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The universal homogeneous triangle-free graph, constructed by Henson [A family of
countable homogeneous graphs, Pacific J. Math. 38(1) (1971) 69–83] and denoted H3,
is the triangle-free analogue of the Rado graph. While the Ramsey theory of the Rado
graph has been completely established, beginning with Erdős–Hajnal–Posá [Strong em-
beddings of graphs into coloured graphs, in Infinite and Finite Sets. Vol. I, eds. A.
Hajnal, R. Rado and V. Sós, Colloquia Mathematica Societatis János Bolyai, Vol. 10
(North-Holland, 1973), pp. 585–595] and culminating in work of Sauer [Coloring sub-
graphs of the Rado graph, Combinatorica 26(2) (2006) 231–253] and Laflamme–Sauer–
Vuksanovic [Canonical partitions of universal structures, Combinatorica 26(2) (2006)
183–205], the Ramsey theory of H3 had only progressed to bounds for vertex colorings
[P. Komjáth and V. Rödl, Coloring of universal graphs, Graphs Combin. 2(1) (1986)
55–60] and edge colorings [N. Sauer, Edge partitions of the countable triangle free ho-
mogenous graph, Discrete Math. 185(1–3) (1998) 137–181]. This was due to a lack of
broadscale techniques. We solve this problem in general: For each finite triangle-free
graph G, there is a finite number T (G) such that for any coloring of all copies of G
in H3 into finitely many colors, there is a subgraph of H3 which is again universal
homogeneous triangle-free in which the coloring takes no more than T (G) colors. This
is the first such result for a homogeneous structure omitting copies of some nontrivial
finite structure. The proof entails developments of new broadscale techniques, including
a flexible method for constructing trees which code H3 and the development of their
Ramsey theory.

Keywords: Ramsey theory; universal homogenous triangle-free graph; trees.
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0. Overview

Ramsey theory of finite structures is a well-established field with robust current

activity. Seminal examples include the classes of finite linear orders [30], finite

Boolean algebras [12], finite vector spaces over a finite field [10], finite ordered
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N. Dobrinen

graphs [1, 24, 25], finite ordered k-clique-free graphs [24, 25], as well as many

more recent advances. Homogeneous structures are infinite structures in which any

isomorphism between two finitely generated substructures can be extended to an

automorphism of the whole structure. A class of finite structures may have the

Ramsey property, while the homogeneous structure obtained by taking its limit

may not. The most basic example of this is linear orders. The rational numbers are

the Fräıssé limit of the class of all finite linear orders. The latter has the Ramsey

property, while the rationals do not: There is a coloring of pairs of rational numbers

into two colors such that every subset of the rationals forming another dense linear

order without endpoints has pairs taking each of the colors [2].

A central question in the theory of homogeneous relational structures asks the

following: Given a homogeneous structure S and a finite substructure A, is there a

number bound T (A) such that for any coloring of all copies of A in S into finitely

many colors, there is a substructure S′ of S, isomorphic to S, in which all copies of A

take no more than T (A) colors? This question, of interest for several decades since

Laver’s and Devlin’s work on the rational numbers, has gained recent momentum

as it was brought into focus by Kechris et al. in [16]. This is interesting not only as

a Ramsey-type property for infinite structures, but also because of its implications

for topological dynamics, as shown in [38].

Prior to work in this paper, this problem had been solved for only a few types

of homogeneous structures: the rationals [2], the Rado graph and similar binary re-

lational simple structures such as the random tournament [32], ultrametric spaces

[26], and enriched versions of the rationals and related circular directed graphs [18].

According to [28], “so far, the lack of tools to represent ultrahomogeneous structures

is the major obstacle towards a better understanding of their infinite partition prop-

erties.” This paper addresses this obstacle by providing new tools to represent the

universal homogeneous triangle-free graph and developing the necessary Ramsey

theory to prove upper bounds for the Ramsey degrees T (A) for colorings of copies

of a given finite triangle-free graph A within H3. The methods developed are ro-

bust enough that modifications should likely apply to a large class of homogeneous

structures omitting some finite substructure; particularly, in a forthcoming paper,

the author is extending these methods to all k-clique free universal homogeneous

graphs.

1. Introduction

The premise of Ramsey theory is that complete disorder is nearly impossible. By

beginning with a large enough structure, it is often possible to find substructures in

which order emerges and persists among all smaller structures within it. Although

Ramsey-theoretic statements are often simple, they can be powerful tools: in recent

decades, the heart of many problems in mathematics have turned out to have at

their core some Ramsey-theoretic content. This has been seen clearly in Banach

spaces and topological dynamics.

2050012-2

J.
 M

at
h
. 
L

o
g
. 
2
0
2
0
.2

0
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 U

N
IV

E
R

S
IT

Y
 O

F
 D

E
N

V
E

R
 o

n
 0

7
/1

5
/2

1
. 
R

e-
u
se

 a
n
d
 d

is
tr

ib
u
ti

o
n
 i

s 
st

ri
ct

ly
 n

o
t 

p
er

m
it

te
d
, 
ex

ce
p
t 

fo
r 

O
p
en

 A
cc

es
s 

ar
ti

cl
es

.



The Ramsey theory of the universal homogeneous triangle-free graph

The field of Ramsey theory opened with the following celebrated result.

Theorem 1.1 ([30]). Let k and r be positive integers, and suppose Pi, i < r, is a

partition of all k-element subsets of N. Then there is an infinite subset M of natural

numbers and some i < r such that all k-element subsets of M lie in Pi.

The finite version of Ramsey’s theorem states that given positive integers k,m, r,

there is a number n large enough so that given any partition of the k-element subsets

of {0, . . . , n− 1} into r pieces, there is a subset X of {0, . . . , n− 1} of size m such

that all k-element subsets of X lie in one piece of the partition. This follows from

the infinite version using a compactness argument. The set X is called homogeneous

for the given partition.

The idea of partitioning certain subsets of a given finite set and looking for a

large homogeneous subset has been extended to structures. A Fräıssé class K of

finite structures is said to have the Ramsey property if for any A,B ∈ K with A

embedding into B, (written A ≤ B), and for any finite number k, there is a finite

ordered graph C such that for any coloring of the copies of A in C into k colors,

there is a copy B′ ≤ C of B such that all copies of A in B′ have the same color.

We use the standard notation

C → (B)Ak (1)

to denote that for any coloring of the copies of A in C, there is a copy B′ of B

inside C such that all copies of A in C have the same color. Examples of Fräıssé

classes of finite structures with the Ramsey property, having no extra relations,

include finite Boolean algebras (Graham and Rothschild, [12]) and finite vector

spaces over a finite field (Graham et al. [10, 11]). Examples of Fräıssé classes with

extra structure satisfying the Ramsey property include finite ordered relational

structures (independently, Abramson and Harrington, [1] and Nešetřil and Rödl,

[24, 25]). In particular, this includes the class of finite ordered graphs, denoted G<.

The papers [24, 25] further proved the quite general result that all set-systems of

finite ordered relational structures omitting some irreducible substructure have the

Ramsey property. This includes the Fräıssé class of finite ordered graphs omitting

n-cliques, denoted K<
n .

In contrast, the Fräıssé class of unordered finite graphs does not have the Ramsey

property. However, it does possess a nontrivial remnant of the Ramsey property,

called finite Ramsey degrees. Given any Fräıssé class K of finite structures, for each

A ∈ K, let t(A,K) be the smallest number t, if it exists, such that for each B ∈ K

with A ≤ B and for each k ≥ 2, there is some C ∈ K, into which B embeds, such

that

C → (B)Ak,t, (2)

where this means that for each coloring of the copies of A in C into k colors, there is

a copy B′ of B in C such that all copies of A in B′ take no more than t colors. Then

K has finite (small) Ramsey degrees if for each A ∈ K the number t(A,K) exists.
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The number t(A,K) is called the Ramsey degree of A in K [9]. Note that K has the

Ramsey property if and only if t(A,K) = 1 for each A ∈ K. A strong connection

between Fräıssé classes with finite Ramsey degrees and ordered expansions is made

explicit in [16, Sec. 10], where it is shown that if an ordered expansion K< of a

Fräıssé class K has the Ramsey property, then K has finite small Ramsey degrees,

and the degree of A ∈ K can be computed from the number of non-isomorphic

order expansions it has in K<. A similar result holds for pre-compact expansions

(see [28]). It follows from the results stated above that the classes of finite graphs

and finite graphs omitting n-cliques have finite small Ramsey degrees.

At this point, it is pertinent to mention recent advances connecting Ramsey

theory with topological dynamics. A new connection was established in [16], which

accounts for previously known phenomena regarding universal minimal flows. In

that paper, Kechris et al. proved several strong correspondences between Ramsey

theory and topological dynamics. A Fräıssé order class is a Fräıssé class which has

at least one relation which is a linear order. One of their main theorems (Theo-

rem 4.7) shows that the extremely amenable (fixed point property on compacta)

closed subgroups of the infinite symmetric group S∞ are exactly those of the form

Aut(F∗), where F∗ is the Fräıssé limit of some Fräıssé order class satisfying the

Ramsey property. Another main theorem (Theorem 10.8) provides a way to com-

pute the universal minimal flow of topological groups which arise as the automor-

phism groups of Fräıssé limits of Fräıssé classes with the Ramsey property and

the ordering property. That the ordering property can be relaxed to the expansion

property was proved by Nguyen Van Thé in [27].

We now turn to Ramsey theory on infinite structures. One may ask whether

analogues of Theorem 1.1 can hold on more complex infinite relational structures,

in particular, for Fräıssé limits of Fräıssé classes. The Fräıssé limit F of a Fräıssé

class K of finite relational structures is said to have finite big Ramsey degrees if for

each member A in K, there is a finite number T (A,K) such that for any coloring c

of all the substructures of F which are isomorphic to A into finitely many colors,

there is a substructure F′ of F which is isomorphic to F and in which c takes no

more than T (A,K) colors. When this is the case, we write

F → (F)Ak,T (A,K). (3)

This notion has been around for several decades, but the terminology was initiated

in [16].

The first homogeneous structure shown to have finite big Ramsey degrees is

the rationals, which are the Fräıssé limit of the class of finite linear orders LO.

That the upper bounds exist was known by Laver, following from applications of

Milliken’s theorem (see Theorem 2.5). The lower bounds were proved by Devlin

in 1979 in his thesis [2], where he showed that the numbers T (k,LO) are actually

tangent numbers, coefficients of the Talyor series expansion of the tangent function.

In particular, T (1,Q) = 1, as any coloring of the rationals into finitely many colors

contains a copy of the rationals in one color; thus, the rationals are indivisible.
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The Ramsey theory of the universal homogeneous triangle-free graph

On the other hand, T (2,Q) = 2, so immediately for colorings of pairsets of rationals,

one sees that there is no Ramsey property for the rationals when one requires that

the substructure Q′ of Q be “big”, meaning isomorphic to the original infinite one.

The next homogeneous structure for which big Ramsey degrees have been proved

is the Rado graph, denoted R. Also known as the random graph, R is the countable

graph which is universal for all countable graphs, meaning each countable graph

embeds into R as an induced substructure. Equivalently, the Rado graph is the

Fräıssé limit of the class of finite graphs, denoted G. It is an easy exercise from the

defining property of the Rado graph to show that the Rado graph is indivisible,

meaning that the big Ramsey degree for vertices in the Rado graph is 1. The first

nontrivial lower bound result for big Ramsey degrees was proved by Erdős et al. in

[6] in 1975, where they showed there is a coloring of the edges in R into two colors

such that for any subgraph R′ of the Rado graph such that R′ is also universal

for countable graphs, the edges in R′ take on both colors. That this upper bound

is sharp was proved over two decades later in 1996 by Pouzet and Sauer in [29],

and thus, the big Ramsey degree for edges in the Rado graph is 2. The problem of

whether every finite graph has a finite big Ramsey degree in the Rado graph took

another decade to solve. In [32], Sauer proved that the Rado graph, and in fact

any simple binary relational homogeneous structure, has finite big Ramsey degrees.

As in Laver’s result, Milliken’s theorem plays a central role in obtaining the upper

bounds. The sharp lower bounds were proved the same year by Laflamme et al.

in [19].

Sauer’s result on the Rado graph in conjunction with the attention called to

big Ramsey degrees in [16] sparked new interest in the field. In 2008, Nguyen Van

Thé investigated big Ramsey degrees for homogeneous ultrametric spaces. Given

S a set of positive real numbers, US denotes the class of all finite ultrametric

spaces with strictly positive distances in S. Its Fräıssé limit, denoted QS , is called

the Urysohn space associated with US and is a homogeneous ultrametric space. In

[26], Nguyen Van Thé proved that QS has finite big Ramsey degrees whenever S

is finite. Moreover, if S is infinite, then any member of US of size greater than

or equal to 2 does not have a big Ramsey degree. Soon after, Laflamme et al.

proved in [18] that enriched structures of the rationals, and two related directed

graphs, have finite big Ramsey degrees. For each n ≥ 1, Qn denotes the structure

(Q, Q1, . . . , Qn, <), where Q1, . . . , Qn are disjoint dense subsets of Q whose union

is Q. This is the Fräıssé limit of the class Pn of all finite linear orders equipped with

an equivalence relation with n many equivalence classes. Laflamme et al. proved

that each member of Pn has a finite big Ramsey degree in Qn. Further, using the

bi-definability between Qn and the circular directed graphs S(n), for n = 2, 3, they

proved that S(2) and S(3) have finite big Ramsey degrees. Central to these results

is a colored version of Milliken’s theorem which they proved in order to deduce the

big Ramsey degrees. For a more detailed overview of these results, the reader is

referred to [28].
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A common theme emerges when one looks at the proofs in [2, 18, 32]. The first

two rely in an essential way on Milliken’s theorem, Theorem 2.5 in Sec. 2. The third

proves a new colored version of Milliken’s theorem and uses it to deduce the results.

The results in [26] use Ramsey’s theorem. This would lead one to conclude or at least

conjecture that, aside from Ramsey’s theorem itself, Milliken’s theorem contains the

core combinatorial content of big Ramsey degree results. The lack of such a result

applicable to homogeneous structures omitting nontrivial substructures posed the

main obstacle to the investigation of their big Ramsey degrees. This is addressed

in this paper.

This paper is concerned with the question of big Ramsey degrees for the ho-

mogeneous countable triangle-free graph, denoted H3. A graph G is triangle-free if

for any three vertices in G, there is at least one pair with no edge between them;

in other words, no triangle embeds into G as an induced subgraph. A triangle-free

graph H on countably many vertices is a homogeneous if each isomorphism between

two finite (triangle-free) subgraphs can be extended to an automorphism of H. It

is universal if every triangle-free graph on countably many vertices embeds into

it. Universal homogeneous triangle-free graphs were first constructed by Henson

in [15]. Such graphs are also seen to be the Fräıssé limit of K3, the Fräıssé class of

all countable triangle-free graphs, and any two universal homogeneous triangle-free

graphs are isomorphic.

As mentioned above, Nešetřil and Rödl proved that the Fräıssé class of finite

ordered triangle-free graphs, denoted K<
3 , has the Ramsey property. It follows that

the Fräıssé class of unordered finite triangle-free graphs, denoted K3, has finite

small Ramsey degrees. In contrast, whether or not every finite triangle-free graph

has a finite big Ramsey degree in H3 had been open until now. The first result on

colorings of vertices of H3 was obtained by Henson in [15] in 1971. In that paper,

he proved that H3 is weakly indivisible: Given any coloring of the vertices of H3

into two colors, either there is a copy of H3 in which all vertices have the first

color, or else a copy of each member of K3 can be found with all vertices having

the second color. From this follows a prior result of Folkman in [8], that for any

finite triangle-free graph G and any number k ≥ 2, there is a finite triangle-free

graph H such that for any partition of the vertices of H into k pieces, there is a

copy of G in having all its vertices in one of the pieces of the partition. In 1986,

Komjáth and Rödl proved that H3 is indivisible; thus, the big Ramsey degree for

vertex colorings is 1. It then became of interest whether this result would extend

to colorings of copies of a fixed finite triangle-free graph, rather than just colorings

of vertices.

In 1998, Sauer proved in [31] that edges have finite big Ramsey degree of 2 in

H3, leaving open the general question:

Question 1.2. Does every finite triangle-free graph have finite big Ramsey degree

in H3?

This paper answers this question in the affirmative.
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The Ramsey theory of the universal homogeneous triangle-free graph

Ideas from Sauer’s proof in [32] that the Rado graph has finite big Ramsey

degrees provided a strategy for our proof in this paper. A rough outline of Sauer’s

proof is as follows: Graphs can be coded by nodes on trees. Given such codings,

the graph coded by the nodes in the tree consisting of all finite length sequences of

0’s and 1’s, denoted as 2<ω, is bi-embeddable with the Rado graph. Only certain

subsets, called strongly diagonal, need to be considered when handling tree codings

of a given finite graph G. Any finite strongly diagonal set can be enveloped into

a strong tree, which is a tree isomorphic to 2≤k for some k. The coloring on the

copies of G can be extended to color the strong tree envelopes. Applying Milliken’s

theorem for strong trees finitely many times, one obtains an infinite strong subtree

S of 2<ω in which for all diagonal sets coding G with the same strong similarity

type have the same color. To finish, take a strongly diagonal D subset of S which

codes the Rado graph, so that all codings of G inD must be strongly diagonal. Since

there are only finitely many similarity types of strongly diagonal sets coding G, this

yields the finite big Ramsey degrees for the Rado graph. See Sec. 2 for more details.

This outline seemed to the author the most likely to succeed if indeed the

universal triangle-free graph were to have finite big Ramsey degrees. However, there

were difficulties involved in each step of trying to adapt Sauer’s proof to the setting

of H3, largely because H3 omits a substructure, namely triangles. First, unlike the

bi-embeddability between the Rado graph and the graph coded by the nodes in

2<ω, there is no bi-embeddability relationship between H3 and some triangle-free

graph coded by some tree with a very regular structure. To handle this, rather

than letting certain nodes in a tree code vertices at the very end of the whole proof

scheme as Sauer does in [32], we introduce a new notion of strong triangle-free tree

in which we distinguish certain nodes in the tree (called coding nodes) to code the

vertices of a given graph, and in which the branching is maximal subject to the

constraint of these distinguished nodes not coding any triangles. We further develop

a flexible construction method for creating strong triangle-free trees in which the

distinguished nodes code H3. These are found in Sec. 3.

Next, we wanted an analogue of Milliken’s theorem for strong triangle-free trees.

While we were able to prove such a theorem for any configuration extending some

fixed stem, the result simply does not hold for colorings of stems, as can be seen

by an example of a bad coloring defined using interference between splitting nodes

and coding nodes on the same level (Example 3.18). The means around this was to

introduce the new notion of strong coding tree, which is a skew tree that stretches a

strong triangle-free tree while preserving all important aspects of its coding struc-

ture. Strong coding trees are defined and constructed in Sec. 4. There, the fun-

damentals of the collection of strong coding trees are charted, including sufficient

conditions guaranteeing when a finite subtree A of a strong coding tree T may be

end-extended into T to form another strong coding tree.

Having formulated the correct kind of trees to code H3, the next task is to

prove an analogue of Milliken’s theorem for strong coding trees. This is accom-

plished in Secs. 5 and 6. First, we prove analogues of the Halpern–Läuchli theorem
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(Theorem 2.2) for strong coding trees. There are two cases, depending on whether

the level sets being colored contain a splitting node or a coding node. In Case (a) of

Theorem 5.2, we obtain the direct analogue of the Halpern–Läuchli theorem when

the level set being colored has a splitting node. A similar result is proved in Case (b)

of Theorem 5.2 for level sets containing a coding node, but some restrictions ap-

ply, and these are taken care of in Sec. 6. The proof of Theorem 5.2 Sec. 5 uses

the set-theoretic method of forcing, using some forcing posets created specifically

for strong coding trees. However, one never moves into a generic extension; rather

the forcing mechanism is used to do an unbounded search for a finite object. Once

found, it is used to build the next finite level of the tree homogeneous for a given

coloring. Thus, the result is a ZFC proof. This builds on ideas from Harrington’s

forcing proof of the Halpern–Läuchli theorem.

In Sec. 6, after an initial lemma obtaining end-homogeneity, we achieve the

analogue of the Halpern–Läuchli theorem for Case (b) in Lemma 6.8. The proof

introduces a third forcing which homogenizes over the possibly different end-

homogeneous colorings, but again achieves a ZFC result. Then, using much in-

duction and fusion, we obtain the first of our two Milliken-style theorems.

Theorem 6.3. Let T be a strong coding tree and let A be a finite subtree of T

satisfying the Strong Parallel 1’s Criterion. Then for any coloring of all strictly

similar copies of A in T into finitely many colors, there is a strong coding tree

S ≤ T such that all strictly similar copies of A in S have the same color.

The Strong Parallel 1’s Criterion is made clear in Definition 6.1. Initial seg-

ments of strong coding trees automatically satisfy the Strong Parallel 1’s Criterion.

Essentially, it is a strong condition which guarantees that the finite subtree can be

extended to a tree coding H3.

Developing the correct notion of strong subtree envelope for the setting of

triangle-free graphs presented a further obstacle. The idea of extending a subset

X of a strong coding tree T to an envelope which is a finite strong triangle-free tree

and applying Theorem 6.3 (which would be the direct analogue of Sauer’s method)

simply does not work, as it can lead to an infinite regression of adding coding nodes

in order to make an envelope of that form. That is, there is no upper bound on

the number of similarity types of finite strong triangle-free subtrees of T which are

minimal containing copies of X in T . To overcome this, in Secs. 7 and 8, we de-

velop the notions of incremental new parallel 1’s and strict similarity type for finite

diagonal sets of coding nodes as well as a new notion of envelope. Given any finite

triangle-free graph G, there are only finitely many strict similarity types of diagonal

trees coding G. Letting c be any coloring of all copies of G in H3 into finitely many

colors, we transfer the coloring to the envelopes and apply the results in previous

sections to obtain a strong coding tree T ′ ≤ T in which all envelopes encompassing

the same strict similarity type have the same color. The next new idea is to thin

T ′ to an incremental strong subtree S ≤ T ′ while simultaneously choosing a set

W ⊆ T ′ of witnessing coding nodes. These have the property that each finite subset
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The Ramsey theory of the universal homogeneous triangle-free graph

X of S is incremental, and furthermore, one can add to X coding nodes from W

to form an envelope satisfying the Strong Parallel 1’s Criterion. Then, we arrive at

our second Milliken-style theorem for strong coding trees, extending the first one.

Theorem 8.9 (Ramsey Theorem for Strict Similarity Types). Let Z be a

finite antichain of coding nodes in a strong coding tree T, and let h be a coloring

of all subsets of T which are strictly similar to Z into finitely many colors. Then

there is an incremental strong coding tree S ≤ T such that all subsets of S strictly

similar to Z have the same h color.

After thinning to a strongly diagonal subset D ⊆ S still coding H3, the only sets

of coding nodes in D coding a given finite triangle-free graph G are automatically

antichains which are incremental and strongly diagonal. Applying Theorem 8.9

to the finitely many strict similarity types of incremental strongly diagonal sets

coding G, we arrive at the main theorem.

Theorem 9.2. The universal triangle-free homogeneous graph has finite big Ram-

sey degrees.

For each G ∈ K3, the number T (G,K3) is bounded by the number of strict

similarity types of diagonal sets of coding nodes coding G, which we denote as

StrSim(G,T), T referring to any strong coding tree (see Sec. 4). It is presently open

to see if StrSim(G,T) is in fact the lower bound. If it is, then recent work of Zucker

would provide an interesting connection with topological dynamics. In [38], Zucker

proved that if a Fräıssé structure F has finite big Ramsey degrees and moreover, F

admits a big Ramsey structure, then any big Ramsey flow of Aut(F) is a universal

completion flow, and further, any two universal completion flows are isomorphic.

His proof of existence of a big Ramsey structure a Fräıssé structure presently relies

on the existence of colorings for an increasing sequence of finite objects whose

union is F exhibiting all color classes which cannot be removed and which cohere

in a natural way. In particular, the lower bounds for the big Ramsey numbers are

necessary to Zucker’s analysis. His work already applies to the rationals, the Rado

graph, lower bounds being obtained by Laflamme et al. in [19] and calculated for

each class of graphs of fixed finite size by Larson in [20], finite ultrametric spaces

with distances from a fixed finite set, Qn for each n ≥ 2, S(2), and S(3). As the

strict similarity types found in this paper satisfy Zucker’s coherence condition, the

precise lower bounds for the big Ramsey degrees of H3 would provide another such

example of a universal completion flow.

2. Background: Trees Coding Graphs and the Halpern–Läuchli

and Milliken Theorems

This section provides background and context for the developments in this paper. It

contains the method of using trees to code graphs, the Halpern–Läuchli and Milliken

theorems, and a discussion of their applications to previously known results on big

Ramsey degrees for homogeneous structures.
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N. Dobrinen

2.1. Trees coding graphs

In [6], Erdős et al. gave the vertices in a graph a natural lexicographic order and

used it to solve problems regarding strong embeddings of graphs. The set of vertices

of a graph ordered by this lexicographic order can be viewed as nodes in the binary

tree of finite sequences of 0’s and 1’s with the usual tree ordering. This was made

explicit in [31] and is described below.

The following notation is standard in mathematical logic and shall be used

throughout. The set of all natural numbers {0, 1, 2, . . .} is denoted by ω. Each nat-

ural number k ∈ ω is equated with the set of all natural numbers strictly less

than k. Thus, 0 denotes the emptyset, 1 = {0}, 2 = {0, 1}, etc. For each natu-

ral number k, 2k denotes the set of all functions from {0, . . . , k − 1} into {0, 1}.

A finite binary sequence is a function s : k → 2 for some k ∈ ω. We may write s

as 〈s(0), . . . , s(k − 1)〉; for each i < k, s(i) denotes the ith value or entry of the

sequence s. We shall use 2<ω to denote the collection
⋃

k∈ω 2k of all finite binary

sequences. For s ∈ 2<ω, we let |s| denote the length of s; this is exactly the domain

of s. For nodes s, t ∈ 2<ω, we write s ⊆ t if and only if |s| ≤ |t| and for each

i < |s|, s(i) = t(i). In this case, we say that s is an initial segment of t, or that t

extends s. If t extends s and |t| > |s|, then we write s ⊂ t, and we say that s is a

proper initial segment of t. For i < ω, we let s � i denote the function s restricted

to domain i. Thus, if i < |s|, then s � i is the proper initial segment of s of length

i, s � i = 〈s(0), . . . , s(i− 1)〉; if i ≥ |s|, then s � i equals s. The set 2<ω forms a tree

when partially ordered by inclusion.

Let v, w be vertices in some graph. Two nodes s, t ∈ 2<ω are said to represent v

and w, respectively, if and only if, without loss of generality, assuming that |s| < |t|,

then v and w have an edge between them if and only if t(|s|) = 1. The number

t(|s|) is called the passing number of t at s. Thus, if t has passing number 1 at s,

then s and t code an edge between v and w; and if t has passing number 0 at s,

then s and t code a non-edge between v and w.

Using this idea, any graph can be coded by nodes in a binary tree as follows.

Let G be a graph with N vertices, where N ≤ ω, and let 〈vn : n < N〉 be any

enumeration of the vertices of G. Choose any node t0 ∈ 2<ω to represent the vertex

v0. For n > 0, given nodes t0, . . . , tn−1 in 2<ω coding the vertices v0, . . . , vn−1, take

tn to be any node in 2<ω such that |tn| > |tn−1| and for all i < n, vn and vi have an

edge between them if and only if tn(|ti|) = 1. Then the set of nodes {tn : n < N}

codes the graph G. Note that any finite graph of size k can be coded by a collection

of nodes in
⋃

i<k
i2. Throughout this paper, we shall hold to the convention that

the nodes in a tree used to code a graph will have different lengths. Figure 1 shows

a set of nodes {t0, t1, t2, t3} from 2<ω coding the four-cycle {v0, v1, v2, v3}.

2.2. The Halpern–Läuchli and Milliken theorems

The theorem of Halpern and Läuchli below was established as a technical lemma

containing core combinatorial content of the proof that the Boolean Prime Ideal
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The Ramsey theory of the universal homogeneous triangle-free graph

〈 〉

t0

t1

t2

t3

•

•

•

•

v1

v2

v3

v0

Fig. 1. A tree with nodes {t0, t1, t2, t3} coding the 4-cycle {v0, v1, v2, v3}.

theorem, the statement that any filter can be extended to an ultrafilter, is strictly

weaker than the Axiom of Choice, assuming the Zermelo–Fraenkel axioms of set

theory. (See [14].) The Halpern–Läuchli theorem forms the basis for a Ramsey

theorem on strong trees due to Milliken, which in turn forms the backbone of all

previously found finite big Ramsey degrees, except where Ramsey’s theorem itself

suffices. An in-depth presentation of the various versions of the Halpern–Läuchli

theorem as well as Milliken’s theorem can be found in [34]. An account focused

solely on the aspects relevant to this work can be found in [3]. Here, we merely give

an overview sufficient for this paper, and shall restrict to subtrees of 2<ω, though

the results hold more generally for finitely branching trees.

In this paper, we use the definition of tree which is standard for Ramsey theory

on trees. The meet of two nodes s and t in 2<ω, denoted s∧t, is the longest member

u ∈ 2<ω which is an initial segment of both s and t. Thus, u = s ∧ t if and only

if u = s � |u| = t � |u| and s � (|u| + 1) �= t � (|u| + 1). In particular, if s ⊆ t then

s∧ t = s. A set of nodes A ⊆ 2<ω is closed under meets if s∧ t is in A, for each pair

s, t ∈ A.

Definition 2.1. A subset T ⊆ 2<ω is a tree if T is closed under meets and for each

pair s, t ∈ T with |s| ≤ |t|, t � |s| is also in T .

Given n < ω and a set of nodes A ⊆ 2<ω, define

A(n) = {t ∈ A : |t| = n}. (4)

A set X ⊆ A is a level set if X ⊆ A(n) for some n < ω. Note that a tree T does not

have to contain all initial segments of its members, but for each s ∈ T , the level set

T (|s|) must equal {t � |s| : t ∈ T and |t| ≥ |s|}.

Let T ⊆ 2<ω be a tree and let L = {|s| : s ∈ T }. If L is infinite, then T is a

strong tree if every node in T splits in T ; that is, for each t ∈ T , there are u, v ∈ T

such that u and v properly extend t, and u(|t|) = 0 and v(|t|) = 1. If L is finite,

then T is a strong tree if for each node t ∈ T with |t| < max(L), t splits in T . A

finite strong tree subtree of 2<ω with k many levels is called a strong tree of height

k. Note that each finite strong subtree of 2<ω is isomorphic as a tree to some binary
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N. Dobrinen

0

00

000 001

01

010 011

1

10

100 101

11

110 111

Fig. 2. A strong subtree of 2<ω of height 3.

tree of height k. In particular, a strong tree of height 1 is simply a node in 2<ω. See

Fig. 2. for an example of a strong tree of height 3.

The following is the strong tree version of the Halpern–Läuchli theorem. It is a

Ramsey theorem for colorings of products of level sets of finitely many trees. Here,

we restrict to the case of binary trees, since that is sufficient for the exposition in

this paper.

Theorem 2.2 ([13]). Let Ti = 2<ω for each i < d, where d is any positive integer,

and let

c :
⋃

n<ω

∏

i<d

Ti(n) → k (5)

be a given coloring, where k is any positive integer. Then there is an infinite set of

levels L ⊆ ω and infinite strong subtrees Si ⊆ Ti, each with nodes exactly at the

levels in L, such that c is monochromatic on
⋃

n∈L

∏

i<d

Si(n). (6)

This theorem of Halpern and Läuchli was applied by Laver in [21] to prove that

given k ≥ 2 and given any coloring of the product of k many copies of the rationals

Qk into finitely many colors, there are subsets Xi of the rationals which again are

dense linear orders without endpoints such that X0 × · · · × Xk−1 has at most k!

colors. Laver further proved that k! is the lower bound. Thus, the big Ramsey degree

for the simplest object (single k-length sequences) in the Fräıssé class of products

of finite linear orders has been found. The full result for all big Ramsey degrees

for Age(Qk) would involve applications of the extension of Milliken’s theorem to

products of finitely many copies of 2<ω; such an extension has been proved by Vlitas

in [36].

Harrington produced an interesting method for proving the Halpern–Läuchli

theorem which uses the set-theoretic technique of forcing, but which takes place

entirely in the standard axioms of set theory, and most of mathematics, ZFC.
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The Ramsey theory of the universal homogeneous triangle-free graph

No new external model is actually built, but rather, finite bits of information,

guaranteed by the existence of a generic filter for the forcing, are used to build the

subtrees satisfying the Halpern–Läuchli theorem. This proof is said to provide the

clearest intuition into the theorem (see [34]). Harrington did not publish his proof,

though the ideas were well-known in certain circles. A version close to Harrington’s

original proof appeared in [3], where a proof was reconstructed based on an outline

provided to the author by Laver in 2011. This proof formed the starting point for our

proofs in Secs. 5 and 6 of Halpern–Läuchli style theorems for strong coding trees.

An earlier proof appeared in [35]. That proof uses the weaker assumption κ → (ℵ0)
d
2

instead of Harrington’s original κ → (ℵ1)
2d
ℵ0

(see Definition 2.3), necessitating more

involved arguments.

Harrington’s proof for d many trees uses the forcing which adds κ many Cohen

subsets of the product of level sets of d many copies of 2<ω, where κ satisfies a

certain partition relation, depending on d. For any set X and cardinal µ, [X ]µ

denotes the collection of all subsets of X of cardinality µ.

Definition 2.3. Given cardinals r, σ, κ, λ,

λ → (κ)rσ (7)

means that for each coloring of [λ]r into σ many colors, there is a subset X of λ

such that |X | = κ and all members of [X ]r have the same color.

The following ZFC result guarantees cardinals large enough to have the Ramsey

property for colorings into infinitely many colors.

Theorem 2.4 ([7]). For r < ω and µ an infinite cardinal,

�r(µ)
+ → (µ+)r+1

µ .

For d many trees, letting κ = �2d−1(ℵ0)
+ suffices for Harrington’s proof. A

modified version of Harrington’s proof appears in [35], where the assumption on

κ is weaker, only �d−1(ℵ0)
+, but the construction is more complex. This proof

informed the approach in [4] to reduce the large cardinal assumption for obtaining

the consistency of the Halpern–Läuchli theorem at a measurable cardinal. Building

on this and ideas from [5, 33], Zhang proved the consistency of Laver’s result for

the κ-rationals, for κ measurable, in [37].

The Halpern–Läuchli theorem forms the essence of the next theorem; the proof

follows by a several step induction applying Theorem 2.2.

Theorem 2.5 ([22]). Let k ≥ 1 be given and let all strong subtrees of 2<ω of

height k be colored by finitely many colors. Then there is an infinite strong subtree

T of 2<ω such that all strong subtrees of T of height k have the same color.

In Sec. 1, an outline of Sauer’s proof that the Rado graph has finite big Ramsey

degrees was presented. Knowledge of his proof is not a pre-requisite for reading

this paper, but the reader with knowledge of that paper will have better context
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N. Dobrinen

for and understanding of this paper. A more detailed outline of the work in [32]

appears in [3, Sec. 3], which surveys some recent work regarding Halpern–Läuchli

and Milliken theorems and variants. [34, Chapter 6] provides a solid foundation for

understanding how Milliken’s theorem is used to attain big Ramsey degrees for both

Devlin’s result on the rationals and Sauer’s result on the Rado graph. Of course,

we recommend foremost Sauer’s original paper [32].

We point out that Milliken’s theorem has been shown to consistently hold at

a measurable cardinal by Shelah in [33], using ideas from Harrington’s proof. An

enriched version was proved by Džamonja et al. in [5] and applied to obtain the

consistency of finite big Ramsey degrees for colorings of finite subsets of the κ-

rationals, where κ is a measurable cardinal. They obtained the consistency of finite

big Ramsey degrees for colorings of finite subgraphs of the κ-Rado graph for κ

measurable in [5]. The uncountable height of the tree 2<κ coding the κ-rationals

and the κ-Rado graph renders the notion of strong similarity type more complex

than for the countable cases.

There is another theorem stronger than Theorem 2.5, also due to Milliken in [23],

which shows that the collection of all infinite strong subtrees of 2<ω forms a topolog-

ical Ramsey space, meaning that it satisfies an infinite-dimensional Ramsey theorem

for Baire sets when equipped with its version of the Ellentuck topology (see [34]).

Though not outrightly used, this fact informed some of our intuition when ap-

proaching this work.

3. Strong Triangle-Free Trees Coding H3

In Sec. 2, it was shown how nodes in binary trees may be used to code graphs, and

strong trees and Milliken’s theorem were presented. In this section, we introduce

strong triangle-free trees, which seem to be the correct analogue of Milliken’s strong

trees suitable for coding triangle-free graphs.

Sauer’s proof in [32] that the Rado graph has finite big Ramsey degrees uses

the fact that the Rado graph is bi-embeddable with the graph coded by the col-

lection of all nodes in 2<ω, where nodes with the same length code vertices with

no edges between them. Colorings on the Rado graph are transferred to the graph

represented by the nodes in 2<ω, Milliken’s theorem for strong trees is applied, and

then the homogeneity is transferred back to the Rado graph. In the case of the

universal triangle-free graph, there is no known bi-embeddability between H3 and

some triangle-free graph coded by nodes in a tree with some kind of uniform struc-

ture. Indeed, this may be fundamentally impossible precisely because the absence

of triangles disrupts any uniformity of a coding structure. Thus, instead of looking

for a uniform sort of structure which codes some triangle-free graph bi-embeddable

with H3 and trying to prove a Milliken-style theorem for them, we define a new

kind of tree in which certain nodes are distinguished to code the vertices of a given

triangle-free graph. Moreover, nodes in the tree branch as much as possible, subject

to the constraint that at each level of the tree, no node is extendible to another

2050012-14

J.
 M

at
h
. 
L

o
g
. 
2
0
2
0
.2

0
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 U

N
IV

E
R

S
IT

Y
 O

F
 D

E
N

V
E

R
 o

n
 0

7
/1

5
/2

1
. 
R

e-
u
se

 a
n
d
 d

is
tr

ib
u
ti

o
n
 i

s 
st

ri
ct

ly
 n

o
t 

p
er

m
it

te
d
, 
ex

ce
p
t 

fo
r 

O
p
en

 A
cc

es
s 

ar
ti

cl
es

.



The Ramsey theory of the universal homogeneous triangle-free graph

distinguished node which would code a triangle with previous distinguished nodes.

The precise formulation of strong triangle-free tree appears in Definition 3.9.

Some conventions and notation are now set up. Given a triangle-free graph G,

finite or infinite, let 〈vn : n < N〉 be any enumeration of the vertices of G, where

N ≤ ω is the number of vertices in G. We may construct a tree T with certain

nodes 〈cn : n < N〉 in T coding the graph G as follows. Let c0 be any node in 2<ω

and declare c0 to code the vertex v0. For n > 0, given nodes c0, . . . , cn−1 in 2<ω

coding the vertices v0, . . . , vn−1, let cn be any node in 2<ω such that the length

of cn, denoted |cn|, is strictly greater than the length of cn−1 and for all i < n,

cn(|ci|) = 1 if and only if vn and vi have an edge between them. The set of nodes

{cn : n < N} codes the graph G.

Definition 3.1 (Tree with Coding Nodes). A tree with coding nodes is a struc-

ture (T,N ;⊆, <, c) in the language of L = {⊆, <, c}, where ⊆ and < are binary

relation symbols and c is a unary function symbol, satisfying the following: T is a

subset of 2<ω satisfying that (T,⊆) is a tree (recall Definition 2.1), N ≤ ω and <

is the usual linear order on N , and c : N → T is an injective function such that

m < n < N implies |c(m)| < |c(n)|.

Convention 3.2. We shall use cn to denote c(n) and call it the nth coding node

in T . The length of cn shall be denoted by ln. When necessary to avoid confusion

between more than one tree, the nth coding node of a tree T will be denoted as cTn ,

and its length as lTn = |cTn |.

Definition 3.3. A graphG with vertices enumerated as 〈vn : n < N〉 is represented

by a tree T with coding nodes 〈cn : n < N〉 if and only if for each pair i < n < N ,

vn E vi ↔ cn(li) = 1. We will often simply say that T codes G.

The next step is to determine which tree configurations code triangles, for those

are the configurations that must be omitted from any tree coding a triangle-free

graph. Notice that if vi, vj , vk are the vertices of some triangle, ci, cj, ck are coding

nodes coding these vertices, respectively, and the edge relationships between them,

and |ci| < |cj | < |ck|, then it must be the case that cj(|ci|) = ck(|ci|) = ck(|cj |) = 1.

Moreover, this is the only way a triangle can be coded by coding nodes.

Now, we present a criterion which, when satisfied, guarantees that any node t

in the tree may be extended to a coding node without coding a triangle with any

coding nodes of length less than |t|.

Definition 3.4 (Triangle-Free Criterion). Let T ⊆ 2<ω be a tree with coding

nodes 〈cn : n < N〉, where N ≤ ω. T satisfies the Triangle-Free Criterion (TFC) if

the following holds: For each t ∈ T , if ln < |t| and t(li) = cn(li) = 1 for some i < n,

then t(ln) = 0.

In words, a tree T with coding nodes 〈cn : n < N〉 satisfies the TFC if for

each n < N , whenever a node u in T has the same length as coding node cn, and
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N. Dobrinen

u and cn both have passing number 1 at the level of a coding node ci for some

i < n, then u�1 must not be in T . In particular, the TFC implies that if cn has

passing number 1 at ci for any i < n, then cn cannot split; that is, cn
�1 must not

be in T .

Remark 3.5. The point of the TFC is as follows: Whenever a finite tree T satisfies

the TFC, then any maximal node of T may be extended to a new coding node

without coding a triangle with the coding nodes in T .

The next proposition provides a characterization of tree representations of

triangle-free graphs.

Proposition 3.6 (Triangle-Free Tree Representation). Let T ⊆ 2<ω be a

tree with coding nodes 〈cn : n < N〉 coding a countable graph G with vertices

〈vn : n < N〉, where N ≤ ω. Assume that the coding nodes in T are dense in T,

meaning that for each t ∈ T, there is some coding node cn ∈ T such that t ⊆ cn.

Then the following are equivalent :

(1) G is triangle-free.

(2) T satisfies the TFC.

Proof. Note that if N is finite, then the coding nodes in T being dense in T implies

that every maximal node in T is a coding node; in this case, the maximal nodes in

T have different lengths.

Suppose (2) fails. Then there are i < j < N and t ∈ T with length greater

than lj such that t(li) = cj(li) = 1 and t(lj) = 1. Since every node in T ex-

tends to a coding node, there is a k > j such that ck ⊇ t. Then ck has passing

number 1 at both ci and cj . Thus, the coding nodes ci, cj , ck code that the vertices

{vi, vj , vk} have edges between each pair, implying G contains a triangle. Therefore,

(1) fails.

Conversely, suppose that (1) fails. Then G contains a triangle, so there are

i < j < k < N such that the vertices vi, vj , vk have edges between each pair. Since

the coding nodes ci, cj , ck code these edges, it is the case that cj(li) = ck(li) =

ck(lj) = 1. Hence, the nodes ci, cj , ck witness the failure of the TFC.

Definition 3.7 (Parallel 1’s). For two nodes s, t ∈ 2<ω, we say that s and t have

parallel 1’s if there is some l < min(|s|, |t|) such that s(l) = t(l) = 1.

Definition 3.8. Let T be a tree with coding nodes 〈cn : n < N〉 such that, above

the stem of T , splitting in T occurs only at the levels of coding nodes. Then T

satisfies the Splitting Criterion if for each n < N and each non-maximal t in T with

|t| = |cn|, t splits in T if and only if t and cn have no parallel 1’s.

Notice that whenever a tree T with coding nodes satisfies the Splitting Criterion,

each coding node which is not solely a sequence of 0’s will not split in T . Thus, the

Splitting Criterion produces maximal splitting subject to ensuring that no nodes
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The Ramsey theory of the universal homogeneous triangle-free graph

can be extended to code a triangle, while simultaneously reducing the number of

similarity types of trees under consideration later for the big Ramsey degrees, if we

require each coding node to have at least one passing number of 1.

Next, strong triangle-free trees are defined. These trees provide the intuition

and the main structural properties of their skewed variant defined in Sec. 4.

Definition 3.9 (Strong Triangle-Free Tree). A strong triangle-free tree is a

tree with coding nodes, (T,N ;⊆, <, c) such that for each n < N , the length of the

nth coding node cn is ln = n+ 1 and

(1) If N = ω, then T has no maximal nodes. If N < ω, then all maximal nodes of

T have the same length, which is lN−1.

(2) stem(T ) is the empty sequence 〈〉.

(3) c0 = 〈1〉, and for each 0 < n < N , cn(ln−1) = 1.

(4) For each n < N , the sequence of length ln consisting of all 0’s, denoted 0ln , is

a node in T .

(5) T satisfies the Splitting Criterion.

T is a strong triangle-free tree densely coding H3 if T is an infinite strong triangle-

free tree and the set of coding nodes is dense in T .

Strong triangle-free trees can be defined more generally than we choose to

present here, for instance, by relaxing conditions (2) and (3), leaving off the re-

striction that ln = n+ 1, and letting c0 be any node. The notion of strong subtree

of a given strong triangle-free tree can also be made precise, and the collection

of such trees end up forming a space somewhat similar to the Milliken space of

strong trees. However, as Milliken-style theorems are impossible to prove for strong

triangle-free trees, as will be shown in Example 3.18, we restrict here to a simpler

presentation with the aim of building the reader’s understanding of the essential

structure of strong triangle-free trees, as the strong coding trees defined in Sec. 4

are skewed and slightly relaxed versions of trees in Definition 3.9.

We now set up to present a method for constructing strong triangle-free trees

densely coding H3. Let K3 denote the Fräıssé class of all triangle-free countable

graphs. Given a graph H and a subset V0 of the vertices of H , the notation H |V0

denotes the induced subgraph of H on the vertices in V0. In [15], Henson proved

that a countable graph H is universal for K3 if and only if H satisfies the following

property.

(A3) (i) H does not admit any triangles.

(ii) If V0, V1 are disjoint finite sets of vertices of H and H |V0 does not admit

an edge, then there is another vertex which is connected in H to every

member of V0 and to no member of V1.

Henson used this property to construct a universal triangle-free graph H3 in

[15], as well as universal graphs for each Fräıssé class of countable graphs omitting
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N. Dobrinen

k-cliques, as the analogues of the Rado graph for countable k-clique free graphs.

The following property (A3)
′ is a reformulation of Henson’s property (A3):

(A3)
′ (i) H does not admit any triangles.

(ii) Let 〈vn : n < ω〉 enumerate the vertices of H , and let 〈Fi : i < ω〉 be

any enumeration of the finite subsets of ω such that for each i < ω,

max(Fi) < i and each finite set appears infinitely many times in the

enumeration. Then there is a strictly increasing sequence 〈ni : i < ω〉

such that for each i < ω, if H | {vm : m ∈ Fi} has no edges, then for all

m < i, vni
E vm ↔ m ∈ Fi.

It is straightforward to check the following fact.

Fact 3.10. Let H be a countably infinite graph. Then H is universal for K3 if and

only if (A3)
′ holds.

The following re-formulation of property (A3)
′ will be used to build trees with

coding nodes which code H3. Let T ⊆ 2<ω be a tree with coding nodes 〈cn : n < ω〉.

We say that T satisfies property (A3)
tree if the following holds:

(A3)
tree (i) T satisfies the TFC.

(ii) Let 〈Fi : i < ω〉 be any enumeration of finite subsets of ω such that

for each i < ω, max(Fi) < i, and each finite subset of ω appears as

Fi for infinitely many indices i. For each i < ω, if for all pairs j < k

in Fi it is the case that ck(lj) = 0, then there is some n ≥ i such that

for all m < i, cn(lm) = 1 if and only if m ∈ Fi.

Fact 3.11. A tree T with coding nodes 〈cn : n < ω〉 codes H3 if and only if T

satisfies (A3)
tree.

Remark 3.12. Any strong triangle-free tree in which the coding nodes are dense

automatically satisfies (A3)
tree, and hence codes H3.

The next lemma shows that any finite strong triangle-free tree can be extended

to a tree satisfying (A3)
tree.

Lemma 3.13. Let T be a finite strong triangle-free tree with coding nodes 〈cn :

n < N〉, where N < ω. Given any F ⊆ N − 1 for which the set {cn : n ∈ F} codes

no edges, there is a maximal node t ∈ T such that for all n < N − 1,

t(ln) = 1 ↔ n ∈ F. (8)

Proof. The proof is by induction on N over all strong triangle-free trees with N

coding nodes. For N ≤ 1, the lemma trivially holds but is not very instructive, so

we shall start with the case N = 2. Let T be a strong triangle-free tree with coding

nodes {c0, c1}. By (2) of Definition 3.9, the stem of T is the empty sequence, so

both 〈0〉 and 〈1〉 are in T . By (3) of Definition 3.9, c0 = 〈1〉, and c1(l0) = 1. By the

Splitting Criterion, c0 does not split in T but 〈0〉 does, so 〈0, 0〉, 〈0, 1〉, and 〈1, 0〉
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The Ramsey theory of the universal homogeneous triangle-free graph

are in T while 〈1, 1〉 is not in T . Note that c1 = 〈0, 1〉, since it must be that l1 = 2

and c1(l0) = 1, and 〈1, 1〉 is not in T . The only non-empty F ⊆ 1 is F = {0}. The

coding node c1 satisfies that c1(ln) = 1 if and only if n ∈ {0}. For F = ∅, both the

nodes t = 〈0, 0〉 and t = 〈1, 0〉 satisfy that for all n < 1, t(ln) = 1 if and only if

n ∈ F .

Now, assume that the lemma holds for all N ′ < N , where N ≥ 3. Let T be

a strong triangle-free tree with N coding nodes. Let F be a subset of N − 1 such

that {cn : n ∈ F} codes no edges. By the induction hypothesis, there is a node t

in T of length lN−2 such that for all n < N − 2, t(ln) = 1 if and only if n ∈ F . If

N − 2 �∈ F , then as t�0 is guaranteed to be in T by the Splitting Criterion, the

node t′ = t�0 in T satisfies that for all n < N − 1, t′(ln) = 1 if and only if n ∈ F .

Now, suppose N − 2 ∈ F . We claim that t�1 is in T . By the Splitting Criterion, if

t�1 is not in T , then it must be the case that t and cN−2 have a parallel 1. So there

is some i < N − 2 such that t(li) = cN−2(li) = 1. As t codes edges only with those

vertices with indexes n < N − 2 which are in F\{N − 2}, it follows that i ∈ F .

But then {ci, cN−2} codes an edge, contradicting the assumption on F . Therefore,

t and cN−2 do not have any parallel 1’s, and hence t�1 is in T . Letting t′ = t�1,

we see that for all n < N − 1, t(ln) = 1 if and only if n ∈ F .

We now present a method for constructing strong triangle-free trees densely

coding H3. Here and throughout the paper, 0n denotes the sequence of length n

consisting of all 0’s.

Theorem 3.14 (Strong Triangle-Free Tree S Densely Coding H3). Let

〈Fi : i < ω〉 be any sequence enumerating the finite subsets of ω so that each

finite set appears infinitely often. Assume that for each i < ω, Fi ⊆ i − 1 and

F3i = F3i+2 = ∅. Then there is a strong triangle-free tree S which satisfies property

(A3)
tree and densely codes H3. Moreover, this property is satisfied specifically by

the coding node c4i+j meeting requirement F3i+j , for each i < ω and j ≤ 2.

Proof. Let 〈Fi : i < ω〉 satisfy the hypotheses. Enumerate the nodes in 2<ω as

〈ui : i < ω〉 in such a manner that i < k implies |ui| ≤ |uk|. Then u0 = ∅, |u1| = 1,

and for all i ≥ 2, |ui| < i. We will build a strong triangle-free tree S ⊆ 2<ω with

coding nodes cn ∈ S ∩ 2n+1 densely coding H3 satisfying the following properties:

(i) c0 = 〈1〉, and for each n < ω, ln := |cn| = n+ 1 and cn+1(ln) = 1.

(ii) For n = 4i + j, where j ≤ 2, cn satisfies requirement F3i+j , meaning that if

{ck : k ∈ F3i+j} codes no edges, then for all k < n− 1, cn(lk) = 1 if and only

if k ∈ F3i+j .

(iii) For n = 4i+ 3, if ui is in S ∩ 2≤n, then cn is a coding node extending ui. If ui

is not in S, then cn = 0n�1.

As in Lemma 3.13, the first two coding nodes of S are completely determined

by the definition of strong triangle-free tree. Thus, c0 = 〈1〉, c1 = 〈0, 1〉, and the

tree S up to height 2 consists of the nodes {∅, 〈0〉, 〈1〉, 〈0, 0〉, 〈0, 1〉, 〈1, 0〉}. Denote
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N. Dobrinen

this tree as S2. Since F0 = F1 = ∅, c0 and c1 trivially satisfy requirements F0 and

F1, respectively. It is simple to check that S2 is a strong triangle-free tree, and that

(i)–(iii) are satisfied.

For the general construction step, suppose n ≥ 2, Sn ⊆ 2≤n has been con-

structed, and coding nodes 〈ci : i < n〉 have been chosen so that Sn is a strong

triangle-free tree satisfying (i)–(iii). Extend each maximal node in Sn to length n+1

according to the Splitting Criterion. Thus, for each s ∈ Sn ∩ 2n, s�0 is in Sn+1,

and s�1 is in Sn+1 if and only if s has no parallel 1’s with cn−1. Now, we choose

cn so that (i)–(iii) hold. There are three cases.

Case 1. Either n = 4i and i ≥ 1, or n = 4i + 2 and i < ω. Let n′ denote 3i if

n = 4i, and let n′ denote 3i+ 2 if n = 4i+ 2. Then Fn′ = ∅, so let cn = 0n�1.

Case 2. n = 4i + 1 and 1 ≤ i < ω. If for all pairs of integers k < m in F3i+1 it is

the case that cm(lk) = 0, then take cn to be a maximal node in Sn+1 such that for

all k < n− 1, cn(lk) = 1 if and only if k ∈ F3i+1, and cn(ln−1) = 1. Otherwise, let

cn = 0n�1.

Case 3. n = 4i + 3 and i < ω. Recall that |ui| ≤ i, so |ui| ≤ n − 3. If ui is in Si,

then take cn to be the maximal node in Sn+1 which is ui extended by all 0’s until

its last entry, which is 1. Precisely, letting q = n− |ui|, set cn = ui
�0q�1. If ui is

not in Si, let cn = 0n�1.

(i)–(iii) hold automatically by the choices of cn in Cases 1–3. What is left is to

check is that such nodes in Cases 1–3 actually exist in Sn+1. The node 0n�1 is in

Sn+1, as it has no parallel 1’s with cn−1. Thus, in Case 1 and the second halves of

Cases 2 and 3, the node we declared to be cn is indeed in Sn+1.

In Case 2, where n = 4i+1 with i ≥ 1, suppose that F3i+1 �= ∅ and for all pairs

k < m of integers in F3i+1, cm(lk) = 0. Since max(F3i+1) ≤ 3i−1 ≤ n−3 and since

by the induction hypothesis, Sn−1 is a strong triangle-free tree, Lemma 3.13 implies

that there is a node t ∈ Sn−1 such that for each k < n − 1, s(lk) = 1 if and only

if k ∈ F3i+1. Note that t�0 and cn−1 have no parallel 1’s, since cn−1 = 0n−1�1.

Thus, by the Splitting Criterion, t�0�1 is in Sn+1, and this node satisfies our

choice of cn.

In Case 3 when n = 4i+3, if ui ∈ Si, then by the Splitting Criterion, also ui
�0q

is in Sn, where q = n− |ui|. Since n− 1 = 4i+ 2, cn−1 = 0n−1�1; so ui
�0q has no

parallel 1’s with cn−1. Thus, by the Splitting Criterion, ui
�0q�1 is in Sn+1.

Let S =
⋃

n<ω Sn. By the construction, S is an infinite strong triangle-free tree

with coding nodes 〈cn : n < ω〉. (ii) implies that S satisfies (A3)
tree and hence codes

H3. By (iii), the coding nodes are dense in S.

Example 3.15 (A Strong Triangle-Free Tree). Presented here is a con-

crete example of the first six steps of constructing a strong triangle-free tree

densely coding H3. In the construction of Theorem 3.14, F0 = F1 = F2 = ∅.

The coding nodes c0 = 〈1〉 and c1 = 〈0, 1〉 are determined by the defini-

tion of strong triangle-free tree. The coding node c2 we choose to be 〈0, 0, 1〉.
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The Ramsey theory of the universal homogeneous triangle-free graph

〈〉

c0

c1

c2

c3

c4

c5

•

•

•

•

•

•

v0

v1

v2

v3

v4

v5

Fig. 3. A strong triangle-free tree S densely coding H3.

(It could also have been chosen to be 〈1, 0, 1〉.) Since u0 is the empty sequence, c3 can

be any sequence which has last entry 1; in this example we let c3 = 〈1, 0, 0, 1〉. F3 =

∅, so c4 = 〈0, 0, 0, 0, 1〉. Suppose F4 = {0, 2}. Then, we may take c5 = 〈0, 1, 0, 1, 0, 1〉

to code edges between the vertex v5 and the vertices v0 and v2; we also make v5
have an edge with v4. Notice that having chosen the coding node cn, each maximal

node s ∈ Sn+1 splits in Sn+2 if and only if s(i) + cn(i) ≤ 1 for all i ≤ n, see Fig. 3.

The graph on the left with vertices {v0, . . . , v5} is being coded by the coding nodes

{c0, . . . , c5}. The tree and the graph are intended to continue growing upwards to

the infinite tree S coding the graph H3.

Remark 3.16. We have set up the definition of strong triangle-free tree so that no

coding node in a strong triangle-free tree splits. The purpose of this is to simplify

later work by reducing the number of different isomorphism types of trees coding

a given finite triangle-free graph. The purposes of the density of the coding nodes

and the Splitting Criterion are to saturate the trees with as many extensions as

possible coding vertices without coding any triangles, so as to allow for thinning

to subtrees which still can code H3, setting the stage for later Ramsey-theoretic

results.

Remark 3.17. Given a strong triangle-free tree T densely codingH3, the collection

of all strong triangle-free subtrees S of T densely coding H3 forms an interesting

space of trees. The author has proved Halpern–Läuchli-style theorems for such trees,

provided that the stem is fixed. This was the author’s first approach toward the

main theorem of this paper, and these proofs formed the strategy for the proofs in

later sections. However, the introduction of coding nodes hinders a full development

of Ramsey theory for trees which have splitting nodes and coding nodes of the

same length, as shown in the next example. Such a bad coloring on coding nodes

2050012-21

J.
 M

at
h
. 
L

o
g
. 
2
0
2
0
.2

0
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 U

N
IV

E
R

S
IT

Y
 O

F
 D

E
N

V
E

R
 o

n
 0

7
/1

5
/2

1
. 
R

e-
u
se

 a
n
d
 d

is
tr

ib
u
ti

o
n
 i

s 
st

ri
ct

ly
 n

o
t 

p
er

m
it

te
d
, 
ex

ce
p
t 

fo
r 

O
p
en

 A
cc

es
s 

ar
ti

cl
es

.



N. Dobrinen

prevents the transition from cone-homogeneity to homogeneity on a strong triangle-

free subtree with dense coding nodes.

Example 3.18 (A Bad Coloring). Given a strong triangle-free tree S with cod-

ing nodes 〈cn : n < ω〉 dense in S, let si = 0i, for each i < ω. Note that each si splits

in S and that |cn| = |sn+1|, for each n < ω. Color all coding nodes cn extending

s0
�1, which is exactly 〈1〉, blue. Let k be given and suppose for each i ≤ k, we

have colored all coding nodes extending si
�1. The coding node ck extends si

�1 for

some i ≤ k, so it has already been assigned a color. If ck is blue, color every coding

node in S extending sk+1
�1 red; if ck is red, color every coding node in S extending

sk+1
�1 blue. This produces a red-blue coloring of the coding nodes such that any

subtree S of S with coding nodes dense in S and satisfying the Splitting Criterion

(which would be the natural definition of infinite strong triangle-free subtree) has

coding nodes of both colors: For given a coding node c of S, the node 0|c| is a

splitting node in S, and all coding nodes in S extending 0|c|
�
1 have color different

from the color of c.

Since this example precludes a satisfactory Ramsey theory of strong triangle-

free trees coding H3, instead of presenting those Ramsey-theoretic results on strong

triangle-free trees which were obtained, we immediately move on to the skew version

of strong triangle-free trees. Their full Ramsey theory will be developed in the rest

of the paper.

4. Strong Coding Trees

This section introduces the main tool for our investigation of the big Ramsey degrees

for the universal triangle-free graph, namely strong coding trees. Essentially, strong

coding trees are simply stretched versions of strong triangle-free trees, with all the

coding structure preserved while removing any entanglements between coding nodes

and splitting nodes which could prevent Ramsey theorems, as in Example 3.18.

The collection of all subtrees of a strong coding tree T which are isomorphic to T ,

partially ordered by a relation defined later in this section, will be seen, by the end

of Sec. 6, to form a space of trees coding H3 with many similarities to the Milliken

space of strong trees [22].

4.1. Definitions and notation

The following terminology and notation will be used throughout. Recall that by

a tree, we mean exactly a subset T ⊆ 2<ω which is closed under meets and is a

union of level sets; that is, s, t ∈ T and |t| ≥ |s| imply that t � |s| is also a member

of T . Further, recall Definition 3.1 of a tree with coding nodes. Let T ⊆ 2<ω be

a tree with coding nodes 〈cTn : n < N〉, where N ≤ ω, and let lTn denote |cTn |. T̂

denotes the collection of all initial segments of nodes in T ; thus, T̂ = {t �n : t ∈ T

and n ≤ |t|}. A node s ∈ T is called a splitting node if both s�0 and s�1 are in

T̂ ; equivalently, s is a splitting node in T if there are nodes s0, s1 ∈ T such that
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The Ramsey theory of the universal homogeneous triangle-free graph

s0 ⊇ s�0 and s1 ⊇ s�1. Given t in a tree T , the level of T of length |t| is the set of

all s ∈ T such that |s| = |t|. By our definition of tree, this is exactly the set of s � |t|

such that s ∈ T and |s| ≥ |t|. T is skew if each level of T has exactly one of either

a coding node or a splitting node. A skew tree T is strongly skew if additionally for

each splitting node s ∈ T , every t ∈ T such that |t| > |s| and t �⊃ s also satisfies

t(|s|) = 0; that is, the passing number of any node passing by, but not extending,

a splitting node is 0. The set of levels of a skew tree T ⊆ 2<ω, denoted LT , is the

set of those l < ω such that T has either a splitting or a coding node of length l.

Let 〈dTm : m < M〉 enumerate the collection of all coding and splitting nodes of T

in increasing order of length. The nodes dTm will be called the critical nodes of T .

Note that N ≤ M , and M = ω if and only if N = ω. For each m < M , the mth

level of T is

LevT (m) = {s ∈ T̂ : |s| = |dTm|}. (9)

Then for any strongly skew tree T ,

T =
⋃

m<M

LevT (m). (10)

Let mn denote the integer such that cTn ∈ LevT (mn). Then dTmn
= cTn , and the

critical node dTm is a splitting node if and only if m �= mn for any n. For each

0 < n < N , the nth interval of T is
⋃
{LevT (m) : mn−1 < m ≤ mn}. The 0th

interval of T is defined to be
⋃

m≤m0
LevT (m). Thus, the 0th interval of T is the

set of those nodes in T with lengths in [0, lT0 ], and for 0 < n < N , the nth interval

of T is the set of those nodes in T with lengths in (lTn−1, l
T
n ].

The next definition provides notation for the set of exactly those nodes just

above the (n− 1)st coding node which will split in the nth interval of T . Define

Spl(T, 0) = {t ∈ T̂ : |t| = | stem(T )|+ 1 and ∃m < m0 such that dTm ⊇ t}. (11)

For n ≥ 1, define

Spl(T, n) = {t ∈ T̂ : |t| = ln−1 + 1 and ∃m ∈ (mn−1,mn) such that dTm ⊇ t}.

(12)

Thus, Spl(T, n) is the set of nodes in T̂ of length just one above the length of cn−1

(or the stem of T if n = 0) which extend to a splitting node in the nth interval

of T . The lengths of the nodes in Spl(T, n) were chosen to so that they provide

information about passing numbers at cTn−1. For t ∈ Spl(T, n), let splT (t) denote

the minimal extension of t which splits in T .

Given a node s in T for which there is an i < |s| such that s � i is a splitting node

in T , the splitting predecessor of t in T , denoted splitpredT (s), is the proper initial

segment u ⊂ s of maximum length such that both u�0 and u�1 are in T̂ . Thus,

splitpredT (s) is the longest splitting node in T which is a proper initial segment of

s. When the tree T is clear from the context, the subscripts and superscripts of T

will be dropped.
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N. Dobrinen

4.2. Definition and construction of strong coding trees

Now, we present a new tool for representing the universal triangle-free graph,

namely strong coding trees. The following Parallel 1’s Criterion is a central concept,

ensuring that a finite subtree of a strong coding tree T can be extended inside T

so that the criterion (A3)
tree can be met.

Definition 4.1 (Parallel 1’s Criterion). Let T ⊆ 2<ω be a strongly skew tree

with coding nodes 〈cn : n < N〉. We say that T satisfies the Parallel 1’s Criterion

if the following hold: Given any set of two or more nodes {ti : i < ĩ} in T and some

l such that ti � (l + 1), i < ĩ, are all distinct, and ti(l) = 1 for all i < ĩ,

(1) There is a coding node cn in T such that for all i < ĩ, ln < |ti| and ti(ln) = 1;

we say that cn witnesses the parallel 1’s of {ti : i < ĩ}.

(2) Letting l′ be least such that ti(l
′) = 1 for all i < ĩ, and letting n be least

such that cn witnesses the parallel 1’s of the set of nodes {ti : i < ĩ}, then

T has no splitting nodes and no coding nodes of lengths strictly between l′

and ln.

We say that a set of nodes {ti : i < ĩ} has a new set of parallel 1’s at l if ti(l) = 1

for all i < ĩ, and l is least such that this occurs. Thus, the Parallel 1’s Criterion

says that any new set of parallel 1’s must occur at a level l which is above the last

splitting node in T in the interval (ln−1, ln] containing l, and that cn must witness

this set of parallel 1’s.

Definition 4.2 (Splitting Criterion for Skew Trees). A strongly skew tree T

with coding nodes 〈cn : n < N〉 satisfies the Splitting Criterion for Skew Trees if

the following hold: For each 1 ≤ n < N and each s ∈ T̂ of length ln−1 + 1, s is in

Spl(T, n) if and only if s and cn � (ln−1 + 1) have no parallel 1’s. For each s ∈ T̂ of

length | stem(T )|+ 1, s is in Spl(T, 0) if and only if s = stem(T )
�
0.

Notice that any tree with coding nodes satisfying the Splitting Criterion for

Skew Trees also satisfies the TFC (Definition 3.4), and hence will not code any

triangles.

Now, we arrive at the main structural concept for coding copies of H3. This ex-

tends the idea of Milliken’s strong trees — branching as much as possible whenever

one split occurs — to skew trees with the additional property that they can code

omissions of triangles.

Definition 4.3 (Strong Coding Tree). A tree T ⊆ 2<ω with coding nodes

〈cn : n < ω〉 is a strong coding tree if T is strongly skew, for each node t ∈ T , the

node 0|t| is also in T , and the following hold:

(1) The coding nodes of T are dense in T .

(2) For each n ≥ 1, cn(ln−1) = 1.

(3) T satisfies the Parallel 1’s Criterion.
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The Ramsey theory of the universal homogeneous triangle-free graph

d0

d1

c0d2

d3

d4

d5 c1

d6

d7

d8

c2d9

d10

d11

d12

d13 c3

•

•

•

•

v0

v1

v2

v3

Fig. 4. A strong coding tree T.

(4) T satisfies the Splitting Criterion for Skew Trees.

(5) c0 extends stem(T )�1 and does not split.

(6) Given n < ω, s ∈ Spl(T, n), and i < 2, there is exactly one extension

si ⊇ spl(s)�i of length ln in T , and its unique immediate extension in T̂

is si
�i.

(7) For each n < ω, each node t in T̂ of length ln−1 + 1 which is not in Spl(T, n)

has exactly one extension of length ln in T , say t∗, and its unique immediate

extension in T̂ is t∗
�0. Here, l−1 denotes the length of stem(T ).

An example of a strong coding tree is presented in Fig. 4. One should notice

that upon “zipping up” the splits occurring in the intervals between coding nodes

in T to the next coding node level, one recovers the strong triangle-free tree S

from the previous section. The existence of strong coding trees will be proved in

Theorem 4.6.

Recall that 〈dm : m < ω〉 enumerates the set of all critical nodes (coding nodes

and splitting nodes) in T in order of strictly increasing length.

Definition 4.4 (Finite Strong Coding Tree). Given a strong coding tree T ,

by an initial segment or initial subtree of T we mean the first m levels of T , for

some m < ω. We shall use the notation

rm(T ) =
⋃

k<m

LevT (k). (13)

A tree with coding nodes is a finite strong coding tree if and only if it is equal to

some rm+1(T ) where either dm is a coding node or else m = 0.
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N. Dobrinen

Thus, finite strong coding trees are exactly the finite trees with coding nodes

〈cn : n < N〉, where N < ω, which have all maximal nodes of the length of its

longest coding node and satisfy (2)–(7) of Definition 4.3 for all n < N .

The next lemma extends the ideas of Lemma 3.13 to the setting of finite strong

coding trees.

Lemma 4.5. Let A be any finite strong coding tree with coding nodes 〈cn : n < N〉,

where N < ω. Let A+ denote the nodes of length lN−1 + 1 extending the maximal

nodes in A as determined by (6) and (7) in Definition 4.3. Then given any F ⊆ N

such that {cn : n ∈ F} codes no edges, there is a t ∈ A+ such that for all n < N,

t(ln) = 1 ↔ n ∈ F. (14)

Proof. The proof is by induction on N over all finite strong coding trees with

N coding nodes. For N = 0, A = ∅, the lemma vacuously holds. For N = 1, it

follows from the definition of finite strong coding tree that A has critical nodes

d0 = stem(A), d1 which is a splitting node extending d0
�0, and d2 = c0 which

extends d0
�1. Thus, A+ has three nodes, t0 ⊃ d0

�0 with passing number 0 at c0;

t1 ⊃ d0
�1 with passing number 1 at c0; and t2 = c0

�0 which of course has passing

number 0 at c0. Both of the nodes t0 and t2 satisfy equation (14) if F = ∅, and t1
satisfies (14) if F = {0}.

Now, suppose that N ≥ 2 and the lemma holds for N − 1. Let A be a finite

strong coding tree with coding nodes 〈cn : n < N〉. Let F be a subset of N such that

{cn : n ∈ F} codes no edges, and let m be the index such that dm−1 = cN−2. By

the induction hypothesis, there is a node u in (rm(A))+ such that for all n < N−1,

u(ln) = 1 if and only if n ∈ F . If N − 1 �∈ F , by (6) and (7) of the definition of

strong coding tree there is an extension t ⊃ u in A+ with passing number 0 at

cN−1, and this t satisfies (14) for F .

If N − 1 ∈ F , it suffices to show that u ∈ Spl(A,N − 1), for then there will be

a t ⊃ u in A+ with passing number 1 at cN−1, and this t will satisfy (14). By the

Splitting Criterion for Skew Trees, if u �∈ Spl(A,N−1), then u and cN−1 � (lN−2+1)

must have a parallel 1. Then by the Parallel 1’s Criterion, there is some i ≤ N − 2

such that u(li) = cN−1(li) = 1. Since u codes edges only with those vertices with

indexes less than N − 1 in F , it follows that i must be in F . But then {ci, cN−1} is

a subset of F coding an edge, contradicting the assumption on F . Therefore, u is

in Spl(A,N − 1).

We now present a flexible method for constructing a strong coding tree T. This

should be thought of as a stretched and skewed version of the strong triangle-

free tree S which was constructed in Theorem 3.14. The passing numbers at the

coding nodes in T code edges and non-edges exactly as the passing numbers of the

coding nodes in S. The strong coding tree T which we construct will be regular: For

each n, nodes in Spl(T, n) extend to splitting nodes in the nth interval of T from

lexicographically least to the largest. Regularity is not necessary for achieving the
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The Ramsey theory of the universal homogeneous triangle-free graph

main theorems of this paper. However, as any strong coding tree contains a subtree

which is a regular strong coding tree, it does no harm to only work with regular

trees.

Theorem 4.6. Let 〈Fi : i < ω〉 be any sequence enumerating the finite subsets of

ω so that each finite set appears cofinally often. Assume further that for each i < ω,

Fi ⊆ i− 1 and F3i = F3i+2 = ∅. Then there is a strong coding tree T which densely

codes H3, where for each i < ω and j ≤ 2, the coding node c4i+j meets requirement

F3i+j .

Proof. Let 〈Fi : i < ω〉 satisfy the hypotheses, and let 〈ui : i < ω〉 be an enumera-

tion of all the nodes in 2<ω in such a way that each |ui| ≤ i. We construct a strong

coding tree T ⊆ 2<ω with coding nodes 〈cn : n < ω〉 and lengths ln = |cn| so that

for each n < ω, rmn+1(T) :=
⋃
{LevT(i) : i ≤ mn} is a finite strong coding tree and

LevT(mn+1) satisfies (6) and (7) of the definition of strong coding tree, where mn

is the index such that the mnth critical node dmn
is equal to the nth coding node

cn, and the following properties are satisfied:

(i) For n = 4i+ j, j ≤ 2, cn meets requirement F3i+j .

(ii) For n = 4i + 3, if ui is in rmn−3+2(T), then cn is a coding node extending ui.

Otherwise, cn = 0ln−1−1�〈1, 1〉�0qn where qn = ln − (ln−1 + 1).

To begin, define LevT(0) = {〈〉}. Then the minimum length splitting node in T

is 〈〉, and we label it d0. Let LevT(1) = {〈0〉, 〈1〉}. To satisfy (5) of Definition 4.3, c0
is going to extend 〈1〉, so in order to satisfy (4), it must be the case that Spl(T, 0) =

{〈0〉}. Take the splitting node d1 to be 〈0〉. Let LevT(2) = {〈0, 0〉, 〈0, 1〉, 〈1, 0〉}, and

define c0 = 〈1, 0〉. Then l0 = 2, d2 = c0, and

rm0+1(T) =
⋃

{LevT(i) : i ≤ 2} (15)

is a finite strong coding tree satisfying (i) and (ii). The next level of T must satisfy

(6) and (7). Extend 〈0, 0〉 to 〈0, 0, 0〉, extend 〈0, 1〉 to 〈0, 1, 1〉, and extend 〈1, 0〉 to

〈1, 0, 0〉, and let these compose LevT(3).

For the sake of clarity, the next few levels of T up to the level of c1 will be

constructed concretely. To satisfy (2), the next coding node c1 must extend 〈0, 1, 1〉,

since this is the only node in LevT(3) which has passing number 1 at c0. The

knowledge that c1 will extend 〈0, 1, 1〉 along with the Splitting Criterion for Skew

Trees determine that Spl(T, 1) = {〈0, 0, 0〉, 〈1, 0, 0〉}, since these are the nodes in

LevT(3) which have no parallel 1’s with 〈0, 1, 1〉. As we are building T to be regular,

〈1, 0, 0〉 is first in Spl(T, 1) to be extended to a splitting node. Let d3 = 〈1, 0, 0〉, and

let LevT(4) = {〈0, 0, 0, 0〉, 〈0, 1, 1, 0〉, 〈1, 0, 0, 0〉, 〈1, 0, 0, 1〉}, so that T4 is strongly

skew. Next, let d4 = 〈0, 0, 0, 0〉 as this node should split since it is the only extension

of 〈0, 0, 0〉 in LevT(4). Let

LevT(5) = {〈0, 0, 0, 0, 0〉, 〈0, 0, 0, 0, 1〉, 〈0, 1, 1, 0, 0〉, 〈1, 0, 0, 0, 0〉, 〈1, 0, 0, 1, 0〉}.

(16)
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N. Dobrinen

Let c1 = 〈0, 1, 1, 0, 0〉, as this is the only extension of 〈0, 1, 1〉 in LevT(5). Thus,

d5 = c1, l1 = 5, spl
T
(〈1, 0, 0〉) = 〈1, 0, 0〉 and spl

T
(〈0, 0, 0〉) = 〈0, 0, 0, 0〉. Moreover,

r6(T) is a regular, finite strong coding tree satisfying requirements (i)–(ii). The next

level of T is determined by (6) and (7), so let

LevT(6) = {〈0, 0, 0, 0, 0, 0〉, 〈0, 0, 0, 0, 1, 1〉, 〈0, 1, 1, 0, 0, 0〉,

〈1, 0, 0, 0, 0, 0〉, 〈1, 0, 0, 1, 0, 1〉}. (17)

This constructs the tree r7(T), which is T up to the level of l1 + 1 = 6. Notice

that the second lexicographically least node in LevT(l1 + 1) is 〈0, 0, 0, 0, 1, 1〉 =

0(l1−1)�〈1, 1〉.

Suppose rmn−1+2(T) has been constructed so that rmn−1+1(T) is a finite strong

coding tree satisfying (i) and (ii) and such that LevT(mn−1+1) satisfies (6) and (7)

of Definition 4.3, where mn−1 is the index such that dmn−1
= cn−1. As part of the

induction hypothesis, suppose also that the second lexicographically least node in

LevT(mn−1 + 1) is 0(mn−1−1)�〈1, 1〉, this being true in the base case of rm1+2(T).

Enumerate the members of LevT(mn−1 + 1) in decreasing lexicographical order as

〈sk : k < K〉. At this stage, we need to know which node sk will be extended to the

next coding node cn as this determines the set Spl(T, n). We will show how to choose

k∗ in the three cases below, so that extending sk∗
to cn will meet requirements (i)

and (ii). Once k∗ is chosen, Spl(T, n) is the set {sk : k ∈ Ksp}, where Ksp is the set

of those k < K such that for all i < n, sk(li) + sk∗
(li) ≤ 1, that is, sk and sk∗

have

no parallel 1’s at or below ln−1. Then let cn = sk∗

n

�0|Ksp|, and extend all nodes in

{sk : k < K} according to (6) and (7) in the definition of strong coding tree. We

point out that ln will equal ln−1 + |Ksp|+ 1.

There are three cases to consider regarding which k < K should be k∗.

Case 1. n = 4i or n = 4i+ 2 for some i < ω. Let n′ denote 3i if n = 4i and 3i+ 2

if n = 4i+2. In this case, Fn′ = ∅. Let k∗ = K − 2. Since sK−1 is the lexicographic

least member of LevT(mn−1 + 1), sK−1 must be 0ln−1+1. Hence, sK−2 being next

lexicographic largest implies that sK−2 = 0(ln−1−1)�〈1, 1〉. Let k∗ = K − 2. Then

any extension of sk∗
to a coding node will have passing number 1 at cn−1 and

passing number 0 at ci for all i < n− 1.

Case 2. n = 4i+1 for some 1 ≤ i < ω. If there is a pair k < m of integers in F3i+1

such that cm(lk) = 1, then again take k∗ to be K − 2. Otherwise, cm(lk) = 0 for all

pairs k < m in F3i+1. Note that i ≥ 1 implies that max(F3i+1) ≤ 3i−1 ≤ n−3. Since

by the induction hypothesis rmn−2+1(T) is a finite strong coding tree, Lemma 4.5

implies there is some t ∈ LevT(mn−3+2) such that t(lj) = 1 if and only if j ∈ F3i+1.

Let t′ be the node in 2<ω of length ln−2 + 1 which extends t by all 0’s. By our

construction, this node is in rmn−2+2(T). Since, by Case 1, cn−1 is the node of

length ln−1 extending 0ln−2−1�〈1, 1〉 by all 0’s, one sees that t′ � (ln−2 + 1) and

cn−1 � (ln−2 +1) have no parallel 1’s. Thus, t′ � (ln−2 +1) is in Spl(T, n− 1). Let k∗
be the index in K such that sk∗

is the rightmost extension of t′ in LevT(mn−1 +1).
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The Ramsey theory of the universal homogeneous triangle-free graph

Case 3. n = 4i + 3 for some i < ω. If ui �∈ rmn−3+2(T), then let k∗ = K − 2.

Otherwise, ui ∈ rmn−3+2(T). Let u
′ be the leftmost extension of ui in rmn−2+2(T)

of length ln−2 + 1. In particular, u′(ln−2 − 1) = u′(ln−2) = 0. As in Case 2, cn−1

is the node of length ln−1 such that for all l < ln−1, cn−1(l) = 1 if and only if

l ∈ {ln−2 − 1, ln−2}. Thus, u′ and cn−1 � (ln−2 + 1) have no parallel 1’s, so by the

induction hypothesis, u′ ∈ Spl(T, n − 1). Hence, there is an extension u′′ ⊇ u′ in

rmn−1+2(T) such that u′′(ln−1) = 1. Let k∗ be the index of the node u′′.

To finish the construction of T up to level ln + 1, let ln = ln−1 + |Ksp| + 1.

For each k �∈ Ksp, extend sk via all 0’s to length ln + 1. Note in each of the three

cases, k∗ is not in Ksp, since sk∗
has passing number 1 at cn−1. Thus, cn is the

extension of sk∗
by all 0’s to length ln, and its immediate extension, or passing

number by itself, is 0. Enumerate Ksp as 〈ki : i < |Ksp|〉 so that ski
>lex ski+1

for each i. Let spl(ski
) = ski

�0i; in particular, spl(sk0
) = sk0

. For each i < |Ksp|,

letting pi = |Ksp| − i, ski

�0|Ksp| and spl(ski
)
�
1�0pi−2�1 are the two extensions

of ski
in LevT(ln +1). This constructs LevT(ln +1). Notice that for each j < 2, the

t ∈ LevT(ln + 1) extending spl(ski
)�j has passing number t(ln) = j.

Let T =
⋃

i<ω LevT(i). Then T is a strong coding tree because each initial

segment rmn+1(T), n < ω, is a finite strong coding tree, and the coding nodes are

dense in T.

Fact 4.7. Any strong coding tree is a perfect tree.

Proof. Let t be any node in T , and let j be minimal such that lj ≥ |t|. Extend

t leftmost in T to the node of length lj , and label this t′. Let s = 0lj . By density

of coding nodes in T , there is a coding node ck in T extending s, with k ≥ j + 2.

Extending t′ leftmost in T to length lk−1 + 1 produces a node t′′ in T̂ which has

no parallel 1’s with ck � (lk−1 +1). Thus, t′′ ∈ Spl(T, k), so t′′ extends to a splitting

node in T before reaching the level of ck.

In particular, it follows from the definition of strong coding tree that in any

strong coding tree T , for any n < ω, the node 0ln−1 will split in T before the

level ln.

4.3. The space (T (T ),≤, r) of strong coding trees

The space of subtrees of a given strong coding tree, equipped with a strong partial

ordering, will form the fundamental structure allowing for the Ramsey theorems

in latter sections. It turns out that not every subtree of a given strong coding

tree T can be extended within T to form another strong coding tree. The notion

of valid subtree provides conditions when a finite subtree can be extended in any

desired manner within T . Some lemmas guaranteeing that finite valid subtrees of

a given strong coding tree T can be extended to any desired configuration within

T are presented at the end of this subsection. These lemmas will be very useful in
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N. Dobrinen

subsequent sections. Those familiar with topological Ramsey spaces will notice the

influence of [34] in our chosen style of presentation, the idea being that the space

of strong coding trees has a similar character to the topological Ramsey space

of Milliken’s infinite strong trees, though background in [34] is not necessary for

understanding this article.

To begin, we define a strong notion of isomorphism between meet-closed sets

by augmenting Sauer’s notion of strong similarity type from [32] to fit the present

setting. Given a subset S ⊆ 2<ω, recall that the meet closure of S, denoted S∧, is

the set of all meets of pairs of nodes in S. In this definition s and t may be equal,

so S∧ contains S. We say that S is meet-closed if S = S∧. Note that each tree is

meet-closed, but there are meet-closed sets which are not trees, as Definition 2.1 of

tree applies throughout this paper.

Definition 4.8 ([32]). S ⊆ 2<ω is an antichain if s ⊆ t implies s = t, for all

s, t ∈ S. A set S ⊆ 2<ω is transversal if |s| = |t| implies s = t for all s, t ∈ S. A set

D ⊆ 2<ω is diagonal if D is an antichain with D∧ being transversal. A diagonal set

D is strongly diagonal if additionally for any s, t, u ∈ D with s �= t, if |s ∧ t| < |u|

and s ∧ t �⊂ u, then u(|s ∧ t|) = 0.

It follows that the meet closure of any antichain of coding nodes in a strong

coding tree is strongly diagonal. In fact, strong coding trees were designed with

this property in mind.

The following augments Sauer’s [32, Definition 3.1] to the setting of trees with

coding nodes. The lexicographic order on 2<ω between two nodes s, t ∈ 2<ω, with

neither extending the other, is defined by s <lex t if and only if s ⊇ (s ∧ t)�0 and

t ⊇ (s ∧ t)�1. It is important to note that in a given strong coding tree T , each

node s at the level of a coding node cn in T has exactly one immediate extension

in T̂ . This is the unique node s+ of length ln + 1 in T̂ such that s+ ⊃ s. This fact

is used in (7) of the following definition.

Definition 4.9. Let S, T ⊆ 2<ω be meet-closed subsets of a fixed strong coding

tree T. The function f : S → T is a strong similarity of S to T if for all nodes

s, t, u, v ∈ S, the following hold:

(1) f is a bijection.

(2) f preserves lexicographic order: s <lex t if and only if f(s) <lex f(t).

(3) f preserves initial segments: s∧t ⊆ u∧v if and only if f(s)∧f(t) ⊆ f(u)∧f(v).

(4) f preserves meets: f(s ∧ t) = f(s) ∧ f(t).

(5) f preserves relative lengths: |s ∧ t| < |u ∧ v| if and only if |f(s) ∧ f(t)| <

|f(u) ∧ f(v)|.

(6) f preserves coding nodes: f maps the set of coding nodes in S onto the set of

coding nodes in T .

(7) f preserves passing numbers at coding nodes: If c is a coding node in S and

u is a node in S with |u| ≥ |c|, then (f(u))+(|f(c)|) = u+(|c|); in words, the
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The Ramsey theory of the universal homogeneous triangle-free graph

passing number of the immediate successor of f(u) at f(c) equals the passing

number of the immediate successor of u at c.

In all cases above, it may be that s = t and u = v so that (3) implies s ⊆ u if

and only if f(s) ⊆ f(u), etc. It follows from (4) that s ∈ S is a splitting node in S

if and only if f(s) is a splitting node in T . We say that S and T are strongly similar

if there is a strong similarity of S to T , and in this case write S
s
∼ T . If T ′ ⊆ T

and f is a strong similarity of S to T ′, then f is a strong similarity embedding of S

into T , and T ′ is a strong similarity copy of S in T . For A ⊆ T , let Sims
T (A) denote

the set of all subsets of T which are strongly similar to A. The notion of strong

similarity is relevant for all meet-closed subsets of a strong coding tree, including

subsets which form trees. Note that if A is a meet-closed set which is not a tree

and S = {u � |v| : u, v ∈ A and |u| ≥ |v|} is its induced tree, technically A and S

are not strongly similar. This distinction will present no difficulties.

Not only are strong coding trees perfect, but the ones constructed in the manner

of Theorem 4.6, and hence any tree with the same strong similarity type, also have

the following useful property.

Fact 4.10. Let T be constructed in the manner of Theorem 4.6, and let T be a

strong coding tree which is strongly similar to T . Then for each even integer n < ω,

each node in T of length ln splits in T before the level of cn+2.

Proof. Given a node t in T at the level of cn, if t does not already split before

the level of cn+1, then its only extension to length ln+1 + 1 has passing number

0 at cn+1; call this extension t′. Now, since n + 2 is even, the coding node cn+2

has passing number 0 at all ci, i < n + 1, and passing number 1 at cn+1. Thus,

t′ and cn+2 � (ln+1 + 1) have no parallel 1’s, so t′ splits before reaching the level

of cn+2.

Depending on how a finite subtree A of a strong coding tree T sits inside T , it

may be impossible to extend A inside of T to another strong coding tree. As a simple

example, the set of nodes A = {〈〉, 〈0, 0, 0, 0〉, 〈1, 0, 0, 1〉} in T is strongly similar to

r2(T). However A cannot be extended in T to a strong coding tree strongly similar

to T with 〈0, 0, 0, 0〉 being a splitting node. The reasons are as follows. Any such

extension A′ in T must have nodes extending 〈0, 0, 0, 0, 0, 0〉, 〈0, 0, 0, 0, 1, 1〉, and

〈1, 0, 0, 1, 0, 1〉}. The nodes 〈0, 0, 0, 0, 1, 1〉 and 〈1, 0, 0, 1, 0, 1〉 have parallel 1’s, so

the next coding node must witness them. In order to be strongly similar to r3(T),

〈0, 0, 0, 0, 1, 1〉 must be extended to the next coding node in A′, and by the TFC,

any such node is immediately succeeded by a 0, so it cannot witness the new parallel

1’s, thus failing to satisfy the Parallel 1’s Criterion.

Another potential problem is the following. Let T be a strong coding tree

and take m such that dTm is a splitting node, dTm+2 = cTn is a coding node, and

|dTm−2| > ln−1, where n ≥ 3. So, dTm is a splitting node with at least two split-

ting nodes preceding it in T and at least one splitting node proceeding it before
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N. Dobrinen

the next coding node in T . It follows by the structure of strong coding trees that

there are at least two maximal nodes in rm+1(T ) which have no parallel 1’s but

which are pre-determined to passing cTn with passing number 1, as their only ex-

tensions of length ln + 1 in T̂ both have passing number 1 at cTn . It follows that

any strong coding subtree S of T with the same initial segment as T up to level m,

i.e. rm+1(S) = rm+1(T ), is necessarily going to have rm+2(S) = rm+2(T ); for if the

splitting node dSm+1 is not equal to dTm+1, then the pre-determined new parallel 1’s

appear in rm+2(S) before the splitting node dSm+1, implying S violates the Parallel

1’s Criterion. Thus, if rm+2(S) is a finite strong coding tree end-extending rm+1(T )

into T and strongly similar to rm+2(T ), then rm+2(S) must actually equal rm+2(T ).

Clearly this is not what we want.

Definition 4.11. Let X = {xi : i < ĩ} be a level set of two or more nodes in T̂ , and

let l be their length. We say that X has no pre-determined new sets of parallel 1’s

in T if either X contains a coding node, or else for any ln > l, there are extensions

yi ⊇ xi of length ln such that the following holds: For each I ⊆ ĩ of size at least

two, if there is an l′ < ln such that yi(l
′) = 1 for all i ∈ I, then there is an l′′ < l

such that yi(l
′′) = 1 for all i ∈ I.

It in order to determine whether a level set of nodes X = {xi : i < ĩ} of

length l, not containing a coding node, has pre-determined new sets of parallel 1’s

in T , it suffices to extend the nodes in X leftmost in T̂ to nodes yi ⊇ xi of length

ln + 1, where cn is the minimal coding node in T of length greater than l: X has

no pre-determined new sets of parallel 1’s if and only if there is an l′ < l such that

{i < ĩ : xi(l
′) = 1} contains the set {i < ĩ : yi(ln) = 1}.

Definition 4.12. A subtree A, finite or infinite, of a strong coding tree T is valid

in T if each level set in A has no pre-determined new sets of parallel 1’s in T .

The point is that valid subtrees are safe to work with: They can always be

extended within the ambient strong coding tree to any desired strong similarity

type. This will be seen clearly in the lemmas at the end of the section.

We now come to the definition of the space of strong coding subtrees of a fixed

strong coding tree. Define the partial ordering ≤ on the collection of all strong

coding trees as follows: For strong coding trees S and T ,

S ≤ T ⇔ S is a valid subtree of T and S
s
∼ T. (18)

Definition 4.13 (The Space (T (T ),≤, r)). Let T be any strong coding tree.

Define T (T ) to be the collection of all strong coding trees S such that S ≤ T . As

previously defined, for m < ω, rm(S) denotes
⋃

i<m LevS(m), the initial subtree of

S containing its first m critical nodes. The restriction map r is formally a map from

ω × T (T ) which on input (m,S) produces rm(S). Let Am(T ) denote {rm(S) : S ∈

T (T )}, and let A(T ) =
⋃

m<ω Am(T ), the collection of all finite approximations to

members of T (T ).
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The Ramsey theory of the universal homogeneous triangle-free graph

For A ∈ Am(T ) and S ∈ T (T ) with A valid in S, define

[A,S] = {U ≤ S : rm(U) = A}, (19)

and define

rm+1[A,S] = {B ∈ Am+1 : rm(B) = A and B is valid in S}. (20)

Techniques for building valid subtrees of a given strong coding tree are now

developed. The next lemma provides a means for extending a particular maximal

node s in a finite subtree A of a strong coding tree T to a particular extension t

in T , and extending the rest of the maximal nodes in A to the length of t, without

introducing new sets of parallel 1’s. Let {si : i < ĩ} be some level set of nodes in a

strong coding tree T . We say that a level set of extensions {ti : i < ĩ}, where each

ti ⊇ si, adds no new sets of parallel 1’s over {si : i < ĩ} if whenever l < |t0| and

the set Il := {i < ĩ : ti(l) = 1} has cardinality at least 2, then there is an l′ < |s0|

such that {i < ĩ : si(l
′) = 0} = Il.

Lemma 4.14. Suppose T is a strong coding tree and {si : i < ĩ} is a set of two or

more nodes in T̂ of length lk + 1. Let n∗ > k, let l∗ denote ln∗
, and let t0 be any

extension of s0 in T̂ of length l∗ + 1. For each 0 < i < ĩ, let ti denote the leftmost

extension of si in T̂ of length l∗ + 1. Then the set {ti : i < ĩ} adds no new sets of

parallel 1’s over {si : i < ĩ}.

Proof. Assume the hypotheses, and suppose that there is some l < l∗ such that

the set Il = {i < ĩ : ti(l) = 1} has at least two members. Then by the Parallel

1’s Criterion, there is an n ≤ n∗ such that ti(ln) = 1 for all i < ĩ. Since for each

0 < i < ĩ, ti is the leftmost extension of si, by (6) and (7) in the definition of strong

coding tree, the passing number of ti at lj is 0, for all k < j ≤ n∗. It follows that

any n such that cn witnesses the parallel 1’s in {ti : i ∈ Il} must be less than or

equal to k.

In fact, any sets of parallel 1’s from the set {ti : i < ĩ} constructed in the

preceding lemma occur at a level below l.

Given a set of nodes S in a strong coding tree, the tree induced by S is the set

of nodes {s � |v| : s ∈ S, v ∈ S∧}. For a finite tree A, we shall use the notation

max(A) in a slightly non-standard way.

Notation 4.15. Given a finite tree A, max(A) denotes the set of terminal nodes

in A which have the maximal length of any node in A. Thus,

max(A) = {t ∈ A : t = lA}, (21)

where lA = max{|s| : s ∈ A}. Note in particular that max(A) is a level set.
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N. Dobrinen

The following lemma is immediate from finitely many applications of Lemma

4.14, using the fact that maximal nodes of valid subtrees can be extended leftmost

to any length without adding any new sets of parallel 1’s.

Lemma 4.16. Let A be a finite valid subtree of any strong coding tree T and let

l be the length of the nodes in max(A). Let Spl(u) be any nonempty level subset of

max(A), and let Z be any subset of max(A)\ Spl(u). Then given any enumeration

{zi : i < ĩ} of Spl(u) and l′ ≥ l, there is an l∗ > l′ and extensions s0i , s
1
i ⊃ zi for

all i < ĩ, and sz ⊃ z for all z ∈ Z, each of length l∗, such that, letting

X = {sji : s ∈ Spl(u), j ∈ {0, 1}} ∪ {sz : z ∈ Z}, (22)

and B be the tree induced by A ∪X, the following hold :

(1) The splitting in B above A occurs in the order of the enumeration of Spl(u).

Thus, for i < i′ < ĩ, |s0i ∧ s1i | < |s0i′ ∧ s1i′ |.

(2) B has no new sets of parallel 1’s over A.

Convention 4.17. When working within a fixed strong coding tree T , the passing

numbers at coding nodes cTn are completely determined by T . Thus, for a finite

subset A of T such that lA equals lTn for some n < ω, then saying that A satisfies

the Parallel 1’s Criterion implies that the extension A∪{s+ : s ∈ max(A)} satisfies

the Parallel 1’s Criterion.

Lemma 4.18 shows that given a valid subtree of a strong coding tree T , any

of its maximal nodes can be extended to a coding node cTk in T while the rest of

the maximal nodes can be extended to length lTk so that their passing numbers are

anything desired, subject only to the TFC. Recall that any node u in T at the level

of a coding node cTk has a unique immediate extension u+ of length lTk + 1 in T̂ ; so

there is no ambiguity to consider u+(lTk ) to be the passing number of u at ck, even

though technically u is not defined on input lTk .

Lemma 4.18 (Passing Number Choice Extension Lemma). Let T be a

strong coding tree and A be any finite valid subtree of T . Let lA denote the length

of the members of max(A) and let A+ denote the set of all members of T̂ of length

lA + 1 which extend some member of max(A). List the nodes of A+ as si, i < ĩ.

Fix any d < ĩ. For each i �= d, if si and sd have no parallel 1’s, fix any εi ∈ {0, 1};

if si and sd have parallel 1’s, let εi = 0. In particular, εd = 0.

Then for each j < ω, there is a coding node ck with k ≥ j extending sd and

extensions ui ⊇ si, i ∈ ĩ\{d}, of length lk such that the passing number of ui at

ck is εi for each i ∈ ĩ\{d}. Furthermore, the nodes ui can be chosen so that any

new parallel 1’s among {ui : i < ĩ} which were not witnessed in A are witnessed

by ck, and their first instances take place in the kth interval of T . In particular, if

A∪{si : i < ĩ} satisfies the Parallel 1’s Criterion, then A∪{ui : i < t̃} also satisfies

the Parallel 1’s Criterion, where ud = ck.
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The Ramsey theory of the universal homogeneous triangle-free graph

Proof. Assume the hypotheses of the lemma. Let j′ be such that the nodes {si :

i < ĩ} are in the j′th interval of T . For each i < ĩ, let ti be the leftmost extension

of si of length lj′ +1. Since A is a valid subtree of T , no new sets of parallel 1’s are

acquired by {ti : i < ĩ}. Let j < ω be given and take k ≥ max(j, j′ + 1) minimal

such that ck ⊇ td, and let ud = ck. Such a k exists since the coding nodes are dense

in T . For each i �= d, extend ti via its leftmost extension to the level of lk−1 + 1,

and label it t′i. By Lemma 4.14, for i �= d, no new sets of parallel 1’s are acquired

by {t′i : i ∈ ĩ\{d}} ∪ {ud � (lk−1 + 1)}. For each i �= d for which εi = 0, let ui be

the leftmost extension of t′i of length lk + 1. For i < ĩ such that εi = 1, let ui be

the rightmost extension of t′i to length lk + 1. Note that for each i < ĩ, the passing

number of ui at ck is εi.

For any I ⊆ ĩ of size at least two, if there is some l such that ui(l) = 1 for

all i ∈ I, and the least l for which this holds is greater than lA, then it must be

that ui(lk) = 1 for each i ∈ I, since no new sets of parallel 1’s are acquired among

{ui : i < ĩ} below lk−1 + 1. Thus, the set {ui : i < ĩ} satisfies the lemma. If A

satisfies the Parallel 1’s Criterion, then it is clear that A∪ {ui : i < ĩ} also satisfies

the Parallel 1’s Criterion, since all the new parallel 1’s are witnessed by the coding

node ud = ck.

The final lemma of this section combines the previous two, to show that any

finite valid subtree of a strong coding tree can be extended to another valid subtree

with any prescribed strong similarity type.

Lemma 4.19. Let A be a finite valid subtree of any strong coding tree T, and let lA
be the length of the nodes in max(A). Fix any member u ∈ max(A)+. Let Spl(u) be

any set of nodes s ∈ max(A)+ which have no parallel 1’s with u, and let Z denote

max(A)+\(Spl(u)∪{u}). Let l ≥ lA be given. Then there is an l∗ > l and extensions

u∗ ⊃ u, s0∗, s
1
∗ ⊃ s for all s ∈ Spl(u), and s∗ ⊃ s for all s ∈ Z, each of length l∗,

such that, letting

X = {u∗} ∪ {si∗ : s ∈ Spl(u), i ∈ {0, 1}} ∪ {s∗ : s ∈ Z}, (23)

and B be the tree induced by A ∪X, the following hold :

(1) u∗ is a coding node.

(2) For each s ∈ Spl(t) and i ∈ {0, 1}, the passing number of si∗ at u∗ is i.

(3) For each s ∈ Z, the passing number of s∗ at u∗ is 0.

(4) Splitting among the extensions of the s ∈ Spl(u) occurs in reverse lexicographic

order : For s and t in Spl(u), |s0∗ ∧ s1∗| < |t0∗ ∧ t1∗| if and only if s∗ >lex t∗.

(5) There are no new sets of parallel 1’s among the nodes in X until they pass the

level of the longest splitting node in B below u∗.

In particular, if A satisfies the Parallel 1’s Criterion, then so does B.

Proof. Since A is valid in T , apply Lemma 4.16 to extend max(A) to have split-

ting nodes in the desired order without adding any new sets of parallel 1’s. Then

2050012-35

J.
 M

at
h
. 
L

o
g
. 
2
0
2
0
.2

0
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 U

N
IV

E
R

S
IT

Y
 O

F
 D

E
N

V
E

R
 o

n
 0

7
/1

5
/2

1
. 
R

e-
u
se

 a
n
d
 d

is
tr

ib
u
ti

o
n
 i

s 
st

ri
ct

ly
 n

o
t 

p
er

m
it

te
d
, 
ex

ce
p
t 

fo
r 

O
p
en

 A
cc

es
s 

ar
ti

cl
es

.



N. Dobrinen

apply Lemma 4.18 to extend to a level with a coding node and passing numbers as

prescribed.

It follows from Lemma 4.19 that whenever A is a finite strong coding tree which

is valid in some strong coding tree T and strongly similar to rm(T ), then rm+1[A, T ]

is infinite. In particular, A can be extended to a strong coding tree S such that

S ≤ T .

Remark 4.20. It is straightforward to check that the space (T (T ),≤, r) of strong

coding trees satisfies Axioms A.1, A.2, and A.3(1) of Todorcevic’s axioms in [34,

Chap. 5] guaranteeing a topological Ramsey space. On the other hand, A.3(2) does

not hold, and A.4, the pigeonhole principle, holds in a modified form where the

finite subtree being extended is a valid subtree of the strong coding tree, as will

follow from Theorem 6.3. It remains open what sort of infinitary Ramsey theory in

the vein of [23] holds in (T (T ),≤, r), in terms of its Ellentuck topology.

5. Halpern–Lauchli-Style Theorems for Strong Coding Trees

The Ramsey theory content for strong coding trees begins in this section. The

ultimate goal is to obtain a Ramsey theorem for colorings of strictly similar (Def-

inition 8.3) copies of any given finite antichain of coding nodes, as these are the

structures which will code finite triangle-free graphs. This is accomplished in The-

orem 8.9. As a mid-point, we will prove a Milliken-style theorem (Theorem 6.3)

for finite trees satisfying some strong version of the Parallel 1’s Criterion. Just as

the Halpern–Läuchli theorem forms the core content of Milliken’s theorem in the

setting of strong trees, so too in the setting of strong coding trees, Halpern–Läuchli-

style theorems are proved first and then applied to obtain Milliken-style theorems

in later sections.

The main and only theorem of this section is Theorem 5.2. This general theorem

encompasses colorings of two different types of level set extensions of a fixed finite

tree: The level set either contains a splitting node (Case (a)) or a coding node

(Case (b)). In Case (a), we obtain a direct analogue of the Halpern–Läuchli theorem.

In Case (b), we obtain a weaker version of the Halpern–Läuchli theorem, which is

later strengthened to the direct analogue in Lemma 6.8.

The structure of the proof follows the basic outline of Harrington’s proof of the

Halpern–Läuchli theorem, as outlined to the author by Laver. The reader wishing

to read that proof as a warm-up is referred to [3, Sec. 2]. In the setting of strong

coding trees, new considerations arise, and new forcings have to be established

to achieve the result. The main reasons that new forcings are needed are firstly,

that there are two types of nodes, coding and splitting nodes, and secondly, that

the extensions achieving homogeneity must be extendible to a strong coding tree

valid inside the ambient tree. This second property necessitates that the extensions

be valid and satisfy the Parallel 1’s Criterion, and is responsible for the strong

definition of the partial ordering on the forcing. The former is responsible for there

2050012-36

J.
 M

at
h
. 
L

o
g
. 
2
0
2
0
.2

0
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 U

N
IV

E
R

S
IT

Y
 O

F
 D

E
N

V
E

R
 o

n
 0

7
/1

5
/2

1
. 
R

e-
u
se

 a
n
d
 d

is
tr

ib
u
ti

o
n
 i

s 
st

ri
ct

ly
 n

o
t 

p
er

m
it

te
d
, 
ex

ce
p
t 

fo
r 

O
p
en

 A
cc

es
s 

ar
ti

cl
es

.



The Ramsey theory of the universal homogeneous triangle-free graph

being Cases (a) and (b). The forcings will consist of conditions which are finite

functions with images which are certain level sets of a given tree strong coding

tree T , but the partial ordering will be stronger than the partial ordering of subtree

as branches added will have some dependence between them, so these are not simply

Cohen forcings.

Remark 5.1. Although the proof uses the set-theoretic technique of forcing, the

whole construction takes place in the original model of ZFC, not in some generic

extension. The forcing should be thought of as conducting an unbounded search for

a finite object, namely the finite set of nodes of a prescribed form where homogeneity

is attained. Thus, the result and its proof hold using only the standard axioms of

mathematics.

The following terminology and notation will be used throughout. Let T be a

strong coding tree. Given finite subtrees U, V of T , we write U � V to mean that

there is some k such that U =
⋃

m<k LevU (m) =
⋃

m<k LevV (m), and we say that

V extends U , or that U is an initial subtree of V . We write U � V if U is a proper

initial subtree of V . Recall from Definition 4.13 that S ≤ T means that S is a valid

subtree of T which is strongly similar to T , and hence also a strong coding tree.

Given a finite strong coding tree B, [B, T ] denotes the set of all S ≤ T such that

S extends B. A set X ⊆ T̂ is a level set if all nodes in X have the same length.

For level sets X,Y we shall also say that Y extends X if X and Y have the same

number of nodes and each node in X is extended by a unique node in Y . For level

sets Y = {yi : i ≤ d} and X = {xi : i ≤ d} with yi ⊇ xi for each i ≤ d, we say

that Y has no new sets of parallel 1’s over X if for each I ⊆ d+ 1 for which there

is an l such that yi(l) = 1 for each i ∈ I, then there is an l′ such that xi(l
′) = 1 for

each i ∈ I. For any tree U ⊆ T̂ and any l < ω , let U � l denote the set of s ∈ Û

such that |s| = l. A set of two or more nodes {xi : i ∈ I} in T̂ is said to have first

parallel 1’s at level l if l is least such that xi(l) = 1 for all i ∈ I.

For each s ∈ T̂ , if i ∈ {0, 1} and s�i is in T̂ , then we say that s�i is an

immediate extension of s in T . Thus, splitting nodes in T have two immediate

extensions in T , and non-splitting nodes, including every node at the level of a

coding node, have exactly one immediate extension in T . For a non-splitting node

s in T , we let s+ denote the immediate extension of s in T . Given a finite subtree

A of T , let lA denote the maximum of the lengths of members of A, and let max(A)

denote the set of all nodes in A with length lA. Let A
+ denote the set of immediate

extensions in T̂ of the members of max(A):

A+ = {s�i : s ∈ max(A), i ∈ {0, 1}, and s�i ∈ T̂}. (24)

Note that A+ is a level set of nodes of length lA + 1.

We now provide the set-up for the two cases before stating the theorem.

The Set-up for Theorem 5.2. Let T be a fixed strong coding tree, and let T ≤ T

be given. Let A be a finite valid subtree of T satisfying the Parallel 1’s Criterion.
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N. Dobrinen

It is fine for A to have terminal nodes at different levels, indeed, we need to allow

this for the intended applications later. Without loss of generality, and to simplify

the presentation of the proof, assume that 0lA is in A. Let Ae be a subset of A+

containing 0lA+1 and of size at least two. Let C be a finite valid subtree of T

containing A such that C satisfies the Parallel 1’s Criterion and the collection of

all nodes in C not in A, denoted C\A, forms a level set extending Ae. Assume

moreover that 0lC is the node in C extending 0lA+1, where lC is the length of the

nodes in C\A. The two cases are the following:

Case (a) C\A contains a splitting node.

In Case (a), define ExtT (A,C) to be the collection of all level sets X ⊆ T

extending Ae such that A ∪ X
s
∼ C and A ∪ X is valid in T . We point out that

A ∪ X being valid in T is equivalent to X having no pre-determined new parallel

1’s. It will turn out to be necessary to require this of X , and the extensions for

which the coloring is relevant will have this property anyway.

Case (b) C\A contains a coding node.

In Case (b), define ExtT (A,C) to be the collection of all level sets X ⊆ T

extending Ae such that A ∪ X
s
∼ C. Since X contains a coding node, A ∪ X is

automatically valid in T . Recalling (7) of Definition 4.9, A ∪X
s
∼ C implies that,

letting f : A ∪ X → C be the strong similarity map, for each x ∈ X the passing

number of x+ at the coding node in X equals the passing number of (f(x))+ at the

coding node in C\A. Given any X ∈ ExtT (A,C), let ExtT (A,C;X) denote the set

of Y ∈ ExtT (A,C) such that Y extends X .

In both cases, A∪X
s
∼ C implies that A∪X satisfies the Parallel 1’s Criterion.

Theorem 5.2. Let T ≤ T be any strong coding tree and let B be a finite strong

coding tree valid in T . Let A � C be finite valid subtrees of T such that both A and

C satisfy the Parallel 1’s Criterion, A is a subtree of B, C\A is a level set of size

at least two, and 0lC ∈ C. Further, assume that the nodes in C\A extend nodes

in max(A) ∩max(B). Let Ae denote the set of nodes in A+ which are extended to

nodes in C\A.

In Case (a), given any coloring h : ExtT (A,C) → 2, there is a strong coding

tree S ∈ [B, T ] such that h is monochromatic on ExtS(A,C).

In Case (b), suppose X ∈ ExtT (A,C) and m0 are given for which there is a

B′ ∈ rm0
[B, T ] with X ⊆ max(B′). Then for any coloring h : ExtT (A,C) → 2

there is a strong coding tree S ∈ [rm0−1(B
′), T ] such that h is monochromatic on

ExtS(A,C;X).

Proof. Let T,A,Ae, B, C be given satisfying the hypotheses of either Case (a)

or (b), and let h : ExtT (A,C) → 2 be a given coloring. Let d+ 1 equal the number

of nodes in Ae. List the nodes of Ae as s0, . . . , sd, letting sd denote the node of Ae

that is extended to the critical node in C\A: a splitting node in Case (a) and a

coding node in Case (b). For each i ≤ d, let ti denote the node in max(C) which
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The Ramsey theory of the universal homogeneous triangle-free graph

extends si. In particular, td denotes the splitting or coding node in max(C). Let i0
denote the integer such that si0 is the node of Ae which is a sequence of 0’s. Then

ti0 is the sequence of all 0’s in C\A. Notice that i0 can equal d only if we are in

Case (a) and moreover the splitting node in C\A is a sequence of 0’s. In Case (b),

the following notation will be used: For each i ≤ d, t+i denotes the member in

max(C)+ extending ti. Let I0 denote the set of all i < d such that t+i (|td|) = 0 and

let I1 denote the set of all i < d such that t+i (|td|) = 1.

Let L denote the collection of all l < ω such that there is a member of ExtT (A,C)

with maximal nodes of length l. L is infinite since B is valid in T . In Case (a), L is

exactly the set of all l < ω for which there is a splitting node of length l extending

sd, and in Case (b), L is exactly the set of all l < ω for which there is a coding node

of length l extending sd, as this follows from the validity of B in T and Lemma 4.18.

For each i ∈ (d + 1)\{i0}, let Ti = {t ∈ T : t ⊇ si}; let Ti0 = {t ∈ T : t ⊇ si0 and

t ∈ 0<ω}, the collection of all leftmost nodes in T extending si0 .

Let κ = �2d. The following forcing notion P adds κ many paths through Ti,

for each i ∈ d\{i0}, and one path through Td. If i0 �= d, then P will add one path

through Ti0 , though allowing κ many ordinals to label this path in order to simplify

notation.

Case (a) P is the set of conditions p such that p is a function of the form

p : (d× �δp) ∪ {d} → T � lp,

where �δp ∈ [κ]<ω and lp ∈ L, such that

(i) p(d) is the splitting node extending sd of length lp;

(ii) For each i < d, {p(i, δ) : δ ∈ �δp} ⊆ Ti � lp; and

(iii) {p(i, δ) : (i, δ) ∈ d× �δp} ∪ {p(d)} has no pre-determined new parallel 1’s.

Case (b) P is the set of conditions p such that p is a function of the form

p : (d× �δp) ∪ {d} → T � lp,

where �δp ∈ [κ]<ω and lp ∈ L, such that

(i) p(d) is the coding node extending sd of length lp;

(ii) For each i < d, {p(i, δ) : δ ∈ �δp} ⊆ Ti � lp.

(iii) For each δ ∈ �δp, j ∈ {0, 1}, and i ∈ Ij , the immediate extension of p(i, δ) in T

is j; that is, the passing number of (p(i, δ))+ at p(d) is j.

In both Cases (a) and (b), the partial ordering on P is defined as follows: q ≤ p

if and only if lq ≥ lp, �δq ⊇ �δp, and

(i) q(d) ⊇ p(d), and q(i, δ) ⊇ p(i, δ) for each (i, δ) ∈ d× �δp;

(ii) The set {q(i, δ) : (i, δ) ∈ d × �δp} ∪ {q(d)} has no new sets of parallel 1’s over

{p(i, δ) : (i, δ) ∈ d× �δp} ∪ {p(d)}.
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N. Dobrinen

Given p ∈ P, we shall use ran(p) to denote the range of p, {p(i, δ) : (i, δ) ∈

d × �δp} ∪ {p(d)}. If p, q are members of P, we shall use the abbreviation q has no

new parallel 1’s over p to mean that ran(q) has no new sets of parallel 1’s over

ran(p).

The proof of the theorem proceeds in three parts. Part I proves that P is an

atomless partial order. Part II proves Lemma 5.3 which is the main tool for building

fusion sequences while preserving homogeneity. This is applied in Part III to build

the tree S which is valid in T and such that ExtS(A,C) is homogeneous for h in

Case (a), and ExtS(A,C;X) is homogeneous for h in Case (b). For the first two

parts of the proof, we present a general proof, indicating the steps at which the

two cases require different approaches. Part III will require the cases to be handled

separately.

Part I. P is an atomless partial ordering.

Claim 1. (P,≤) is a partial ordering.

Proof. The order≤ on P is clearly reflexive and antisymmetric. Transitivity follows

from the fact that the requirement (ii) is a transitive property. If p ≥ q and q ≥ r,

then �δp ⊆ �δq ⊆ �δr and lp ≤ lq ≤ lr. Since r has no new sets of parallel 1’s over

q and q has no new sets of parallel 1’s over p, it follows that r has no new sets of

parallel 1’s over p. Thus, p ≥ r.

We show that P is atomless by proving the following stronger claim.

Claim 2. For each p ∈ P and l > lp, there are q, r ∈ P with lq, lr > l such that

q, r < p and q and r are incompatible.

Proof. Let p ∈ P and l > lp be given, and let �δr = �δq = �δp.

In Case (a), take q(d) and r(d) to be incomparable splitting nodes in T extending

p(d) to some lengths greater than l. Such splitting nodes exist since strong coding

trees are perfect. Let lq = |q(d)| and lr = |r(d)|. For each (i, δ) ∈ d× �δp, let q(i, δ)

be the leftmost extension (in T ) of p(i, δ) to length lq, and let r(i, δ) be the leftmost

extension of p(i, δ) to length lr. Then q and r have no pre-determined new parallel

1’s, since ran(p) has no pre-determined new parallel 1’s and all nodes except q(d)

and r(d) are leftmost extensions in T of members of ran(p); so q and r are members

of P. By Lemma 4.14, both q and r have no new parallel 1’s over p, so q, r ≤ p.

Since neither of q(d) and r(d) extends the other, q and r are incompatible.

In Case (b), let s be a splitting node in T of length greater than l extending

p(d). Let cTk be the least coding node in T above s. Let s0, s1 extend s�0, s�1

leftmost in T to the level of cTk , respectively. For each (i, δ) ∈ d × �δp, let p′(i, δ)

be the leftmost extension in T of p(i, δ) of length lTk . By Lemma 4.18, there are

q(d) ⊇ s0 and q(i, δ) ⊇ p′(i, δ), (i, δ) ∈ d× �δp, such that

(1) q(d) is a coding node;
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The Ramsey theory of the universal homogeneous triangle-free graph

(2) q has no new parallel 1’s over p;

(3) For each j < 2, i ∈ Ij if and only if the immediate extension of q(i, δ) is j.

Then q ∈ P and q ≤ p. Likewise by Lemma 4.18, we may extend {p′(i, δ) : (i, δ) ∈

d × �δp} ∪ {s1} to {r(i, δ) : (i, δ) ∈ d × �δp} ∪ {r(d)} to form a condition r ∈ P

extending p. Since the coding nodes q(d) and r(d) are incomparable, q and r are

incompatible conditions in P.

From now on, whenever ambiguity will not arise by doing so, we will refer to the

splitting node in Case (a) and the coding node in Case (b) simply as the critical

node.

Let ḃd be a P-name for the generic path through Td; that is, ḃd = {〈p(d), p〉 :

p ∈ P}. Note that for each p ∈ P, p forces that ḃd � lp = p(d). By Claim 2, it is

dense to force a critical node in ḃd above any given level in T , so 1P forces that the

set of levels of critical nodes in ḃd is infinite. Thus, given any generic filter G for P,

ḃGd = {p(d) : p ∈ G} is a cofinal path of critical nodes in Td. Let L̇d be a P-name

for the set of lengths of critical nodes in ḃd. Note that 1P � L̇d ⊆ L. Let U̇ be a

P-name for a non-principal ultrafilter on L̇d. For each i < d and α < κ, let ḃi,α be

a P-name for the αth generic branch through Ti; that is, ḃi,α = {〈p(i, α), p〉 : p ∈ P

and α ∈ �δp}. For i < d and for any condition p ∈ P and α ∈ �δp, p forces that

ḃi,α � lp = p(i, α).

For ease of notation, we shall write sets {αi : i < d} in [κ]d as vectors �α =

〈α0, . . . , αd−1〉 in strictly increasing order. For �α = 〈α0, . . . , αd−1〉 ∈ [κ]d, rather

than writing out 〈ḃ0,α0
, . . . , ḃd−1,αd−1

, ḃd〉 each time we wish to refer to these generic

branches, we shall simply

let ḃ�α denote 〈ḃ0,α0
, . . . , ḃd−1,αd−1

, ḃd〉, (25)

since the branch ḃd being unique causes no ambiguity. For any l < ω,

let ḃ�α � l denote {ḃi,αi
� l : i < d} ∪ {ḃd � l}. (26)

Using the abbreviations just defined, h is a coloring on sets of nodes of the form

ḃ�α � l whenever this is forced to be a member of ExtT (A,C).

Part II. The goal now is to prove Claims 3 and 4 and Lemma 5.3. To sum up,

they secure that there are infinite pairwise disjoint sets Ki ⊆ κ for i < d, and a

set of conditions {p�α : �α ∈
∏

i<d Ki} which are compatible, have the same images

in T , and such that for some fixed ε∗ ∈ {0, 1}, for each �α ∈
∏

i<d K
′
i, p�α forces

h(ḃ�α � l) = ε∗ for ultrafilter many l ∈ L̇d. Moreover, we will find nodes t∗i , i ≤ d,

such that for each �α ∈
∏

i<d Ki, p�α(i, αi) = t∗i . Lemma 5.3 will enable fusion

processes for constructing S with one color on ExtS(A,C) in Part III. There are

no differences between the arguments for Cases (a) and (b) in Part II.

For each �α ∈ [κ]d, choose a condition p�α ∈ P such that

(1) �α ⊆ �δp�α
.

(2) {p�α(i, αi) : i < d} ∪ {p(d)} ∈ ExtT (A,C).
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N. Dobrinen

(3) p�α � “There is an ε ∈ 2 such that h(ḃ�α � l) = ε for U̇ many l in L̇d.”

(4) p�α decides a value for ε, call it ε�α.

(5) h({p�α(i, αi) : i < d} ∪ {p(d)}) = ε�α.

Properties (1)–(5) can be guaranteed as follows. Recall that for i ≤ d, ti denotes

the member of C\A extending si. For each �α ∈ [κ]d, let

p0�α = {〈(i, δ), ti〉 : i < d, δ ∈ �α} ∪ {〈d, td〉}.

Then p0�α is a condition in P, �δp0
�α

= �α, so (1) holds. Further, {p0�α(i, αi) : i <

d} ∪ {p0�α(d)} is a member of ExtT (A,C) since it is exactly C\A. It is important to

note that for any p ≤ p0�α, {p(i, αi) : i < d}∪{p(d)} is also a member of ExtT (A,C),

as this follows from the fact that {p(i, δ) : (i, δ) ∈ d × �δp0
�α
} ∪ {p(d)} has no new

sets of parallel 1’s over the image of p0�α. Thus (2) holds for any p ≤ p0�α. Take an

extension p1�α ≤ p0�α which forces h(ḃ�α � l) to be the same value for U̇ many l ∈ L̇d,

giving (3). For Property (4), since P is a forcing notion, there is a p2�α ≤ p1�α deciding

a value ε�α for which p2�α forces that h(ḃ�α � l) = ε�α for U̇ many l in L̇d. If p
2
�α forces

h(ḃ�α � lp2
�α
) = ε�α, then let p�α = p2�α.

If not, take some p3�α ≤ p2�α which decides some l ∈ L̇ such that lp2
�α
< lTn < l ≤ lp3

�α
,

for some n, and p3�α forces h(ḃ�α � l) = ε�α. Since p3�α forces “ḃ�α � l = {p3�α(i, αi) � l : i <

d} ∪ {p3�α(d) � l}” and h is defined in the ground model, this means that p3�α(d) � l is

a splitting node in Case (a) and a coding node in Case (b), and

h(X(p3�α) � l) = ε�α, (27)

where X(p3�α) � l denotes {p3�α(i, αi) � l : i < d} ∪ {p3�α(d) � l}. If l = lp3
�α
, let p�α = p3�α,

and note that p�α satisfies (1)–(5).

Otherwise, l < lp3
�α
. In Case (a), let p�α be defined as follows: Let �δ�α = �δp2

�α
and

∀(i, δ) ∈ d× �δ�α, let p�α(i, δ) = p3�α(i, δ) � l and let p�α(d) = p3�α(d) � l. (28)

Since p3�α is a condition in P, ran(p3�α) is free in T . Furthermore, p3�α ≤ p2�α implies

that ran(p3�α ��δp2
�α
) has no new sets of parallel 1’s over ran(p2�α). Therefore, p�α is a

condition in P with p�α ≤ p2�α satisfying (1)–(5).

In Case (b), construct p�α as follows: Again, let �δ�α = �δp2
�α
. For each i < d, define

p�α(i, αi) = p3�α(i, αi) � l, and let p�α(d) = p3�α(d) � l. Letting X = {p3�α(i, αi) � l : i <

d} ∪ {p3�α(d) � l}, then h(X) = ε�α. Let U denote {p2�α(i, αi) � l : i < d} ∪ {p2�α(d) � l}

and let U ′ = ran(p2�α)\U . Note that X end-extends U , and X is valid in T and has

no new sets of parallel 1’s over U . By Lemma 4.18, there is an X ′ end-extending U ′

to nodes in T � l so that X ∪X ′ has no new sets of parallel 1’s over U ∪U ′, and each

node in X ′ has the same passing number at l as it does at lp2
�α
. Let ran(p�α) = X∪X ′,

where for each i < d and (i, δ) ∈ d× �δp3
�α
with δ �= αi, we let p�α(i, δ) be the node in

Y ′ extending p3�α(i, δ). This defines a condition p�α ≤ p2�α satisfying (1)–(5).

Since {p�α(i, αi) : i < d} ∪ {p�α(d)} is what p�α forces ḃ�α � l to be, it follows that

p�α forces h({p�α(i, αi) : i < d} ∪ {p�α(d)}) = ε�α, so (5) holds.
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The Ramsey theory of the universal homogeneous triangle-free graph

Now, we prepare for an application of the Erdős–Rado theorem (recall The-

orem 2.4). We are assuming κ = �2d, which is at least �2d−1(ℵ0)
+, so that

κ → (ℵ1)
2d
ℵ0
. Given two sets of ordinals J,K we shall write J < K if every

member of J is less than every member of K. Let De = {0, 2, . . . , 2d − 2} and

Do = {1, 3, . . . , 2d − 1}, the sets of even and odd integers less than 2d, respec-

tively. Let I denote the collection of all functions ι : 2d → 2d such that ι �De

and ι �Do are strictly increasing sequences and {ι(0), ι(1)} < {ι(2), ι(3)} < · · · <

{ι(2d − 2), ι(2d − 1)}. Thus, each ι codes two strictly increasing sequences ι �De

and ι �Do, each of length d. For �θ ∈ [κ]2d, ι(�θ ) determines the pair of sequences of

ordinals (θι(0), θι(2), . . . , θι(2d−2)), (θι(1), θι(3), . . . , θι(2d−1)), both of which are mem-

bers of [κ]d. Denote these as ιe(�θ ) and ιo(�θ ), respectively. To ease notation, let �δ�α
denote �δp�α

, k�α denote |�δ�α|, and let l�α denote lp�α
. Let 〈δ�α(j) : j < k�α〉 denote the

enumeration of �δ�α in increasing order.

Define a coloring f on [κ]2d into countably many colors as follows: Given �θ ∈

[κ]2d and ι ∈ I, to reduce the number of subscripts, letting �α denote ιe(�θ ) and �β

denote ιo(�θ ), define

f(ι, �θ ) = 〈ι, ε�α, k�α, p�α(d), 〈〈p�α(i, δ�α(j)) : j < k�α〉 : i < d〉,

〈〈i, j〉 : i < d, j < k�α, and δ�α(j) = αi〉, (29)

〈〈j, k〉 : j < k�α, k < k�β
, δ�α(j) = δ�β(k)〉.

Let f(�θ ) be the sequence 〈f(ι, �θ ) : ι ∈ I〉, where I is given some fixed ordering.

Since the range of f is countable, apply the Erdős–Rado theorem to obtain a subset

K ⊆ κ of cardinality ℵ1 which is homogeneous for f . Take K ′ ⊆ K such that

between each two members of K ′ there is a member of K and min(K ′) > min(K).

Take subsets Ki ⊆ K ′ such that K0 < · · · < Kd−1 and each |Ki| = ℵ0.

Claim 3. There are ε∗ ∈ 2, k∗ ∈ ω, td, and 〈ti,j : j < k∗〉, i < d, such that for all

�α ∈
∏

i<d Ki and each i < d, ε�α = ε∗, k�α = k∗, p�α(d) = td, and 〈p�α(i, δ�α(j)) : j <

k�α〉 = 〈ti,j : j < k∗〉.

Proof. Let ι be the member in I which is the identity function on 2d. For any

pair �α, �β ∈
∏

i<d Ki, there are �θ, �θ′ ∈ [K]2d such that �α = ιe(�θ ) and �β = ιe(�θ
′ ).

Since f(ι, �θ ) = f(ι, �θ′ ), it follows that ε�α = ε�β , k�α = k�β
, p�α(d) = p�β(d), and

〈〈p�α(i, δ�α(j)) : j < k�α〉 : i < d〉 = 〈〈p�β(i, δ�β(j)) : j < k�β
〉 : i < d〉. Thus, define ε∗,

k∗, td, 〈〈ti,j : j < k∗〉 : i < d〉 to be ε�α, k�α, p�α(d), 〈〈p�α(i, δ�α(j)) : j < k�α〉 : i < d〉

for any �α ∈
∏

i<d Ki.

Let l∗ denote the length of td. Then all the nodes ti,j , i < d, j < k∗, also have

length l∗.

Claim 4. Given any �α, �β ∈
∏

i<d Ki, if j, k < k∗ and δ�α(j) = δ�β(k), then j = k.
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N. Dobrinen

Proof. Let �α, �β be members of
∏

i<dKi and suppose that δ�α(j) = δ�β(k) for some

j, k < k∗. For each i < d, let ρi be the relation from among {<,=, >} such that

αi ρi βi. Let ι be the member of I such that for each �γ ∈ [K]d and each i < d,

θι(2i) ρi θι(2i+1). Then there is a �θ ∈ [K ′]2d such that ιe(�θ) = �α and ιo(�θ) = �β.

Since between any two members of K ′ there is a member of K, there is a �γ ∈ [K]d

such that for each i < d, αi ρi γi and γi ρi βi, and furthermore, for each i < d − 1,

{αi, βi, γi} < {αi+1, βi+1, γi+1}. Given that αi ρi γi and γi ρi βi for each i < d,

there are �µ, �ν ∈ [K]2d such that ιe(�µ) = �α, ιo(�µ) = �γ, ιe(�ν) = �γ, and ιo(�ν) = �β.

Since δ�α(j) = δ�β(k), the pair 〈j, k〉 is in the last sequence in f(ι, �θ). Since f(ι, �µ) =

f(ι, �ν) = f(ι, �θ), also 〈j, k〉 is in the last sequence in f(ι, �µ) and f(ι, �ν). It follows

that δ�α(j) = δ�γ(k) and δ�γ(j) = δ�β(k). Hence, δ�γ(j) = δ�γ(k), and therefore j must

equal k.

For any �α ∈
∏

i<d Ki and any ι ∈ I, there is a �θ ∈ [K]2d such that �α = ιo(�θ).

By homogeneity of f and by the first sequence in the second line of equation (29),

there is a strictly increasing sequence 〈ji : i < d〉 of members of k∗ such that for

each �α ∈
∏

i<d Ki, δ�α(ji) = αi. For each i < d, let t∗i denote ti,ji . Then for each

i < d and each �α ∈
∏

i<d Ki,

p�α(i, αi) = p�α(i, δ�α(ji)) = ti,ji = t∗i . (30)

Let t∗d denote td.

Lemma 5.3. For any finite subset �J ⊆
∏

i<d Ki, the set of conditions {p�α : �α ∈ �J }

is compatible. Moreover, p �J
:=

⋃
{p�α : �α ∈ �J } is a member of P which is below

each p�α, �α ∈ �J .

Proof. For any �α, �β ∈
∏

i<d Ki, whenever j, k < k∗ and δ�α(j) = δ�β(k), then j = k,

by Claim 4. It then follows from Claim 3 that for each i < d,

p�α(i, δ�α(j)) = ti,j = p�β(i, δ�β(j)) = p�β(i, δ�β(k)). (31)

Thus, for each �α, �β ∈ �J and each δ ∈ �δ�α ∩ �δ�β , for all i < d,

p�α(i, δ) = p�β(i, δ). (32)

Thus, p �J
:
⋃
{p�α : �α ∈ �J} is a function. Let �δ�J

=
⋃
{�δ�α : �α ∈ �J }. For each δ ∈ �δ�J

and i < d, p �J
(i, δ) is defined, and it is exactly p�α(i, δ), for any �α ∈ �J such that

δ ∈ �δ�α. Thus, p �J
is a member of P, and p �J

≤ p�α for each �α ∈ �J .

We conclude this section with a general claim which will be useful in Part III.

Claim 5. If β ∈
⋃

i<d Ki, �α ∈
∏

i<d Ki, and β �∈ �α, then β is not a member of �δ�α.

Proof. Suppose toward a contradiction that β ∈ �δ�α. Then there is a j < k∗ such

that β = δ�α(j). Let i be such that β ∈ Ki. Since β �= αi = δ�α(ji), it must be
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The Ramsey theory of the universal homogeneous triangle-free graph

that j �= ji. However, letting �β be any member of
∏

i<d Ki with βi = β, then

β = δ�β(ji) = δ�α(j), so Claim 4 implies that ji = j, a contradiction.

Part III. In this last part of the proof, we build a strong coding tree S valid in

T on which the coloring h is homogeneous. Cases (a) and (b) are now handled

separately.

Part III Case (a). Recall that {si : i ≤ d} enumerates the members of Ae, which

is a subset of B+. Let s−d denote sd � lA, and let id ∈ {0, 1} be such that sd = s−d
�
id.

Let m′ be the integer such that B ∈ Am′(T ). Let σ denote the strong similarity

map from B onto rm′(T), and let M = {mj : j < ω} be the strictly increasing

enumeration of those m > m′ such that the splitting node in max(rm(T)) extends

σ(s−d )
�
id. We will find Um0

∈ rm0
[B, T ] and in general, Umj+1

∈ rmj+1
[Umj

, T ] so

that for each j < ω, h takes color ε∗ on ExtUmj
(A,C). Then setting S =

⋃
j<ω Umj

will yield S to be a member of [B, T ] for which ExtS(A,C) is homogeneous for h,

with color ε∗.

First extend each node in B+ to level l∗ as follows. Recall that for each i ≤ d,

t∗i ⊇ ti, so the set {t∗i : i ≤ d} extends Ae. For each node u in B+\Ae, let u
∗ denote

its leftmost extension in T � l∗. Then the set

U∗ = {t∗i : i ≤ d} ∪ {u∗ : u ∈ B+\Ae} (33)

extends each member of B+ to a unique node. Furthermore, by the choice of p0�α
for each α ∈ [K]d and the definition of the partial ordering on P, it follows that

the set {t∗i : i ≤ d} has no new sets of parallel 1’s over Ae. Since the nodes u∗

are leftmost extensions of members of B+\Ae and B is valid in T , it follows from

Lemma 4.14 that U∗ has no new sets of parallel 1’s over B. Furthermore, U∗ has

no pre-determined new sets of parallel 1’s, by (iii) in the definition of the partial

ordering P for Case (a). Thus, B∪U∗ satisfies the Parallel 1’s Criterion and is valid

in T . If m0 = m′ + 1, then let Um′+1 = B ∪ U∗ and extend Um′+1 to a member

Um1−1 ∈ rm1−1[Um′+1, T ]. If m0 > m′ + 1, apply Lemma 4.19 to extend above U∗

to construct a member Um0−1 ∈ rm0−1[B, T ]. In this case, max(rm′+1(Um0
)) is not

U∗, but rather max(rm′+1(Um0
)) extends U∗.

Assume j < ω and we have constructed Umj−1 so that every member of

ExtUmj−1
(A,C) is colored ε∗ by h. Fix some Yj ∈ rmj

[Umj−1, T ] and let Vj de-

note max(Yj). The nodes in Vj will not be in the tree S we are constructing; rather,

we will extend the nodes in Vj to construct Umj
∈ rmj

[Umj−1, T ].

We now start to construct a condition q which will satisfy Claim 9. Let q(d)

denote the splitting node in Vj and let lq = |q(d)|. For each i < d for which si and

sd do not have parallel 1’s, let Zi denote the set of all v ∈ Ti ∩ Vj such that v and

q(d) have no parallel 1’s. For each i < d for which si and sd do have parallel 1’s,

let Zi = Ti ∩ Vj . For each i < d, take a set Ji ⊆ Ki of cardinality |Zi| and label

the members of Zi as {zα : α ∈ Ji}. Notice that each member of ExtT (A,C) above

Vj extends some set {zαi
: i < d} ∪ {q(d)}, where each αi ∈ Ji. Let �J denote the
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N. Dobrinen

set of those 〈α0, . . . , αd−1〉 ∈
∏

i<d Ji such that the set {zαi
: i < d} ∪ {q(d)} is in

ExtT (A,C). Notice that for each i < d, Ji = {αi : �α ∈ �J}, since each node in Zi is

in some member of ExtT (A,C): Extending all the other t∗j (j �= i) via their leftmost

extensions in T to length lq, along with q(d), constructs a member of ExtT (A,C).

By Lemma 5.3, the set {p�α : �α ∈ �J} is compatible. The fact that p �J
is a condition

in P will be used to make the construction of q very precise.

Let �δq =
⋃
{�δ�α : �α ∈ �J}. For each i < d and α ∈ Ji, define q(i, α) = zα. Notice

that for each �α ∈ �J and i < d,

q(i, αi) ⊇ t∗i = p�α(i, αi) = p �J
(i, αi), (34)

and

q(d) ⊇ t∗d = p�α(d) = p �J
(d). (35)

For each i < d and γ ∈ �δq\Ji, there is at least one �α ∈ �J and some k < k∗ such

that δ�α(k) = γ. Let q(i, γ) be the leftmost extension of p �J
(i, γ) in T of length lq.

Define

q = {q(d)} ∪ {〈(i, δ), q(i, δ)〉 : i < d, δ ∈ �δq}. (36)

Claim 6. For all �α ∈ �J , q ≤ p�α.

Proof. Given �α ∈ �J , it follows from the definition of q that �δq ⊇ �δ�α, q(d) ⊇ p�α(d),

and for each pair (i, γ) ∈ d×�δ�α, q(i, γ) ⊇ p�α(i, γ). So it only remains to show that q

has no new sets of parallel 1’s over p�α. It follows from Claim 5 that �δ�α ∩
⋃

i<d Ki =

�α. Hence, for each i < d and γ ∈ �δ�α\{αi}, q(i, γ) is the leftmost extension of

p�α(i, γ). Since �α is in �J , {q(i, αi) : i < d} ∪ {q(d)} is in ExtT (A,C) by definition

of �J . This implies that {q(i, αi) : i < d} ∪ {q(d)} has no new parallel 1’s over A,

as this set union A must be strongly similar to C which satisfies the Parallel 1’s

Criterion, and since the critical node in C\A is a splitting node, C\A has no new

parallel 1’s over A. It follows that {q(i, δ) : (i, δ) ∈ d× δ ∈ �δ�α} ∪ {q(d)} has no new

parallel 1’s over {p�α(i, δ) : (i, δ) ∈ d× δ ∈ �δ�α} ∪ {p�α(d)}. Therefore, q ≤ p�α.

Remark 5.4. Notice that we did not prove that q ≤ p �J
. That will be blatantly

false for all large enough j, as the union of the sets Zi, i < d, composed from Vj

will have many new sets of parallel 1’s over p �J
. This is one fundamental difference

between the forcings being used for this theorem and the forcings adding κ many

Cohen reals used in Harrington’s proof of the Halpern–Läuchli theorem.

To construct Umj
, take an r ≤ q in P which decides some lj in L̇d for which

h(ḃ�α � lj) = ε∗, for all �α ∈ �J . This is possible since for all �α ∈ �J , p�α forces h(ḃ�α � l) =

ε∗ for U̇ many l ∈ L̇d. Without loss of generality, we may assume that the nodes

in the image of r have length lj . Notice that since r forces ḃ�α � lj = {r(i, αi) : i <

d}∪{r(d)} for each �α ∈ �J , and since the coloring h is defined in the ground model,

it is simply true in the ground model that h({r(i, αi) : i < d}∪{r(d)}) = ε∗ for each
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The Ramsey theory of the universal homogeneous triangle-free graph

�α ∈ �J . Extend the splitting node q(d) in Vj to r(d). For each i < d and αi ∈ Ji,

extend q(i, αi) to r(i, αi). Let V
−
j denote Vj\({q(i, αi) : i < d, αi ∈ Ji} ∪ {q(d)}).

For each node v in V −
j , let v∗ be the leftmost extension of v in T � lj. Let

Umj
= Umj−1 ∪ {r(d)} ∪ {r(i, αi) : i < d, αi ∈ Ji} ∪ {v∗ : v ∈ V −

j }. (37)

Claim 7. Umj
∈ rmj

[Umj−1, T ] and every X ∈ ExtUmj
(A,C) with max(X) ⊆

max(Umj
) satisfies h(X) = ε∗.

Proof. Recall that Umj−1 � Yj are both valid in T . Since r ≤ q, it follows that

{r(i, δ) : (i, δ) ∈ d × �δq} ∪ {r(d)} has no new sets of parallel 1’s over {q(i, δ) :

(i, δ) ∈ d× �δq} ∪ {q(d)}, which is a subset of Vj . All other nodes in max(Umj
) are

leftmost extensions of nodes in Vj . Thus, max(Umj
) extends Vj and has no new sets

of parallel 1’s over Vj , so Umj

s
∼ rmj

(T). Further, max(Umj
) has no pre-determined

new parallel 1’s since r ∈ P. It follows that Umj
∈ rmj

[Umj−1, T ].

For each X ∈ ExtUmj
(A,C) with X ⊆ max(Umj

), the truncation A∪ {x � lq :

x ∈ X} is a member of ExtYj
(A,C). Thus, there corresponds a sequence �α ∈ �J

such that {x � lq : x ∈ X} = {q(i, αi) : i < d} ∪ {q(d)}. Then X = {r(i, αi) : i <

d} ∪ {r(d)}, which has h-color ε∗.

Let S =
⋃

j<ω Umj
. For each X ∈ ExtS(A,C), there corresponds a j < ω such

that X ∈ ExtUmj
(A,C) and X ⊆ max(Umj

). By Claim 10, h(X) = ε∗. Thus,

S ∈ [B, T ] and satisfies the theorem. This concludes the proof of the theorem for

Case (a).

Part III Case (b). Let X ∈ ExtT (A,C) and m0 be given such that there is a

B′ ∈ rm0
[B, T ] with X ⊆ max(B′). Let Um0−1 denote rm0−1(B

′). We will build an

S ∈ [Um0−1, T ] such that every member of ExtS(A,C;X) has the same h-color. Let

nB′ be the index such that cTnB′
is the coding node in max(B′). Label the members

of X as xi, i ≤ d, so that each xi ⊇ si. For Case (b), back in Part II, when choosing

the p�α, �α ∈ [κ]d, first define

p0�α = {〈(i, δ), xi〉 : i < d, δ ∈ �α} ∪ {〈d, xd〉}, (38)

so that each node t∗i will extend xi, for i ≤ d. Then choose pk�α, 1 ≤ k ≤ 3, as before,

with the additional requirement that p�α(d) = cTn for some n ≥ nB′ +3. Everything

else in Part II remains the same.

We will build Um0
∈ rm0

[Um0−1, T ] so that its maximal members extend

max(B′), and hence each member of X is extended uniquely in max(Um0
). Let

V0 denote max(B′). Let V l
0 and V r

0 denote those members v of V0 such that the

immediate extension of v is 0 or 1, respectively. For each v ∈ V r
0 \X , v has no par-

allel 1’s with xd, so the Passing Number Choice Lemma 4.18 guarantees that there

is a member v∗ extending v to length l∗ := |t∗d| ≥ lTn+3 such that v∗ has immediate

successor 1 in T . For each v ∈ V l
0\X , take v∗ to be the leftmost extension of v of
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N. Dobrinen

length l∗. Let

V ∗ = {t∗i : i ≤ d} ∪ {v∗ : v ∈ V0\X}. (39)

Claim 8. Um0−1 ∪ V ∗ is a member of rm0
[Um0−1, T ].

Proof. By the construction, V ∗ extends V0, and for each z ∈ V ∗, the passing

number of z at t∗d is equal to the passing number of z � lB′ at cTn . Thus, it will follow

that Um0−1 ∪ V ∗ s
∼ B′ once we prove that Um0−1 ∪ V ∗ satisfies the Parallel 1’s

Criterion.

Let Y be any subset of V ∗ for which there is an l such that y(l) = 1 for all

y ∈ Y . Since for each �α ∈ [K]d, p�α ≤ p0�α, it follows that {t∗i : i ≤ d} has no new

sets of parallel 1’s over X . It follows that if Y ⊆ {t∗i : i ≤ d}, then the parallel 1’s

of Y are either witnessed in Um0−1 or else are witnessed by the coding node in X ,

and hence by t∗d. In particular, the parallel 1’s of Y are witnessed in Um0−1 ∪ V ∗.

If Y contains v∗ for some v ∈ V l
0\X , then there must be an l′ < |xd| where this

set of parallel 1’s is first witnessed, as v∗ is the leftmost extension of v in T � l∗ and

therefore any coding node of T where v∗ has passing number 1 must have length

less than |xd|. Since Um0−1 satisfies the Parallel 1’s Criterion, the set of parallel 1’s

in Y is witnessed by a coding node in Um0−1.

Now, suppose that Y ⊆ {v∗ : v ∈ V r
0 \X} ∪ {t∗i : i ≤ d}. If Y ∩ {t∗i : i ≤ d} is

contained in {t∗i : i ∈ I1}, then t∗d witnesses the parallel 1’s in Y . Otherwise, there

is some t∗i ∈ Y with i ∈ I0. Note that t∗i has immediate extension 0 at t∗d, and so

in the interval in T with t∗d, t
∗
i takes the leftmost path; also t∗i (|xd|) = 0. By the

construction in the proof of Lemma 4.18, all v∗ for v ∈ V r
0 extend v leftmost until

the interval of T containing the coding node t∗d. Hence, any parallel 1’s between

such v∗ and t∗i must occur at a level below |xd|. Thus, the parallel 1’s in Y must

first appear in Um0−1, and hence be witnessed by some coding node in Um0−1.

Therefore, Um0−1 ∪ V ∗ satisfies the Parallel 1’s Criterion, and hence Um0−1 ∪

V ∗ ∈ rm0
[Um0−1, T ].

Define Um0
= Um0−1 ∪ V ∗. Let M = {mj : j < ω} enumerate the set of

m ≥ m0 such that the coding node cTm ⊇ cTm0
. By strong similarity of T with T,

for any S ∈ [Um0
, T ], the coding node cSm will extend t∗d if and only if m ∈ M .

Take any Um1−1 ∈ rm1−1[Um0
, T ]. Notice that {t∗i : i ≤ d} is the only member of

ExtUm1−1
(A,C;X), and it has h-color ε∗.

Assume now that 1 ≤ j < ω and we have constructed Umj−1 so that every

member of ExtUmj−1
(A,C;X) is colored ε∗ by h. Fix some Yj ∈ rmj

[Umj−1, T ]. Let

Vj denote max(Yj). The nodes in Vj will not be in the tree S we are constructing;

rather, we will construct Umj
∈ rmj

[Umj−1, T ] so that max(Umj
) extends Vj . Let

q(d) denote the coding node in Vj and let lq = |q(d)|. Recall that for k ∈ {0, 1}, Ik
denotes the set of i < d for which t∗i has passing number k at t∗d. For each k ∈ {0, 1}

and each i ∈ Ik, let Zi be the set of nodes z in Ti ∩ Vj such that z has passing

number k at q(d).
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The Ramsey theory of the universal homogeneous triangle-free graph

We now construct a condition q similarly, but not exactly, as in Case (a). For

each i < d, let Ji be a subset ofKi with the same size as Zi. For each i < d, label the

nodes in Zi as {zα : α ∈ Ji}. Let �J denote the set of those 〈α0, . . . , αd−1〉 ∈
∏

i<d Ji
such that the set {zαi

: i < d} ∪ {q(d)} is in ExtT (A,C). Notice that for each i < d

and �α ∈ �J , zαi
⊇ t∗i = p�α(i, αi), and q(d) ⊇ t∗d = p�α(d). Furthermore, for each i < d

and δ ∈ Ji, there is an �α ∈ �J such that αi = δ. Let �δq =
⋃
{�δ�α : �α ∈ �J }. For each

pair (i, γ) ∈ d×�δq with γ ∈ Ji, define q(i, γ) = zγ . For each pair (i, γ) ∈ d×�δq with

γ ∈ �δq\Ji, there is at least one �α ∈ �J and some k < k∗ such that δ�α(k) = γ. By

Lemma 5.3, p�β(i, γ) = p�α(i, γ) = t∗i,k, for any �β ∈ �J for which γ ∈ �δ�β . For i ∈ I0,

let q(i, γ) be the leftmost extension of t∗i,k in T to length lq. This will have passing

number 0 at q(d), and any parallel 1’s between this node and any other nodes in Vj

must be witnessed at or below t∗d. For i ∈ I1, let q(i, γ) be the extension of t∗i,k as

in Lemma 4.18: extend t∗i,k leftmost in T until the interval of T containing q(d); in

that interval, extend to the next splitting node and take the right branch of length

lq. Let this node be q(i, γ). This has passing number 1 at q(d), and any parallel

1’s between q(i, γ) and another node must be either witnessed by q(d) or else at or

below t∗d. Define

q = {q(d)} ∪ {〈(i, δ), q(i, δ)〉 : i < d, δ ∈ �δq}. (40)

By the construction, q is a member of P.

Claim 9. For each �α ∈ �J, q ≤ p�α.

Proof. Let n denote the index such that cTn = q(d). It suffices to show that for

each �α ∈ �J , q has no new sets of parallel 1’s over p�α, since by construction, we have

that q(i, δ) ⊇ p�α(i, δ) for all (i, δ) ∈ d× �δ�α.

Let �α ∈ �J be given, and let Y be any subset of {q(i, δ) : (i, δ) ∈ d×�δ�α} of size at

least 2 for which for some l, y(l) = 1 for all y ∈ Y . If Y ⊆ {q(i, αi) : i < d}∪{q(d)},

then Y has no new parallel 1’s over X , since �α ∈ �J implies that {q(i, αi) : i <

d} ∪ {q(d)} is in ExtT (A,C;X). Since {p(i, αi) : i < d} ∪ {p(d)} extends X and Y

consists of extensions of members of {p(i, αi) : i < d} ∪ {p(d)}, it follows that Y

has no new parallel 1’s over {p(i, αi) : i < d} ∪ {p(d)}.

Now suppose Y contains some q(i, δ), where δ ∈ �δ�α\{αi}. Recall that by Claim 5,
�δ�α ∩ (

⋃
i<d Ki) = �α; so in particular, δ �∈

⋃
i<d Ji. By construction of q, if i ∈ I0,

then q(i, δ) has no new parallel 1’s above l∗ with any other q(j, γ), (j, γ) ∈ d× �δ�α.

If i ∈ I1, it follows from the construction of q that any parallel 1’s q(i, δ) has with

another member of ran(q) below lTn−1 is witnessed below l∗. Further, any parallel

1’s q(i, δ) has in the interval (lTn−1, l
T
n ] are witnessed by the coding node q(d). Thus,

any new sets of parallel 1’s in Y occurring above length l∗ must be witnessed by

q(d). Therefore, q has no new parallel 1’s over p�α, and hence, q ≤ p�α.

To construct Umj
, we will extend each node in Vj uniquely in such a manner so

that these extensions along with Umj−1 form a member of rmj
[Umj−1, T ]. It suffices
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N. Dobrinen

to find some V ∗ extending Vj such that the coding node in V ∗ extends the coding

node in Vj , the passing number of each v∗ in V ∗ extending some v in Vj is the same

as the passing number of v in Vj , and no new sets of parallel 1’s occur in V ∗ over

Vj . Then Umj−1 ∪ V ∗ will be strongly similar to rmj
(T) and hence a member of

rmj
[Umj−1, T ].

Take an r ≤ q in P which decides some lj in L̇d such that h(ḃ�α � lj) = ε∗ for all

�α ∈ �J , and such that there are at least two coding nodes in T of lengths between

lq and lr. Without loss of generality, we may assume that the nodes in the image

of r have length lj . Extend the coding node q(d) in Vj to r(d). For each i < d and

δ ∈ Ji, extend q(i, δ) to r(i, δ). Let V l
j and V r

j denote the set of those v ∈ Vj with

passing number 0 and 1, respectively, at q(d). Extend these nodes according to the

construction of Lemma 4.18 as follows: For each node v in V l
j \({q(i, δ) : i < d,

δ ∈ Ji} ∪ {q(d)}), let v∗ be the leftmost extension of v in T � lj . For each node v

in V r
j \({q(i, δ) : i < d, δ ∈ Ji} ∪ {q(d)}), extend v leftmost to v′ of length lTn(r)−1,

and then let v∗ be the right extension of splitpredT (v
′) to length lr, where n(r)

is the index such that cTn(r) = r(d). Then each member of V l
j has passing number

0 at r(d) and each member of V r
j has passing number 1 at r(d). Let V −

j denote

Vj\({q(i, δ) : i < d, δ ∈ Ji} ∪ {q(d)}), and define

V ∗ = {r(d)} ∪ {r(i, αi) : i < d, αi ∈ Ji} ∪ {v∗ : v ∈ V −
j } (41)

and

Umj
= Umj−1 ∪ V ∗. (42)

Claim 10. Umj
is a member of rmj

[Umj−1, T ], and h(Y ) = ε∗ for each Y ∈

ExtUmj
(A,C;X).

Proof. By the construction of V ∗, for each v ∈ Vj , its extension v∗ in V ∗ has

the same passing number at r(d) as v does at q(d). Since r ≤ q, all parallel 1’s in

{r(i, δ) : i < d, δ ∈ Ji}∪{r(d)} are already witnessed in Vj . Each v in V l
j \({q(i, δ) :

i < d, δ ∈ Ji}∪{q(d)}) has extension v∗ which has no new parallel 1’s with any other

member of V ∗ above lq. Any set Y ⊆ V r
j ∪ {q(i, δ) : i < d, δ ∈ Ji} ∪ {q(d)} cannot

have new parallel 1’s in the interval (l∗, ln(r)−1], since for each v ∈ V r
j \({q(i, δ) : i <

d, δ ∈ Ji}∪{q(d)}), v∗ � ln(r)−1 is the leftmost extension of v in T of length ln(r)−1.

In the interval (l∗, ln(r)−1], Lemma 4.14 implies the only new sets of parallel 1’s in

Y must be witnessed by r(d).

Thus, any sets of parallel 1’s among V ∗ are already witnessed in Vj . Therefore,

Umj−1 ∪ V ∗ satisfies the Parallel 1’s Criterion and is strongly similar to Yj , and

hence is in rmj
[Umj−1, T ].

Now, suppose Z ⊆ V ∗ is a member of ExtUmj
(A,C;X). Then Z � lq is in

ExtT (A,C;X), so Z extends {q(i, αi) : i < d} ∪ {q(d)} for some �α ∈ �J . Thus,

Z = {r(i, αi) : i < d} ∪ {r(d)} for that �α, and r forces that h(Z) = ε∗. Since h and

Z are finite, they are in the ground model, so h(Z) simply equals ε∗.
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The Ramsey theory of the universal homogeneous triangle-free graph

To finish the proof of the theorem for Case (b), Define S =
⋃

j<ω Umj
. Then

S ∈ [B′, T ], and for each Z ∈ ExtS(A,C;X), there is a j < ω such that Z ∈

ExtUmj
(A,C) and each member of max(Umj

) extending X has h-color ε∗.

This concludes the proof of the theorem.

6. Ramsey Theorem for Finite Trees Satisfying the Strict

Parallel 1’s Criterion

Our first Ramsey theorem for colorings of finite subtrees of a strong coding tree

appears in this section. Theorem 6.3 proves that for any finite coloring of the copies

of a given finite tree satisfying the Strict Parallel 1’s Criterion (Definition 6.1) in

a strong coding tree T , there is a strong coding tree S ≤ T in which all strictly

similar (Definition 6.2) copies have the same color.

Let A be a subtree of a strong coding tree T . Given l < ω, define

Al,1 = {t � (l + 1) : t ∈ A, |t| ≥ l+ 1, and t(l) = 1}. (43)

We say that l is a minimal level of a new set of parallel 1’s in A if the set Al,1 has

at least two distinct members, and for each l′ < l, the set {s ∈ Al,1 : s(l′) = 1} has

cardinality strictly smaller than |Al,1|.

Definition 6.1 (Strict Parallel 1’s Criterion). A subtree A of a strong coding

tree satisfies the Strict Parallel 1’s Criterion if A satisfies the Parallel 1’s Criterion

and additionally, the following hold: For each l which is the minimal length of a set

of new parallel 1’s in A,

(1) The critical node in A with minimal length greater than or equal to l is a coding

node in A, say c;

(2) There are no terminal nodes in A in the interval [l, |c|) (c can be terminal in A);

(3) Al,1 = {t � (l + 1) : t ∈ A|c|,1}.

Thus a tree A satisfies the Strict Parallel 1’s Criterion if it satisfies the Parallel

1’s Criterion and moreover, each new set of parallel 1’s in A is witnessed by a coding

node in A before any other new set of parallel 1’s, critical node, or terminal node

in A appears.

Definition 6.2 (Strictly Similar). Given A,B subtrees of a strong coding tree,

we say that A and B are strictly similar if A and B are strongly similar and both

satisfy the Strict Parallel 1’s Criterion.

Theorem 6.3. Let T be a strong coding tree and let A be a finite subtree of T

satisfying the Strict Parallel 1’s Criterion. Then for any coloring of all strictly

similar copies of A in T into finitely many colors, there is a strong coding subtree

S ≤ T such that all strictly similar copies of A in S have the same color.

Theorem 6.3 will be proved via four lemmas and then doing an induction argu-

ment. Recall that Case (b) of Theorem 5.2 only showed that, when C\A contains

2050012-51

J.
 M

at
h
. 
L

o
g
. 
2
0
2
0
.2

0
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 U

N
IV

E
R

S
IT

Y
 O

F
 D

E
N

V
E

R
 o

n
 0

7
/1

5
/2

1
. 
R

e-
u
se

 a
n
d
 d

is
tr

ib
u
ti

o
n
 i

s 
st

ri
ct

ly
 n

o
t 

p
er

m
it

te
d
, 
ex

ce
p
t 

fo
r 

O
p
en

 A
cc

es
s 

ar
ti

cl
es

.



N. Dobrinen

a coding node and X ∈ ExtT (A,C), there is some S ≤ T which is homogeneous

for all members of ExtS(A,C;X). This is weaker than the direct analogue of the

statement proved for Case (a) in Theorem 5.2, and this disparity is addressed by

the following. Lemma 6.7 will build a fusion sequence to obtain an S ≤ T which

is end-homogeneous on ExtS(A,C), using Case (b) of Theorem 5.2. Lemma 6.8

will use a new forcing and many arguments from the proof of Theorem 5.2 obtain

an analogue of Case (a) when C\A contains a coding node. The only difference is

that this analogue holds for ExtSPS (A,C), rather than ExtS(A,C), which is why

Theorem 6.3 requires the Strict Parallel 1’s Criterion. The last two lemmas involve

fusion to construct subtrees which have one color on ExtSPS (A′, C), for each A′

strictly similar to A, for the two cases: C\A contains a coding node, and C\A con-

tains a splitting node. The theorem then follows by induction and an application

of Ramsey’s theorem.

The following basic assumption, similar to Case (b) of Theorem 5.2, will be used

in much of this section.

Assumption 6.4. Let A ⊆ C be fixed non-empty finite subtrees of a strong coding

tree T such that A and C satisfy the Strict Parallel 1’s Criterion. Let Ae be a

subset of A+, and assume that Ae and C\A are level sets, and that C\A extends

Ae, contains a coding node, and contains the sequence 0lC . Let d + 1 = |Ae| and

list the nodes of Ae as 〈si : i ≤ d〉, and the nodes of C\A as 〈ti : i ≤ d〉 so that each

ti extends si and td is the coding node in C\A. For k ∈ {0, 1}, let Ik denote the

set of i ≤ d such that the immediate extension of ti in T is k. Since C\A contains

a coding node, the immediate successors of the ti are well-defined in T .

As usual, when we talk about the parallel 1’s of C\A, we are taking into account

the passing numbers of the members of (C\A)+ at the coding node td. Recall that

values of the immediate successors of the ti, i ≤ d, are considered when determining

whether or not a level set Y is in ExtT (A,C), this being defined as in Case (b) of

the previous section. We hold to the convention that for Y ∈ ExtT (A,C), the nodes

in Y are labeled yi, i ≤ d, where yi ⊇ si for each i. In particular, yd is the coding

node in Y . Define

ExtSPT (A,C) = {Y ∈ ExtT (A,C) :

A ∪ Y satisfies the Strict Parallel 1’s Criterion}. (44)

Recall the definition of splitpredT (x) from Sec. 4.1. We point out that if the parallel

1’s in C\A are already witnessed in A, then ExtSPT (A,C) is equal to ExtT (A,C). If

there are parallel 1’s in C\A not witnessed in A, then Y ∈ ExtSPT (A,C) if and only

if Y ∈ ExtT (A,C) and additionally for the minimal l such that {i < d : yi(l) =

1} = I1, A ∪ {splitpredT (yi � l) : i ∈ I1} ∪ {yi � l : i ∈ I0} satisfies the Parallel 1’s

Criterion. Now, we define the notion of minimal pre-extension of A to a copy of C.

This will be used in the next lemma to obtain a strong form of end-homogeneity

for the case when max(C) has a coding node.
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The Ramsey theory of the universal homogeneous triangle-free graph

Definition 6.5 (Minimal Pre-Extension of A to a Copy of C). Let X =

{xi : i ≤ d} be any level set extending Ae such that xi ⊇ si for each i ≤ d and such

that the length l of the nodes in X is the length of some coding node in T . We say

that X is a minimal pre-extension in T of A to a copy of C if

(i) {i ≤ d : x+
i (l) = 1} = I1, where x+

i denotes the immediate extension of xi in

T̂ ; and

(ii) A ∪ {splitpredT (xi) : i ∈ I1} ∪ {xi : i ∈ I0} satisfies the Parallel 1’s Criterion.

We will simply call such an X a minimal pre-extension when T , A, and C

are clear. Minimal pre-extensions are exactly the level sets in T which can be

extended to a member of ExtSPT (A,C). For X any minimal pre-extension, define

ExtT (A,C;X) to be the set of all Y ∈ ExtT (A,C) such that Y extends X . Then

ExtSPT (A,C) =
⋃

{ExtT (A,C;X) : X is a minimal pre-extension}. (45)

Definition 6.6. A coloring on ExtSPT (A,C) is end-homogeneous if for each minimal

pre-extension X of A to a copy of C, every member of ExtT (A,C;X) has the same

color.

Lemma 6.7 (End-Homogeneity). Assume 6.4, and let k be minimal such that

max(A) ⊆ rk(T ). Then for any coloring h of ExtT (A,C) into two colors, there is

a T ′ ∈ [rk(T ), T ] such that h is end-homogeneous on ExtSPT ′ (A,C).

Proof. Let (nj)j<ω enumerate those integers greater than k such that there is

a minimal pre-extension of A to a copy of C from among the maximal nodes in

rnj
(T ). Each of these rnj

(T ) contains a coding node in its maximal level, though

there may be minimal pre-extensions contained in max(rnj
(T )) not containing that

coding node.

Let T−1 denote T . Suppose that j < ω and Tj−1 are given so that the color-

ing h is homogeneous on ExtTj−1
(A,C;X) for each minimal pre-extension X in

rnj−1(Tj−1). Let Uj−1 denote rnj−1(Tj−1). Enumerate the collection of all minimal

pre-extensions of A to C from among max(rnj
(Tj−1)) as X0, . . . , Xq. We will do an

inductive argument over p ≤ q to obtain a Tj ∈ [Uj−1, Tj−1] such that max(rnj
(Tj))

extends max(rnj
(Tj−1)) and ExtTj

(A,C;Z) is homogeneous for each minimal pre-

extension Z in max(rnj
(Tj−1)).

Suppose p ≤ q and for all i < p, there are strong coding trees Si such that

Si ∈ [Uj−1, Si−1] where S−1 = Tj−1 and h is homogeneous on ExtSi
(A,C;Xi).

Let l denote the length of the nodes in max(rnj
(Tj−1)). Note that Xp is contained

in rnj
(Sp−1) � l, though l does not have to be the length of any node in Sp−1. The

point is that the set of nodes Yp in max(rnj
(Sp−1)) extending Xp is again a minimal

pre-extension. Extend the nodes in Yp to some Zp ∈ ExtSp−1
(A,C;Yp), and let l′

denote the length of the nodes in Zp. Note that Zp has no new sets of parallel 1’s

2050012-53

J.
 M

at
h
. 
L

o
g
. 
2
0
2
0
.2

0
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 U

N
IV

E
R

S
IT

Y
 O

F
 D

E
N

V
E

R
 o

n
 0

7
/1

5
/2

1
. 
R

e-
u
se

 a
n
d
 d

is
tr

ib
u
ti

o
n
 i

s 
st

ri
ct

ly
 n

o
t 

p
er

m
it

te
d
, 
ex

ce
p
t 

fo
r 

O
p
en

 A
cc

es
s 

ar
ti

cl
es

.



N. Dobrinen

over A ∪ Yp. Let Wp consist of the nodes in Zp along with the leftmost extensions

of the nodes in max(rnj
(Sp−1))\Yp to the length l′ in Sp−1.

Let S′
p−1 be a strong coding tree in [Uj−1, Sp−1] such that max(rnj

(S′
p−1))

extends Wp. Such an S′
p−1 exists by Lemma 4.19, since Wp has exactly the same

set of new parallel 1’s over rnj−1
(Sp−1) as does max(rnj

(Sp−1)). Apply Case (b) of

Theorem 5.2 to obtain a strong coding tree Sp ∈ [Uj−1, S
′
p−1] such that the coloring

on ExtSp
(A,C;Zp) is homogeneous. At the end of this process, let Tj = Sq. Note

that for each minimal pre-extension Z ⊆ max(rnj
(Tj)), there is a unique p ≤ q

such that Z extends Xp, since each node in max(rnj
(Tj)) is a unique extension of

one node in max(rnj
(Tj−1)), and hence ExtTj

(A,C;Z) is homogeneous.

Having chosen each Tj as above, let T ′ =
⋃

j<ω rnj
(Tj). Then T ′ is a strong

coding tree which is in [rk(T ), T ], and for each minimal pre-extension Z in

T ′, ExtT ′(A,C;Z) is homogeneous for h. Therefore, h is end-homogeneous on

ExtSPT ′ (A,C).

The next lemma provides a means for uniformizing the end-homogeneity from

the previous lemma to obtain one color for all members of ExtSPS (A,C). This will

yield almost the full analogue of Case (a) of Theorem 5.2 for Case (b), when the

level sets being colored contain a coding node, the difference being the restriction

to strictly similar extensions rather than just strongly similar extensions. The argu-

ments are often similar to those of Case (a) of Theorem 5.2, but sufficiently different

to warrant a proof.

Lemma 6.8. Assume 6.4, and suppose that B is a finite strong coding tree valid

in T and A is a subtree of B such that max(A) ⊆ max(B). Suppose that h is

end-homogeneous on ExtSPT (A,C). Then there is an S ∈ [B, T ] such that h is

homogeneous on ExtSPS (A,C).

Proof. Given any U ∈ [B, T ], let MPEU (A,C) denote the set of all minimal pre-

extensions of A to a copy of C in U . Without loss of generality, we may assume

that the nodes in C\A occur in an interval of T strictly above the interval of T

containing B. This presents no obstacle to the application, as the goal is to find

some S ∈ [B, T ] for which h takes the same value on every extension in ExtU (A,C)

extending some member of MPES(A,C), and we can take the first level of S above

B to be in the interval of T strictly above B since B is valid in T .

Enumerate the nodes of Ae as {si : i ≤ d}, letting i0 be the index such that si0
is a sequence of all 0’s. In the notation of Assumption 6.4, i0 is a member of I0.

Each member Y of MPET (A,C) will be enumerated as {yi : i ≤ d} so that yi ⊇ si
for each i ≤ d. Given Y ∈ MPET (A,C), define the notation

splitpredT (Y ) = {yi : i ∈ I0} ∪ {splitpredT (yi) : i ∈ I1}. (46)

Since C satisfies the Strict Parallel 1’s Criterion, C \A is in MPET (A,C). Let C−

denote splitpredT (C\A). Since we are assuming that C\A is contained in an interval

of T above the interval containing max(A), each node of C− extends one node of Ae.
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The Ramsey theory of the universal homogeneous triangle-free graph

For any U ∈ [B, T ], define X ∈ ExtU (A,C
−) if and only if X = splitpredU (Y ) for

some Y ∈ MPEU (A,C). Equivalently, X ∈ ExtU (A,C
−) if and only if the following

three conditions hold:

(1) X extends Ae; label the nodes in X as {xi : i ≤ d} so that xi ⊇ si.

(2) There is a coding node c in U such that |c| = |xi0 |; for each i ∈ I0, the passing

number of xi at c is 0; and for each i ∈ I1, xi = splitpredU (yi) for some yi ⊇ si
in U of length |c| such that the passing number of yi at c is 1.

(3) The set A ∪X satisfies the Parallel 1’s Criterion.

Thus, X is a member of ExtU (A,C
−) if and only if {xi : i ∈ I0} along with

the rightmost paths extending {xi : i ∈ I1} to length |xi0 | forms a minimal pre-

extension of A to a copy of C in U . Note that condition (3) implies that X has no

new sets of parallel 1’s over A, since X contains no coding node.

By assumption, the coloring h on ExtSPT (A,C) is end-homogeneous. Thus, it

induces a coloring on MPET (A,C), by giving Y ∈ MPET (A,C) the h-color that all

members of ExtT (A,C;Y ) have. This further induces a coloring h′ on ExtT (A,C
−),

since a set of nodes X in T is in ExtT (A,C
−) if and only if X = splitpredT (Y )

for some Y ∈ MPET (A,C). Define h′(splitpredT (Y )) to be the color of h on

ExtT (A,C;Y ).

Let L denote the collection of all l < ω such that there is a member of

ExtT (A,C
−) with maximal nodes of length l. For each i ∈ (d + 1)\{i0}, let

Ti = {t ∈ T : t ⊇ si}. Let Ti0 = {t ∈ T ∩ 0<ω : t ⊇ si0}, the collection of all

leftmost nodes in T extending si0 . Let κ = �2d+2. The following forcing notion Q

will add κ many paths through each Ti, i ∈ (d+1)\{i0} and one path through Ti0 .

The present case is handled similarly to Case (a) of Theorem 5.2, so much of the

current proof refers back to the proof of Theorem 5.2.

We now define a new forcing. Let Q be the set of conditions p such that p is a

function of the form

p : (d+ 1)× �δp → T,

where �δp ∈ [κ]<ω, lp ∈ L, and there is some coding node cTn(p) in T such that

lTn(p) = lp, and

(i) For each (i, δ) ∈ (d+ 1)× �δp, p(i, δ) ∈ Ti and lTn(p)−1 < |p(i, δ)| ≤ lp; and

(ii) (α) If i ∈ I1, then p(i, δ) = splitpredT (y) for some y ∈ Ti � lp which has imme-

diate extension 1 in T .

(β) If i ∈ I0, then p(i, δ) ∈ Ti � lp and has immediate extension 0 in T .

It follows from the definition that for p ∈ Q, the range of p, ran(p) := {p(i, δ) :

(i, δ) ∈ (d+ 1)× �δp}, has no pre-determined new sets of parallel 1’s. Furthermore,

all nodes in ran(p) are contained in the n(p)th interval of T . We point out that

ran(p) may or may not contain a coding node. If it does, then that coding node

must appear as p(i, δ) for some i ∈ I0.
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N. Dobrinen

The partial ordering on Q is defined as follows: q ≤ p if and only if lq ≥ lp,
�δq ⊇ �δp,

(i) q(i, δ) ⊇ p(i, δ) for each (i, δ) ∈ (d+ 1)× �δp; and

(ii) {q(i, δ) : (i, δ) ∈ (d+ 1)× �δp} has no new sets of parallel 1’s over ran(p).

It is routine to show that Claims 1 and 2 in the proof of Theorem 5.2 also hold

for (Q,≤). That is, (Q,≤) is an atomless partial order, and any condition in Q can

be extended by two incompatible conditions of length greater than any given l < ω.

Let U̇ be a Q-name for a non-principal ultrafilter on L. For each i ≤ d and

α < κ, let ḃi,α be a Q-name for the αth generic branch through Ti; that is, ḃi,α =

{〈p(i, α), p〉 : p ∈ Q and α ∈ �δp}. For any condition p ∈ Q, for (i, α) ∈ I0×�δp, p forces

that ḃi,α � lp = p(i, α). For (i, α) ∈ I1×�δp, p forces that splitpredT (ḃi,α � lp) = p(i, α).

For �α = 〈α0, . . . , αd〉 ∈ [κ]d+1,

let ḃ�α denote 〈ḃ0,α0
, . . . , ḃd,αd

〉. (47)

For l ∈ L, we shall use the abbreviation

ḃ�α � l to denote splitpredT (ḃ�α � l), (48)

which is exactly {ḃi,αi
� l : i ∈ I0} ∪ {splitpredT (ḃi,αi

� l) : i ∈ I1}.

Similarly to Part II of the proof of Theorem 5.2, we will find infinite pairwise

disjoint sets Ki ⊆ κ, i ≤ d, such that K0 < K1 < . . . < Kd, and conditions p�α,

�α ∈
∏

i≤d Ki, such that these conditions are pairwise compatible, have the same

images in T , and force the same color ε∗ for h′(ḃ�α � l) for U̇ many levels l in L.

Moreover, the nodes {t∗i : i ≤ d} obtained from the application of the Erdős–Rado

theorem for this setting will extend {si : i ≤ d} and form a member of ExtT (A,C
−).

The arguments are mostly similar to those in Part II of Theorem 5.2, so we only

fill in the details for arguments which are necessarily different.

Part II. For each �α ∈ [κ]d+1, choose a condition p�α ∈ Q such that

(1) �α ⊆ �δp�α
.

(2) {p�α(i, αi) : i ≤ d} ∈ ExtT (A,C
−).

(3) p�α � “There is an ε ∈ 2 such that h(ḃ�α � l) = ε for U̇ many l in L.”

(4) p�α decides a value for ε, call it ε�α.

(5) h({p�α(i, αi) : i ≤ d}) = ε�α.

Properties (1)–(5) can be guaranteed as follows. For each i ≤ d, let ti denote

the member of C− which extends si. For each �α ∈ [κ]d+1, let

p0�α = {〈(i, δ), ti〉 : i ≤ d, δ ∈ �α}.

Then p0�α is a condition in P and �δp0
�α
= �α, so (1) holds. Further, ran(p0�α) is a member

of ExtT (A,C
−) since it is exactly C−. Note that for any p ≤ p0�α, {p(i, αi) : i ≤ d}

is also a member of ExtT (A,C
−), so (2) holds for any p ≤ p0�α. Take an extension

p1�α ≤ p0�α which forces h′(ḃ�α � l) to be the same value for U̇ many l ∈ L, and then take
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The Ramsey theory of the universal homogeneous triangle-free graph

p2�α ≤ p1�α deciding a value ε�α for which p2�α forces that h′(ḃ�α � l) = ε�α for U̇ many l

in L. This satisfies (3) and (4). Take p�α ≤ p2�α which decides h′(ḃ�α � lp�α
) = ε�α. Then

p�α satisfies (1) through (5), since p�α forces h′({p�α(i, αi) : i ≤ d}) = ε�α.

We are assuming κ = �2d+2. Let De = {0, 2, . . . , 2d} and Do = {1, 3, . . . , 2d+1},

the sets of even and odd integers less than 2d + 2, respectively. Let I denote

the collection of all functions ι : (2d + 2) → (2d + 2) such that ι �De and

ι �Do are strictly increasing sequences and {ι(0), ι(1)} < {ι(2), ι(3)} < · · · <

{ι(2d), ι(2d + 1)}. For �θ ∈ [κ]2d+2, ι(�θ ) determines the pair of sequences of or-

dinals (θι(0), θι(2), . . . , θι(2d)), (θι(1), θι(3), . . . , θι(2d+1)), both of which are members

of [κ]d+1. Denote these as ιe(�θ ) and ιo(�θ ), respectively. Let �δ�α denote �δp�α
, k�α de-

note |�δ�α|, and let l�α denote lp�α
. Let 〈δ�α(j) : j < k�α〉 denote the enumeration of �δ�α

in increasing order. Define a coloring f on [κ]2d+2 into countably many colors as

follows: Given �θ ∈ [κ]2d+2 and ι ∈ I, to reduce the number of subscripts, letting �α

denote ιe(�θ ) and �β denote ιo(�θ ), define

f(ι, �θ ) = 〈ι, ε�α, k�α, 〈〈p�α(i, δ�α(j)) : j < k�α〉 : i ≤ d〉,

〈〈i, j〉 : i ≤ d, j < k�α, and δ�α(j) = αi〉,

〈〈j, k〉 : j < k�α, k < k�β
, δ�α(j) = δ�β(k)〉.

(49)

Let f(�θ ) be the sequence 〈f(ι, �θ ) : ι ∈ I〉, where I is given some fixed ordering.

By the Erdős–Rado theorem, there is a subset K ⊆ κ of cardinality ℵ1 which is

homogeneous for f . Take K ′ ⊆ K such that between each two members of K ′

there is a member of K and min(K ′) > min(K). Then take subsets Ki ⊆ K ′ such

that K0 < · · · < Kd and each |Ki| = ℵ0. The following three claims and lemma

are direct analogues of Claims 3–5, and Lemma 5.3. Their proofs follow by simply

making the correct notational substitutions, and so are omitted.

Claim 11. There are ε∗ ∈ 2, k∗ ∈ ω, and 〈ti,j : j < k∗〉, i ≤ d, such that for all

�α ∈
∏

i≤d Ki and each i ≤ d, ε�α = ε∗, k�α = k∗, and 〈p�α(i, δ�α(j)) : j < k�α〉 = 〈ti,j :

j < k∗〉.

Let l∗ = |ti0 |. Then for each i ∈ I0, the nodes ti,j , j < k∗, have length l∗; and

for each i ∈ I1, the nodes ti,j , j < k∗, have length in the interval (lTn−1, l
T
n ), where

n is the index of the coding node in T of length l∗.

Claim 12. Given any �α, �β ∈
∏

i≤d Ki, if j, k < k∗ and δ�α(j) = δ�β(k), then

j = k.

For any �α ∈
∏

i≤d Ki and any ι ∈ I, there is a �θ ∈ [K]2d+2 such that �α = ιo(�θ).

By homogeneity of f , there is a strictly increasing sequence 〈ji : i ≤ d〉 of members

of k∗ such that for each �α ∈
∏

i≤d Ki, δ�α(ji) = αi. For each i ≤ d, let t∗i denote

ti,ji . Then for each i ≤ d and each �α ∈
∏

i≤d Ki,

p�α(i, αi) = p�α(i, δ�α(ji)) = ti,ji = t∗i . (50)
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N. Dobrinen

Lemma 6.9. For any finite subset �J ⊆
∏

i≤d Ki, the set of conditions {p�α : �α ∈ �J }

is compatible. Moreover, p �J
:=

⋃
{p�α : �α ∈ �J } is a member of P which is below

each p�α, �α ∈ �J .

Claim 13. If β ∈
⋃

i≤d Ki, �α ∈
∏

i≤d Ki, and β �∈ �α, then β is not a member

of �δ�α.

Part III. Let (nj)j<ω denote the set of indices for which there is an X ∈

MPET (A,C) with X = max(V ) for some V of rnj
[B, T ]. For i ∈ I0, let u∗

i = t∗i .

For i ∈ I1, let u∗
i be the leftmost extension of t∗i in T � l∗. Note that {u∗

i : i ≤ d}

has no new sets of parallel 1’s over Ae. Extend each node u in max(B)\Ae to its

leftmost extension in T � l∗ and label that extension u∗. Let

U∗ = {u∗
i : i ≤ d} ∪ {u∗ : u ∈ max(rk(T ))\Ae}. (51)

Thus, U∗ extends max(B), all sets of parallel 1’s in U∗ are already witnessed in B

since B is valid in T , and U∗ has no new pre-determined parallel 1’s.

Suppose that j < ω and for all i < j, there have been chosen Si ∈ rni
[B, T ]

such that h′ is constant of value ε∗ on ExtSi
(A,C−), and for i < i′ < j, Si � Si′ .

Let kB be the integer such that B = rkB
(B), and let e be the index such that

lTe−1 is greater than the length of the maximal nodes in B. For j = 0, take V0

to be any member of rn0
[B, T ] such that the nodes in max(rkB+1(V0)) extend the

nodes in U∗ and have length greater than lTe . This is possible by Lemma 4.19. For

j ≥ 1, take Vj ∈ rnj
[B, T ] such that Vj � Sj−1. Let X denote max(Vj). Then the

nodes in splitpredT (X) extend the nodes in U∗, and moreover, extend the nodes

in max(Sj−1) if j ≥ 1. By the definition of nj , the set of nodes X contains a

coding node. For each i ∈ I0, let Yi denote the set of all t ∈ Ti ∩ X which have

immediate extension 0 in T . For each i ∈ I1, let Yi denote the set of all splitting

nodes in Ti∩ splitpredT (X). For each i ≤ d, let Ji be a subset of Ki of size |Yi|, and

enumerate the members of Yi as q(i, δ), δ ∈ Ji. Let �J denote the set of �α ∈
∏

i≤d Ji
such that the set {q(i, αi) : i ≤ d} has no new sets of parallel 1’s over A. Thus,

the set of {q(i, αi) : i ≤ d}, �α ∈ �J , is exactly the collection of sets of nodes in

splitpredT (X) which are members of ExtT (A,C
−). Moreover, for each �α ∈ �J and

all i ≤ d,

q(i, αi) ⊇ t∗i = p�α(i, αi). (52)

To complete the construction of the desired q ∈ Q for which q ≤ p�α for all

�α ∈ �J , let �δq =
⋃
{�δ�α : �α ∈ �J}. For each pair (i, γ) with γ ∈ �δq\Ji, there is at least

one �α ∈ �J and some j < k∗ such that γ = δ�α(j). As in Case (a) of Theorem 5.2,

for any other �β ∈ �J for which γ ∈ �δ�β , it follows that p�β(i, γ) = p�α(i, γ) = t∗i,j

and δ�β(j) = γ. If i ∈ I0, let q(i, γ) be the leftmost extension of t∗i,j in T � l
Vj
nj . If

i ∈ I1, let q(i, γ) be the leftmost extension of t∗i,j to a splitting node in T in the

interval (l
Vj

nj−1, l
Vj
nj ]. Such a splitting node must exist because of the construction
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The Ramsey theory of the universal homogeneous triangle-free graph

of U∗. Precisely, let cX denote the coding node in X . Note that cX � lB must have

no parallel 1’s with any si′ , i
′ ∈ I1, since X contains a member of MPET (A,C).

If cX does not extend t∗i′ for any i′ ≤ d, then cX � l∗ is the leftmost extension in

T of cX � lB, which implies that cX � l∗ has no parallel 1’s with t∗i,j . Thus, q(i, γ),

being the leftmost extension of t∗i,j , has no parallel 1’s with cX . If cX extends some

t∗i′,j′ , then cX � lB = si′ . For c
X to be a node in a member of MPET (A,C), cX � lB

must not have parallel 1’s with any si, i ∈ I1. In particular, i′ must be in I0, and

t∗i,j has no parallel 1’s with t∗i′,j′ , because si and si′ have no parallel 1’s and by the

definition of the partial ordering on Q, since t∗i,j and t∗i′,j′ are in ran(p�α) for any

�α ∈ [K ′]d+1, and p�α ≤ p0�α. Thus, the leftmost extension q(i, γ) of t∗i,j has no parallel

1’s with cX . Therefore, q(i, γ) is well defined. Define

q =
⋃

i≤d

{〈(i, α), q(i, α)〉 : α ∈ �δq}. (53)

By a proof similar to that of Claim 9, it follows that q ≤ p�α, for each �α ∈ �J .

Take an r ≤ q in P which decides some lj in L which is strictly greater than

the length of the next coding node above the coding node cX in X , and such that

for all �α ∈ �J , h′(ḃ�α � lj) = ε∗. Without loss of generality, we may assume that the

maximal nodes in r have length lj . If c
X = q(i′, α′) for some i′ ∈ I0 and α′ ∈ Ji′ ,

then let cr denote r(i′, α′); otherwise, let cr denote the leftmost extension of cX in

T of length lj . Let Z0 denote those nodes in splitpredT (X)\Y0 which have length

equal to cX ; in particular, Z0 is the set of nodes in X which are not splitting nodes

in splitpredT (X) and are also not in Y0. For each z ∈ Z0, let sz denote the leftmost

extension of z in T to length lj. Let Z1 denote the set of all splitting nodes in

splitpredT (X)\Y1. For each z ∈ Z1, let sz denote the splitting predecessor in T of

the leftmost extension of z in T to length lj. This splitting predecessor exists in

T for the following reason: If z is a splitting node in splitpredT (X), then z has no

parallel 1’s with cX , and so the leftmost extension of z to any length has no parallel

1’s with any extension of cX . In particular, the set {sz : z ∈ Z0 ∪ Z1} has no new

sets of parallel 1’s over splitpredT (X).

Let

Z− = {q(i, α) : i ≤ d, α ∈ Ji} ∪ {sz : z ∈ Z0 ∪ Z1}. (54)

Let Z∗ denote the extensions in T of all members of Z− to length lj . Let j
− denote

the index such that the maximal coding node in Vj below cX is c
Vj
n
j−

. Note that Z∗

has no new sets of parallel 1’s over splitpredT (X); furthermore, the tree induced

by rn
j−

(Vj) ∪ Z∗ is strongly similar to Vj , except possibly for the coding node

being in the wrong place. Using Lemma 4.19, extend the nodes in Z∗ to obtain

some Sj ∈ rnj
[rn

j−
(Vj), T ] where max(Sj) extends Z∗. Then every member of

ExtSj
(A,C−) has the same h′ color ε∗, by the choice of r, since each minimal pre-

extension in MPESj
(A,C) extends some member of ExtSj

(A,C−) which extends

members in ran(r) and so have h′-color ε∗.
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N. Dobrinen

Let S =
⋃

j<ω Sj . Then S is a strong coding tree in [B, T ]. Let Y ∈ ExtSPS (A,C).

Then there is some X ∈ MPES(A,C) such that Y extends X . Since splitpredS(X)

is in ExtSj
(A,C−) for some j < ω, splitpredS(X) has h′ color ε∗. Thus, Y has

h-color ε∗.

Recall that given a tree A, Sims
T (A) denote the set of all subtrees A

′ of T which

are strongly similar to A.

Lemma 6.10. Assume 6.4. Then there is a strong coding subtree S ≤ T such that

for each A′ ∈ Sims
S(A), h is homogeneous on ExtSPS (A′, C).

Proof. Let (ki)i<ω be the sequence of integers such that rki
(T ) contains a strictly

similar copy of A which is valid in rki
(T ) and such that max(A) ⊆ max(rki

(T )).

Let k−1 = 0, T−1 = T , and U−1 = r0(T ).

Suppose i < ω, and Ui−1
s
∼ rki−1

(T ) and Ti−1 are given satisfying that for each

A′ ∈ Sims
Ui−1

(A) valid in Ui−1 with max(A) ⊆ max(Ui−1), h is homogeneous on

ExtSPUi−1
(A′, C). Let Ui be in rki

[Ui−1, Ti−1]. Enumerate the set of all A′ ∈ Sims
Ui
(A)

which are valid in Ui and have max(A′) ⊆ max(Ui) as 〈A0, . . . , An〉. Apply

Lemma 6.7 to obtain R0 ∈ [Ui, Ti−1] which is end-homogeneous for ExtSPR0
(A0, C).

Then apply Lemma 6.8 to obtain R′
0 ∈ [Ui, R0] such that ExtSPR′

0
(A0, C) is homo-

geneous for h. Given R′
j for j < n, apply Lemma 6.7 to obtain a Rj+1 ∈ [Ui, R

′
j ]

which is end-homogeneous for ExtSPRj+1
(Aj+1, C). Then apply Lemma 6.8 to obtain

R′
j+1 ∈ [Ui, Rj+1] such that ExtSPR′

j+1
(Aj+1, C) is homogeneous for c. Let Ti = R′

n.

Let U =
⋃

i<ω Ui. Then U ≤ T and h has the same color on ExtSPU (A,C) for

each A′ ∈ Sims
U (A) which is valid in U . Finally, take S ≤ U . Then for each k < ω,

rk(S) is valid in U , so in particular, each A′ ∈ Sims
S(A) is valid in U . Hence, h is

homogeneous on ExtSPS (A′, C).

A similar lemma holds for the setting of Case (a) in Theorem 5.2. Since the

critical node is a splitting node in this case, we do not need to restrict to Strict

Parallel 1’s Criterion copies of A in T .

Lemma 6.11. Let T be a strong coding tree and let A,C, h be as in Case (a) of

Theorem 5.2. Then there is a strong coding tree S ≤ T such that for each A′ ∈

Sims
S(A), ExtS(A

′, C) is homogeneous for h.

Proof. Similarly to the fusion argument in proof of Lemma 6.10 but applying

Case (a) of Theorem 5.2 in place of Lemmas 6.7 and 6.8, one builds a strong coding

tree S ≤ T such that for each copy A′ of A in S, ExtS(A
′, C) is homogeneous

for h.

Proof of Theorem 6.3. The proof is by induction on the number of critical nodes.

Suppose first that A consists of a single node. Then such a node must be a splitting
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The Ramsey theory of the universal homogeneous triangle-free graph

node in 0<ω ∩ T , so Sims
T (A) is the infinite set of all splitting nodes in 0<ω ∩ T .

Let h be any finite coloring on Sims
T (A). By Ramsey’s theorem, infinitely many

members of Sims
T (A) must have the same h color, so there is a subtree S ≤ T for

which all its nodes in S ∩ 0<ω have the same h color. Such an S ≤ T exists by the

definition of strong coding tree, since T is strongly skew, perfect, and the coding

nodes are dense in T .

Now assume that n ≥ 1 and the theorem holds for each finite tree B with n or

less critical nodes such that B satisfies the Strict Parallel 1’s Criterion and max(B)

contains a node which is a sequence of all 0’s. Let C be a finite tree with n + 1

critical nodes containing a maximal node in 0<ω, and suppose h maps Sims
T (C)

into finitely many colors. Let d denote the maximal critical node in C and let

B = {t ∈ C : |t| < |d|}. Apply Lemma 6.10 or 6.11, depending on whether d is

a coding or splitting node, to obtain T ′ ≤ T so that for each V ∈ Sims
T ′(B), the

set ExtSPT ′ (V,C) is homogeneous for h. Define g on Sims
T ′(B) by letting g(V ) be

the value of h on V ∪ X for any X ∈ ExtSPT ′ (V,C). By the induction hypothesis,

there is an S ≤ T ′ such that g is homogeneous on SimSP

S (B). It follows that h is

homogeneous on SimSP

S (C).

To finish, let A be any tree satisfying the Strict Parallel 1’s Criterion where

max(A) does not contain a member of 0<ω, and let g be a finite coloring of Sims
T (A).

Let lA denote the longest length of nodes in A, and let C be the tree induced by

A∪{0lA}. Then there is a one-to-one correspondence between members of Sims
T (A)

and Sims
T (C); say ϕ : Sims

T (A) → Sims
T (C) by defining ϕ(A′) to be the member of

Sims
T (C) which is the tree induced by adding the node 0lA′ to A′. For C′ ∈ Sims

T (C),

define h(C′) = g(ϕ−1(C′)). Take S ≤ T homogeneous for h. Then S is homogeneous

for g on Sims
S(A).

7. Incremental Strong Coding Trees

This section develops the notion of incremental new sets of parallel 1’s, and the

related concepts of Incremental Parallel 1’s Criterion, incremental strong coding

subtrees, and sets of witnessing coding nodes. The main lemma, Lemma 7.5, will

be instrumental in attaining the Ramsey theorem in Sec. 8. This will be a Ramsey

theorem for finite colorings of strictly similar copies of any given finite subtree of

a strong coding tree. The work in this section sets the stage for the removal of the

requirement of any form of Parallel 1’s Criterion on the finite tree whose copies are

being colored.

Definition 7.1 (Incremental parallel 1’s). Let Z be a finite subtree of a strong

coding tree T , and let 〈lj : j < j̃〉 list in increasing order the minimal lengths of

new parallel 1’s in Z. We say that Z has incremental new sets of parallel 1’s, or

simply incremental parallel 1’s, if the following holds. For each j < j̃ for which

Zlj ,1 := {z � (lj+1) : z ∈ Z, |z| > lj, and z(lj) = 1} (55)
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N. Dobrinen

has size at least three, letting m denote the length of the longest critical node in

Z below lj , for each proper subset Y � Zlj,1 of cardinality at least two, there is a

j′ < j such that lj′ > m, Ylj′ ,1 := {y � (lj′ +1) : y ∈ Y and y(lj′) = 1} has the same

size as Y , and Ylj′ ,1 = Zlj′ ,1.

We shall say that an infinite tree S has incremental new parallel 1’s if for each

l < ω, the initial subtree S � l of S has incremental new parallel 1’s.

Definition 7.2 (Incremental Parallel 1’s Criterion). Let Z be a subtree of a

strong coding tree T . We say that Z satisfies the Incremental Parallel 1’s Criterion

if Z has incremental new parallel 1’s and satisfies the Parallel 1’s Criterion.

Thus, to satisfy the Incremental Parallel 1’s Criterion, a tree must have a coding

node witnessing each of its new sets of parallel 1’s, and these are occurring incre-

mentally. Note that any strong coding tree does not satisfy the Incremental Parallel

1’s Criterion. In Sec. 4, we will be interested in extending finite trees A to trees

E which satisfy the Incremental Parallel 1’s Criterion, for such E automatically

satisfy the Strict Parallel 1’s Criterion, so the Ramsey theorems from the previous

section can be applied.

The next definition of an incremental strong coding tree will be vital to finding

bounds for the big Ramsey degrees in H3.

Definition 7.3 (Incremental Strong Coding Tree). A strong coding tree T

is called incremental if it satisfies the following. Let n be any integer for which

there are at least three distinct nodes in T � (|cTn |+ 1) which have passing number

1 at cTn , and list the set of those nodes as 〈ti : i < ĩ〉. Let m denote the length

of the maximal splitting node in T below cTn . Let P denote the collection of all

proper subsets P ⊆ ĩ of size at least two, and let k̃ = |P|. Then there is an ordering

〈Pk : k < k̃〉 of P and a strictly increasing sequence 〈pk : k < k̃〉 such that

(i) m < p0 and pk̃−1 < |cTn |;

(ii) k < k′ < k̃ implies Pk �⊇ Pk′ ; and

(iii) For each k < k̃, pk is minimal such that {i < ĩ : ti(pk) = 1} = Pk.

Given a node w ∈ 2<ω, let w∧ denote the longest member s ∈ 0<ω such that

s ⊆ w.

Definition 7.4 (Incrementally Witnessed Parallel 1’s). Let S ≤ T be an

incremental strong coding tree. We say that the sets of parallel 1’s in S are incre-

mentally witnessed in T if the following hold. For each n < ω, given P , 〈Pk : k < k̃〉,

and 〈pk : k < k̃〉 satisfying Definition 7.3, there is a coding node wn,k in T satisfying

(1) |dSmn−1| < |w∧
n,0| < p0 ≤ |wn,0| < |w∧

n,1| < p1 ≤ |wn,1| < · · · < |w∧
n,k̃−1

| <

pk̃−1 ≤ |wn,k̃−1| < |cSn |.

(2) wn,k witnesses the parallel 1’s in Spk,1; that is, for all z ∈ S � (pk+1), z(|wk|) = 1

if and only if z(pk) = 1.
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The Ramsey theory of the universal homogeneous triangle-free graph

The main lemma of this section shows that given a strong coding tree T , there is

an incremental strong coding subtree S ≤ T and moreover, a set W ⊆ T of coding

nodes disjoint from S such that each new set of parallel 1’s in S is witnessed by

a coding node in W . This set-up is what will allow for the definition and use of

envelopes in Sec. 8, as it will ensure that subtrees from S can be enhanced with

witnessing coding nodes from W so that their union satisfies the Strict Parallel 1’s

Criterion. This will allow application of Theorem 6.3 to obtain upper bounds on

the finite big Ramsey degrees in the universal triangle-free graph.

Lemma 7.5. Let T be a strong coding tree. Then there is an incremental strong

coding tree S ≤ T and a set of coding nodes W ⊆ T such that each new set of

parallel 1’s in S is incrementally witnessed in T by a coding node in W .

Proof. Let 〈dTm : m < ω〉 denote the critical nodes in T in order of increasing

length. Let 〈mn : n < ω〉 denote the indices such that dTmn
= cTn , so the mnth

critical node in T is the nth coding node in T . Let S0 be a valid subtree of T which

is strongly similar to rm0+1(T ). Since rm0+1(T ) has only one node with passing

number 1 at cT0 , there is nothing to do; vacuously S0 has incremental new sets of

parallel 1’s and these are vacuously witnessed in T .

Suppose now that n ≥ 1 and we have chosen Sn−1
s
∼ rkn−1+1(T ) valid in T so

that Sn−1 is incremental and has its new sets of parallel 1’s incrementally witnessed

in T . Take some S′
n−1 ∈ rkn

[Sn−1, T ], so S′
n−1 is valid in T . There is a one-to-

one correspondence between the nodes in max(rkn+1(T )) and max(rkn
(T ))+, and

hence also between max(rkn+1(T )) and max(S′
n−1)

+. Let ϕ : max(rkn+1(T )) →

max(S′
n−1)

+ be the lexicographic order preserving bijection. Let 〈ti : i < ĩ〉 be the

lexicographically increasing enumeration of those nodes in max(rkn+1(T )) which

have passing number 1 at cTn . Let si = ϕ(ti). Then {si : i < ĩ} is the set of nodes

which must extend to have passing number 1 at the next coding node in S, cSn . If

ĩ ≤ 2, there is nothing to do; extend to some Sn ∈ rkn+1[S
′
n−1, T ].

Otherwise, ĩ ≥ 3. List all subsets of ĩ of size at least two as 〈Pk : k < k̃〉 in any

manner so long as the following is satisfied: For each k < k′ < k̃, Pk �⊇ Pk′ . Let

X0 denote max(S′
n−1)

+. Given k < k̃ and Xk, let w∧
n,k be some splitting node in

T in 0<ω with length above the lengths in Xk. Extend all nodes in Xk leftmost in

T to length |w∧
n,k| + 1, and let Yk denote the level set of these extensions. Apply

Lemma 4.19 to extend the nodes in Yk ∪ {w∧
n,k

�
1} to a level set Zk in T such that

the following hold:

(1) The extension of w∧
n,k

�1 is a coding node, label it wn,k;

(2) Enumerating Zk\{wn,k} as {zi : i < ĩ} so that for each zi ⊇ si, then for each

i < ĩ, the immediate extension of zi in T is 1 if and only if i ∈ Pk.

(3) The only possible set of new parallel 1’s in Zk over S′
n−1 ∪Xk is {zi : i ∈ Pk}.

If k < k̃−1, letXk+1 = Zk and continue the procedure. Upon obtaining Zk̃−1, apply

Lemma 4.19 to obtain an Sn ∈ rmn+1[S
′
n−1, T ] such that max(Sn) extends Zk̃−1.
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N. Dobrinen

To finish, let S =
⋃

n<ω Sn. Then S ≤ T , S is incremental, and the sets of

parallel 1’s in S are strongly incrementally witnessed in T . Let W = {wn,k : n <

ω, k < k̃n}, where k̃n is the number of subsets of Sln,1 of size at least two.

8. Ramsey Theorem for Strict Similarity Types

The strongest Ramsey theorem proved so far is Theorem 6.3, a Milliken-style the-

orem for colorings of finite trees satisfying the Strict Parallel 1’s Criterion. In this

section, we obtain a general Ramsey theorem for all strictly similar copies (Defi-

nition 8.3) of any finite tree for which the maximal nodes are exactly the coding

nodes forming an antichain. This involves a new notion of envelope for strongly

diagonal subsets of strong coding trees, the main property being that any envelope

satisfies the Strict Parallel 1’s Criterion. Then applying Theorem 6.3, Lemma 7.5,

and envelopes, we obtain Theorem 8.9, the main Ramsey theorem for strong coding

trees in this paper.

Recall from Definition 4.8 that a strongly diagonal subset of 2<ω is an antichain

Z such that its meet closure forms a transversal with the property that for any

splitting node s ∈ Z∧, all nodes in Z∧ of length greater than |s|, except for those

nodes extending s, have passing number 0 at s. It is a byproduct of the definition

of strong coding trees that any subset of a strong coding tree forming an antichain

is in fact strongly diagonal. Henceforth, we shall use the term antichain of coding

nodes, or simply antichain, to refer to strongly diagonal sets of coding nodes in a

strong coding tree. If Z is an antichain, then by the tree induced by Z we mean the

set

{z � |u| : z ∈ Z and u ∈ Z∧}. (56)

We say that an antichain satisfies the Parallel 1’s Criterion (Strict Parallel 1’s

Criterion) if and only if the tree it induces satisfies the Parallel 1’s Criterion (Strict

Parallel 1’s Criterion).

Let Z be an antichain of coding nodes. Enumerate the nodes in Z in order of

increasing length as 〈zi : i < ĩ〉. For each l < |zĩ−1|, let

IZl = {i < ĩ : |zi| > l and zi(l) = 1}, (57)

and define

Zl,1 = {zi � (l + 1) : i ∈ IZl }. (58)

Thus, Zl,1 is the collection of all zi � (l+1) which have passing number 1 at level l.

Given l such that |Zl,1| ≥ 2, we say that the set of parallel 1’s at level l is witnessed

by the coding node zj in Z if zi(|zj |) = 1 for each i ∈ IZl , and either |zj | ≤ l or

else both |zj | > l and Z has no splitting nodes and no coding nodes of length in

[l, |zj|]. A level l is the minimal level of a new set of parallel 1’s in Z if |IZl | ≥ 2

and whenever l′ < l and IZl′ ⊆ IZl , then |IZl′ | < |IZl |. It follows that if there are two
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The Ramsey theory of the universal homogeneous triangle-free graph

or more members of Z extending some 0l
�
1, then l is the minimal level of a new

set of parallel 1’s, namely of IZl .

Definition 8.1. Given Z an antichain of coding nodes, if l is the minimal level of

a new set of parallel 1’s in Z, the admissible interval for IZl is the interval [l, l∗],

where l∗ > l is maximal satisfying the following:

(1) Z∧ has no splitting node and no coding node of length in (l, l∗).

(2) Each l′ ∈ (l, l∗] is not the minimal level of a new set of parallel 1’s in Z.

If l is the minimal level of a new set of parallel 1’s in Z, we say that the set of

parallel 1’s indexed by IZl is minimally witnessed in Z if, letting k < ĩ be minimal

such that |zk| ≥ l, |zk| is in the admissible interval [l, l∗] and zk witnesses the

parallel 1’s in IZl ; that is, {i < ĩ : zi(|zk|) = 1} = IZl . Note that zk is in the interval

[l, l∗] if and only if either |zk| = l or |zk| = l∗. Otherwise, we say that IZl is not

minimally witnessed in Z.

The following fact is immediate from the previous definition.

Fact 8.2. If all new sets of parallel 1’s are minimally witnessed in an antichain Z,

then the tree induced by Z satisfies the Strict Parallel 1’s Criterion.

Definition 8.3 (Strict Similarity Type). Given Z a finite antichain of coding

nodes in some strong coding tree T , list the minimal levels of new sets of parallel

1’s in Z which are not minimally witnessed in Z in increasing order as 〈lj : j < j̃〉.

Enumerate all nodes in Z∧ as 〈uZ
m : m < m̃〉 in order of increasing length. Thus,

each uZ
m is either a splitting node in Z∧ or else a coding node zi for some i < ĩ.

The sequence

〈〈lj : j < j̃〉, 〈IZlj : j < j̃〉, 〈|uZ
m| : m < m̃〉〉 (59)

is the strict similarity sequence of Z.

Let Y be another finite antichain in T , and let

〈〈pj : j < k̃〉, 〈IYpj
: j < k̃〉, 〈|uY

m| : m < ñ〉〉 (60)

be its strict similarity sequence. We say that Y and Z have the same strict similarity

type or are strictly similar, written Y
ss
∼ Z, if

(1) Y ∧ and Z∧ are strongly similar;

(2) j̃ = k̃ and m̃ = ñ;

(3) For each j < j̃, IYnj
= IZlj ; and

(4) The function ϕ : {pj : j < j̃}∪{|uY
m| : m < m̃} → {lj : j < j̃}∪{|uZ

m| : m < m̃},

defined by ϕ(pj) = lj and ϕ(uY
m) = uZ

m, is an order preserving bijection between

these two linearly ordered sets of natural numbers.

Define

Simss
T (Z) = {Y ⊆ T : Y

ss
∼ Z}. (61)
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N. Dobrinen

Note that for two antichains Y
ss
∼ Z, the map f : Y → Z by f(yi) = zi for each

i < ĩ induces a strong similarity map from Y ∧ onto Z∧ by defining f(yi∧yj) = zi∧zj
for each pair i, j < ĩ. Then f(uY

m) = uZ
m for each m < m̃. Further, by (3) and (4)

of Definition 8.3, this map preserves the order in which minimal sets of parallel

1’s appear, relative to all other minimal sets of parallel 1’s and the nodes in Y ∧

and Z∧.

The definition of strictly similar in Definition 8.3 extends Definition 6.2 to fi-

nite sets which do not necessarily satisfy the Parallel 1’s Criterion. When Z is an

antichain such that its induced tree satisfies the Incremental Parallel 1’s Criterion,

then Definitions 6.2 and 8.3 coincide, and further, for such Z, these coincide with

the notion of strongly similar.

Fact 8.4. Let T be a strong coding tree, and A and B be subsets of T . Suppose A

satisfies the Incremental Parallel 1’s Criterion. Then B
s
∼ A if and only if B

ss
∼ A.

The following notion of envelope is defined in terms of structure without re-

gard to an ambient strong coding tree. In any given strong coding tree T , there

will certainly be finite subtrees of T which have no envelope in T . This poses no

problem to our intended application, as by the work done in Sec. 7, inside a given

strong coding tree T , there will be an incremental strong coding tree S along with

a set of witnessing coding nodes W ⊆ T so that each finite antichain in S has

an envelope consisting of nodes from W . Thus, envelopes of antichains in S will

exist in T .

Definition 8.5 (Envelopes). Let Z be a finite antichain of coding nodes and let

〈〈lj : j < j̃〉, 〈Ilj : j < j̃〉, 〈|um| : m < m̃〉〉 be the strict similarity sequence of Z.

A finite set E(Z) is an envelope of Z if E(Z) = Z ∪W is an antichain of coding

nodes, where W = {wj : j < j̃}, such that the following hold: For each j < j̃,

(1) wj is in the admissible interval of lj ; that is, lj ≤ |wj | ≤ l∗j ;

(2) I|wj | = Ilj ;

(3) wj has no parallel 1’s with any member of Z ∪ (W\{wj}); and

(4) l∗j−1 < |w∧
j | < lj and there is no member of (Z∪W )∧ with length in (|w∧

j |, |wj |).

The set W is called the set of witnessing coding nodes, since they minimally

witness all parallel 1’s in Z not minimally witnessed by any coding node in Z. The

next fact follows immediately from the definitions.

Fact 8.6. Let S be any strongly incremental strong coding tree and Z be any

antichain in S. Then any envelope E of Z satisfies the Incremental Parallel 1’s

Criterion, and hence also the Strict Parallel 1’s Criterion.

Lemma 8.7. Let Y and Z be strictly similar antichains. Then any envelope of Y

is strictly similar to any envelope of Z; in particular, any two envelopes of Y are

strictly similar.
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The Ramsey theory of the universal homogeneous triangle-free graph

Proof. Let Y = {yi : i < ĩ} and Z = {zi : i < ĩ} be the enumerations of Y and Z,

respectively, in order of increasing length. Let

〈〈pj : j < j̃〉, 〈IYpj
: j < j̃〉, 〈|uY

m| : m < m̃〉〉 (62)

and

〈〈lj : j < j̃〉, 〈IZlj : j < j̃〉, 〈|uZ
m| : m < m̃〉〉 (63)

be their strict similarity sequences, respectively. Let E = Y ∪ V and F = Z ∪W

be any envelopes of Y and Z, respectively. Enumerate the nodes in V and W in

order of increasing length as {vj : j < j̃} and {wj : j < j̃}, respectively. Note that

|E| = |F | = ĩ+ j̃, since exactly j̃ many coding nodes are added to make envelopes of

Y and Z. Let k̃ = ĩ+ j̃, and let {ek : k < k̃} and {fk : k < k̃} be the enumerations

of E and F in order of increasing length, respectively. For each j < j̃, let kj be the

index in k̃ such that ekj
= vj and fkj

= wj . For k < k̃, let E(k) denote the tree

induced by E restricted to those nodes of length less than or equal to |ek|; precisely,

E(k) = {e � |t| : e, t ∈ E∧ and |t| ≤ min(|e|, |ek|)}. Likewise for F .

If j̃ = 0, then E = Y and F = Z, so E
s
∼ F follows from E

ss
∼ F . Suppose

now that j̃ ≥ 1. It must be the case that p0 > |uY
0 |, since uY

0 is the stem of the

tree induced by Y , and Y does not have any sets of parallel 1’s below its stem.

Likewise, l0 > |uZ
0 |. Let m0 be the least integer below m̃ such that |uY

m0
| > p0.

Then the admissible interval [p0, p
∗
0] is contained in the interval (|uY

m0−1|, |u
Y
m0

|),

and moreover,

|uY
m0−1| < |v∧0 | < p0 ≤ |v0| ≤ p∗0, (64)

by the definition of envelope. Since Y
ss
∼ Z, it follows that the admissible interval

[l0, l
∗
0 ] is contained in (|uZ

m0−1|, |u
Z
m0

|) and

|uZ
m0−1| < |w∧

0 | < l0 ≤ |w0| ≤ l∗0. (65)

Thus, E(k0 − 1) is exactly the tree induced by Y restricted below |uZ
m0−1|, which

is strongly similar to the tree induced by Z restricted below |uZ
m0−1|, this being

exactly F (k0 − 1).

Now, suppose that j < j̃ and E(kj − 1)
s
∼ F (kj − 1). Let mj be the least

integer below m̃ such that |uY
mj

| > pj. Then the only nodes in E∧ in the inter-

val (|uY
mj−1|, |u

Y
mj

|) are v∧j and vj . Likewise, the only nodes in F∧ in the interval

(|uZ
mj−1|, |u

Z
mj

|) are w∧
j and wj . Extend the strong similarity map g : E(kj − 1) →

F (kj − 1) to the map g∗ : E(kj) → F (kj) as follows: Define g∗ = g on E(kj − 1),

g∗(v∧j ) = w∧
j , and g∗(vj) = (wj). If the sequence of 0’s of length |vj | is in E, then

define g∗ of that node to be the sequence of 0’s of length |wj |. For each node s

in E(kj) of length |vj | besides vj itself, s extends a unique maximal node s− in

E(kj − 1); define g∗(s) to be the unique node in F (kj) of length |wj | extending

g(s−). Note that each node t in E(kj) of length |v∧j |, besides v∧j itself, is equal to

s � |v∧j | for some unique s as above; define g∗(t) to be g∗(s) � |w∧
j |. As the only new
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N. Dobrinen

set of parallel 1’s in Y in this interval is IYj , which is equal to IZj , and as

max(l∗j−1, |u
Y
mj−1|) < |v∧j | < pj ≤ |vj | ≤ p∗j , (66)

and similarly for wj , and vj , wj witness the parallel 1’s indexed by IYj , IZj , respec-

tively, it follows that g∗ is a strong similarity map from E(kj) to F (kj).

If j < j̃ − 1, noting that the only nodes in the tree induced by E with length

in the interval (|vj |, |v∧j+1|) are in the tree induced by Y , and likewise, all nodes in

the tree induced by F in the interval (|wj |, |w∧
j+1|) are in the tree induced by Z,

it follows that E(kj+1 − 1) is strongly similar to F (kj+1 − 1). Then the induction

continues.

To finish, when j = j̃ − 1, all nodes in the tree induced by E in the interval

(|vj̃−1|, |yĩ−1|] are in fact nodes in Y ∧. Likewise, all nodes in the tree induced

by F in the interval (|wj̃−1|, |zĩ−1|] are in Z∧. Further, all sets of parallel 1’s in

E and F in these intervals are already witnessed at or below |vj̃−1| and |wj̃−1|,

respectively. Thus, the strict similarity between Y and Z induces an extension of

the strong similarity between E(kj̃−1) and E(kj̃−1) to a strong similarity between

E∧ and F∧.

Lemma 8.8. Let S be a strongly incremental strong coding tree, a subtree of T .

Let Z be a finite antichain of coding nodes in S, and let E be any envelope of Z in

T . Enumerate the nodes in Z and E in order of increasing length as 〈zi : i < ĩ〉 and

〈ek : k < k̃〉, respectively. Then whenever F
s
∼ E, the subset F �Z := {fki

: i < ĩ}

of F is strictly similar to Z, where 〈fk : k < k̃〉 enumerates the nodes in F in order

of increasing length and for each i < ĩ, ki is the index such that eki
= zi.

Proof. Recall that F
s
∼ E implies F

ss
∼ E and that E and hence F satisfy the

Incremental Parallel 1’s Criterion, since E is an envelope of a diagonal subset of an

incremental strong coding tree. Let ιZ,F : Z → F be the injective map defined via

ιZ,F (zi) = fki
, for each i < ĩ, and let F �Z denote {fki

: i < ĩ}, the image of ιZ,F .

Then F �Z is a subset of F which we claim is strictly similar to Z.

Since F and E satisfy the Incremental Parallel 1’s Criterion, the strong similarity

map g : E → F satisfies that for each j < k̃, the sets of new parallel 1’s at level of

the jth coding node are equal:

{k < k̃ : ek(|ej |) = 1} = {k < k̃ : g(ek)(|g(ej)|) = 1}

= {k < k̃ : fk(|fj |) = 1}. (67)

Since ιZ,F is the restriction of g to Z, ιZ,F also takes each new set of parallel 1’s in

Z to the corresponding set of new parallel 1’s in F �Z, with the same set of indices.

Thus, ιZ,F witnesses that F �Z is strictly similar to Z.

Theorem 8.9 (Ramsey Theorem for Strict Similarity Types). Let Z be a

finite antichain of coding nodes in a strong coding tree T, and let h color of all

subsets of T which are strictly similar to Z into finitely many colors. Then there is
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The Ramsey theory of the universal homogeneous triangle-free graph

an incremental strong coding tree S ≤ T such that all subsets of S strictly similar

to Z have the same h color.

Proof. First, note that there is an envelope E of a copy of Z in T : By Lemma 7.5,

there is a strongly incremental strong coding tree U ≤ T and a set of coding nodes

V ⊆ T such that each Y ⊆ U which is strictly similar to Z has an envelope in T

by adding nodes from V . Since U is strongly similar to T , there is subset Y of U

which is strictly similar to Z. Let E be any envelope of Y in T , using witnessing

coding nodes from V .

By Lemma 8.7, all envelopes of copies of Z are strictly similar. Define a coloring

h∗ on Simss
T (E) as follows: For each F ∈ Simss

T (E), define h∗(F ) = h(F �Z), where

F �Z is the subset of F provided by Lemma 8.8. The set F �Z is strictly similar to

Z, so the coloring h∗ is well-defined. Since envelopes satisfy the Strict Parallel 1’s

Criterion, Theorem 6.3 yields a strong coding tree T ′ ≤ T such that Simss
T ′(E) is

homogeneous for h∗. Lemma 7.5 implies there is an incremental strong coding tree

S ≤ T ′ and a set of coding nodes W ⊆ T ′ such that each Y ⊆ S which is strictly

similar to Z has an envelope F in T ′. Thus, h(Y ) = h∗(F ). Therefore, h takes only

one color on the set of all Y ⊆ S which are strictly similar to Z.

Remark 8.10. If Z is not incremental, then S will have no strictly similar copies

of Z, since every antichain in S is strongly incremental. Thus, non-incremental

antichains will not contribute to the big Ramsey degrees.

Remark 8.11. The definition of envelope can be extended to handle any finite

subset of a strong coding tree, where maximal nodes can be any nodes in a strong

coding tree rather than just coding nodes. This is accomplished using the same

definition of strict similarity type, accounting for all minimal new sets of parallel 1’s,

and then letting envelopes consist of adding new coding nodes as before to witness

these sets of parallel 1’s in their admissible intervals. Then Theorem 8.9 extends to

a Ramsey theorem for strict similarity types of any finite subset of a strong coding

tree. However, as the main result of this paper only needs Theorem 8.9, in order to

avoid unnecessary length, we do not present the full generality here.

9. The Universal Homogeneous Triangle-Free Graph has Finite

Big Ramsey Degrees

The main theorem of this paper, Theorem 9.2, will now be proved: The universal

triangle-free homogeneous graph H3 has finite big Ramsey degrees. This result will

follow from Theorem 8.9, which is the Ramsey theorem for Strict Similarity Types,

along with Lemma 9.1, which shows that any strong coding tree contains an infinite

strongly diagonal set of coding nodes which code the universal triangle-free graph.

Recall from the discussion in the previous section that in a strong coding tree,

a set of coding nodes is strongly diagonal if and only if it is an antichain. Given an

antichain D of coding nodes from a strong coding tree, its meet closure, D∧ has at
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N. Dobrinen

most one node of any given length. Let LD denote the set of all lengths of nodes

t ∈ D∧ such that t is not the splitting predecessor of any coding node in D. Define

D∗ =
⋃

{t � l : t ∈ D∧\D and l ∈ LD}. (68)

Then (D∗,⊆) is a tree.

For a strong coding tree T , let (T,⊆) be the reduct of (T, ω;⊆, <, c). Then

(T,⊆) is simply the tree structure of T , disregarding the difference between coding

nodes and non-coding nodes. We say that two trees (T,⊆) and (S,⊆) are strongly

similar trees if they satisfy [32, Definition 3.1]. This is the same as the modification

of Definition 4.9 leaving out (6) and changing (7) to apply to passing numbers of

all nodes in the trees. When we say that two finite trees are strongly similar trees,

we will be implying that when extending the two trees to include the immediate

extensions of their maximal nodes, the two extensions are still strongly similar.

Thus, strong similarity of finite trees implies passing numbers of their immediate

extensions are preserved.

Lemma 9.1. Let T ≤ T be a strong coding tree. Then there is an infinite antichain

of coding nodes D ⊆ T which code H3 in exactly the same way that T does: cDn (lDi ) =

cTn(l
T

i ), for all i < n < ω. Moreover, (D∗,⊆) and (T,⊆) are strongly similar trees.

Proof. To simplify the indexing of the construction, we will construct a subtree

D ⊆ T such that D the set of coding nodes in D form an antichain satisfying the

lemma. Then, since T is strongly similar to T, letting ϕ : T → T be the strong

similarity map between T and T , the image of ϕ on the coding nodes of D will yield

an antichain of coding nodes D ⊆ T satisfying the lemma.

We will construct D so that for each n, the node of length lDn +1 which is going

to be extended to the next coding node cDn+1 will split at a level lower than any of

the other nodes of length lDn+1 split in D. Above that, the splitting will be regular

in the interval until the next coding node. Recall that for each i < ω, T has either a

coding node or a splitting node of length i. To avoid some superscripts, let ln = |cTn|

and kn = |cDn|. Let jn be the index such that cDn = cTjn , so that kn equals ljn . The

set of nodes in D\{cDn} of length kn shall be indexed as {dt : t ∈ T � ln}.

Define d〈〉 = 〈〉 and let LevD(0) = {d〈〉}. As the node 〈〉 splits in T, so the node

d〈〉 will split in D. Extend 〈1〉 to a splitting node in T and label this extension

v〈1〉. Let a〈0〉 be the leftmost node in T of length |v〈1〉|+ 1, let a〈1〉 = v〈1〉
�0, and

u〈1〉 = v〈1〉
�1. Extend a〈0〉 to the shortest splitting node containing it in T ∩ 0<ω;

label this d〈0〉. Let d〈1〉 be the leftmost extension of a〈1〉 in T of length |d〈0〉|, and

let u′
〈1〉 be the leftmost extension of u〈1〉 in T of length |d〈0〉|. Apply Lemma 4.19

to extend d〈0〉
�0, d〈0〉

�1, d〈1〉
�0, and u′

〈1〉
�
0 to nodes d〈0,0〉, d〈0,1〉, d〈1,0〉, and

cD0 , respectively, so that the tree induced by these nodes satisfy the Parallel 1’s

Criterion, cD0 is a coding node, and the immediate extension of d〈i0,i1〉 in T is i1, for

all 〈i0, i1〉 in LevT(2). Let k0 = |cD0 |, and notice that we have constructed D � (≤ k0)

satisfying the lemma.
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The Ramsey theory of the universal homogeneous triangle-free graph

For the induction step, suppose n ≥ 1 and we have constructed D � (≤ kn−1)

satisfying the lemma. Then by the induction hypothesis, there is a strong similarity

map of the trees ϕ : T � (≤ ln−1) → D∗ � (≤ kn−1), where for each t ∈ T � ln−1,

dt = ϕ(t). Let s denote the node in T � ln−1 which extends to the coding node cTn.

Let vs be a splitting node in T extending ds. Let us = vs
�1 and extend all nodes dt,

t ∈ (T � ln−1)\{s}, leftmost to length |us| and label these d′t. Extend vs
�0 leftmost

to length |us| and label it d′s. Let X = {d′t : t ∈ T � ln−1} ∪ {us} and let Spl(us)

be the set of all nodes in X which have no parallel 1’s with us. Apply Lemma 4.19

to obtain a coding node cDn extending us and nodes dw, w ∈ T � ln, so that, letting

kn = |cDn| and

D � kn = {dm : m ∈ T � ln} ∪ {cDn}, (69)

the following hold. D � (≤ kn) satisfies the Parallel 1’s Criterion, and D∗ � (≤ kn) is

strongly similar as a tree to T � (≤ ln). Thus, the coding nodes in D � (≤ kn) code

exactly the same graph as the coding nodes in T � (≤ ln).

Let D =
⋃

n<ω D � (≤ kn). Then the set of coding nodes in D forms an antichain

of maximal nodes in D. Further, the tree generated by the meet closure of the set

{cDn : n < ω} is exactly D, and D∗ and T are strongly similar as trees. By the

construction, for each pair i < n < ω, cDn(ki) = cTn(li); hence they code H3 in the

same order.

To finish, let ψ be the strong similarity map from T to S. Letting D be the

ψ-image of {cDn : n < ω}, we obtain an antichain of coding nodes in S such that D∗

and D∗ are strongly similar trees, and hence D∗ is strongly similar as a tree to T.

Thus, the antichain of coding nodes D codes H3 and satisfies the lemma.

The filled-in nodes in the graphic form the tree D∗. The coding nodes are exactly

the maximal nodes of D and form an antichain. Notice that the collection of nodes

{dt : t ∈ T � (≤ 2)}, which are exactly the filled-in nodes in the figure, forms a tree

strongly similar to T � 2. The bent lines indicate that the next node was chosen

either to be least such that it was a critical node or according to Lemma 4.19.

Main Theorem 9.2. The universal homogeneous triangle-free graph has finite big

Ramsey degrees.

Proof. Let G be a finite triangle-free graph, and let f be a coloring of all the copies

of G in H3 into finitely many colors. By Theorem 4.6, there is a strong coding tree T

in which the coding nodes code H3. Let A denote the set of all antichains of coding

nodes of T which code a copy of G. For each Y ∈ A, let h(Y ) = f(G′), where G′ is

the copy of G coded by the coding nodes in Y . Then h is a finite coloring on A.

Let n(G) be the number of different strict similarity types of incremental

strongly diagonal subsets of T coding G, and let {Zi : i < n(G)} be a set of one

representative from each of these different strict similarity types. Successively apply

Theorem 8.9 to obtain incremental strong coding trees T ≥ T0 ≥ · · · ≥ Tn(G)−1 so

that for each i < n(G), h is takes only one color on Sims
Ti
(Zi). Let S = Tn(G)−1.
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N. Dobrinen

d〈〉

v〈1〉

u〈1〉

d〈0〉 d〈1〉 u′
〈1〉

d〈0,0〉 d〈0,1〉 d〈1,0〉
cD0

v〈0,1〉
u〈0,1〉u〈0,1〉

d〈1,0,0〉

d〈1,0,0,1〉d〈1,0,0,0〉d〈0,0,0,0〉

d〈0,0,0,0,0〉
cD1

d〈0,0,0〉 d〈0,1,1〉

d〈0,1,1,0〉

d〈0,0,0,0,1〉
d〈1,0,0,1,0〉d〈0,1,1,0,0〉 d〈1,0,0,1,0〉

Fig. 5. The construction of D.

By Lemma 9.1 there is a strongly diagonal subtree D ⊆ S which also codes H3.

Then every set of coding nodes in D coding G is automatically strongly diagonal

and incremental. Therefore, every copy of G in the copy of H3 coded by the coding

nodes in D is coded by an incremental strongly diagonal set. Thus, the number

of strict similarity types of incremental strongly diagonal subsets of T coding G

provides an upper bound for the big Ramsey degree of G in H3.

10. Concluding Remarks

The number of strict similarity types of antichains of coding nodes in a strong coding

tree which code a given finite graph G is bounded by the number of subtrees of the

binary tree of height 2(|G| + 1), times the number of ways to choose incremental

sets of new parallel 1’s between any successive levels of the tree. We leave it as an

open problem to determine this recursive function precisely.

Although we have not yet proved the lower bounds to obtain the precise big

Ramsey degrees T (G,K3) for finite triangle-free graphs inside the universal triangle-

free graph, we conjecture that they will be equal to the number of strict similarity

types of strongly incremental antichains coding G. We further conjecture that once

found, the lower bounds will satisfy the conditions needed for Zucker’s work in [38]

to apply. If so, then H3 would admit a big Ramsey structure and any big Ramsey

flow will be a universal completion flow, and any two universal completion flows will

be universal. We refer the interested reader to [38, Theorem 1.6] and surrounding

comments.

The author is currently working to extend the techniques developed here to

prove that for each k > 3, the universal k-clique-free homogeneous graph Hk has

2050012-72

J.
 M

at
h
. 
L

o
g
. 
2
0
2
0
.2

0
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 U

N
IV

E
R

S
IT

Y
 O

F
 D

E
N

V
E

R
 o

n
 0

7
/1

5
/2

1
. 
R

e-
u
se

 a
n
d
 d

is
tr

ib
u
ti

o
n
 i

s 
st

ri
ct

ly
 n

o
t 

p
er

m
it

te
d
, 
ex

ce
p
t 

fo
r 

O
p
en

 A
cc

es
s 

ar
ti

cl
es

.



The Ramsey theory of the universal homogeneous triangle-free graph

finite big Ramsey degrees. Preliminary analyses indicate that the methodology cre-

ated in this paper is robust enough to apply, with modifications, to a large class

of Fräıssé limits of Fräıssé classes of relational structures omitting some irreducible

substructure.
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J. Symbolic Logic 84(2) (2019) 473–496.
[38] A. Zucker, Big Ramsey degrees and topological dynamics, Group. Geom. Dynam.

(2018) 235–276.

2050012-75

J.
 M

at
h
. 
L

o
g
. 
2
0
2
0
.2

0
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 U

N
IV

E
R

S
IT

Y
 O

F
 D

E
N

V
E

R
 o

n
 0

7
/1

5
/2

1
. 
R

e-
u
se

 a
n
d
 d

is
tr

ib
u
ti

o
n
 i

s 
st

ri
ct

ly
 n

o
t 

p
er

m
it

te
d
, 
ex

ce
p
t 

fo
r 

O
p
en

 A
cc

es
s 

ar
ti

cl
es

.


	Overview
	Introduction
	Background: Trees Coding Graphs and the Halpern–Läuchli and Milliken Theorems
	Trees coding graphs
	The Halpern–Läuchli and Milliken theorems

	Strong Triangle-Free Trees Coding H3
	Strong Coding Trees
	Definitions and notation
	Definition and construction of strong coding trees
	The space (T(T),,r) of strong coding trees

	Halpern–Lauchli-Style Theorems for Strong Coding Trees
	Ramsey Theorem for Finite Trees Satisfying the Strict Parallel 1's Criterion
	Incremental Strong Coding Trees
	Ramsey Theorem for Strict Similarity Types
	The Universal Homogeneous Triangle-Free Graph has Finite Big Ramsey Degrees
	Concluding Remarks

