instructive, so
we shall start with the case N = 2. Let T be a strong triangle-free tree with coding
nodes {cg,c1}. By (2) of Definition 3.9, the stem of T is the empty sequence, so
both (0) and (1) are in T. By (3) of Definition 3.9, ¢o = (1), and ¢1(lp) = 1. By the
Splitting Criterion, ¢y does not split in T but (0) does, so (0,0), (0,1), and (1,0)
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are in 7' while (1, 1) is not in T. Note that ¢; = (0, 1), since it must be that {; = 2
and ¢1(lp) =1, and (1,1) is not in T. The only non-empty F' C 1 is F = {0}. The
coding node ¢ satisfies that ¢;(l,,) = 1 if and only if n € {0}. For F' = (), both the
nodes t = (0,0) and ¢ = (1,0) satisfy that for all n < 1, ¢({,,) = 1 if and only if
nekF.

Now, assume that the lemma holds for all N’ < N, where N > 3. Let T be
a strong triangle-free tree with N coding nodes. Let F' be a subset of N — 1 such
that {¢, : n € F} codes no edges. By the induction hypothesis, there is a node ¢
in T of length {y_o such that for all n < N — 2, ¢(I,,) = 1 if and ounly if n € F. If
N — 2 ¢ F, then as t0 is guaranteed to be in T by the Splitting Criterion, the
node ¢’ = ¢t70 in T satisfies that for all n < N — 1, ¢/(I,) = 1 if and only if n € F.
Now, suppose N — 2 € F. We claim that ¢™1 is in 7. By the Splitting Criterion, if
t™11is not in T, then it must be the case that ¢ and cy—_2 have a parallel 1. So there
is some ¢ < N — 2 such that ¢(I;) = cxy—2(l;) = 1. As ¢ codes edges only with those
vertices with indexes n < N — 2 which are in F\{N — 2}, it follows that ¢ € F.
But then {c¢;,cn—2} codes an edge, contradicting the assumption on F'. Therefore,
t and cy_o do not have any parallel 1’s, and hence ¢t~ 1 is in T. Letting ¢’ = ¢t 1,
we see that for alln < N — 1, ¢(l,,) =1 if and only if n € F. O

We now present a method for constructing strong triangle-free trees densely
coding H3. Here and throughout the paper, 0" denotes the sequence of length n
consisting of all 0’s.

Theorem 3.14 (Strong Triangle-Free Tree S Densely Coding Hg). Let
(F; : i < w) be any sequence enumerating the finite subsets of w so that each
finite set appears infinitely often. Assume that for each i < w, F; C i — 1 and
F3; = F3i40 = (0. Then there is a strong triangle-free tree S which satisfies property
(A3)*t*°® and densely codes Hs. Moreover, this property is satisfied specifically by
the coding node c4;1; meeting requirement Fs;y;, for each i < w and j < 2.

Proof. Let (F; : i < w) satisfy the hypotheses. Enumerate the nodes in 2<% as
(u; i < w) in such a manner that ¢ < k implies |u;| < |ug|. Then ug =@, |u1| = 1,
and for all i > 2, |u;| < i. We will build a strong triangle-free tree S C 2<“ with
coding nodes ¢, € SN 2" densely coding H3 satisfying the following properties:

(i) ¢o = (1), and for each n < w, l,, :=|ep| =n+1 and ¢4 (1) = 1.

(ii) For n = 4i + j, where j < 2, ¢, satisfies requirement F3;;, meaning that if
{ck : k € F3;4;} codes no edges, then for all k < n —1, ¢,(Ix) =1 if and only
if k € F3i+j-

(iii) For n = 44 + 3, if u; is in SN 25", then ¢, is a coding node extending u;. If u;
is not in S, then ¢, = 0" 1.

As in Lemma 3.13, the first two coding nodes of S are completely determined
by the definition of strong triangle-free tree. Thus, ¢y = (1), ¢; = (0,1), and the
tree S up to height 2 consists of the nodes {0, (0}, (1), (0,0),(0,1), (1,0)}. Denote
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this tree as S,. Since Fy = F} = 0, ¢o and ¢; trivially satisfy requirements Fy and
Fy, respectively. It is simple to check that Ss is a strong triangle-free tree, and that
(i)—(iil) are satisfied.

For the general construction step, suppose n > 2, S, € 25" has been con-
structed, and coding nodes {(¢; : i < n) have been chosen so that S,, is a strong
triangle-free tree satisfying (i)—(iii). Extend each maximal node in S,, to length n+1
according to the Splitting Criterion. Thus, for each s € S,, N 2", s70 is in S,,41,
and s 1 is in S,y if and only if s has no parallel 1’s with ¢,,—;. Now, we choose
¢n, 80 that (i)—(iii) hold. There are three cases.

Case 1. Either n = 4i and i > 1, or n = 4i + 2 and 7 < w. Let n’ denote 37 if
n = 4i, and let n/ denote 3i + 2 if n = 4i + 2. Then F,,, = (), so let ¢, = 0" 1.

Case 2. n =41+ 1 and 1 <7 < w. If for all pairs of integers k < m in Fj;41 it is
the case that ¢,,(Ix) = 0, then take ¢, to be a maximal node in S,,+1 such that for
all k <n—1, ¢,(lx) =1 if and only if k € F3;41, and ¢, (l,,—1) = 1. Otherwise, let
cp, = 0" 1.

Case 3. n = 4i+ 3 and i < w. Recall that |u;| <4, so |u;| <n—3.If u; is in S;,
then take ¢, to be the maximal node in S, which is u; extended by all 0’s until
its last entry, which is 1. Precisely, letting ¢ = n — |u;|, set ¢, = u; 70971, If w; is
not in S;, let ¢, = 0" 1.

(1)—(iii) hold automatically by the choices of ¢, in Cases 1-3. What is left is to
check is that such nodes in Cases 1-3 actually exist in S,,11. The node 0”1 is in
Sp+1, as it has no parallel 1’s with ¢,—;. Thus, in Case 1 and the second halves of
Cases 2 and 3, the node we declared to be ¢, is indeed in S, .

In Case 2, where n = 41+ 1 with ¢ > 1, suppose that F3;.1 # 0 and for all pairs
k < m of integers in F3;11, ¢ (k) = 0. Since max(F3;11) < 3i—1 < n— 3 and since
by the induction hypothesis, S,,_; is a strong triangle-free tree, Lemma 3.13 implies
that there is a node ¢ € S,,_1 such that for each ¥ < n — 1, s(lx) = 1 if and only
if £ € F3;41. Note that t70 and ¢,—1 have no parallel 1’s, since ¢,—1 = o171,
Thus, by the Splitting Criterion, ¢ 071 is in S,41, and this node satisfies our
choice of ¢,,.

In Case 3 when n = 4i+ 3, if u; € S;, then by the Splitting Criterion, also u; ™ 0?
is in S,,, where ¢ = n — |u;|. Since n — 1 =4i+2, ¢,,_1 = 0"~ 1; so u; 0% has no
parallel 1’s with ¢,,—1. Thus, by the Splitting Criterion, u; 091 is in S, 41.

Let S= S,. By the construction, S is an infinite strong triangle-free tree

nw
with coding nodes (¢, : n < w). (ii) implies that S satisfies (A3)**°® and hence codes
‘Hs. By (iii), the coding nodes are dense in S. |

Example 3.15 (A Strong Triangle-Free Tree). Presented here is a con-
crete example of the first six steps of constructing a strong triangle-free tree
densely coding Hs3. In the construction of Theorem 3.14, Fy = F; = F, = ().
The coding nodes ¢y = (1) and ¢; = (0,1) are determined by the defini-
tion of strong triangle-free tree. The coding node c2 we choose to be (0,0,1).
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Fig. 3. A strong triangle-free tree S densely coding Hs.

(It could also have been chosen to be (1,0, 1).) Since ug is the empty sequence, ¢s can
be any sequence which has last entry 1; in this example we let ¢c3 = (1,0,0,1). F3 =
0, s0 ¢y = (0,0,0,0,1). Suppose Fy = {0,2}. Then, we may take c5 = (0,1,0,1,0,1)
to code edges between the vertex vs and the vertices vy and vg; we also make vs
have an edge with v4. Notice that having chosen the coding node ¢, each maximal
node s € S, 41 splits in S,, 42 if and only if s(i) + ¢, (i) < 1 for all ¢ < n, see Fig. 3.
The graph on the left with vertices {vp, ..., vs} is being coded by the coding nodes
{co,...,c5}. The tree and the graph are intended to continue growing upwards to
the infinite tree S coding the graph Hs.

Remark 3.16. We have set up the definition of strong triangle-free tree so that no
coding node in a strong triangle-free tree splits. The purpose of this is to simplify
later work by reducing the number of different isomorphism types of trees coding
a given finite triangle-free graph. The purposes of the density of the coding nodes
and the Splitting Criterion are to saturate the trees with as many extensions as
possible coding vertices without coding any triangles, so as to allow for thinning
to subtrees which still can code Hs, setting the stage for later Ramsey-theoretic
results.

Remark 3.17. Given a strong triangle-free tree 1" densely coding H3, the collection
of all strong triangle-free subtrees S of T" densely coding Hs3 forms an interesting
space of trees. The author has proved Halpern—L&auchli-style theorems for such trees,
provided that the stem is fixed. This was the author’s first approach toward the
main theorem of this paper, and these proofs formed the strategy for the proofs in
later sections. However, the introduction of coding nodes hinders a full development
of Ramsey theory for trees which have splitting nodes and coding nodes of the
same length, as shown in the next example. Such a bad coloring on coding nodes
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prevents the transition from cone-homogeneity to homogeneity on a strong triangle-
free subtree with dense coding nodes.

Example 3.18 (A Bad Coloring). Given a strong triangle-free tree S with cod-
ing nodes (¢, : n < w) dense in S, let s; = 0%, for each i < w. Note that each s; splits
in S and that |c,| = [sn+1], for each n < w. Color all coding nodes ¢, extending
s0 1, which is exactly (1), blue. Let k be given and suppose for each i < k, we
have colored all coding nodes extending s; 1. The coding node ¢ extends s; 1 for
some ¢ < k, so it has already been assigned a color. If ¢ is blue, color every coding
node in S extending si41 71 red; if ¢ is red, color every coding node in S extending
sk+1~ 1 blue. This produces a red-blue coloring of the coding nodes such that any
subtree S of S with coding nodes dense in S and satisfying the Splitting Criterion
(which would be the natural definition of infinite strong triangle-free subtree) has
coding nodes of both colors: For given a coding node ¢ of S, the node 0! is a
splitting node in S, and all coding nodes in S extending 0/°/" "1 have color different
from the color of c.

Since this example precludes a satisfactory Ramsey theory of strong triangle-
free trees coding H3, instead of presenting those Ramsey-theoretic results on strong
triangle-free trees which were obtained, we immediately move on to the skew version
of strong triangle-free trees. Their full Ramsey theory will be developed in the rest
of the paper.

4. Strong Coding Trees

This section introduces the main tool for our investigation of the big Ramsey degrees
for the universal triangle-free graph, namely strong coding trees. Essentially, strong
coding trees are simply stretched versions of strong triangle-free trees, with all the
coding structure preserved while removing any entanglements between coding nodes
and splitting nodes which could prevent Ramsey theorems, as in Example 3.18.
The collection of all subtrees of a strong coding tree 1" which are isomorphic to T,
partially ordered by a relation defined later in this section, will be seen, by the end
of Sec. 6, to form a space of trees coding Hs with many similarities to the Milliken
space of strong trees [22].

4.1. Definitions and notation

The following terminology and notation will be used throughout. Recall that by
a tree, we mean exactly a subset T C 2<% which is closed under meets and is a
union of level sets; that is, s,t € T and || > |s| imply that ¢ [ |s| is also a member
of T. Further, recall Definition 3.1 of a tree with coding nodes. Let T C 2<% be
a tree with coding nodes (¢ : n < N), where N < w, and let 7 denote |¢T|. T
denotes the collection of all initial segments of nodes in T'; thus, T = {tIn:teT
and n < |t[}. A node s € T is called a splitting node if both s7~0 and s™1 are in

T; equivalently, s is a splitting node in T if there are nodes sg,s; € T such that
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S0 2 s~0and 81 D s 1. Given t in a tree T, the level of T of length |¢| is the set of
all s € T such that |s| = [t|. By our definition of tree, this is exactly the set of s | |t|
such that s € T and |s| > |t|. T is skew if each level of T has exactly one of either
a coding node or a splitting node. A skew tree T is strongly skew if additionally for
each splitting node s € T, every t € T such that |¢t| > |s| and ¢ § s also satisfies
t(|s]) = 0; that is, the passing number of any node passing by, but not extending,
a splitting node is 0. The set of levels of a skew tree T C 2<%, denoted L7, is the
set of those | < w such that 7" has either a splitting or a coding node of length [.
Let (dL, : m < M) enumerate the collection of all coding and splitting nodes of T
in increasing order of length. The nodes d’, will be called the critical nodes of T.
Note that N < M, and M = w if and only if N = w. For each m < M, the mth
level of T is

Levp(m) = {se T :|s| = |[d"]}. (9)
Then for any strongly skew tree T,
T = U Levr(m). (10)
m< M

Let m,, denote the integer such that ¢} € Levp(my). Then df, = cI, and the
critical node dl, is a splitting node if and only if m # m,, for any n. For each
0 < n < N, the nth interval of T is |J{Levr(m) : mu,—1 < m < my}. The 0th
interval of T' is defined to be U,,<,,, Levr(m). Thus, the Oth interval of 7" is the
set of those nodes in T with lengths in [0,11], and for 0 < n < N, the nth interval
of T is the set of those nodes in T with lengths in (11, i7].

The next definition provides notation for the set of exactly those nodes just

above the (n — 1)st coding node which will split in the nth interval of T. Define
SpU(T,0) = {t € T : |t| = | stem(T)| + 1 and Im < mg such that d%, D ¢}.  (11)
For n > 1, define

Spl(T,n) ={t € T: [t| = l,_1 + 1 and 3m € (m,_1,my,) such that d? D t}.
(12)

Thus, Spl(T,n) is the set of nodes in T of length just one above the length of ¢, _1
(or the stem of T if n = 0) which extend to a splitting node in the nth interval
of T. The lengths of the nodes in Spl(T,n) were chosen to so that they provide
information about passing numbers at ¢ ;. For ¢t € Spl(T,n), let sply(t) denote
the minimal extension of ¢ which splits in 7.

Given a node s in T for which there is an 7 < |s| such that s [ ¢ is a splitting node
in T, the splitting predecessor of t in T, denoted splitpred(s), is the proper initial
segment u C s of maximum length such that both v ™0 and v ™1 are in T. Thus,
splitpred(s) is the longest splitting node in T which is a proper initial segment of
s. When the tree T is clear from the context, the subscripts and superscripts of T'
will be dropped.
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4.2. Definition and construction of strong coding trees

Now, we present a new tool for representing the universal triangle-free graph,
namely strong coding trees. The following Parallel 1’s Criterion is a central concept,
ensuring that a finite subtree of a strong coding tree T can be extended inside T’
so that the criterion (As)*™*® can be met.

Definition 4.1 (Parallel 1’s Criterion). Let T C 2<% be a strongly skew tree
with coding nodes (¢, : n < N). We say that T satisfies the Parallel 1’s Criterion
if the following hold: Given any set of two or more nodes {t; : i < i} in T' and some
I such that t; [ (I + 1), i < i, are all distinct, and ¢;(1) = 1 for all i < 1,

(1) There is a coding node ¢, in T such that for all i < 7, I,, < |t;| and #;(,,) = 1;
we say that ¢, witnesses the parallel 1’s of {t; : i < 1}.

(2) Letting I’ be least such that t;(I’) = 1 for all i < i, and letting n be least
such that ¢, witnesses the parallel 1’s of the set of nodes {t; : i < i}, then
T has no splitting nodes and no coding nodes of lengths strictly between I’
and [,,.

We say that a set of nodes {t; : i < i} has a new set of parallel 1’s at [ if t;(I) = 1
for all i < 7, and [ is least such that this occurs. Thus, the Parallel 1’s Criterion
says that any new set of parallel 1’s must occur at a level [ which is above the last
splitting node in 7T in the interval (I,,_1,1,] containing I, and that ¢,, must witness
this set of parallel 1’s.

Definition 4.2 (Splitting Criterion for Skew Trees). A strongly skew tree T
with coding nodes (¢, : n < N) satisfies the Splitting Criterion for Skew Trees if
the following hold: For each 1 < n < N and each s € T of length l,,_1 + 1, s is in
Spl(T,n) if and only if s and ¢, | (I,_1 + 1) have no parallel 1’s. For each s € T' of
length |stem(T")| + 1, s is in Spl(T',0) if and only if s = stem(7)" 0.

Notice that any tree with coding nodes satisfying the Splitting Criterion for
Skew Trees also satisfies the TFC (Definition 3.4), and hence will not code any
triangles.

Now, we arrive at the main structural concept for coding copies of Hs. This ex-
tends the idea of Milliken’s strong trees — branching as much as possible whenever
one split occurs — to skew trees with the additional property that they can code
omissions of triangles.

Definition 4.3 (Strong Coding Tree). A tree T C 2<% with coding nodes
(cn :n < w) is a strong coding tree if T is strongly skew, for each node t € T, the
node 0/l is also in T', and the following hold:

(1) The coding nodes of T are dense in T.
(2) For eachn > 1, ¢, (lp—1) = 1.
(3) T satisfies the Parallel 1’s Criterion.

2050012-24



J. Math. Log. 2020.20. Downloaded from www.worldscientific.com

by UNIVERSITY OF DENVER on 07/15/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

The Ramsey theory of the universal homogeneous triangle-free graph

Fig. 4. A strong coding tree T.

(4) T satisfies the Splitting Criterion for Skew Trees.

(5) co extends stem(7")1 and does not split.

(6) Given n < w, s € Spl(T,n), and i < 2, there is exactly one extension
s; 2 spl(s)™i of length [, in T, and its unique immediate extension in T
is 31/\7,

(7) For each n < w, each node ¢ in T of length I,_; + 1 which is not in Spl(T,n)
has exactly one extension of length l,, in T, say t., and its unique immediate
extension in 7T is ¢, 0. Here, [_; denotes the length of stem(T).

An example of a strong coding tree is presented in Fig. 4. One should notice
that upon “zipping up” the splits occurring in the intervals between coding nodes
in T to the next coding node level, one recovers the strong triangle-free tree S
from the previous section. The existence of strong coding trees will be proved in
Theorem 4.6.

Recall that (d,, : m < w) enumerates the set of all critical nodes (coding nodes
and splitting nodes) in T in order of strictly increasing length.

Definition 4.4 (Finite Strong Coding Tree). Given a strong coding tree T,
by an initial segment or initial subtree of T we mean the first m levels of T, for
some m < w. We shall use the notation

rm(T) = | J Levr(k). (13)

k<m

A tree with coding nodes is a finite strong coding tree if and only if it is equal to
some 7, +1(T") where either d,,, is a coding node or else m = 0.
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Thus, finite strong coding trees are exactly the finite trees with coding nodes
(en : m < N), where N < w, which have all maximal nodes of the length of its
longest coding node and satisfy (2)—(7) of Definition 4.3 for all n < N.

The next lemma extends the ideas of Lemma 3.13 to the setting of finite strong
coding trees.

Lemma 4.5. Let A be any finite strong coding tree with coding nodes (¢, : n < N,
where N < w. Let AT denote the nodes of length Ixy_1 + 1 extending the mazimal
nodes in A as determined by (6) and (7) in Definition 4.3. Then given any F C N
such that {c,, : m € F} codes no edges, there is at € AT such that for alln < N,

t(ln) =1 neF (14)

Proof. The proof is by induction on N over all finite strong coding trees with
N coding nodes. For N = 0, A = (), the lemma vacuously holds. For N = 1, it
follows from the definition of finite strong coding tree that A has critical nodes
dp = stem(A), d; which is a splitting node extending dy™0, and da = ¢y which
extends dyp 1. Thus, AT has three nodes, tyg D do™ 0 with passing number 0 at cg;
t1 D dp” 1 with passing number 1 at cg; and t5 = ¢ 0 which of course has passing
number 0 at ¢o. Both of the nodes ¢y and t2 satisfy equation (14) if F = ), and ¢,
satisfies (14) if F = {0}.

Now, suppose that N > 2 and the lemma holds for N — 1. Let A be a finite
strong coding tree with coding nodes (¢, : n < N). Let F be a subset of N such that
{¢n : n € F} codes no edges, and let m be the index such that d,,—; = cy_2. By
the induction hypothesis, there is a node u in (ry, (A))" such that for alln < N —1,
u(ly) =1lifand only if n € F.If N —1 ¢ F, by (6) and (7) of the definition of
strong coding tree there is an extension ¢ D w in AT with passing number 0 at
¢n—1, and this ¢ satisfies (14) for F.

If N—1 € F, it suffices to show that u € Spl(4, N — 1), for then there will be
atDuin AT with passing number 1 at cy_1, and this ¢ will satisfy (14). By the
Splitting Criterion for Skew Trees, if u & Spl(4, N —1), then v and ey—1 [ (Iy—2+1)
must have a parallel 1. Then by the Parallel 1’s Criterion, there is some i < N — 2
such that u(l;) = e¢y—1(l;) = 1. Since u codes edges only with those vertices with
indexes less than N — 1 in F, it follows that ¢ must be in F. But then {c¢;,cn_1} is
a subset of F' coding an edge, contradicting the assumption on F. Therefore, u is
in Spl(4,N —1). |

We now present a flexible method for constructing a strong coding tree T. This
should be thought of as a stretched and skewed version of the strong triangle-
free tree S which was constructed in Theorem 3.14. The passing numbers at the
coding nodes in T code edges and non-edges exactly as the passing numbers of the
coding nodes in S. The strong coding tree T which we construct will be regular: For
each n, nodes in Spl(T,n) extend to splitting nodes in the nth interval of T from
lexicographically least to the largest. Regularity is not necessary for achieving the
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main theorems of this paper. However, as any strong coding tree contains a subtree
which is a regular strong coding tree, it does no harm to only work with regular
trees.

Theorem 4.6. Let (F; : i < w) be any sequence enumerating the finite subsets of
w so that each finite set appears cofinally often. Assume further that for each i < w,
F; Ci—1 and F3; = F3;15 = 0. Then there is a strong coding tree T which densely
codes Hs, where for each i < w and j < 2, the coding node ca;y; meets requirement
Fziyj.

Proof. Let (F; : i < w) satisfy the hypotheses, and let (u; : i < w) be an enumera-
tion of all the nodes in 2<“ in such a way that each |u;| <. We construct a strong
coding tree T C 2<% with coding nodes {(c,, : n < w) and lengths l,, = |¢,| so that
for each n < w, 1y, +1(T) := J{Levrp(i) : i < my} is a finite strong coding tree and
Levr(m, + 1) satisfies (6) and (7) of the definition of strong coding tree, where m,,
is the index such that the m,th critical node d,,, is equal to the nth coding node
cn, and the following properties are satisfied:

(i) For n =4i+ j, j <2, ¢, meets requirement Fs; ;.
(ii) For n = 4i + 3, if u; is in ry,,_,42(T), then ¢, is a coding node extending w;.
Otherwise, ¢, = 0'-1=1"(1,1)7 0% where g, = l,, — (ln_1 + 1).

To begin, define Levy(0) = {()}. Then the minimum length splitting node in T
is (), and we label it dy. Let Levy(1) = {(0), (1)}. To satisfy (5) of Definition 4.3, ¢g
is going to extend (1), so in order to satisfy (4), it must be the case that Spl(T, 0) =
{(0)}. Take the splitting node d; to be (0). Let Levy(2) = {(0,0),(0,1),(1,0)}, and
define ¢o = (1,0). Then Iy = 2, dy = ¢, and

rmo+1(T) = | J{Levr(i) : i < 2} (15)

is a finite strong coding tree satisfying (i) and (ii). The next level of T must satisfy
(6) and (7). Extend (0,0) to (0,0,0), extend (0, 1) to (0,1,1), and extend (1,0) to
(1,0,0), and let these compose Levy(3).

For the sake of clarity, the next few levels of T up to the level of ¢; will be
constructed concretely. To satisfy (2), the next coding node ¢; must extend (0, 1, 1),
since this is the only node in Levyp(3) which has passing number 1 at c¢y. The
knowledge that ¢; will extend (0,1,1) along with the Splitting Criterion for Skew
Trees determine that Spl(T,1) = {(0,0,0),(1,0,0)}, since these are the nodes in
Levt(3) which have no parallel 1’s with (0,1, 1). As we are building T to be regular,
(1,0,0) is first in Spl(T, 1) to be extended to a splitting node. Let d3 = (1,0, 0), and
let Levr(4) = {(0,0,0,0),(0,1,1,0),(1,0,0,0),(1,0,0,1)}, so that T, is strongly
skew. Next, let dy = (0,0, 0, 0) as this node should split since it is the only extension
of (0,0,0) in Levy(4). Let

Levr(5) = {(0,0,0,0,0),(0,0,0,0,1),(0,1,1,0,0),(1,0,0,0,0),(1,0,0,1,0) }.
(16)
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Let ¢; = (0,1,1,0,0), as this is the only extension of (0,1,1) in Levy(5). Thus,
ds = c1, I; =5, splp((1,0,0)) = (1,0,0) and sply({0,0,0)) = (0,0,0,0). Moreover,
re(T) is a regular, finite strong coding tree satisfying requirements (i)—(ii). The next
level of T is determined by (6) and (7), so let

Levy(6) = {(0,0,0,0,0,0), (0,0,0,0,1,1),(0,1,1,0,0,0),
(1,0,0,0,0,0),(1,0,0,1,0,1)}. (17)

This constructs the tree r7(T), which is T up to the level of [ + 1 = 6. Notice
that the second lexicographically least node in Levy(l; + 1) is (0,0,0,0,1,1) =
0 =D77(1, 1),

Suppose 7y, —1 +2(T) has been constructed so that r,,,, ,+1(T) is a finite strong
coding tree satisfying (i) and (ii) and such that Levy(m,_1 + 1) satisfies (6) and (7)
of Definition 4.3, where m,,_; is the index such that d,,, , = c,—1. As part of the
induction hypothesis, suppose also that the second lexicographically least node in
Levr(my,_1 + 1) is 00™»—1=D""(1,1), this being true in the base case of 7, 12(T).
Enumerate the members of Levy(m,_1 + 1) in decreasing lexicographical order as
(s : k < K). At this stage, we need to know which node sj, will be extended to the
next coding node ¢, as this determines the set Spl(T, n). We will show how to choose
k. in the three cases below, so that extending si, to ¢, will meet requirements (i)
and (ii). Once k, is chosen, Spl(T, n) is the set {s; : k € K}, where K, is the set
of those k < K such that for all i < n, sx(l;) + sk, (I;) < 1, that is, s and s, have
no parallel 1’s at or below l,,_1. Then let ¢, = sk;“0|K°‘P|, and extend all nodes in
{sr : k < K} according to (6) and (7) in the definition of strong coding tree. We
point out that [, will equal l,,_1 + |Kgp| + 1.

There are three cases to consider regarding which k£ < K should be k..

Case 1. n = 4i or n = 41 + 2 for some 7 < w. Let n/ denote 3¢ if n = 44 and 37 + 2
if n = 4¢+ 2. In this case, F,,y = 0. Let k., = K — 2. Since sx_1 is the lexicographic
least member of Levy(m,—1 + 1), sx—1 must be 0'»-1+1, Hence, sg_o being next
lexicographic largest implies that sg_o = 0Un=1=1D""(1,1). Let k, = K — 2. Then
any extension of si, to a coding node will have passing number 1 at ¢,_; and
passing number 0 at ¢; for all i < n — 1.

Case 2. n = 4i+1 for some 1 <14 < w. If there is a pair k¥ < m of integers in F3;41
such that ¢, (Ix) = 1, then again take k. to be K — 2. Otherwise, ¢, (1) = 0 for all
pairs k < m in F3;41. Note that ¢ > 1 implies that max(F3;41) < 3i—1 < n—3. Since
by the induction hypothesis r,,, ,+1(T) is a finite strong coding tree, Lemma 4.5
implies there is some ¢ € Levy(m,,—3+2) such that ¢(I;) = 1 if and only if j € F3;41.
Let ¢’ be the node in 2<% of length I,,_s + 1 which extends ¢ by all 0’s. By our
construction, this node is in ry,,, _,42(T). Since, by Case 1, ¢,—1 is the node of
length 1,,_; extending 0»-2=1""(1,1) by all 0’s, one sees that ¢’ [ (I,,_» + 1) and
¢n—1 | (In—2 + 1) have no parallel 1’s. Thus, ¢ | (I,—2 + 1) is in Spl(T,n —1). Let k.
be the index in K such that si, is the rightmost extension of ¢’ in Levy(m,—1 + 1).
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Case 3. n = 4i + 3 for some i < w. If u; & rp,,_,4+2(T), then let k, = K — 2.
Otherwise, u; € T, _,+2(T). Let v/ be the leftmost extension of w; in ry,, _,4+2(T)
of length 1,,_o + 1. In particular, w'(I,—2 — 1) = v/(l,—2) = 0. As in Case 2, ¢;,_1
is the node of length [,,_1 such that for all I < l,,_1, ¢,—1(I) = 1 if and only if
l€{lp—2—1,l,—2}. Thus, v and c¢,—1 [ ({,—2 + 1) have no parallel 1’s, so by the
induction hypothesis, u' € Spl(T,n — 1). Hence, there is an extension v” O v’ in
T, _,+2(T) such that w”(l,,—1) = 1. Let k. be the index of the node u”.

To finish the construction of T up to level I, + 1, let I, = l,—1 + |Kgp| + 1.
For each k ¢ K,p, extend s;, via all 0’s to length [,, + 1. Note in each of the three
cases, ky is not in Ky, since si, has passing number 1 at ¢,—i. Thus, ¢, is the
extension of si, by all 0’s to length [,,, and its immediate extension, or passing
number by itself, is 0. Enumerate K, as (k; : i < |Kyy|) so that sg, >iex Sk,
for each i. Let spl(sg,) = s, 0% in particular, spl(sk,) = sk,. For each i < |Kgp|,
letting p; = | Ksp| — 4, sk, ~0rl and spl(sg,) 17077271 are the two extensions
of s, in Levy(l,, 4+ 1). This constructs Levy(l, + 1). Notice that for each j < 2, the
t € Levy(l,, + 1) extending spl(sg; )7 has passing number t(l,) = j.

Let T = (U, Levr(i). Then T is a strong coding tree because each initial
segment 7,,,, +1(T), n < w, is a finite strong coding tree, and the coding nodes are
dense in T. O

Fact 4.7. Any strong coding tree is a perfect tree.

Proof. Let t be any node in T, and let j be minimal such that {; > |¢|. Extend
t leftmost in 7' to the node of length [;, and label this ¢’. Let s = 0%. By density
of coding nodes in T', there is a coding node ¢ in T extending s, with k > j + 2.
Extending #' leftmost in 7" to length ly_1 + 1 produces a node #” in 7' which has
no parallel 1’s with ¢y | (lk—1 +1). Thus, t” € Spl(T, k), so t extends to a splitting
node in T before reaching the level of c¢j. O

In particular, it follows from the definition of strong coding tree that in any
strong coding tree T, for any n < w, the node 0'»-* will split in 7" before the
level I,,.

4.3. The space (T (T),<,r) of strong coding trees

The space of subtrees of a given strong coding tree, equipped with a strong partial
ordering, will form the fundamental structure allowing for the Ramsey theorems
in latter sections. It turns out that not every subtree of a given strong coding
tree T' can be extended within T to form another strong coding tree. The notion
of valid subtree provides conditions when a finite subtree can be extended in any
desired manner within 7. Some lemmas guaranteeing that finite valid subtrees of
a given strong coding tree T can be extended to any desired configuration within
T are presented at the end of this subsection. These lemmas will be very useful in
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subsequent sections. Those familiar with topological Ramsey spaces will notice the
influence of [34] in our chosen style of presentation, the idea being that the space
of strong coding trees has a similar character to the topological Ramsey space
of Milliken’s infinite strong trees, though background in [34] is not necessary for
understanding this article.

To begin, we define a strong notion of isomorphism between meet-closed sets
by augmenting Sauer’s notion of strong similarity type from [32] to fit the present
setting. Given a subset S C 2<%, recall that the meet closure of S, denoted S*, is
the set of all meets of pairs of nodes in S. In this definition s and ¢ may be equal,
so S” contains S. We say that S is meet-closed if S = S*. Note that each tree is
meet-closed, but there are meet-closed sets which are not trees, as Definition 2.1 of
tree applies throughout this paper.

Definition 4.8 ([32]). S C 2<% is an antichain if s C ¢ implies s = ¢, for all
s, t € 5. Aset S C2<¥is transversal if |s| = |t| implies s = ¢ for all s,¢ € S. A set
D C 2<% is diagonal if D is an antichain with D" being transversal. A diagonal set
D is strongly diagonal if additionally for any s,t,u € D with s £ ¢, if [s At| < |u|
and s At ¢ u, then u(|s At|) = 0.

It follows that the meet closure of any antichain of coding nodes in a strong
coding tree is strongly diagonal. In fact, strong coding trees were designed with
this property in mind.

The following augments Sauer’s [32, Definition 3.1] to the setting of trees with
coding nodes. The lexicographic order on 2<% between two nodes s,t € 2<%, with
neither extending the other, is defined by s <jex t if and only if s D (s At)70 and
t O (s At)"1. It is important to note that in a given strong coding tree T, each
node s at the level of a coding node ¢, in T has exactly one immediate extension
in 7. This is the unique node st of length I, + 1 in T such that sT O s. This fact
is used in (7) of the following definition.

Definition 4.9. Let S,T C 2<% be meet-closed subsets of a fixed strong coding
tree T. The function f : S — T is a strong similarity of S to T if for all nodes
s,t,u,v € S, the following hold:

(1) f is a bijection.

(2) f preserves lexicographic order: s <jex t if and only if f(s) <jex f(%).

(3) f preserves initial segments: sAt C uAw if and only if f(s)A f(t) C f(u)A f(v).

(4) f preserves meets: f(s At) = f(s) A f(¢).

(5) f preserves relative lengths: |[s A ¢| < |u A v] if and only if |f(s) A f(t)] <
[f (u) A f(0)].

(6) f preserves coding nodes: f maps the set of coding nodes in S onto the set of
coding nodes in 7.

(7) f preserves passing numbers at coding nodes: If ¢ is a coding node in S and

u is a node in S with |u] > |¢|, then (f(u))*(]f(c)]) = ut(|¢|); in words, the
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passing number of the immediate successor of f(u) at f(c) equals the passing
number of the immediate successor of u at c.

In all cases above, it may be that s = ¢ and v = v so that (3) implies s C w if
and only if f(s) C f(u), etc. It follows from (4) that s € S is a splitting node in S
if and only if f(s) is a splitting node in T. We say that S and T are strongly similar
if there is a strong similarity of S to T, and in this case write S ~ T. If T/ C T
and f is a strong similarity of S to T”, then f is a strong similarity embedding of S
into T, and T" is a strong similarity copy of S in T. For A C T', let Simj.(A4) denote
the set of all subsets of 7" which are strongly similar to A. The notion of strong
similarity is relevant for all meet-closed subsets of a strong coding tree, including
subsets which form trees. Note that if A is a meet-closed set which is not a tree
and S = {ulv| : u,v € A and |u| > |v|} is its induced tree, technically A and S
are not strongly similar. This distinction will present no difficulties.

Not only are strong coding trees perfect, but the ones constructed in the manner
of Theorem 4.6, and hence any tree with the same strong similarity type, also have
the following useful property.

Fact 4.10. Let T be constructed in the manner of Theorem 4.6, and let T be a
strong coding tree which is strongly similar to T. Then for each even integer n < w,
each node in T of length 1, splits in T before the level of cp4a.

Proof. Given a node t in T at the level of ¢,, if t does not already split before
the level of ¢,41, then its only extension to length [,,4+1 + 1 has passing number
0 at c¢,11; call this extension ¢'. Now, since n + 2 is even, the coding node ¢, 2
has passing number 0 at all ¢;, ¢ < n + 1, and passing number 1 at c¢,4+1. Thus,
t'" and ¢p42 [ (Int1 + 1) have no parallel 1’s, so t' splits before reaching the level
of Cn+42. O

Depending on how a finite subtree A of a strong coding tree T sits inside T, it
may be impossible to extend A inside of T to another strong coding tree. As a simple
example, the set of nodes A = {(), (0,0,0,0),(1,0,0,1)} in T is strongly similar to
r2(T). However A cannot be extended in T to a strong coding tree strongly similar
to T with (0,0,0,0) being a splitting node. The reasons are as follows. Any such
extension A’ in T must have nodes extending (0,0,0,0,0,0), (0,0,0,0,1,1), and
(1,0,0,1,0,1)}. The nodes (0,0,0,0,1,1) and (1,0,0,1,0,1) have parallel 1’s; so
the next coding node must witness them. In order to be strongly similar to r3(T),
(0,0,0,0,1,1) must be extended to the next coding node in A’, and by the TFC,
any such node is immediately succeeded by a 0, so it cannot witness the new parallel
1’s, thus failing to satisfy the Parallel 1’s Criterion.

Another potential problem is the following. Let T" be a strong coding tree
and take m such that d7, is a splitting node, d’ _, = ¢}
|[dE | > l,_1, where n > 3. So, dZ is a splitting node with at least two split-
ting nodes preceding it in 7" and at least one splitting node proceeding it before

is a coding node, and
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the next coding node in T'. It follows by the structure of strong coding trees that
there are at least two maximal nodes in 7y,41(7T") which have no parallel 1’s but
which are pre-determined to passing ¢! with passing number 1, as their only ex-
tensions of length /,, + 1 in T both have passing number 1 at c¢I. It follows that
any strong coding subtree S of T with the same initial segment as T up to level m,
ie. rm1(S) = rm+1(T), is necessarily going to have ry,42(S) = ry12(T); for if the
splitting node di 41 is not equal to dr 11, then the pre-determined new parallel 1’s
appear in 7,,12(5) before the splitting node d,Sn 11, implying S violates the Parallel
1’s Criterion. Thus, if 7,,+2(S) is a finite strong coding tree end-extending r,+1(T)
into T and strongly similar to ry,+2(T), then ry;,12(S) must actually equal r,, +2(T).
Clearly this is not what we want.

Definition 4.11. Let X = {x; : i < 1} be a level set of two or more nodes in f, and
let I be their length. We say that X has no pre-determined new sets of parallel 1’s
in T if either X contains a coding node, or else for any [,, > [, there are extensions
y; 2 x; of length [, such that the following holds: For each I C 1 of size at least
two, if there is an I’ < I, such that y;(I’) = 1 for all ¢ € I, then there is an " < I
such that y;(I”) =1 for all i € I.

It in order to determine whether a level set of nodes X = {z; : i < i} of
length [, not containing a coding node, has pre-determined new sets of parallel 1’s
in T, it suffices to extend the nodes in X leftmost in T to nodes y; 2 x; of length
ln, + 1, where ¢,, is the minimal coding node in 7" of length greater than I: X has
no pre-determined new sets of parallel 1’s if and only if there is an I’ < I such that
{i <i:a;(I'") = 1} contains the set {i < i :y;(l,) =1}.

Definition 4.12. A subtree A, finite or infinite, of a strong coding tree T is valid
in T if each level set in A has no pre-determined new sets of parallel 1’s in T'.

The point is that valid subtrees are safe to work with: They can always be
extended within the ambient strong coding tree to any desired strong similarity
type. This will be seen clearly in the lemmas at the end of the section.

We now come to the definition of the space of strong coding subtrees of a fixed
strong coding tree. Define the partial ordering < on the collection of all strong
coding trees as follows: For strong coding trees S and T,

S <T<« S isavalid subtree of T and S % T. (18)

Definition 4.13 (The Space (T (T),<,7)). Let T be any strong coding tree.
Define T (T) to be the collection of all strong coding trees S such that S < T'. As
previously defined, for m < w, r,,,(S) denotes |J,_,,
S containing its first m critical nodes. The restriction map r is formally a map from
w x T(T) which on input (m, S) produces 7, (S). Let A,,,(T) denote {r,,(S):S €
T(T)}, and let A(T) = A (T), the collection of all finite approzimations to
members of T (T).

Levg(m), the initial subtree of

m<w
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For A € A, (T) and S € T(T) with A valid in S, define
[A, 8] ={U < S :r,(U) = A}, (19)
and define
Tmt1[A, 8] ={B € Amni1:m7m(B) = A and B is valid in S}. (20)

Techniques for building valid subtrees of a given strong coding tree are now
developed. The next lemma provides a means for extending a particular maximal
node s in a finite subtree A of a strong coding tree T' to a particular extension ¢
in T, and extending the rest of the maximal nodes in A to the length of ¢, without
introducing new sets of parallel 1’s. Let {s; : i < i} be some level set of nodes in a
strong coding tree 7. We say that a level set of extensions {t; : i < i}, where each
t; D 54, adds no new sets of parallel 1’s over {s; : i < 1} if whenever [ < |tg| and
the set I; := {i < i:t;(I) = 1} has cardinality at least 2, then there is an I’ < |s|
such that {i <i:s;(I') =0} =1I,.

Lemma 4.14. Suppose T is a strong coding tree and {s; : i < 5} is a set of two or
more nodes in T of length Iy, + 1. Let n, > k, let I, denote l,,, and let ty be any
extension of so in T of length I, + 1. For each 0 < i < i, let t; denote the leftmost
extension of s; in T of length I, + 1. Then the set {t; : i < ;} adds no new sets of
parallel 1’s over {s; 11 < i}.

Proof. Assume the hypotheses, and suppose that there is some [ < I, such that
the set I; = {i < i : t;(I) = 1} has at least two members. Then by the Parallel
1’s Criterion, there is an n < n, such that ¢;(l,,) = 1 for all i < 1. Since for each
0 < i < i, t; is the leftmost extension of s;, by (6) and (7) in the definition of strong
coding tree, the passing number of ¢; at I; is 0, for all & < j < n,. It follows that
any n such that ¢, witnesses the parallel 1’s in {¢; : ¢ € I;} must be less than or
equal to k. O

In fact, any sets of parallel 1’s from the set {t; : i < i} constructed in the
preceding lemma occur at a level below [.

Given a set of nodes S in a strong coding tree, the tree induced by S is the set
of nodes {s[|v] : s € S, v € S"}. For a finite tree A, we shall use the notation
max(A) in a slightly non-standard way.

Notation 4.15. Given a finite tree A, max(A) denotes the set of terminal nodes
in A which have the maximal length of any node in A. Thus,

max(A) ={te A:t=1a}, (21)
where [4 = max{|s| : s € A}. Note in particular that max(A) is a level set.
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The following lemma is immediate from finitely many applications of Lemma
4.14, using the fact that maximal nodes of valid subtrees can be extended leftmost
to any length without adding any new sets of parallel 1’s.

Lemma 4.16. Let A be a finite valid subtree of any strong coding tree T and let
[ be the length of the nodes in max(A). Let Spl(u) be any nonempty level subset of
max(A), and let Z be any subset of max(A)\ Spl(u). Then given any enumeration
{2z i < i} of Spl(u) and I' > 1, there is an . > I' and extensions s?,s} D z; for

all i <1, and s, D z for all z € Z, each of length 1., such that, letting
X ={s] :s€Spl(u),j € {0,1}}U{s.:z € Z}, (22)
and B be the tree induced by AU X, the following hold:

(1) The splitting in B above A occurs in the order of the enumeration of Spl(u).
Thus, fori <i' <1, [s) A s} < [s Ash|.
(2) B has no new sets of parallel 1’s over A.

Convention 4.17. When working within a fixed strong coding tree T', the passing
numbers at coding nodes c. are completely determined by 7. Thus, for a finite
subset A of T such that I4 equals IZ for some n < w, then saying that A satisfies
the Parallel 1’s Criterion implies that the extension AU{s" : s € max(A)} satisfies
the Parallel 1’s Criterion.

Lemma 4.18 shows that given a valid subtree of a strong coding tree T', any
of its maximal nodes can be extended to a coding node ¢} in T while the rest of
the maximal nodes can be extended to length I} so that their passing numbers are
anything desired, subject only to the TFC. Recall that any node w in T" at the level
of a coding node ¢f has a unique immediate extension u* of length I + 1 in f; SO
there is no ambiguity to consider u™ (i) to be the passing number of u at ¢y, even
though technically u is not defined on input I%.

Lemma 4.18 (Passing Number Choice Extension Lemma). Let T be a
strong coding tree and A be any finite valid subtree of T'. Let 14 denote the length
of the members of max(A) and let AT denote the set of all members ofT\ of length
la + 1 which extend some member of max(A). List the nodes of AT as s;, i < i
Fiz any d < i. For each i # d, if s; and sq have no parallel 1’s, fix any €; € {0,1};
if s; and sq have parallel 1’s, let €; = 0. In particular, eq = 0.

Then for each j < w, there is a coding node ci with k > j extending sq and
extensions w; O s;, i € 1\{d}, of length l such that the passing number of u; at
c is &; for each i € i\{d}. Furthermore, the nodes u; can be chosen so that any
new parallel 1’s among {u; : i < i} which were not witnessed in A are witnessed
by ck, and their first instances take place in the kth interval of T. In particular, if
AU{s; : i < i} satisfies the Parallel 1’s Criterion, then AU{u; : i <t} also satisfies
the Parallel 1’s Criterion, where uqg = cg.
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Proof. Assume the hypotheses of the lemma. Let j' be such that the nodes {s; :
i < i} are in the j'th interval of T For each i < 1, let t; be the leftmost extension
of s; of length ;s + 1. Since A is a valid subtree of T', no new sets of parallel 1’s are
acquired by {t; : i < i}. Let j < w be given and take k > max(j,j’ + 1) minimal
such that ¢ D t4, and let ug = cx. Such a k exists since the coding nodes are dense
in T. For each i # d, extend t; via its leftmost extension to the level of Ip_1 + 1,
and label it ¢;. By Lemma 4.14, for i # d, no new sets of parallel 1’s are acquired
by {t :i € i\{d}} U {uq | (lx_1 + 1)}. For each i # d for which ¢; = 0, let u; be
the leftmost extension of ¢} of length I} + 1. For i < i such that ¢; = 1, let u; be
the rightmost extension of t; to length I, + 1. Note that for each i < 1, the passing
number of u; at ¢ is &;.

For any I C i of size at least two, if there is some [ such that w;(l) = 1 for
all ¢+ € I, and the least [ for which this holds is greater than [4, then it must be
that u;(Ix) = 1 for each i € I, since no new sets of parallel 1’s are acquired among
{u; : i < i} below l_1 4+ 1. Thus, the set {u; : i < i} satisfies the lemma. If A
satisfies the Parallel 1’s Criterion, then it is clear that AU {u; : i < i} also satisfies
the Parallel 1’s Criterion, since all the new parallel 1’s are witnessed by the coding
node ug = cg. |

The final lemma of this section combines the previous two, to show that any
finite valid subtree of a strong coding tree can be extended to another valid subtree
with any prescribed strong similarity type.

Lemma 4.19. Let A be a finite valid subtree of any strong coding tree T, and let [ 4
be the length of the nodes in max(A). Fix any member u € max(A)T. Let Spl(u) be
any set of nodes s € max(A)T which have no parallel 1’s with u, and let Z denote
max(A)T\(Spl(u)U{u}). Let 1 > 14 be given. Then there is an l. > | and extensions
s D u, 89,85 D s for all s € Spl(u), and s. D s for all s € Z, each of length .,
such that, letting

X = {uyU{st :s€Spl(u), i € {0,1}}U{s.:5¢€ 7}, (23)
and B be the tree induced by AU X, the following hold:

(1) ux is a coding node.

For each s € Spl(t) and i € {0,1}, the passing number of s' at u. is i.

For each s € Z, the passing number of s, at u, is 0.

Splitting among the extensions of the s € Spl(u) occurs in reverse lexicographic

order: For s and t in Spl(u), |80 A st| < [tQ AtL| if and only if ss >1ex ts.

(5) There are no new sets of parallel 1’s among the nodes in X until they pass the
level of the longest splitting node in B below .

)
)
)
)

—~
w

In particular, if A satisfies the Parallel 1’s Criterion, then so does B.

Proof. Since A is valid in T, apply Lemma 4.16 to extend max(A) to have split-
ting nodes in the desired order without adding any new sets of parallel 1’s. Then
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apply Lemma 4.18 to extend to a level with a coding node and passing numbers as
prescribed. O

It follows from Lemma 4.19 that whenever A is a finite strong coding tree which
is valid in some strong coding tree T and strongly similar to 7, (T), then rp,+1[A, T
is infinite. In particular, A can be extended to a strong coding tree S such that
S<T.

Remark 4.20. It is straightforward to check that the space (7 (T), <,r) of strong
coding trees satisfies Axioms A.1, A.2, and A.3(1) of Todorcevic’s axioms in [34,
Chap. 5] guaranteeing a topological Ramsey space. On the other hand, A.3(2) does
not hold, and A.4, the pigeonhole principle, holds in a modified form where the
finite subtree being extended is a valid subtree of the strong coding tree, as will
follow from Theorem 6.3. It remains open what sort of infinitary Ramsey theory in
the vein of [23] holds in (7(T), <,r), in terms of its Ellentuck topology.

5. Halpern—Lauchli-Style Theorems for Strong Coding Trees

The Ramsey theory content for strong coding trees begins in this section. The
ultimate goal is to obtain a Ramsey theorem for colorings of strictly similar (Def-
inition 8.3) copies of any given finite antichain of coding nodes, as these are the
structures which will code finite triangle-free graphs. This is accomplished in The-
orem 8.9. As a mid-point, we will prove a Milliken-style theorem (Theorem 6.3)
for finite trees satisfying some strong version of the Parallel 1’s Criterion. Just as
the Halpern—Lé&uchli theorem forms the core content of Milliken’s theorem in the
setting of strong trees, so too in the setting of strong coding trees, Halpern—Lauchli-
style theorems are proved first and then applied to obtain Milliken-style theorems
in later sections.

The main and only theorem of this section is Theorem 5.2. This general theorem
encompasses colorings of two different types of level set extensions of a fixed finite
tree: The level set either contains a splitting node (Case (a)) or a coding node
(Case (b)). In Case (a), we obtain a direct analogue of the Halpern-Léauchli theorem.
In Case (b), we obtain a weaker version of the Halpern-Léauchli theorem, which is
later strengthened to the direct analogue in Lemma 6.8.

The structure of the proof follows the basic outline of Harrington’s proof of the
Halpern-Léuchli theorem, as outlined to the author by Laver. The reader wishing
to read that proof as a warm-up is referred to [3, Sec. 2]. In the setting of strong
coding trees, new considerations arise, and new forcings have to be established
to achieve the result. The main reasons that new forcings are needed are firstly,
that there are two types of nodes, coding and splitting nodes, and secondly, that
the extensions achieving homogeneity must be extendible to a strong coding tree
valid inside the ambient tree. This second property necessitates that the extensions
be valid and satisfy the Parallel 1’s Criterion, and is responsible for the strong
definition of the partial ordering on the forcing. The former is responsible for there
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being Cases (a) and (b). The forcings will consist of conditions which are finite
functions with images which are certain level sets of a given tree strong coding
tree T', but the partial ordering will be stronger than the partial ordering of subtree
as branches added will have some dependence between them, so these are not simply
Cohen forcings.

Remark 5.1. Although the proof uses the set-theoretic technique of forcing, the
whole construction takes place in the original model of ZFC, not in some generic
extension. The forcing should be thought of as conducting an unbounded search for
a finite object, namely the finite set of nodes of a prescribed form where homogeneity
is attained. Thus, the result and its proof hold using only the standard axioms of
mathematics.

The following terminology and notation will be used throughout. Let T be a
strong coding tree. Given finite subtrees U,V of T, we write U C V to mean that
there is some k such that U = |J,, ., Levy(m) = U,, ., Levy(m), and we say that
V extends U, or that U is an initial subtree of V. We write U C V if U is a proper
initial subtree of V. Recall from Definition 4.13 that S < T means that S is a valid
subtree of T" which is strongly similar to 7', and hence also a strong coding tree.
Given a finite strong coding tree B, [B,T] denotes the set of all S < T such that
S extends B. A set X C T is a level set if all nodes in X have the same length.
For level sets X,Y we shall also say that Y extends X if X and Y have the same
number of nodes and each node in X is extended by a unique node in Y. For level
sets Y = {y; : ¢ < d} and X = {=; : i < d} with y; D z; for each i < d, we say
that Y has no new sets of parallel 1’s over X if for each I C d + 1 for which there
is an ! such that y;(I) = 1 for each ¢ € I, then there is an I’ such that z;(I") = 1 for
each 7 € I. For any tree U C T and any | < w , let U [l denote the set of s € U
such that |s| = I. A set of two or more nodes {z; : i € I} in T is said to have first
parallel 1’s at level 1 if | is least such that x;(I) =1 for all ¢ € I.

For each s € f, if i € {0,1} and s is in f, then we say that s™i is an
immediate extension of s in T. Thus, splitting nodes in T' have two immediate
extensions in 7', and non-splitting nodes, including every node at the level of a
coding node, have exactly one immediate extension in 7'. For a non-splitting node
sin T, we let sT denote the immediate extension of s in T'. Given a finite subtree
A of T, let 4 denote the maximum of the lengths of members of A, and let max(A)
denote the set of all nodes in A with length 4. Let AT denote the set of immediate
extensions in 7' of the members of max(A):

At ={s7i:s emax(A),i € {0,1}, and s7i € T}. (24)

Note that AT is a level set of nodes of length [4 + 1.
We now provide the set-up for the two cases before stating the theorem.

The Set-up for Theorem 5.2. Let T be a fixed strong coding tree, and let T' < T
be given. Let A be a finite valid subtree of T satisfying the Parallel 1’s Criterion.
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It is fine for A to have terminal nodes at different levels, indeed, we need to allow
this for the intended applications later. Without loss of generality, and to simplify
the presentation of the proof, assume that 04 is in A. Let A, be a subset of A%
containing 04+ and of size at least two. Let C be a finite valid subtree of T
containing A such that C satisfies the Parallel 1’s Criterion and the collection of
all nodes in C not in A, denoted C\ A, forms a level set extending A.. Assume
moreover that 0'¢ is the node in C' extending 0'4%!, where I¢ is the length of the
nodes in C\ A. The two cases are the following:

Case (a) C'\ A contains a splitting node.

In Case (a), define Extr(A4,C) to be the collection of all level sets X C T
extending A, such that AU X ~ C and AU X is valid in 7. We point out that
A U X being valid in T is equivalent to X having no pre-determined new parallel
1’s. It will turn out to be necessary to require this of X, and the extensions for
which the coloring is relevant will have this property anyway.

Case (b) C\ A contains a coding node.

In Case (b), define Extr(A,C) to be the collection of all level sets X C T
extending A, such that A U X & C. Since X contains a coding node, A U X is
automatically valid in T'. Recalling (7) of Definition 4.9, AU X & C implies that,
letting f : AU X — C be the strong similarity map, for each z € X the passing
number of 21 at the coding node in X equals the passing number of (f(x))™ at the
coding node in C\ A. Given any X € Extr (A4, C), let Extp(A4, C; X) denote the set
of Y € Extr(A, C) such that ¥ extends X.

In both cases, AUX < C implies that AU X satisfies the Parallel 1’s Criterion.

Theorem 5.2. Let T < T be any strong coding tree and let B be a finite strong
coding tree valid in T. Let A T C be finite valid subtrees of T such that both A and
C' satisfy the Parallel 1’s Criterion, A is a subtree of B, C\A is a level set of size
at least two, and 0'¢ € C. Further, assume that the nodes in C\A extend nodes
in max(A) Nmax(B). Let A. denote the set of nodes in AT which are extended to
nodes in C\ A.

In Case (a), given any coloring h : Extr(A,C) — 2, there is a strong coding
tree S € [B,T] such that h is monochromatic on Extg(A,C).

In Case (b), suppose X € Extr(A,C) and mqo are given for which there is a
B' € 1y, [B,T] with X C max(B’). Then for any coloring h : Extr(A,C) — 2
there is a strong coding tree S € [rmy—1(B’),T] such that h is monochromatic on
Exts(4,C; X).

Proof. Let T, A, A., B,C be given satisfying the hypotheses of either Case (a)
or (b), and let h : Extr (A, C') — 2 be a given coloring. Let d + 1 equal the number
of nodes in A.. List the nodes of A, as sq, ..., sq, letting s4; denote the node of A,
that is extended to the critical node in C\A: a splitting node in Case (a) and a
coding node in Case (b). For each i < d, let ¢; denote the node in max(C) which
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extends s;. In particular, t4 denotes the splitting or coding node in max(C'). Let i
denote the integer such that s;, is the node of A, which is a sequence of 0’s. Then
t;, is the sequence of all 0’s in C'\ A. Notice that ig can equal d only if we are in
Case (a) and moreover the splitting node in C'\ A is a sequence of 0’s. In Case (b),
the following notation will be used: For each i < d, t] denotes the member in
max(C) " extending ¢;. Let Iy denote the set of all i < d such that ¢ (|t4]) = 0 and
let I; denote the set of all i < d such that ¢ (|t4]) = 1.

Let L denote the collection of all I < w such that there is a member of Extr (A, C)
with maximal nodes of length {. L is infinite since B is valid in T". In Case (a), L is
exactly the set of all [ < w for which there is a splitting node of length [ extending
s4, and in Case (b), L is exactly the set of all | < w for which there is a coding node
of length [ extending s4, as this follows from the validity of B in 7" and Lemma 4.18.
For each i € (d+ D)\{io}, let T, ={t € T :t D s;};1let T;, ={t € T :t D s;, and
t € 0¥}, the collection of all leftmost nodes in T extending s;,,.

Let k = 4. The following forcing notion P adds x many paths through T;,
for each i € d\{io}, and one path through Ty. If iy # d, then P will add one path
through T;,, though allowing x many ordinals to label this path in order to simplify
notation.

Case (a) P is the set of conditions p such that p is a function of the form
p:(dx8,)u{d} =TIl
where Sp € [k]<¥ and [, € L, such that

(i) p(d) is the splitting node extending s4 of length Ip;
(i) For each i < d, {p(i,8): 6 € &,} C Ti |ly; and
(iii) {p(3,0) : (3,6) € d x §,} U{p(d)} has no pre-determined new parallel 1’s.

Case (b) P is the set of conditions p such that p is a function of the form
p:(dx3,)U{d} =TIl
where 6, € []<“ and [, € L, such that

(i) p(d) is the coding node extending sq4 of length [,;
(i) For each i < d, {p(i,8):6 € 6,} C T |l
(iii) For each & € d,, j € {0,1}, and i € I;, the immediate extension of p(i,d) in T
is j; that is, the passing number of (p(i,d))" at p(d) is j.

In both Cases (a) and (b) the partial ordering on P is defined as follows: ¢ < p
if and only if I, > [, dq4 2(5 and

(i) q(d) 2 p(d), and q(i,8) D p(i, 8) for each (i,6) € d X d,;
(ii) The set {q(i,96) : (i,0) € d x 6} U{q(d)} has no new sets of parallel 1’s over
{p(i,0) = (i,0) € d x 6} U {p(d)}.
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Given p € P, we shall use ran(p) to denote the range of p, {p(i,d) : (¢,9) €
d x 6,} U {p(d)}. If p,q are members of P, we shall use the abbreviation ¢ has no
new parallel 1’s over p to mean that ran(g) has no new sets of parallel 1’s over
ran(p).

The proof of the theorem proceeds in three parts. Part I proves that P is an
atomless partial order. Part Il proves Lemma 5.3 which is the main tool for building
fusion sequences while preserving homogeneity. This is applied in Part IIT to build
the tree S which is valid in T and such that Exts(A, C) is homogeneous for h in
Case (a), and Extg(A4, C; X) is homogeneous for h in Case (b). For the first two
parts of the proof, we present a general proof, indicating the steps at which the
two cases require different approaches. Part III will require the cases to be handled
separately.

Part I. P is an atomless partial ordering.

Claim 1. (P, <) is a partial ordering.

Proof. The order < on P is clearly reflexive and antisymmetric. Transitivity follows
from the fact that the requirement (ii) is a transitive property. If p > ¢ and ¢ > r,
then gp - gq - gT and I, < I, < [,.. Since r has no new sets of parallel 1’s over
g and ¢ has no new sets of parallel 1’s over p, it follows that r has no new sets of
parallel 1’s over p. Thus, p > r. O

We show that P is atomless by proving the following stronger claim.

Claim 2. For each p € P and | > 1, there are q,r € P with Iy, 1, > 1 such that
q,7 < p and q and r are incompatible.

Proof. Let p € P and [ > [, be given, and let S;,. = ci] = gp.

In Case (a), take ¢(d) and r(d) to be incomparable splitting nodes in T extending
p(d) to some lengths greater than [. Such splitting nodes exist since strong coding
trees are perfect. Let [, = |¢(d)| and I, = |r(d)|. For each (¢,9) € d x gp, let ¢(4,9)
be the leftmost extension (in T') of p(%, 6) to length [,, and let (¢, §) be the leftmost
extension of p(i,d) to length .. Then ¢ and r have no pre-determined new parallel
1’s, since ran(p) has no pre-determined new parallel 1’s and all nodes except ¢(d)
and r(d) are leftmost extensions in T" of members of ran(p); so ¢ and r are members
of P. By Lemma 4.14, both ¢ and r have no new parallel 1’s over p, so ¢,r < p.
Since neither of ¢(d) and r(d) extends the other, ¢ and r are incompatible.

In Case (b), let s be a splitting node in T of length greater than [ extending
p(d). Let ¢} Dbe the least coding node in T above s. Let so,s; extend s70,s71
leftmost in T to the level of ¢}, respectively. For each (i,d) € d x by, let p/(i, 8)
be the leftmost extension in T of p(i,d) of length I]. By Lemma 4.18, there are
q(d) 2 s and q(i,6) D p'(i,6), (i,6) € d X by, such that

(1) gq(d) is a coding node;

2050012-40



J. Math. Log. 2020.20. Downloaded from www.worldscientific.com

by UNIVERSITY OF DENVER on 07/15/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

The Ramsey theory of the universal homogeneous triangle-free graph

(2) ¢ has no new parallel 1’s over p;
(3) For each j < 2,4 € I; if and only if the immediate extension of ¢(i,0) is j.

Then g € P and ¢ < p. Likewise by Lemma 4.18, we may extend {p’(i,9) : (i,9) €
d x 8,} U{s1} to {r(i,8) : (i,6) € d x 6,} U{r(d)} to form a condition r € P
extending p. Since the coding nodes ¢(d) and r(d) are incomparable, ¢ and r are
incompatible conditions in P. O

From now on, whenever ambiguity will not arise by doing so, we will refer to the
splitting node in Case (a) and the coding node in Case (b) simply as the critical
node.

Let by be a P-name for the generic path through Tj; that is, by = {(p(d),p) :
p € P}. Note that for each p € P, p forces that by |1, = p(d). By Claim 2, it is
dense to force a critical node in by above any given level in T', so 1p forces that the
set of levels of critical nodes in by is infinite. Thus, given any generic filter G for P,
bG = {p(d) : p € G} is a cofinal path of critical nodes in Tj. Let Lq be a P-name
for the set of lengths of critical nodes in ba. Note that 1p IF Ly € L. Let U be a
P-name for a non-principal ultrafilter on Ld For each i < d and a < k, let l')i,a be
a P-name for the ath generic branch through T;; that is, b; o = {( (i,a),p):p€P
and a € (5p} For i < d and for any condition p € P and « € 5,,, p forces that
bio [, = pli, ).

For ease of notation, we shall write sets {a; : i < d} in [x]¢ as vectors @ =

(ao,...,aq—1) in strictly increasing order. For @ = (ao, ..., aq¢-1) € [k]%, rather
than writing out <b0,a0, .. bd 1ag 13 bd> each time we w1sh to refer to these generic
branches, we shall simply

let by denote (bo.ag, .-+ Dd—1.ay 1 Dd), (25)

since the branch by being unique causes no ambiguity. For any | < w,
let by |1 denote {b; o, [1:4 < d} U{bg|1}. (26)

Using the abbreviations just defined, h is a coloring on sets of nodes of the form
bg 'l whenever this is forced to be a member of Extr (A4, C).

Part II. The goal now is to prove Claims 3 and 4 and Lemma 5.3. To sum up,
they secure that there are infinite pairwise disjoint sets K; C & for ¢ < d, and a
set of conditions {pg : @ € [, , K;} which are compatible, have the same images
in T, and such that for some fixed e* € {0,1}, for each & € [, , K], pa forces
h(ba [1) = * for ultrafilter many | € Lq. Moreover, we will find nodes tr, 1 <d,
such that for each d@ € [[, ., Ki, pa(i, i) = tj. Lemma 5.3 will enable fusion
processes for constructing S with one color on Extg(A,C) in Part III. There are
no differences between the arguments for Cases (a) and (b) in Part II.

For each @ € [k]?, choose a condition py € P such that

(1) @Cd,,.
(2) {pali,ai) - i <d} U{p(d)} € Extr(4,C).
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(3) pa IF “There is an e € 2 such that h(bg [ 1) = ¢ for & many [ in Ly.”
(4) pa decides a value for ¢, call it e5.

() h({pa(i, i) - i < d} U{p(d)}) = ea-

Properties (1)—(5) can be guaranteed as follows. Recall that for ¢ < d, ¢; denotes
the member of C'\ A extending s;. For each d € [k]%, let

% = {((3,0),t;) i < d, 6 €d}U{{d,ta)}.

Then p% is a condition in P, 5 o = d, so (1) holds. Further, P, u) i <
d} U{p%(d)} is a member of ExtT(A C') since it is exactly C'\\ A. It is important to
note that for any p < p%, {p(i, ;) : i < d}U{p(d)} is also a member of Extr(A,C),
as this follows from the fact that {p(i,0) : (i,0) € d x gp%} U {p(d)} has no new
sets of parallel 1’s over the image of p%. Thus (2) holds for any p < p%. Take an
extension p}i < pg which forces h(b& ['l) to be the same value for u many [ € La,
giving (3). For Property (4), since P is a forcing notion, there is a pé < pé deciding
a value ¢4 for which pé forces that h(b& [l) = eg for U many [ in Ly If pé forces
h(bg [1y2) = €a, then let pg = pZ.

If not, take some p% < p?i which decides some [ € L such that lpé < l,:f <1< lpg,
for some n, and p? forces h(bg | 1) = 4. Since p forces “bz [1 = {p(i, ) [1: <
d} U{pZ(d) 1} and h is defined in the ground model, this means that p2(d) | is
a splitting node in Case (a) and a coding node in Case (b), and

h(X(p3) 1) = ea, (27)

where X (p2) 11 denotes {p2(i,a;) [1: i < d} U{pd(d) [1}. If | = 1,5, let pg = p,
and note that pg satisfies (1)—(5).

Otherwise, | < [,3. In Case (a), let pgz be defined as follows: Let 5q = gp and

2
a

V(i,8) € dx bz, let pg(i,8) =p3(i,8) |1 and let pg(d) = p2(d) [1.  (28)

(o3

Since p~ is a condition in P, ran(pq) is free in T. Furthermore, pq < pq implies
that ran(p2, [(5 2) has no new sets of parallel 1’s over ran(p%). Therefore, ps is a
condition in P with pa < p% satisfying (1)-(5).

In Case (b), construct pg as follows: Again, let o5 = 5 2. For each i < d, define
pa(i,a;) = pi(i,a;) I, and let pgz(d) = p(d) Il Lettlng X = Pl i)l i <
d} U{p2(d) 11}, then h(X) = e5. Let U denote {p%(i,a;) [l : i < d} U{p%(d) |1}
and let U’ = ran(p%)\U. Note that X end-extends U, and X is valid in 7" and has
no new sets of parallel 1’s over U. By Lemma 4.18, there is an X’ end-extending U’
to nodes in T' I so that X U X’ has no new sets of parallel 1’s over U UU’, and each
node in X" has the same passing number at [ as it does at I,2. Let ran(ps) = XUX',

where for each i < d and (4,) € d x 5 s with 0 # a;, we let pa(i,0) be the node in
Y’ extending p2 (i, ). This defines a condltlon pa < p% satisfying (1)—(5).

Since {pg(i, ;) 1 i < d} U {pg(d)} is what pg forces bz [ to be, it follows that
pa forces h({pg(i, ;) : i < d} U{pa(d)}) = ea, so (5) holds.
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Now, we prepare for an application of the Erdés—Rado theorem (recall The-
orem 2.4). We are assuming xk = 4, which is at least Jaq_1(No)™, so that
£ — (R1)F?. Given two sets of ordinals J, K we shall write J < K if every
member of J is less than every member of K. Let D, = {0,2,...,2d — 2} and
D, = {1,3,...,2d — 1}, the sets of even and odd integers less than 2d, respec-
tively. Let Z denote the collection of all functions ¢ : 2d — 2d such that ¢ [ D
and ¢ | D, are strictly increasing sequences and {¢(0),¢(1)} < {¢(2),:(3)} < --- <
{¢(2d — 2),1(2d — 1)}. Thus, each ¢ codes two strictly increasing sequences ¢ [ D,
and ¢ | D,, each of length d. For 6 € [1]2?, 1(f) determines the pair of sequences of
ordinals (0,(0), 0,(2), - - - ,GL(gd_g)) (0.1, GL(g), ..+ 0.2d—1)), both of which are mem-
bers of [k]?. Denote these as tc(6) and 1,(6 ), respectively. To ease notation, let o5
denote 6, kg denote |05|, and let l5 denote I,_. Let (65(j) : j < kg) denote the
enumeration of 5& in increasing order.

Define a coloring f on [x]?? into countably many colors as follows: Given 6 e
[k]2? and ¢ € Z, to reduce the number of subscripts, letting @ denote t.(f) and 3
denote 1,(6), define

f(L,e_') = <L’€&ak&7p&(d)’ <<p62(i’507(j)) 1J < k&> 11 < d>’
(ind) i < dy § < kg, and 6x0j) = ), (29)
((G,k) 2 J <ka, k <kz,da(j) = b5(k)).

Let f(f) be the sequence (f(1,0) : ¢« € I), where T is given some fixed ordering.
Since the range of f is countable, apply the Erdés—Rado theorem to obtain a subset
K C k of cardinality 8; which is homogeneous for f. Take K’ C K such that
between each two members of K’ there is a member of K and min(K’) > min(K).
Take subsets K; C K’ such that Ky < --- < K41 and each |K;| = No.

Claim 3. There are ¢* € 2, k* € w, tq, and (t;; : j < k*), i < d, such that for all
de]],cqKi and each i < d, eq = €%, kg = k*, pa(d) = ta, and (pz(i,05(j)) : j <
k‘&) = <ti7j 17 < k*>

Proof. Let ¢ be the member in Z which is the identity function on 2d. For any
pair @, 3 € [],., Ki, there are 6,0 € [K]** such that @ = 1.(6) and 3 = ().
Since f(1,0) = f(1,0"), it follows that e5 = 5, ka = kj, pa(d) = p;(d), and

((pa(i,0a(4)) : J < ka) :i <d) = ((pB( ’56( )) §7< kz > < d). Thus, define &*,
k*, ta, ((ti -j<k*>:z'<d> to be ea, ka, pa(d), ((p ( (J)) 17 <ka) i <d)
foranyozEHKd O

Let I* denote the length of t;. Then all the nodes t; ;, ¢ < d, j < k*, also have
length [*.

Claim 4. Given any @, € [[,.q Ki, if j, k < k* and 65(j) = d5(k), then j = k.

i<d
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Proof. Let @, be members of [1;<q Ki and suppose that d5(j) = 65(k) for some
J,k < k*. For each i < d, let p; be the relation from among {<,=,>} such that
«; p; B;. Let ¢ be the member of Z such that for each 7 € [K] and each i < d,
0.2y pi 0.(2i+1). Then there is a g ¢ [K']?? such that Le(g) = a and ¢,( ) = 8.
Since between any two members of K’ there is a member of K, there is a ¥ € [K]?
such that for each i < d, «; p; v; and ~y; p; Bi, and furthermore, for each i < d — 1,
{ag, Bi,vit < {@it1, Bit1,7vit1} Given that a; p;vy; and ~; p; 5; for each i < d,
there are /7,7 € [K]2? such that o(7) = @, to(j)) = 7, te(7) = 7, and 1,(7) = B.
Since 65 (j) = 65(k), the pair (j, k) is in the last sequence in f(¢,0). Since f(i, ) =

f, ) = f(e, ) also (j, k) is in the last sequence in f(¢, i) and f(¢, 7). It follows
that dz(j) = d7(k) and 05(j) = d5(k). Hence, d5(j) = d5(k), and therefore j must
equal k. O

i<qKi and any ¢ € Z, there is a 6 € [K]?@ such that & = 1,(6).
By homogeneity of f and by the first sequence in the second line of equation (29),
there is a strictly increasing sequence (j; : ¢ < d) of members of k* such that for
each a € [, , K, 05(ji) = ;. For each i < d, let t; denote t; j,. Then for each
i <dandeach ae ], ,K

pa(i, i) = pa(i, 0a(di)) = tij, = t;. (30)

For any @ € [],

Let t}; denote #4.

Lemma 5.3. For any finite subset J C [1;cq Ki, the set of conditions {pg : d € j}
is compatible. Moreover, p; = U{pa : @ € j} is a member of P which is below
each pa, @ € J.

Proof. For any a b€ [I;cq Ki, whenever j, k < k* and 65(j) = 55([6), then j = k,
by Claim 4. It then follows from Claim 3 that for each i < d,

pa(i,0a(4)) = ti; = p5(i,05(j)) = p5(i, 05(k)). (31)
Thus, for each &',ﬁ € Jand each § € 5'07 N gg, for all i < d,
palis8) = p3(i., ). (32)

Thus, py: U{pa : d € J} is a function. Let S'f: U{ds : @ € J}. For each § € g~
and i < d, pj(i,0) is defined, and it is exactly pg(i,d), for ary @ € J such that
§ € b Thus, p 7 is a member of P, andpJ<paforeacha€J O

We conclude this section with a general claim which will be useful in Part III.

Claim 5. If B € ;.4 Ki, @ € [[;.4 Ki, and B & @, then 3 is not a member of 5.

Proof. Suppose toward a contradiction that g € 5. Then there is a Jj < k* such
that 8 = dz(j). Let ¢ be such that 8 € K;. Since 8 # a; = 65(ji), it must be

2050012-44



J. Math. Log. 2020.20. Downloaded from www.worldscientific.com

by UNIVERSITY OF DENVER on 07/15/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

The Ramsey theory of the universal homogeneous triangle-free graph

that j # j;. However, letting B be any member of [],_, K; with ; = 3, then
8= 6§(ji) = 05(j), so Claim 4 implies that j; = j, a contradiction. O

Part III. In this last part of the proof, we build a strong coding tree S valid in
T on which the coloring % is homogeneous. Cases (a) and (b) are now handled
separately.

Part III Case (a). Recall that {s; : i < d} enumerates the members of A., which
is a subset of Bt. Let s, denote sq [ 14, and let ig € {0, 1} be such that s4 = sgﬁid.
Let m’ be the integer such that B € A, (T). Let o denote the strong similarity
map from B onto 7,/ (T), and let M = {m; : j < w} be the strictly increasing
enumeration of those m > m’ such that the splitting node in max(r,,(T)) extends
o(sy) iq. We will find Upny € 7', [B, T] and in general, Uy, ., € T,y [Un,, T s0
that for each j < w, h takes color €” on Exty,, (A, C). Then setting S =, ., Um,
will yield S to be a member of [B,T] for which Extg(A, C) is homogeneous for h,
with color €*.

First extend each node in BT to level {* as follows. Recall that for each i < d,
t* D t;, so the set {t} : i < d} extends A.. For each node u in BT\ A, let u* denote
its leftmost extension in 7' [[*. Then the set

Us={t;:i<dyu{u*:ue B"\A.} (33)

extends each member of BT to a unique node. Furthermore, by the choice of p%
for each a € [K]? and the definition of the partial ordering on P, it follows that
the set {t; : ¢ < d} has no new sets of parallel 1’s over A.. Since the nodes u*
are leftmost extensions of members of BT\ A, and B is valid in T, it follows from
Lemma 4.14 that U* has no new sets of parallel 1’s over B. Furthermore, U* has
no pre-determined new sets of parallel 1’s, by (iii) in the definition of the partial
ordering IP for Case (a). Thus, BUU* satisfies the Parallel 1’s Criterion and is valid
in T. If mg = m’ + 1, then let U,y1 = BUU* and extend U411 to a member
Unmi-1 € "my—1[Umr41,T]. i mo > m/ 4+ 1, apply Lemma 4.19 to extend above U*
to construct a member Up, 1 € Tmy—1[B,T]. In this case, max(rp/4+1(Unm,)) is not
U*, but rather max(ryp, +1(Un,)) extends U*.

Assume j < w and we have constructed Um;—1 so that every member of
ExtUmjfl(A,C’) is colored €* by h. Fix some Y; € rp;[Upn,;—1,T] and let V; de-
note max(Y;). The nodes in V; will not be in the tree S we are constructing; rather,
we will extend the nodes in Vj to construct Up,; € rp; [Umj,l, T].

We now start to construct a condition ¢ which will satisfy Claim 9. Let ¢(d)
denote the splitting node in V; and let I, = |g(d)|. For each i < d for which s; and
sq do not have parallel 1’s, let Z; denote the set of all v € T; N V; such that v and
q(d) have no parallel 1’s. For each ¢ < d for which s; and s4 do have parallel 1’s,
let Z; = T, NV;. For each i < d, take a set J; C K; of cardinality |Z;| and label
the members of Z; as {z, : a € J;}. Notice that each member of Extr(A, C') above
V; extends some set {zq, : i < d} U{q(d)}, where each o; € J;. Let J denote the
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set of those (ao,...,aq-1) € [[;.4Ji such that the set {zq, : i < d} U {q(d)} is in
Extr(A, C). Notice that for each i < d, J; = {o; : @ € J}, since each node in Z; is
in some member of Extr (A4, C'): Extending all the other ¢} (j # i) via their leftmost
extensions in T to length [,, along with ¢(d), constructs a member of Extr(A4, C).
By Lemma 5.3, the set {pgz : @ € f} is compatible. The fact that p; is a condition
in P will be used to make the construction of g very precise.

Let gq = U{ga :@ e J}. For each i < d and a € J;, define q(i, @) = z,. Notice
that for each @ € J and i < d,

q(i, ;) D t7 = pa(i, ;) = pyli, aq), (34)

and
q(d) 2t = pa(d) = py(d). (35)

For each i < d and v € gq\Ji, there is at least one @ € J and some k < k* such
that d5(k) = 7. Let q(é,7) be the leftmost extension of p 7(i,y) in T of length I,.
Define

g ={a(d)} U{((5,0),q(i,8)) : i < d, & € & }. (36)

Claim 6. For all@ € J, q < pa.

Proof. Given & € J, it follows from the definition of ¢ that &, D 0z, ¢(d) D pa(d),
and for each pair (i,7) € d x 5a q(%,7) 2 pa(i,7). So it only remains to show that ¢
has no new sets of parallel 1’s over pg. It follows from Claim 5 that 5& N Ui<d K, =
@. Hence, for each i < d and vy € d5\{os}, q(i,7) is the leftmost extension of
pa(i, 7). Since @ is in J, {q(i,a;) : i < d} U {q(d)} is in Extp(A,C) by definition
of J. This implies that {q(i,;) : i < d} U {g(d)} has no new parallel 1’s over A,
as this set union A must be strongly similar to C' which satisfies the Parallel 1’s
Criterion, and since the critical node in C\ A4 is a splitting node, C\ A has no new
parallel 1’s over A. It follows that {q(i,8) : (i,8) € d x § € 65} U{q(d)} has no new
parallel 1’s over {pg(i,d) : (i,0) € d x § € 65} U {pa(d)}. Therefore, ¢ < pg. O

Remark 5.4. Notice that we did not prove that ¢ < pj. That will be blatantly
false for all large enough j, as the union of the sets Z;, i < d, composed from V;
will have many new sets of parallel 1’s over p 7. This is one fundamental difference
between the forcings being used for this theorem and the forcings adding x many
Cohen reals used in Harrington’s proof of the Halpern—Lauchli theorem.

To construct Up,,, take an r < ¢ in P which decides some [; in Ld for which
h(bg | 1;) = €*, for all & € .J. This is possible since for all @ € .J, pg forces h(bg | 1) =
e* for U many [ € Lg. Without loss of generality, we may assume that the nodes
in the image of r have length ;. Notice that since r forces bg [1; = {r(i, ;) : i <
d}yU{r(d)} for each @ € .J, and since the coloring h is defined in the ground model,
it is simply true in the ground model that A({r (i, «;) : i < d}U{r(d)}) = e* for each
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& € J. Extend the splitting node ¢(d) in V; to r(d). For each i < d and a; € J;,
extend q(i, ;) to (i, ;). Let V= denote V;\({q(i, ) : i < d, a; € J;} U {q(d)}).
For each node v in Vi, let v* be the leftmost extension of v in T'[[;. Let

Un; = Up;—1 U{r(d)} U{r(i,a;) ri<d, oy € J;}U{v" v eV} (37)

Claim 7. Up; € rim,[Un;—1,T] and every X € Exty,, (4,C) with max(X) C
max(Uy,,) satisfies h(X) = *.

Proof. Recall that U,,;_1 C Yj; are both valid in T'. Since r < g, it follows that
{r(i,0) : (i,9) € d x gq} U {r(d)} has no new sets of parallel 1’s over {q(4,9) :
(1,0) € d x ci]} U {q(d)}, which is a subset of V;. All other nodes in max(Up,,) are
leftmost extensions of nodes in V;. Thus, max(Uy,,) extends V; and has no new sets
of parallel 1's over Vj, s0 Uy, ~ 7', (T). Further, max(U,,, ) has no pre-determined
new parallel 1’s since r € IP. It follows that Up,; € 7y, [Um;—1,T].

For each X € Exty,, (4,C) with X C max(Un,), the truncation AU {z [, :

j
r € X} is a member of Exty, (A, C). Thus, there corresponds a sequence & € J
such that {z [l; : z € X} = {q(i,) : 1 < d} U {qg(d)}. Then X = {r(i,es) : i <

d} U {r(d)}, which has h-color *. m|

Let S =, Un;. For each X € Extg(4,C), there corresponds a j < w such
that X € Exty,, (A,C) and X C max(Un,). By Claim 10, h(X) = &*. Thus,

S € [B,T] and satisfies the theorem. This concludes the proof of the theorem for
Case (a).

Part III Case (b). Let X € Exty(A,C) and mg be given such that there is a
B’ € 1y [B,T] with X C max(B’). Let Uy,,—1 denote r,,—1(B’). We will build an
S € [Umg—1,T] such that every member of Extg(A, C; X) has the same h-color. Let
nps be the index such that CZB, is the coding node in max(B’). Label the members
of X as z;, i < d, so that each z; D s;. For Case (b), back in Part II, when choosing
the pg, @ € [k]4, first define

% = {{(i,0),2;) i < d, 6 € &} U{{(d,xq)}, (38)

so that each node ¢} will extend «;, for # < d. Then choose p§, 1 < k < 3, as before,
with the additional requirement that pg(d) = ¢ for some n > np/ + 3. Everything
else in Part II remains the same.

We will build Upy € 7Tmg[Umg—1,T] so that its maximal members extend
max(B’), and hence each member of X is extended uniquely in max(U,y,). Let
Vo denote max(B’). Let V{ and V§ denote those members v of Vg such that the
immediate extension of v is 0 or 1, respectively. For each v € VJ'\ X, v has no par-
allel 1’s with x4, so the Passing Number Choice Lemma 4.18 guarantees that there
is a member v* extending v to length I* := [¢}| >[I 4 such that v* has immediate
successor 1 in 7. For each v € V}\ X, take v* to be the leftmost extension of v of
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length [*. Let
Vi={tf i <d}U{v*:veV\X}. (39)

Claim 8. U,,,—1 UV™ is a member of 7y [Umg—1,T].

Proof. By the construction, V* extends Vj, and for each z € V*, the passing
number of z at )} is equal to the passing number of z [ I/ at cl'. Thus, it will follow
that Up,,—1 U V™ < B’ once we prove that U,,,—1 U V™ satisfies the Parallel 1’s
Criterion.

Let Y be any subset of V* for which there is an [ such that y(I) = 1 for all
y € Y. Since for each @ € [K]¢, ps < p2, it follows that {t; : i < d} has no new
sets of parallel 1’s over X. It follows that if Y C {¢! : i < d}, then the parallel 1’s
of Y are either witnessed in U,,,—_1 or else are witnessed by the coding node in X,
and hence by ¢}. In particular, the parallel 1’s of Y are witnessed in U,y,,—1 U V™.

If Y contains v* for some v € V{\ X, then there must be an I’ < |z4| where this
set of parallel 1’s is first witnessed, as v* is the leftmost extension of v in T [ [* and
therefore any coding node of T where v* has passing number 1 must have length
less than |z4|. Since U,y,,—1 satisfies the Parallel 1’s Criterion, the set of parallel 1’s
in Y is witnessed by a coding node in Uy, —1.

Now, suppose that Y C {v* : v €e VY\XJU{t; : i <d}. Y N{t;:i<d}is
contained in {tJ : ¢ € I}, then ¢} witnesses the parallel 1’s in Y. Otherwise, there
is some t] € Y with ¢ € Iy. Note that ¢; has immediate extension 0 at ¢}, and so
in the interval in T with ¢}, ¢! takes the leftmost path; also ¢ (Jzq|) = 0. By the
construction in the proof of Lemma 4.18, all v* for v € V{ extend v leftmost until
the interval of T' containing the coding node t};. Hence, any parallel 1’s between
such v* and ¢! must occur at a level below |z4|. Thus, the parallel 1’s in Y must
first appear in U,,,—1, and hence be witnessed by some coding node in Up,,—1.

Therefore, U,,,—1 U V* satisfies the Parallel 1’s Criterion, and hence Up,,—1 U
V* € rmg[Umg—1,T)- m|

Define Uy = Upmg—1 U V™. Let M = {m; : j < w} enumerate the set of
m > mg such that the coding node ¢}, D c?no. By strong similarity of 7" with T,
for any S € [Upm,,T), the coding node ¢, will extend ¢ if and only if m € M.
Take any Up,—1 € Tmy—1[Ume, T]. Notice that {¢} : i < d} is the only member of
Exty,, _,(A,C;X), and it has h-color £*.

Assume now that 1 < j < w and we have constructed Um; -1 so that every
member of ExtUmrl(A, C; X) is colored £* by h. Fix some Y; € 7y [Upn;—1, T)]. Let
V; denote max(Y;). The nodes in V; will not be in the tree S we are constructing;
rather, we will construct U, € 7o, [Upm,—1,T] so that max(U,,,) extends V;. Let
q(d) denote the coding node in V; and let I, = |¢(d)|. Recall that for k € {0,1}, I
denotes the set of ¢ < d for which ¢ has passing number £ at t’;. For each k € {0,1}
and each ¢ € I, let Z; be the set of nodes z in T; N V; such that z has passing
number k at g(d).
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We now construct a condition ¢ similarly, but not exactly, as in Case (a). For
each i < d, let J; be a subset of K; with the same size as Z;. For each i < d, label the
nodes in Z; as {z : a € J;}. Let J denote the set of those (@0, aq-1) € [[cq i
such that the set {2z, : 4 < d}U{q(d)} is in Exty (A, C). Notice that for each i < d
and @ € J, zo, D t7 = pa(i, o), and g(d) D t% = pa(d). Furthermore, for each i < d
and § € J;, there is an @ € J such that a; = 8. Let 5 = U{cﬁ @ e J}. For each
pair (i,7) € d X 5 with v € J;, define q(z ) = z. For each pair (i,7v) € d x 5 with
v € d, q\Ji, there is at least one & € J and some k < k* such that 65(k) = . By
Lemma 5.3, pﬂ(z v) = pa(i,y) = tj,, for any [3 € J for which v E 5 For i € Iy,
let ¢(i,v) be the leftmost extension of i, in T to length [,. This W111 have passing
number 0 at ¢(d), and any parallel 1’s between this node and any other nodes in V;
must be witnessed at or below t;. For i € Iy, let g(i,7) be the extension of ¢, as
in Lemma 4.18: extend ¢, leftmost in 7" until the interval of 7' containing ¢(d); in
that interval, extend to the next splitting node and take the right branch of length
lq. Let this node be ¢(¢,7). This has passing number 1 at ¢(d), and any parallel
1’s between ¢(7,y) and another node must be either witnessed by ¢(d) or else at or
below t};. Define

g ={g(d)} U{((i,0),q(i,8)) : i < d, & € &} (40)

By the construction, g is a member of P.

Claim 9. For each @ € J, q < pa.

Proof. Let n denote the index such that cI = g(d). It suffices to show that for
each & € f, q has no new sets of parallel 1’s over pg, since by construction, we have
that q(i,8) D pa(i,8) for all (i,6) € d x b5

Let & € J be given, and let Y be any subset of {q(i, ) : (i,0) € d x 65} of size at
least 2 for which for some [, y(I) = 1 forally € V. If' Y C {q(4, ;) : ¢ < d}U{q(d)},
then Y has no new parallel 1’s over X, since @ € J implies that {q(i, ;) : 1 <
d} U {q(d)} is in Extr(A,C; X). Since {p(i, ;) : i < d} U{p(d)} extends X and YV’
consists of extensions of members of {p(i,a;) : i < d} U {p(d)}, it follows that YV
has no new parallel 1’s over {p(i, a;) : © < d} U{p(d)}.

Now suppose Y contains some (i, 8), where § € 67\ {a }. Recall that by Claim 5,
53N (Ui<q Ki) = @; so in particular, 6 € |J,., Ji- By construction of g, if i € Iy,
then ¢(i, d) has no new parallel 1’s above I* with any other ¢(j,7), (j,7) € d x d5.
If i € I, it follows from the construction of ¢ that any parallel 1’s ¢(¢, ) has with
another member of ran(q) below I1 ; is witnessed below [*. Further, any parallel
1’s q(i, 0) has in the interval (I, IT] are witnessed by the coding node ¢(d). Thus,

n—11'n
any new sets of parallel 1’s in Y occurring above length [* must be witnessed by
q(d). Therefore, ¢ has no new parallel 1’s over pg, and hence, ¢ < pg. O

To construct Up,;, we will extend each node in V; uniquely in such a manner so
that these extensions along with U,,, 1 form a member of 7, [Umj_l, T). Tt suffices
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to find some V* extending Vj such that the coding node in V* extends the coding
node in Vj, the passing number of each v* in V* extending some v in Vj is the same
as the passing number of v in V}, and no new sets of parallel 1’s occur in V* over
Vj. Then Up,;—1 U V* will be strongly similar to ry,,(T) and hence a member of
ij [Umjfl,T].

Take an 7 < ¢ in P which decides some I; in Ly such that h(bg [ ;) = &* for all
ae j, and such that there are at least two coding nodes in 7" of lengths between
lq and [.. Without loss of generality, we may assume that the nodes in the image
of r have length ;. Extend the coding node ¢(d) in V; to r(d). For each ¢ < d and
6 € J;, extend ¢(i,6) to r(i,6). Let V} and V" denote the set of those v € V; with
passing number 0 and 1, respectively, at ¢(d). Extend these nodes according to the
construction of Lemma 4.18 as follows: For each node v in V}\({q(i,6) : i < d,
§ € Ji} U{q(d)}), let v* be the leftmost extension of v in T [;. For each node v
in V/\({q(4,9) : i < d, § € Ji} U{q(d)}), extend v leftmost to v’ of length lrr{(r)fl’
and then let v* be the right extension of splitpred,(v’) to length I, where n(r)
is the index such that CZ(T) = r(d). Then each member of le has passing number
0 at r(d) and each member of V" has passing number 1 at 7(d). Let V;~ denote
Vi\({q(3,6) : i < d, 6 € J;} U{q(d)}), and define

VE={r(d)} U{r(i,a;) 1i <d,o; € Ji}U{v" 10 €V} (41)
and
Upn, = Up,—1 UV*. (42)

Claim 10. Uy, is a member of v, [Unm,—1,T], and h(Y) = €* for each Y €
Exty,, (A,C; X).

Proof. By the construction of V*, for each v € V}, its extension v* in V* has
the same passing number at r(d) as v does at g(d). Since r < g, all parallel 1’s in
{r(i,0) :i < d, 6 € J;}U{r(d)} are already witnessed in V;. Each v in V}\ ({¢(i,4) :
i <d,d € J;}U{q(d)}) has extension v* which has no new parallel 1’s with any other
member of V* above l;. Any set Y C V' U{q(i,0):i<d, § € J;} U{q(d)} cannot
have new parallel 1’s in the interval (I*, [,,(,)—1], since for each v € V"\({¢(4,6) : i <
d, 6 € Ji}U{q(d)}), v* [ ly()—1 is the leftmost extension of v in T of length I,,(,)_1.
In the interval (I*,l,(;)—1], Lemma 4.14 implies the only new sets of parallel 1’s in
Y must be witnessed by r(d).

Thus, any sets of parallel 1’s among V* are already witnessed in V;. Therefore,
Um;—1 U V™ satisfies the Parallel 1’s Criterion and is strongly similar to Y}, and
hence is in 7y, [Up,;—1, T7.

Now, suppose Z C V* is a member of ExtUmj (A,C;X). Then Z [l is in
Extr(A,C; X), so Z extends {q(i, ;) : i < d} U{q(d)} for some @ € J. Thus,
Z ={r(i,a;) : i < d}U{r(d)} for that &, and r forces that h(Z) = e*. Since h and
Z are finite, they are in the ground model, so h(Z) simply equals £*. O
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To finish the proof of the theorem for Case (b), Define S = {J;_,, Um;. Then
S € [B',T], and for each Z € Extg(A,C;X), there is a j < w such that Z €
Exty,,, (A,C) and each member of max(Uy,,) extending X has h-color £*.

This concludes the proof of the theorem.

6. Ramsey Theorem for Finite Trees Satisfying the Strict
Parallel 1’s Criterion

Our first Ramsey theorem for colorings of finite subtrees of a strong coding tree
appears in this section. Theorem 6.3 proves that for any finite coloring of the copies
of a given finite tree satisfying the Strict Parallel 1’s Criterion (Definition 6.1) in
a strong coding tree T, there is a strong coding tree S < T in which all strictly
similar (Definition 6.2) copies have the same color.

Let A be a subtree of a strong coding tree T'. Given | < w, define

Api={t1(I+1):teA, [t|>1+1, and t(i) = 1}. (43)

We say that [ is a minimal level of a new set of parallel 1’s in A if the set A;; has
at least two distinct members, and for each I’ < I, the set {s € A; 1 : s(I') = 1} has
cardinality strictly smaller than |A4;1].

Definition 6.1 (Strict Parallel 1’s Criterion). A subtree A of a strong coding
tree satisfies the Strict Parallel 1’s Criterion if A satisfies the Parallel 1’s Criterion
and additionally, the following hold: For each [ which is the minimal length of a set
of new parallel 1’s in A,

(1) The critical node in A with minimal length greater than or equal to [ is a coding
node in A, say c;

(2) There are no terminal nodes in A in the interval [I,|c|) (¢ can be terminal in A);

(3) Al71 = {t [(l + 1) it e A|C|’1}.

Thus a tree A satisfies the Strict Parallel 1’s Criterion if it satisfies the Parallel
1’s Criterion and moreover, each new set of parallel 1’s in A is witnessed by a coding
node in A before any other new set of parallel 1’s, critical node, or terminal node
in A appears.

Definition 6.2 (Strictly Similar). Given A, B subtrees of a strong coding tree,
we say that A and B are strictly similar if A and B are strongly similar and both
satisfy the Strict Parallel 1’s Criterion.

Theorem 6.3. Let T' be a strong coding tree and let A be a finite subtree of T
satisfying the Strict Parallel 1’s Criterion. Then for any coloring of all strictly
similar copies of A in T into finitely many colors, there is a strong coding subtree
S < T such that all strictly similar copies of A in S have the same color.

Theorem 6.3 will be proved via four lemmas and then doing an induction argu-
ment. Recall that Case (b) of Theorem 5.2 only showed that, when C'\ A contains
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a coding node and X € Extr(A,C), there is some S < T which is homogeneous
for all members of Extg(A, C; X). This is weaker than the direct analogue of the
statement proved for Case (a) in Theorem 5.2, and this disparity is addressed by
the following. Lemma 6.7 will build a fusion sequence to obtain an S < T which
is end-homogeneous on Extg(A,C), using Case (b) of Theorem 5.2. Lemma 6.8
will use a new forcing and many arguments from the proof of Theorem 5.2 obtain
an analogue of Case (a) when C\ A contains a coding node. The only difference is
that this analogue holds for Ext3" (4, C), rather than Extg(A,C), which is why
Theorem 6.3 requires the Strict Parallel 1’s Criterion. The last two lemmas involve
fusion to construct subtrees which have one color on ExtSf (A’,C), for each A’
strictly similar to A, for the two cases: C'\ A contains a coding node, and C\ A con-
tains a splitting node. The theorem then follows by induction and an application
of Ramsey’s theorem.

The following basic assumption, similar to Case (b) of Theorem 5.2, will be used
in much of this section.

Assumption 6.4. Let A C C be fixed non-empty finite subtrees of a strong coding
tree T' such that A and C satisfy the Strict Parallel 1’s Criterion. Let A, be a
subset of AT, and assume that A. and C'\ A are level sets, and that C'\ A extends
A, contains a coding node, and contains the sequence 0. Let d + 1 = |A.| and
list the nodes of A, as (s; : i < d), and the nodes of C\ A as (t; : i < d) so that each
t; extends s; and t4 is the coding node in C\A. For k € {0,1}, let I; denote the
set of i < d such that the immediate extension of ¢; in T is k. Since C\ A contains
a coding node, the immediate successors of the t; are well-defined in T'.

As usual, when we talk about the parallel 1’s of C'\ A, we are taking into account
the passing numbers of the members of (C\ A)T at the coding node t4. Recall that
values of the immediate successors of the ¢;, i < d, are considered when determining
whether or not a level set Y is in Extr(A, C), this being defined as in Case (b) of
the previous section. We hold to the convention that for Y € Extr (A4, C), the nodes
in Y are labeled y;, i < d, where y; 2 s; for each i. In particular, y4 is the coding
node in Y. Define

Ext3F (A, C) = {Y € Extp(A,C) :
AUY satisfies the Strict Parallel 1’s Criterion}. (44)

Recall the definition of splitpred,(z) from Sec. 4.1. We point out that if the parallel
1’s in O\ A are already witnessed in A, then Ext3F (4, C) is equal to Extr(A, C). If
there are parallel 1’s in C'\ A not witnessed in A, then Y € Ext$F (A, C) if and only
if Y € Extr(A4,C) and additionally for the minimal I such that {i < d : y;(I) =
1} = I, AU {splitpred(y; [1) : i € [} U{y; [l : i € Iy} satisfies the Parallel 1’s
Criterion. Now, we define the notion of minimal pre-extension of A to a copy of C.
This will be used in the next lemma to obtain a strong form of end-homogeneity
for the case when max(C') has a coding node.
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Definition 6.5 (Minimal Pre-Extension of A to a Copy of C). Let X =
{z; : i < d} be any level set extending A, such that z; O s; for each ¢ < d and such
that the length [ of the nodes in X is the length of some coding node in T'. We say
that X is a minimal pre-extension in T of A to a copy of C if

(i) {i <d:zf(l) =1} = I, where z; denotes the immediate extension of z; in
T; and
(ii) AU {splitpred (z;) : 4 € I} U {x; : i € Iy} satisfies the Parallel 1’s Criterion.

We will simply call such an X a minimal pre-extension when T, A, and C
are clear. Minimal pre-extensions are exactly the level sets in 7" which can be
extended to a member of Extgp (A,C). For X any minimal pre-extension, define
Extr(A, C; X) to be the set of all Y € Extr (A, C) such that Y extends X. Then

Ext37 (A,C) = U{ExtT(A, C; X) : X is a minimal pre-extension}. (45)

Definition 6.6. A coloring on Ext3’ (A, C) is end-homogeneous if for each minimal
pre-extension X of A to a copy of C, every member of Extr (A, C; X) has the same
color.

Lemma 6.7 (End-Homogeneity). Assume 6.4, and let k be minimal such that
max(A) C ri(T). Then for any coloring h of Extr(A,C) into two colors, there is
a T’ € [ri(T), T] such that h is end-homogeneous on Ext3! (A, C).

Proof. Let (nj)j<. enumerate those integers greater than k such that there is
a minimal pre-extension of A to a copy of C from among the maximal nodes in
T, (T'). Each of these r,,(T") contains a coding node in its maximal level, though
there may be minimal pre-extensions contained in max(r,; (1")) not containing that
coding node.

Let T_; denote T'. Suppose that j < w and T}j_; are given so that the color-
ing h is homogeneous on Extr, ,(A,C;X) for each minimal pre-extension X in
Tn;—1(Tj—1). Let U;_1 denote ry; _1(Tj—1). Enumerate the collection of all minimal
pre-extensions of A to C' from among max(r,, (Tj-1)) as Xo, ..., Xq. We will do an
inductive argument over p < g to obtain a T; € [U;_1,T;_1] such that max(r,, (7}))
extends max(ry, (T;-1)) and Extr, (A, C; Z) is homogeneous for each minimal pre-
extension Z in max(ry, (Tj-1)).

Suppose p < ¢ and for all ¢ < p, there are strong coding trees S; such that
S; € [Uj-1,8i—1] where S_1 = T,;_1 and h is homogeneous on Extg, (4, C; X;).
Let [ denote the length of the nodes in max(ry; (T;-1)). Note that X, is contained
in 7,,(Sp—1) [, though I does not have to be the length of any node in S,_1. The
point is that the set of nodes Y, in max(ry; (Sp—1)) extending X, is again a minimal
pre-extension. Extend the nodes in Y, to some Z, € Extgs, ,(A4,C;Y}), and let I
denote the length of the nodes in Z,. Note that Z, has no new sets of parallel 1’s
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over AUY),. Let W), consist of the nodes in Z, along with the leftmost extensions
of the nodes in max(ry, (Sp—1))\Y} to the length I’ in S,_;.

Let S}, ; be a strong coding tree in [U;_1,S,—1] such that max(ry;(S},_1))
extends W),. Such an S},_; exists by Lemma 4.19, since W}, has exactly the same
set of new parallel 1’s over r,,, , (Sp,—1) as does max(ry,; (Sp—1)). Apply Case (b) of
Theorem 5.2 to obtain a strong coding tree S, € [U;_1,S;,_;] such that the coloring
on Extg, (A,C; Zp) is homogeneous. At the end of this process, let T = S,. Note
that for each minimal pre-extension Z C max(ry,(1})), there is a unique p < gq
such that Z extends X, since each node in max(r,,(7})) is a unique extension of
one node in max(ry,; (7;-1)), and hence Extr, (A, C; Z) is homogeneous.

Having chosen each T} as above, let 7" = (J;_, 7n; (T;). Then T" is a strong
coding tree which is in [rg(T),T], and for each minimal pre-extension Z in
T, Extr(A,C;Z) is homogeneous for h. Therefore, h is end-homogeneous on
Ext37 (A, C). O

The next lemma provides a means for uniformizing the end-homogeneity from
the previous lemma to obtain one color for all members of Ext3 (A, C). This will
yield almost the full analogue of Case (a) of Theorem 5.2 for Case (b), when the
level sets being colored contain a coding node, the difference being the restriction
to strictly similar extensions rather than just strongly similar extensions. The argu-
ments are often similar to those of Case (a) of Theorem 5.2, but sufficiently different
to warrant a proof.

Lemma 6.8. Assume 6.4, and suppose that B is a finite strong coding tree valid
in T and A is a subtree of B such that max(A) C max(B). Suppose that h is
end-homogeneous on Ext3C(A,C). Then there is an S € [B,T] such that h is
homogeneous on Ext3 (A, C).

Proof. Given any U € [B,T], let MPEy (A, C) denote the set of all minimal pre-
extensions of A to a copy of C' in U. Without loss of generality, we may assume
that the nodes in C\ A occur in an interval of T strictly above the interval of T
containing B. This presents no obstacle to the application, as the goal is to find
some S € [B,T] for which h takes the same value on every extension in Exty (A, C)
extending some member of MPEg (A4, C), and we can take the first level of S above
B to be in the interval of T strictly above B since B is valid in T'.

Enumerate the nodes of A, as {s; : i < d}, letting ig be the index such that s;,
is a sequence of all 0’s. In the notation of Assumption 6.4, ig is a member of Ij.
Each member Y of MPEr (A4, C) will be enumerated as {y; : ¢ < d} so that y; 2 s;
for each i < d. Given Y € MPEr (A4, C), define the notation

splitpred(Y') = {y; : i € In} U {splitpred,(y;) : i € I1 }. (46)

Since C satisfies the Strict Parallel 1’s Criterion, C'\ A is in MPEr (A4, C). Let C'~
denote splitpred-(C\ A). Since we are assuming that C'\ A is contained in an interval
of T above the interval containing max(A), each node of C'~ extends one node of A..
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For any U € [B,T], define X € Exty(A,C™) if and only if X = splitpred; (V) for
some Y € MPEy (A, C). Equivalently, X € Exty (A4, C™) if and only if the following
three conditions hold:

(1) X extends A.; label the nodes in X as {x; : i < d} so that x; D s;.

(2) There is a coding node ¢ in U such that |¢| = |z;,|; for each i € I, the passing
number of x; at ¢ is 0; and for each i € I, x; = splitpred (y;) for some y; D s;
in U of length |c| such that the passing number of y; at ¢ is 1.

(3) The set AU X satisfies the Parallel 1’s Criterion.

Thus, X is a member of Exty(A,C) if and only if {z; : ¢ € Iy} along with
the rightmost paths extending {x; : ¢ € I} to length |x;,| forms a minimal pre-
extension of A to a copy of C in U. Note that condition (3) implies that X has no
new sets of parallel 1’s over A, since X contains no coding node.

By assumption, the coloring h on Extgp (4, C) is end-homogeneous. Thus, it
induces a coloring on MPEr (A, C), by giving Y € MPEr(A, C) the h-color that all
members of Extr (A, C;Y) have. This further induces a coloring A’ on Extr (A, C™),
since a set of nodes X in T is in Extp(A,C™) if and only if X = splitpred,(Y)
for some Y € MPEr(A,C). Define h'(splitpred;(Y)) to be the color of h on
Extr(A,C;Y).

Let L denote the collection of all I < w such that there is a member of
Extp(A,C~) with maximal nodes of length . For each i € (d + 1)\{io}, let
T, ={teT:t2s} Let T;, ={t € TNO<Y : ¢t D sy,}, the collection of all
leftmost nodes in T extending s;,. Let x = Jagy2. The following forcing notion Q
will add £ many paths through each T3, i € (d+ 1)\{io} and one path through T;,.
The present case is handled similarly to Case (a) of Theorem 5.2, so much of the
current proof refers back to the proof of Theorem 5.2.

We now define a new forcing. Let Q be the set of conditions p such that p is a
function of the form

p:(d+1)><(§p—)T,

where 6, € [K]<¥, I, € L, and there is some coding node CZ(p) in T such that
1r l

n(p) = and

D

(i) For each (i,0) € (d+ 1) x &y, p(i,8) € T; and 1% | < |p(i, 8)| < I; and
(i) () If i € I, then p(3,d) = splitpred;(y) for some y € T; [ I, which has imme-
diate extension 1 in 7'.

(B) If i € Iy, then p(i, ) € T; [ 1, and has immediate extension 0 in 7.

It follows from the definition that for p € Q, the range of p, ran(p) := {p(4,9) :
(i,6) € (d+ 1) x b,}, has no pre-determined new sets of parallel 1’s. Furthermore,
all nodes in ran(p) are contained in the n(p)th interval of T. We point out that
ran(p) may or may not contain a coding node. If it does, then that coding node
must appear as p(i,d) for some i € Ij.
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The partial ordering on Q is defined as follows: ¢ < p if and only if I, > [,
5 D 5

(i) q(i,8) D p(i,6) for each (i,6) € (d+ 1) x b,; and
(i) {q(3,6): (4,6) € (d+1) x é,} has no new sets of parallel 1’s over ran(p).

It is routine to show that Claims 1 and 2 in the proof of Theorem 5.2 also hold
for (Q, <). That is, (Q, <) is an atomless partial order, and any condition in Q can
be extended by two incompatible conditions of length greater than any given [ < w.

Let U be a Q-name for a non-principal ultrafilter on L. For each i < d and
a < K, let bza be a Q-name for the ath generic branch through T;; that is, bza =
{(p(i,@),p) : p € Qand a € &,}. For any condition p € Q, for (i,a) € Iyx4,, p forces
that b; o [ 1, = p(i, ). For (i, ) € I, X4, p forces that splitpred,(b;.o [ 1,) = p(i, ).
For @ = (ag, ..., aq) € [k]4H,

let bg denote (bo.ags-- -, ba.ay)- (47)

For [ € L, we shall use the abbreviation

bg Il to denote splitpred, (bg [ 1), (48)
which is exactly {b; o, [1:7 € Ip} U {splitpredp(bio, [ 1) :i € I;}.

Similarly to Part II of the proof of Theorem 5.2, we will find infinite pairwise
disjoint sets K; C k, ¢ < d, such that Ky < K; < ... < Ky4, and conditions pg,
a € [];<4 K, such that these conditions are pairwise compatible, have the same
images in T, and force the same color e* for A (bg [1) for Y many levels [ in L.
Moreover, the nodes {¢; : i < d} obtained from the application of the Erdés—Rado
theorem for this setting will extend {s; : ¢ < d} and form a member of Extr (A, C™).
The arguments are mostly similar to those in Part II of Theorem 5.2, so we only
fill in the details for arguments which are necessarily different.

Part II. For each @ € [x]¢*?, choose a condition ps € Q such that

‘i

(1) ac

(2) {p (z az) i <d} € Extr(A,C7).

(3) pa Ik “There is an € € 2 such that h(b I1) = ¢ for Y many [ in L.”
(4) pa decides a value for e, call it 5.

(5) h({pali,a;) i < d}) = ea-

Properties (1)—(5) can be guaranteed as follows. For each ¢ < d, let ¢; denote
the member of C~ which extends s;. For each @ € []4T!, let

p% = {((i,0),t;) : i < d,0 € a}.

Then p% is a condition in P and 6 o =d,s0 (1) holds. Further, ran(pa) is a member
of Extr (A, C™) since it is exactly C~. Note that for any p < pa, {p(i, ;) 1 4 < d}
is also a member of Extr(A,C7), so (2) holds for any p < p%. Take an extension
pL < p% which forces I/ (bz | 1) to be the same value for & many [ € L, and then take
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p2 < pL deciding a value 4 for which p2 forces that h'(bs [1) = e for U many I
in L. This satisfies (3) and (4). Take pg < p% which decides W (bg 1p,) = €5 Then
pa satisfies (1) through (5), since pg forces b/ ({pa(i, ;) 1 i < d}) = ega.

We are assuming £ = Jag 0. Let D, = {0,2,...,2d} and D, = {1,3,...,2d+1},
the sets of even and odd integers less than 2d + 2, respectively. Let Z denote
the collection of all functions ¢ : (2d + 2) — (2d + 2) such that ¢[ D, and
t] D, are strictly increasing sequences and {:(0),¢(1)} < {u(2),¢(3)} < -+ <
{1(2d),1(2d + 1)}. For 6 € [5]2%+2, 4(§) determines the pair of sequences of or-
dinals (6,(0),0.(2), - - - 0u2d))» (Bu(1)5 0u(3)s - - -, Bu(2d41)), both of which are members
of [k ]‘”1 Denote these as t.(f) and 1,(8), respectively. Let 67 denote gpd, kg de-
note |85/, and let Iy denote lp,. Let (05(j) : j < kg) denote the enumeration of 05
in increasing order. Define a coloring f on [x]2¢+2
follows: Given 0 € []?9*2 and © € Z, to reduce the number of subscripts, letting &
denote t.(6) and 3 denote 1,(f), define

F(,0) = (v ea ka, ((pa(i,0a(7) 5 < k
((1,7) 11 < d, j < kg, and 05(J) = ),
((G.k) 1 j < ka, k <kg, 0a(j) = d5(k)).

Let f(0) be the sequence (f(1,0) : v € I), where T is given some fixed ordering.
By the Erdés—-Rado theorem, there is a subset K C & of cardinality 8; which is
homogeneous for f. Take K’ C K such that between each two members of K’
there is a member of K and min(K’) > min(K'). Then take subsets K; C K’ such
that Ky < --- < K4 and each |K;| = Ng. The following three claims and lemma
are direct analogues of Claims 3-5, and Lemma 5.3. Their proofs follow by simply
making the correct notational substitutions, and so are omitted.

into countably many colors as

a) i <d),
(49)

Claim 11. There are €* € 2, k* € w, and (t;; : j < k*), i < d, such that for all
a € [[,<q Ki and each i < d, eg = €%, kg = k*, and (pa(i, 0, ( ) 1§ < kag) = (tij:
J < k*).

Let I* = |t;,]. Then for each i € Iy, the nodes t; ;, j < k*, have length [*; and
for each i € Iy, the nodes t; ;, j < k*, have length in the interval (11,17, where

n—1"n

n is the index of the coding node in T of length [*.

Claim 12. Given any @,5 € [Li<a Ki, if §.k < k* and 6a(j) = 65(k), then
j=k.

For any @ € [[,, K; and any ¢ € Z, there is a § € [K]29+2 such that @ = 1,(6).
By homogeneity of f, there is a strictly increasing sequence (i : 7 < d) of members
of k* such that for each a € [],., Ki, 0a(ji) = a;. For each i < d, let 7 denote
t; j;- Then for each i < d and each @ € [[,., K

pa (i, 06) = pa(i, 65(ji)) = tij, = t;. (50)
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Lemma 6.9. For any finite subset J C [licq Ki, the set of conditions {ps : d € f}
is compatible. Moreover, py = |J{pa : @ € f} is a member of P which is below
each pg, d € J.

Claim 13. If § € U,<, Ki, & € [[,c, Ki, and B & a, then B is not a member
Ofg@.

Part III. Let (nj)j<. denote the set of indices for which there is an X €
MPEr (A, C) with X = max(V) for some V' of r,,[B,T]. For i € Iy, let uj = t;.
For ¢ € I1, let u} be the leftmost extension of ¢; in 7' [I*. Note that {u} : ¢ < d}
has no new sets of parallel 1’s over A.. Extend each node u in max(B)\ A, to its
leftmost extension in T [{* and label that extension u*. Let

U* = {u} i < d}U{u*: u € max(ry (T))\Ac}. (51)

Thus, U* extends max(B), all sets of parallel 1’s in U* are already witnessed in B
since B is valid in T, and U* has no new pre-determined parallel 1’s.

Suppose that j < w and for all i < j, there have been chosen S; € r,,[B,T]
such that A’ is constant of value £* on Extg,(A,C7), and for i < ¢’ < j, S; C Si.
Let kp be the integer such that B = 7, (B), and let e be the index such that
I | is greater than the length of the maximal nodes in B. For j = 0, take Vp
to be any member of r,,[B,T] such that the nodes in max(rx,+1(V5)) extend the
nodes in U* and have length greater than IX. This is possible by Lemma 4.19. For
j > 1, take V; € 7, [B,T] such that V; 3.5 1. Let X denote max(V;). Then the
nodes in splitpred,(X) extend the nodes in U*, and moreover, extend the nodes
in max(S;_1) if 7 > 1. By the definition of n;, the set of nodes X contains a
coding node. For each ¢ € Iy, let Y; denote the set of all ¢t € T; N X which have
immediate extension 0 in 7. For each i € I, let Y; denote the set of all splitting
nodes in T; Nsplitpred ;- (X). For each ¢ < d, let J; be a subset of K; of size |Y;|, and
enumerate the members of Y; as q(i,8), 8 € J;. Let .J denote the set of @ € [Licy Ji
such that the set {q(i, ;) : i < d} has no new sets of parallel 1’s over A. Thus,
the set of {q(i, ;) : i < d}, @ € J, is exactly the collection of sets of nodes in
splitpred(X) which are members of Exty(A, C~). Moreover, for each @ € J and
all 4 < d,

Q(i’ ai) ot = p&<i7ai)' (52)

To complete the construction of the desired ¢ € Q for which ¢ < pg for all
aeJ, let 6, = J{0z: @€ J}. For each pair (i,) with v € §,\J;, there is at least
one @ € J and some j < k* such that v = d5(j). As in Case (a) of Theorem 5.2,
for any other 3 € J for which v € 4§, it follows that p[;(i,'y) = pa(i,y) = t;;
and 65(j) = 7. If i € Iy, let q(i,7) be the leftmost extension of ¢ ; in T [l,‘g. If
i € I, let q(i,7) be the leftmost extension of ¢} ; to a splitting node in 7" in the
AR A

']. Such a splitting node must exist because of the construction

interval (1,7 1, In]
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of U*. Precisely, let ¢X denote the coding node in X. Note that ¢ [Ip must have
no parallel 1’s with any s;/, i’ € I, since X contains a member of MPEr (A, C).
If ¢X does not extend t5, for any ¢’ < d, then c¢X |1* is the leftmost extension in
T of ¢X lp, which implies that ¢X [I* has no parallel 1’s with ti ;- Thus, g(i,7),
being the leftmost extension of ¢7 ;, has no parallel 1’s with cX. If ¢X extends some
ti js» then X [lg = syr. For ¢X to be a node in a member of MPE7(A, C), ¢X g
must not have parallel 1’s with any s;, ¢ € I;. In particular, ¢ must be in Iy, and
t; ; has no parallel 1’s with ¢}, ,/, because s; and s, have no parallel 1’s and by the
definition of the partial ordering on Q, since ¢} ; and ¢}, ;, are in ran(pg) for any
@€ [K']" and pg < p%. Thus, the leftmost extension (4, y) of ; ; has no parallel

1’s with ¢X. Therefore, q(i,v) is well defined. Define

g = J{{li0).q(i, ) : a € 5,}. (53)

i<d

By a proof similar to that of Claim 9, it follows that ¢ < pg, for each @ € J.

Take an r < ¢ in [P which decides some [; in L which is strictly greater than
the length of the next coding node above the coding node ¢X in X, and such that
for all @ € J, I/ (bg Il;) = e*. Without loss of generality, we may assume that the
maximal nodes in 7 have length I;. If ¢X = ¢(i’, o) for some i’ € Iy and o/ € Jy,
then let ¢, denote r(i’,a’); otherwise, let ¢, denote the leftmost extension of ¢X in
T of length [;. Let Zy denote those nodes in splitpred,(X)\Yy which have length
equal to ¢X; in particular, Zy is the set of nodes in X which are not splitting nodes
in splitpred(X) and are also not in Yy. For each z € Zy, let s, denote the leftmost
extension of z in T to length [;. Let Z; denote the set of all splitting nodes in
splitpred;-(X)\Y1. For each z € Z1, let s, denote the splitting predecessor in T' of
the leftmost extension of z in 1" to length /;. This splitting predecessor exists in
T for the following reason: If z is a splitting node in splitpred,(X), then z has no
parallel 1’s with ¢X, and so the leftmost extension of z to any length has no parallel
1’s with any extension of ¢X. In particular, the set {s. : z € Zo U Z;} has no new
sets of parallel 1’s over splitpred(X).

Let

Z7 ={qli,a):i<d,a€ J;}U{s,: z€ ZyU Z1}. (54)

Let Z* denote the extensions in 71" of all members of Z~ to length [;. Let j~ denote
the index such that the maximal coding node in V; below ¢ is c,‘fj _. Note that Z*
has no new sets of parallel 1’s over splitpred,(X); furthermore, the tree induced
by Tn,_ (V;) U Z* is strongly similar to V;, except possibly for the coding node
being in the wrong place. Using Lemma 4.19, extend the nodes in Z* to obtain
some S; € 1y, [rn,_(V;),T] where max(S;) extends Z*. Then every member of
Exts, (A, C™) has the same h' color €%, by the choice of 7, since each minimal pre-
extension in MPEg;, (4, C) extends some member of Extg, (A, C—) which extends
members in ran(r) and so have h'-color £*.
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Let S =J,.,, S;. Then S is astrong coding tree in [B, T]. Let Y € ExtsF (A, C).
Then there is some X € MPEg(A, C) such that Y extends X. Since splitpredg(X)
is in Extg,; (A,C7) for some j < w, splitpredg(X) has A’ color €*. Thus, Y has
h-color £*. ]

Recall that given a tree A, Sim7.(A) denote the set of all subtrees A’ of T which
are strongly similar to A.

Lemma 6.10. Assume 6.4. Then there is a strong coding subtree S < T such that
for each A’ € Sim%(A), h is homogeneous on Ext3 (A, C).

Proof. Let (k;);<, be the sequence of integers such that r, (T) contains a strictly
similar copy of A which is valid in rg, (T) and such that max(A) C max(rg, (T)).
Let k‘_l = 0, T_1 = T, and U_1 = T‘o(T).

Suppose i < w, and U; 1 ~ ry,_,(T) and T;_; are given satisfying that for each
A" € Simj;,_ (A) valid in U;—; with max(A4) € max(U;—1), h is homogeneous on
Extgf:l (A, C). Let U; be in 7, [U;—1, T;—1]. Enumerate the set of all A" € Simy;, (A)
which are valid in U; and have max(A4’) C max(U;) as (Ao,...,Ayn). Apply
Lemma 6.7 to obtain Ry € [U;, T;—1] which is end-homogeneous for Ext}q%f (Ao, O).
Then apply Lemma 6.8 to obtain R, € [U;, Ro] such that Ext}q%f(Ao, () is homo-
geneous for h. Given R for j < n, apply Lemma 6.7 to obtain a R;j1 € [U;, R}]
which is end-homogeneous for Ext}%}: - (Aj+1,C). Then apply Lemma 6.8 to obtain
R}y € [Ui, Rj41] such that Ext}q%il (Aj11,C) is homogeneous for ¢. Let T; = R),.

Let U = ;.,, Ui- Then U < T and h has the same color on Extif (A, C) for
each A’ € Simy;(A) which is valid in U. Finally, take S < U. Then for each k < w,
r,(S) is valid in U, so in particular, each A" € Simg(A) is valid in U. Hence, h is
homogeneous on Ext3” (4, C). O

A similar lemma holds for the setting of Case (a) in Theorem 5.2. Since the
critical node is a splitting node in this case, we do not need to restrict to Strict
Parallel 1’s Criterion copies of A in T'.

Lemma 6.11. Let T be a strong coding tree and let A,C,h be as in Case (a) of
Theorem 5.2. Then there is a strong coding tree S < T such that for each A’ €
Sim§(A4), Extg(A’, C) is homogeneous for h.

Proof. Similarly to the fusion argument in proof of Lemma 6.10 but applying
Case (a) of Theorem 5.2 in place of Lemmas 6.7 and 6.8, one builds a strong coding
tree S < T such that for each copy A’ of A in S, Extg(A4’,C) is homogeneous
for h. |

Proof of Theorem 6.3. The proof is by induction on the number of critical nodes.
Suppose first that A consists of a single node. Then such a node must be a splitting
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node in 0¥ N T, so Sim7(A) is the infinite set of all splitting nodes in 0<“ N T.
Let h be any finite coloring on Sim7(A). By Ramsey’s theorem, infinitely many
members of Sim7-(A) must have the same h color, so there is a subtree S < T for
which all its nodes in S N 0<% have the same h color. Such an S < T exists by the
definition of strong coding tree, since T is strongly skew, perfect, and the coding
nodes are dense in 7.

Now assume that n > 1 and the theorem holds for each finite tree B with n or
less critical nodes such that B satisfies the Strict Parallel 1’s Criterion and max(B)
contains a node which is a sequence of all 0’s. Let C be a finite tree with n + 1
critical nodes containing a maximal node in 0<%, and suppose h maps Sim%(C)
into finitely many colors. Let d denote the maximal critical node in C' and let
B = {t € C: |t < |d|}. Apply Lemma 6.10 or 6.11, depending on whether d is
a coding or splitting node, to obtain 77 < T so that for each V' € Sim3. (B), the
set BExt3F (V,C) is homogeneous for h. Define g on Sim$.(B) by letting g(V) be
the value of h on V U X for any X € Ext3! (V,C). By the induction hypothesis,
there is an S < T” such that g is homogeneous on Sim2” (B). It follows that h is
homogeneous on Sim2’ (C).

To finish, let A be any tree satisfying the Strict Parallel 1’s Criterion where
max(A) does not contain a member of 0<“, and let g be a finite coloring of Sim7.(A).
Let 14 denote the longest length of nodes in A, and let C be the tree induced by
AU{0%}. Then there is a one-to-one correspondence between members of Sim%.(A)
and Sim%(C); say ¢ : Sim7.(A) — Sim%(C') by defining ¢(A’) to be the member of
Sim?(C') which is the tree induced by adding the node 0’4’ to A’. For ¢’ € Sim%(C),
define h(C") = g(p~1(C")). Take S < T homogeneous for h. Then S is homogeneous
for g on Simg(A). m|

7. Incremental Strong Coding Trees

This section develops the notion of incremental new sets of parallel 1’s, and the
related concepts of Incremental Parallel 1’s Criterion, incremental strong coding
subtrees, and sets of witnessing coding nodes. The main lemma, Lemma 7.5, will
be instrumental in attaining the Ramsey theorem in Sec. 8. This will be a Ramsey
theorem for finite colorings of strictly similar copies of any given finite subtree of
a strong coding tree. The work in this section sets the stage for the removal of the
requirement of any form of Parallel 1’s Criterion on the finite tree whose copies are
being colored.

Definition 7.1 (Incremental parallel 1’s). Let Z be a finite subtree of a strong
coding tree T', and let (I; : j < j) list in increasing order the minimal lengths of
new parallel 1’s in Z. We say that Z has incremental new sets of parallel 1’s, or
simply incremental parallel 1’s, if the following holds. For each j < j for which

le,l = {Z r(lj+1) 1z €4, |Z| > lj, and Z(lj) = 1} (55)
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has size at least three, letting m denote the length of the longest critical node in
Z below [;, for each proper subset Y C Z;; 1 of cardinality at least two, there is a
j' < jsuchthat I >m, Y, 1:={y[(l;+1):y €Y and y(l;;) = 1} has the same
size as Y, and Ylj,,l = le/,1~

We shall say that an infinite tree S has incremental new parallel 1’s if for each
| < w, the initial subtree S [l of S has incremental new parallel 1’s.

Definition 7.2 (Incremental Parallel 1’s Criterion). Let Z be a subtree of a
strong coding tree T'. We say that Z satisfies the Incremental Parallel 1’s Criterion
if Z has incremental new parallel 1’s and satisfies the Parallel 1’s Criterion.

Thus, to satisfy the Incremental Parallel 1’s Criterion, a tree must have a coding
node witnessing each of its new sets of parallel 1’s, and these are occurring incre-
mentally. Note that any strong coding tree does not satisfy the Incremental Parallel
1’s Criterion. In Sec. 4, we will be interested in extending finite trees A to trees
E which satisfy the Incremental Parallel 1’s Criterion, for such E automatically
satisfy the Strict Parallel 1’s Criterion, so the Ramsey theorems from the previous
section can be applied.

The next definition of an incremental strong coding tree will be vital to finding
bounds for the big Ramsey degrees in H3.

Definition 7.3 (Incremental Strong Coding Tree). A strong coding tree T
is called incremental if it satisfies the following. Let n be any integer for which
there are at least three distinct nodes in 7' | (|cL| 4 1) which have passing number
1 at ¢!, and list the set of those nodes as (t; : i < 4). Let m denote the length
of the maximal splitting node in 7" below c.. Let P denote the collection of all
proper subsets P C i of size at least two, and let k= |P|. Then there is an ordering

(P : k< I~€) of P and a strictly increasing sequence (py : k < l;) such that

(i) m < po and p;_, < |cL|;
(ii) k < k' < k implies P, 2 Py; and
(iii) For each k < k, py is minimal such that {i < i :t;(px) = 1} = Py.

Given a node w € 2<%, let w” denote the longest member s € 0<“ such that
s Cw.

Definition 7.4 (Incrementally Witnessed Parallel 1’s). Let S < T be an
incremental strong coding tree. We say that the sets of parallel 1’s in S are incre-
mentally witnessed in T if the following hold. For each n < w, given P, (Py, : k < I%),
and (py : k < I~€) satisfying Definition 7.3, there is a coding node w,,  in T satisfying

(1) ld5,, 1l < [whol < po < Jwnol < [wpy] < p1 < fwpal <o < ;| <
Py < wy, fql < le5 .
(2) w, i witnesses the parallel I’sin Sp, 1; that is, forall z € S [ (pr+1), z2(Jwg]) =1

if and only if z(px) = 1.

2050012-62



J. Math. Log. 2020.20. Downloaded from www.worldscientific.com

by UNIVERSITY OF DENVER on 07/15/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

The Ramsey theory of the universal homogeneous triangle-free graph

The main lemma of this section shows that given a strong coding tree 7', there is
an incremental strong coding subtree S < T and moreover, a set W C T of coding
nodes disjoint from S such that each new set of parallel 1’s in S is witnessed by
a coding node in W. This set-up is what will allow for the definition and use of
envelopes in Sec. 8, as it will ensure that subtrees from S can be enhanced with
witnessing coding nodes from W so that their union satisfies the Strict Parallel 1’s
Criterion. This will allow application of Theorem 6.3 to obtain upper bounds on
the finite big Ramsey degrees in the universal triangle-free graph.

Lemma 7.5. Let T be a strong coding tree. Then there is an incremental strong
coding tree S < T and a set of coding nodes W C T such that each new set of
parallel 1’s in S is incrementally witnessed in T by a coding node in W.

Proof. Let (d%, : m < w) denote the critical nodes in T in order of increasing

length. Let (m, : n < w) denote the indices such that d%n = ¢l so the m,th
critical node in T is the nth coding node in 7. Let Sy be a valid subtree of T" which
is strongly similar to r,+1(7"). Since rmy+1(7") has only one node with passing
number 1 at ¢, there is nothing to do; vacuously Sy has incremental new sets of
parallel 1’s and these are vacuously witnessed in 7.

Suppose now that n > 1 and we have chosen S,,_1 % ry,_,+1(T) valid in T so
that S, 1 is incremental and has its new sets of parallel 1’s incrementally witnessed
in T. Take some S|, _; € i, [Sn—1,T], so S/,_; is valid in T. There is a one-to-
one correspondence between the nodes in max(ry, +1(7)) and max(rg, (T'))*, and
hence also between max(ry,+1(7)) and max(S),_;)T. Let ¢ : max(rg,+1(T)) —
max(S/,_;)* be the lexicographic order preserving bijection. Let (t; : i < 1) be the
lexicographically increasing enumeration of those nodes in max(ry,+1(7")) which
have passing number 1 at ¢I. Let s; = ¢(t;). Then {s; : i < 1} is the set of nodes
which must extend to have passing number 1 at the next coding node in S, ¢3. If
i < 2, there is nothing to do; extend to some S,, € 7%, 11[S/,_;,T].

Otherwise, 7 > 3. List all subsets of i of size at least two as (P : k < k) in any
manner so long as the following is satisfied: For each k < k' < k, Py, 2 Py . Let
Xo denote max(S!, ;). Given k < k and Xy, let w), ;, be some splitting node in
T in 0<% with length above the lengths in X}. Extend all nodes in X}, leftmost in
T to length |w7AI x| + 1, and let Y} denote the level set of these extensions. Apply
Lemma 4.19 to extend the nodes in Y}, U {wfhkﬁl} to a level set Z, in T" such that
the following hold:

(1) The extension of w), ,” 1 is a coding node, label it wy, x;
(2) Enumerating Z;\{wn 1} as {z : i < i} so that for each z; D s;, then for each

i < 1, the immediate extension of z; in T is 1 if and only if i € P.
(3) The only possible set of new parallel 1’s in Z over S/,_; U X is {z; : i € Py }.

Ifk < k—1, let Xkt1 = Z and continue the procedure. Upon obtaining Z;,_,, apply
Lemma 4.19 to obtain an S,, € 7y, +1[S;,_1, T] such that max(S,) extends Z;_;.

n—1»
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To finish, let S = {J, ., Sn- Then S < T, S is incremental, and the sets of
parallel 1’s in S are strongly incrementally witnessed in 7. Let W = {wp 1 : n <
w, k < kp}, where k, is the number of subsets of S;, 1 of size at least two. O

8. Ramsey Theorem for Strict Similarity Types

The strongest Ramsey theorem proved so far is Theorem 6.3, a Milliken-style the-
orem for colorings of finite trees satisfying the Strict Parallel 1’s Criterion. In this
section, we obtain a general Ramsey theorem for all strictly similar copies (Defi-
nition 8.3) of any finite tree for which the maximal nodes are exactly the coding
nodes forming an antichain. This involves a new notion of envelope for strongly
diagonal subsets of strong coding trees, the main property being that any envelope
satisfies the Strict Parallel 1’s Criterion. Then applying Theorem 6.3, Lemma 7.5,
and envelopes, we obtain Theorem 8.9, the main Ramsey theorem for strong coding
trees in this paper.

Recall from Definition 4.8 that a strongly diagonal subset of 2<% is an antichain
Z such that its meet closure forms a transversal with the property that for any
splitting node s € Z”, all nodes in Z”" of length greater than |s|, except for those
nodes extending s, have passing number 0 at s. It is a byproduct of the definition
of strong coding trees that any subset of a strong coding tree forming an antichain
is in fact strongly diagonal. Henceforth, we shall use the term antichain of coding
nodes, or simply antichain, to refer to strongly diagonal sets of coding nodes in a
strong coding tree. If Z is an antichain, then by the tree induced by Z we mean the
set

{21|u|: 2 € Z and u € Z"}. (56)

We say that an antichain satisfies the Parallel 1’s Criterion (Strict Parallel 1’s
Criterion) if and only if the tree it induces satisfies the Parallel 1’s Criterion (Strict
Parallel 1’s Criterion).

Let Z be an antichain of coding nodes. Enumerate the nodes in Z in order of
increasing length as (z; : i < 4). For each | < |z;_,], let

IZ = {i <i:|z|>1and z(l) =1}, (57)
and define
Zin={z1(l+1):i€ IZZ}. (58)

Thus, Z; 1 is the collection of all z; [ (I + 1) which have passing number 1 at level [.
Given [ such that |Zl71| > 2, we say that the set of parallel 1’s at level [ is witnessed
by the coding node z; in Z if z;(|z;|) = 1 for each i € I7, and either |z;] < [ or
else both |z;| > [ and Z has no splitting nodes and no coding nodes of length in
(1, ]2;]]. A level I is the minimal level of a new set of parallel 1’s in Z if |I7] > 2
and whenever ' < [ and I/ C I7, then |I7| < |If|. It follows that if there are two
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or more members of Z extending some 0! 1, then [ is the minimal level of a new
set of parallel 1’s, namely of I7.

Definition 8.1. Given Z an antichain of coding nodes, if [ is the minimal level of
a new set of parallel 1’s in Z, the admissible interval for I, lZ is the interval [I,1*],
where [* > [ is maximal satisfying the following:

(1) Z” has no splitting node and no coding node of length in (I,1*).
(2) Each I’ € (I,1*] is not the minimal level of a new set of parallel 1’s in Z.

If [ is the minimal level of a new set of parallel 1’s in Z, we say that the set of
parallel 1’s indexed by I lZ is minimally witnessed in Z if, letting k < ¢ be minimal
such that |zx| > I, |zk| is in the admissible interval [I,1*] and z; witnesses the
parallel 1’s in I7; that is, {i < i : z;(J2x|) = 1} = I7. Note that 2, is in the interval
[1,1*] if and only if either |z| = [ or |z| = I*. Otherwise, we say that I7 is not
minimally witnessed in Z.

The following fact is immediate from the previous definition.

Fact 8.2. If all new sets of parallel 1’s are minimally witnessed in an antichain Z,
then the tree induced by Z satisfies the Strict Parallel 1’s Criterion.

Definition 8.3 (Strict Similarity Type). Given Z a finite antichain of coding
nodes in some strong coding tree T, list the minimal levels of new sets of parallel

s in Z which are not minimally witnessed in Z in increasing order as (I, : j < 7).

Z

Enumerate all nodes in Z" as (u?,

:m < m) in order of increasing length. Thus,
each uZ is either a splitting node in Z” or else a coding node z; for some i < i.

The sequence
({25 <) (IZ 25 <), (Juiml = m <)) (59)

is the strict similarity sequence of Z.
Let Y be another finite antichain in 7', and let

((j = J < k), (I, 2§ < k), (lup] = m < 7)) (60)

be its strict similarity sequence. We say that Y and Z have the same strict similarity
type or are strictly similar, written Y X Z_ if

(1) Y™ and Z" are strongly similar;

(2) j =k and m = 7,

(3) For each j < j, I}{j = Ilf; and

(4) The function ¢ : {p; : j < j}U{|ul| :m <m} — {l; : j < jIU{|[uZ]|: m < m},
z

u

defined by p(p;) = I; and p(uY,) = uZ, is an order preserving bijection between

these two linearly ordered sets of natural numbers.
Define
Sim$¥(Z)={Yy CcT:Y X Z}. (61)
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Note that for two antichains Y % Z, the map f : Y — Z by f(y;) = 2; for each
i < 7 induces a strong similarity map from Y onto Z” by defining Fyiny;) = ziNz;
for each pair 4,5 < 4. Then f(u)) = uZ for each m < 7. Further, by (3) and (4)
of Definition 8.3, this map preserves the order in which minimal sets of parallel
1’s appear, relative to all other minimal sets of parallel 1’s and the nodes in Y
and Z".

The definition of strictly similar in Definition 8.3 extends Definition 6.2 to fi-
nite sets which do not necessarily satisfy the Parallel 1’s Criterion. When Z is an
antichain such that its induced tree satisfies the Incremental Parallel 1’s Criterion,
then Definitions 6.2 and 8.3 coincide, and further, for such Z, these coincide with
the notion of strongly similar.

Fact 8.4. Let T be a strong coding tree, and A and B be subsets of T. Suppose A
satisfies the Incremental Parallel 1’s Criterion. Then B % A if and only if B X A.

The following notion of envelope is defined in terms of structure without re-
gard to an ambient strong coding tree. In any given strong coding tree 7', there
will certainly be finite subtrees of 7" which have no envelope in 7. This poses no
problem to our intended application, as by the work done in Sec. 7, inside a given
strong coding tree T, there will be an incremental strong coding tree S along with
a set of witnessing coding nodes W C T so that each finite antichain in S has
an envelope consisting of nodes from W. Thus, envelopes of antichains in S will
exist in 7.

Definition 8.5 (Envelopes). Let Z be a finite antichain of coding nodes and let
((lj : 5 < 3), (L, = 5 < 3),(um| : m < 1)) be the strict similarity sequence of Z.
A finite set E(Z) is an envelope of Z if E(Z) = Z U W is an antichain of coding
nodes, where W = {w; : j < j}, such that the following hold: For each j < 7,

(1)
(2) L, = Ly

(3) wj; has no parallel 1’s with any member of Z U (W\{w,}); and
(4)

I5_; < Jw}| <l and there is no member of (ZUW)" with length in ([w}|, |w;]).

The set W is called the set of witnessing coding nodes, since they minimally
witness all parallel 1’s in Z not minimally witnessed by any coding node in Z. The
next fact follows immediately from the definitions.

Fact 8.6. Let S be any strongly incremental strong coding tree and Z be any
antichain in S. Then any envelope E of Z satisfies the Incremental Parallel 1’s
Criterion, and hence also the Strict Parallel 1’s Criterion.

Lemma 8.7. Let Y and Z be strictly similar antichains. Then any envelope of Y
is strictly similar to any envelope of Z; in particular, any two envelopes of Y are
strictly similar.
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Proof. Let Y = {y; : i < i} and Z = {2; : i < i} be the enumerations of ¥ and Z,
respectively, in order of increasing length. Let

((pj =5 <)Ly, 25 < 3)s (fum| = m <)) (62)

and

(U7 <3), 72§ <)y (lum| = m < 1)) (63)

be their strict similarity sequences, respectively. Let E =Y UV and F = ZUW
be any envelopes of Y and Z, respectively. Enumerate the nodes in V and W in
order of i mcreasmg length as {vj j < j}and {wj:j < 7}, respectively. Note that
|E| = |F| =i+ -J, since exactly j many coding nodes are added to make envelopes of
Y and Z. Let k =i+, and let {eg : k < k} and {fi : k < k} be the enumerations
of E and F in order of increasing length, respectively. For each j < 7, let k; be the
index in k such that er, = v; and fr; = w;. For k < k, let E(k) denote the tree
induced by E restricted to those nodes of length less than or equal to |eg|; precisely,
E(k) ={ellt| : e,t € E" and [t| < min(|e], |ex|)}. Likewise for F.

If j =0,then E =Y and F = Z, so E ~ F follows from E ~ F. Suppose
now that j > 1. It must be the case that py > |uf |, since u} is the stem of the
tree induced by Y, and Y does not have any sets of parallel 1’s below its stem.
Likewise, lo > |uf|. Let mq be the least integer below 1 such that |u), | > po.
Then the admissible interval [po,p§] is contained in the interval (|um071|, luX. |),
and moreover,

[ty 1| < 05| < po < Jvol < 15, (64)

by the definition of envelope. Since Y X Z, it follows that the admissible interval
[lo, 1§] is contained in ([uZ, _,|,|uZ,|) and

|UTan)71| < |w(/J\| <lp < |U)0| < lg. (65)

Thus, E(ko — 1) is exactly the tree induced by Y restricted below [uZ, _;|, which
is strongly similar to the tree induced by Z restricted below |u?, this being
exactly F(ko — 1).

Now, suppose that j < j and E(k; — 1) & F(k; — 1). Let m; be the least
integer below m such that |u,¥1]| > p;. Then the only nodes in E” in the inter-
val (|um _al, |uX, ;1) are v} and v;. Likewise, the only nodes in F* in the interval
(|uZ, j71| [uZ, ;) are w} and w;. Extend the strong similarity map g : E(k; —1) —
F(kj — 1) to the map ¢g* : E(k;) — F(k;) as follows: Define ¢* = g on E(k; — 1),
g*(v}) = w}, and g*(vj) = (wy). If the sequence of 0’s of length |v;| is in FE, then
define g* of that node to be the sequence of 0’s of length |w;|. For each node s

mo— 1|

in E(k;) of length |v;| besides v; itself, s extends a unique maximal node s~ in
E(kj — 1); define g*(s) to be the unique node in F'(k;) of 1ength |w;| extending
g(s7). Note that each node t in E(k;) of length [v}[, besides v} itself, is equal to
s [ [v}| for some unique s as above; define g*(t) to be g*(s) [ |w}|. As the only new
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set of parallel 1’s in Y in this interval is IJY, which is equal to I JZ , and as
max(l;_y, [um, 1) < [0} < pj < vyl <15, (66)

and similarly for w;, and v;, w; witness the parallel 1’s indexed by IJY, I JZ , respec-
tively, it follows that g* is a strong similarity map from E(k;) to F(k;).

If j < j — 1, noting that the only nodes in the tree induced by E with length
in the interval (|v;],[vf,|) are in the tree induced by Y, and likewise, all nodes in
the tree induced by F' in the interval (|w;l,|wf,|) are in the tree induced by Z,
it follows that E(k;11 — 1) is strongly similar to F(k;j4+1 — 1). Then the induction
continues.

To finish, when j = j — 1, all nodes in the tree induced by F in the interval
(Jv;_1l,ly;_1]] are in fact nodes in Y”. Likewise, all nodes in the tree induced
by F'in the interval (Jw;_,|,[2;_,[] are in Z". Further, all sets of parallel 1’s in
E and F in these intervals are already witnessed at or below [v;_,| and |w;_,],
respectively. Thus, the strict similarity between Y and Z induces an extension of
the strong similarity between E(k; ;) and E(k;_;) to a strong similarity between
E™ and F”. O

Lemma 8.8. Let S be a strongly incremental strong coding tree, a subtree of T.
Let Z be a finite antichain of coding nodes in S, and let E be any envelope of Z in
T. Enumerate the nodes in Z and E in order of increasing length as (z; : i < Z> and
(e, - k < k), respectively. Then whenever F & E, the subset F [ Z == {fy, i < i}
of F is strictly similar to Z, where (fi : k < l~€> enumerates the nodes in F' in order
of increasing length and for each i < 1, k; is the index such that €k; = Zi-

Proof. Recall that ¥ X~ E implies F <~ E and that F and hence F satisfy the
Incremental Parallel 1’s Criterion, since E' is an envelope of a diagonal subset of an
incremental strong coding tree. Let ¢tz 7 : Z — F be the injective map defined via
1z, 7(2i) = fx,, for each i < i, and let F' | Z denote {fr, 11 < %}, the image of ¢z p.
Then F' | Z is a subset of F' which we claim is strictly similar to Z.

Since F' and E satisfy the Incremental Parallel 1’s Criterion, the strong similarity
map g : F — F satisfies that for each j < l;, the sets of new parallel 1’s at level of
the jth coding node are equal:

{k<k:er(lej)) =1} = {k <k glex)(lg(e;)]) = 1}
= {k<k: fi(lfj]) = 1}. (67)

Since ¢tz r is the restriction of g to Z, 1z r also takes each new set of parallel 1’s in
Z to the corresponding set of new parallel 1’s in F' [ Z, with the same set of indices.
Thus, vz r witnesses that F' [ Z is strictly similar to Z. O

Theorem 8.9 (Ramsey Theorem for Strict Similarity Types). Let Z be a
finite antichain of coding nodes in a strong coding tree T, and let h color of all
subsets of T which are strictly similar to Z into finitely many colors. Then there is
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an incremental strong coding tree S < T such that all subsets of S strictly similar
to Z have the same h color.

Proof. First, note that there is an envelope F of a copy of Z in T: By Lemma 7.5,
there is a strongly incremental strong coding tree U < T' and a set of coding nodes
V' C T such that each Y C U which is strictly similar to Z has an envelope in T
by adding nodes from V. Since U is strongly similar to T, there is subset Y of U
which is strictly similar to Z. Let E be any envelope of Y in T, using witnessing
coding nodes from V.

By Lemma 8.7, all envelopes of copies of Z are strictly similar. Define a coloring
h* on Sim37(E) as follows: For each F' € Sim7’ (E), define h*(F) = h(F' | Z), where
F'| Z is the subset of F' provided by Lemma 8.8. The set F'[ Z is strictly similar to
Z, so the coloring h* is well-defined. Since envelopes satisfy the Strict Parallel 1’s
Criterion, Theorem 6.3 yields a strong coding tree 7" < T such that Sim35(E) is
homogeneous for h*. Lemma 7.5 implies there is an incremental strong coding tree
S < T’ and a set of coding nodes W C T’ such that each Y C S which is strictly
similar to Z has an envelope F in T”. Thus, h(Y) = h*(F'). Therefore, h takes only
one color on the set of all Y C .S which are strictly similar to Z. O

Remark 8.10. If Z is not incremental, then S will have no strictly similar copies
of Z, since every antichain in S is strongly incremental. Thus, non-incremental
antichains will not contribute to the big Ramsey degrees.

Remark 8.11. The definition of envelope can be extended to handle any finite
subset of a strong coding tree, where maximal nodes can be any nodes in a strong
coding tree rather than just coding nodes. This is accomplished using the same
definition of strict similarity type, accounting for all minimal new sets of parallel 1’s,
and then letting envelopes consist of adding new coding nodes as before to witness
these sets of parallel 1’s in their admissible intervals. Then Theorem 8.9 extends to
a Ramsey theorem for strict similarity types of any finite subset of a strong coding
tree. However, as the main result of this paper only needs Theorem 8.9, in order to
avoid unnecessary length, we do not present the full generality here.

9. The Universal Homogeneous Triangle-Free Graph has Finite
Big Ramsey Degrees

The main theorem of this paper, Theorem 9.2, will now be proved: The universal
triangle-free homogeneous graph Hs has finite big Ramsey degrees. This result will
follow from Theorem 8.9, which is the Ramsey theorem for Strict Similarity Types,
along with Lemma 9.1, which shows that any strong coding tree contains an infinite
strongly diagonal set of coding nodes which code the universal triangle-free graph.

Recall from the discussion in the previous section that in a strong coding tree,
a set of coding nodes is strongly diagonal if and only if it is an antichain. Given an
antichain D of coding nodes from a strong coding tree, its meet closure, D has at
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most one node of any given length. Let Lp denote the set of all lengths of nodes
t € D such that t is not the splitting predecessor of any coding node in D. Define

D*=|J{tI1:te D"\Dandl€ Lp}. (68)

Then (D*,C) is a tree.

For a strong coding tree T, let (T,C) be the reduct of (T,w;C,<,¢). Then
(T, Q) is simply the tree structure of T, disregarding the difference between coding
nodes and non-coding nodes. We say that two trees (T, C) and (S, C) are strongly
similar trees if they satisfy [32, Definition 3.1]. This is the same as the modification
of Definition 4.9 leaving out (6) and changing (7) to apply to passing numbers of
all nodes in the trees. When we say that two finite trees are strongly similar trees,
we will be implying that when extending the two trees to include the immediate
extensions of their maximal nodes, the two extensions are still strongly similar.
Thus, strong similarity of finite trees implies passing numbers of their immediate
extensions are preserved.

Lemma 9.1. Let T < T be a strong coding tree. Then there is an infinite antichain
of coding nodes D C T which code Hs in exactly the same way that T does: c2 (IP) =
cE(ITY, for all i < n < w. Moreover, (D*,C) and (T, C) are strongly similar trees.

Proof. To simplify the indexing of the construction, we will construct a subtree
D C T such that D the set of coding nodes in D form an antichain satisfying the
lemma. Then, since 7' is strongly similar to T, letting ¢ : T — T be the strong
similarity map between T and 7', the image of ¢ on the coding nodes of D will yield
an antichain of coding nodes D C T satisfying the lemma.

We will construct I so that for each n, the node of length (2 + 1 which is going
to be extended to the next coding node 2 41 will split at a level lower than any of
the other nodes of length (2 41 split in D. Above that, the splitting will be regular
in the interval until the next coding node. Recall that for each ¢ < w, T has either a
coding node or a splitting node of length i. To avoid some superscripts, let I, = |cL|
and k,, = |c2|. Let j, be the index such that ¢ = c}‘n, so that k,, equals [, . The
set of nodes in D\{c2} of length k,, shall be indexed as {d; : t € T [1,,}.

Define d(y = () and let Levp(0) = {dy}. As the node () splits in T, so the node
dyy will split in D. Extend (1) to a splitting node in T and label this extension
vy- Let a(o) be the leftmost node in T of length |v(yy| + 1, let a(yy = v(1y70, and
ueyy = vy~ 1. Extend a(g) to the shortest splitting node containing it in T N 0<w;
label this dy. Let d(;y be the leftmost extension of a(y in T of length |d |, and
let u’<1> be the leftmost extension of uy in T of length |dy|. Apply Lemma 4.19
to extend d<0>/\0, d<0>/\1, d<1>,\0, and ’U,I<1>AO to nodes d<070>, d<0,1>, d<170>, and
C]IOD, respectively, so that the tree induced by these nodes satisfy the Parallel 1’s
Criterion, c§ is a coding node, and the immediate extension of di,iy in T is 41, for
all (ig,41) in Levy(2). Let ko = |c5], and notice that we have constructed D [ (< ko)
satisfying the lemma.
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For the induction step, suppose n > 1 and we have constructed D | (< kp—1)
satisfying the lemma. Then by the induction hypothesis, there is a strong similarity
map of the trees ¢ : T[(< l,—1) = D* [ (< kp—1), where for each ¢t € T [l,_1,
d; = ¢(t). Let s denote the node in T [l,_; which extends to the coding node cL.
Let v, be a splitting node in T extending ds. Let us = v 1 and extend all nodes d;,
t € (T 11l,—1)\{s}, leftmost to length |us| and label these d. Extend vs ™0 leftmost
to length |us| and label it d). Let X = {d} : t € T [l,—1} U {us} and let Spl(us)
be the set of all nodes in X which have no parallel 1’s with us. Apply Lemma 4.19
to obtain a coding node c2 extending us and nodes d,, w € T |1, so that, letting
kn = |c2| and

Dk, ={dn:meTll,}u{Pl}, (69)

the following hold. D | (< k,,) satisfies the Parallel 1’s Criterion, and D* [ (< ky,) is
strongly similar as a tree to T | (< [,,). Thus, the coding nodes in D [ (< k) code
exactly the same graph as the coding nodes in T [ (< [,,).

Let D =, ., D[ (< ky). Then the set of coding nodes in D forms an antichain
of maximal nodes in D. Further, the tree generated by the meet closure of the set
{cP . n < w} is exactly D, and D* and T are strongly similar as trees. By the

n
construction, for each pair i < n < w, 2(k;) = X (1;); hence they code Hs in the
same order.
To finish, let ¥ be the strong similarity map from T to S. Letting D be the
y-image of {c2 : n < w}, we obtain an antichain of coding nodes in S such that D*
and D* are strongly similar trees, and hence D* is strongly similar as a tree to T.

Thus, the antichain of coding nodes D codes H3 and satisfies the lemma. O

The filled-in nodes in the graphic form the tree D*. The coding nodes are exactly
the maximal nodes of I and form an antichain. Notice that the collection of nodes
{d¢ : t € T| (< 2)}, which are exactly the filled-in nodes in the figure, forms a tree
strongly similar to T [ 2. The bent lines indicate that the next node was chosen
either to be least such that it was a critical node or according to Lemma 4.19.

Main Theorem 9.2. The universal homogeneous triangle-free graph has finite big
Ramsey degrees.

Proof. Let G be a finite triangle-free graph, and let f be a coloring of all the copies
of G in H3 into finitely many colors. By Theorem 4.6, there is a strong coding tree T
in which the coding nodes code #3. Let A denote the set of all antichains of coding
nodes of T which code a copy of G. For each Y € A, let h(Y) = f(G’), where G’ is
the copy of G coded by the coding nodes in Y. Then h is a finite coloring on A.
Let n(G) be the number of different strict similarity types of incremental
strongly diagonal subsets of T coding G, and let {Z; : i < n(G)} be a set of one
representative from each of these different strict similarity types. Successively apply
Theorem 8.9 to obtain incremental strong coding trees T > Ty > -+ > T;,(gy—1 SO
that for each i < n(G), h is takes only one color on Sim7, (Z;). Let S = Ty (qy—1-
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Fig. 5. The construction of D.

By Lemma 9.1 there is a strongly diagonal subtree D C S which also codes Hs.
Then every set of coding nodes in D coding G is automatically strongly diagonal
and incremental. Therefore, every copy of G in the copy of Hs coded by the coding
nodes in D is coded by an incremental strongly diagonal set. Thus, the number
of strict similarity types of incremental strongly diagonal subsets of T coding G
provides an upper bound for the big Ramsey degree of G in Hs. O

10. Concluding Remarks

The number of strict similarity types of antichains of coding nodes in a strong coding
tree which code a given finite graph G is bounded by the number of subtrees of the
binary tree of height 2(|G| + 1), times the number of ways to choose incremental
sets of new parallel 1’s between any successive levels of the tree. We leave it as an
open problem to determine this recursive function precisely.

Although we have not yet proved the lower bounds to obtain the precise big
Ramsey degrees T'(G, K3) for finite triangle-free graphs inside the universal triangle-
free graph, we conjecture that they will be equal to the number of strict similarity
types of strongly incremental antichains coding G. We further conjecture that once
found, the lower bounds will satisfy the conditions needed for Zucker’s work in [38]
to apply. If so, then H3 would admit a big Ramsey structure and any big Ramsey
flow will be a universal completion flow, and any two universal completion flows will
be universal. We refer the interested reader to [38, Theorem 1.6] and surrounding
comments.

The author is currently working to extend the techniques developed here to
prove that for each k > 3, the universal k-clique-free homogeneous graph Hj has
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finite big Ramsey degrees. Preliminary analyses indicate that the methodology cre-
ated in this paper is robust enough to apply, with modifications, to a large class
of Fraissé limits of Fraissé classes of relational structures omitting some irreducible
substructure.
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