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An activator–inhibitor–substrate model of side branching used in the context of pulmonary vascular and

lung development is considered on the supposition that spatially localized concentrations of the activator

trigger local side branching. The model consists of four coupled reaction–diffusion equations, and its

steady localized solutions therefore obey an eight-dimensional spatial dynamical system in one spatial

dimension (1D). Stationary localized structures within the model are found to be associated with a

subcritical Turing instability and organized within a distinct type of foliated snaking bifurcation structure.

This behavior is in turn associated with the presence of an exchange point in parameter space at which

the complex leading spatial eigenvalues of the uniform concentration state are overtaken by a pair of

real eigenvalues; this point plays the role of a Belyakov–Devaney point in this system. The primary

foliated snaking structure consists of periodic spike or peak trains with N identical equidistant peaks,

N = 1, 2, . . . , together with cross-links consisting of nonidentical, nonequidistant peaks. The structure

is complicated by a multitude of multipulse states, some of which are also computed, and spans the

parameter range from the primary Turing bifurcation all the way to the fold of the N = 1 state. These states

form a complex template from which localized physical structures develop in the transverse direction in

2D.

Keywords: localized states; homoclinic snaking; wavenumber selection; reaction–diffusion systems.

1. Introduction

Reaction–diffusion (RD)-type models are widely studied as a laboratory for gaining insight into

mechanisms responsible for pattern formation in spatially extended systems that are driven far from

equilibrium (Cross & Greenside, 2009; Cross & Hohenberg, 1993), as exemplified by physico-chemical

autocatalytic systems (Epstein & Pojman, 1998; Imbihl & Ertl, 1995; Kapral & Showalter, 2012;

Pismen, 2006), biological and medical applications (Keener & Sneyd, 1998, 2008; Maini & Othmer,

2001; Murray, 2003), models of vegetation cover in ecology (Meron, 2015) and even nonlinear optics

(Arecchi et al., 1999). Even though RD models cannot capture the complexity of many real-world

applications, especially in the medical context, they share many generic similarities with them and so

are often exploited to provide a qualitative understanding of the mechanistic basis of pattern formation

and evolution in a wide variety of natural settings, including periodic pigmentation on animal skins,

© The Author(s) 2021. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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2 E. KNOBLOCH AND A. YOCHELIS

intracellular Ca2+ and actin waves, electrical impulses in neurons and in the heart, swarming phenomena

in bacterial colonies or flocks of birds and fish, spatially localized resonances in the inner ear and the

development of tissues and organs. In fact, this approach has already been outlined in the seminal works

of Turing on morphogenesis (Turing, 1952) and of Hodgkin and Huxley on action potentials in the

giant squid axon (Hodgkin & Huxley, 1952). Since then several prototypical RD models, such as the

FitzHugh–Nagumo (FitzHugh, 1961; Nagumo et al., 1962), the Keller–Segel (Keller & Segel, 1971)

and the Gierer–Meinhardt (Gierer & Meinhardt, 1972) equations, have been subjected to detailed study

in order to gain further insight into many of these systems.

In the biomedical context, RD models are often referred to as activator–inhibitor (AI) systems, where

the activator is locally expressed on a fast timescale but diffuses slowly while the inhibitor is expressed

slowly but diffuses rapidly. These two kinetic ingredients are essential for the presence of the Turing

instability (Turing, 1952) that gives rise not only to periodic patterns (Castets et al., 1990; Garfinkel

et al., 2004; Kondo, 2002; Lengyel & Epstein, 1992; Lin et al., 2009; Maini et al., 2006; Nagorcka,

1983; Ouyang & Swinney, 1991), such as striped or hexagonal structures, but also to spatially localized

structures that may range from stationary (Breña-Medina & Champneys, 2014; Purwins et al., 2010;

Yochelis et al., 2008b) or propagating (Elphick et al., 1990; Yochelis et al., 2008a) single peaks to groups

of peaks. While a complete mathematical framework for studying these structures has not yet been

established, uncovering partial mechanisms behind biomedical pattern-formation phenomena remains

of utmost importance for understanding functional aspects and application design behind drug delivery

systems or implants. On the other hand, mechanistic studies of medical systems are a fertile source of

new mathematical questions, especially in the context of model simplification and applicability as a

useful description of highly detailed and multiscale phenomena. In the present work, our interest lies in

spatially localized states that are symmetric under spatial reflections x → −x in 1D (a symmetry broken

by propagating excitable pulses) and their apparent role in initiating side branching in mammalian organ

development (Caduff et al., 1986; Hannezo & Simons, 2019; Metzger et al., 2008; Roth-Kleiner et al.,

2005; Varner & Nelson, 2017; Warburton, 2008).

1.1 Localized states and homoclinic snaking

Existence and stability of single steady-state localized states as well as groups of such states have been

intensively studied in the past two decades in the context of many application-driven model equations

including nonlinear optics (Parra-Rivas et al., 2016), Faraday waves (Alnahdi et al., 2014; Burke et

al., 2008; Dawes, 2008; Richter & Barashenkov, 2005; Yochelis et al., 2006), fluid convection (Batiste

et al., 2006; Beaume et al., 2013; Lo Jacono et al., 2011), solidification (Archer et al., 2014; Thiele

et al., 2019), electrically charged molecules (Gavish et al., 2017), vegetation structures (Zelnik et al.,

2013, 2015, 2016, 2017, 2018), hair-root formation in plants (Breña-Medina et al., 2014; Verschueren

& Champneys, 2017) and vascular mesenchymal cells (Yochelis & Garfinkel, 2008; Yochelis et al.,

2008b).

The mathematical organization of coexisting localized states in 1D is broadly attributed to the

homoclinic snaking (HS) phenomenon (Knobloch, 2015), the commonest manifestation of which is

the so-called snakes-and-ladders structure of the snaking or pinning region (Burke & Knobloch, 2007).

Other types of organization, referred to as collapsed HS (Burke & Knobloch, 2006; Yochelis et al., 2006;

Yochelis & Garfinkel, 2008), defect-mediated HS (Ma et al., 2010), slanted HS (Dawes, 2008) and

foliated HS (Glasner, 2012; Parra-Rivas et al., 2018; Ponedel & Knobloch, 2016) also arise. The latter

is of particular relevance in this work. The canonical HS structure takes the form of a pair of intertwined

branches of spatial oscillations with odd and even numbers of peaks, interconnected by rungs consisting
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STATIONARY PEAKS IN A MULTIVARIABLE REACTION–DIFFUSION SYSTEM 3

of asymmetric solutions, all of which are embedded in a homogeneous background state with complex

spatial eigenvalues. In contrast, in foliated snaking the basic structure is a single peak that coexists with

separate branches of equispaced multipeak states. These branches are also interconnected by rung-like

states but these consist of states with developing interpeak structures. This structure is associated with

real spatial eigenvalues.

These different cases are distinguished not only by the nonlinear properties of the localized solutions

in the parameter plane (e.g. the type of homoclinic and hetereclinic connection) but also by their origin

(i.e. the nature of the primary bifurcation through which the localized solutions form). The origin can be

attributed to physical symmetry-breaking characteristics of the system, e.g. a subcritical Turing (or finite

wavenumber) instability from which the snakes-and-ladders HS emerges (Burke & Knobloch, 2007),

while the organization of the resulting localized structures may be slanted (instead of being vertical) in

parameter space owing to the presence of a conserved quantity or other nonlocal effects (Dawes, 2008;

Thiele et al., 2013). Although the factors that affect the HS properties may be obscured in specific model

equations, the use of spatial dynamics can reveal both its origin and organization (Champneys, 1998;

Knobloch, 2015), an approach considerably advanced by Patrick Woods (Hunt et al., 2000; Woods &

Champneys, 1999).

In the present work, we study in detail one such model system from this point of view. The

model is of activator–inhibitor–substrate type and is motivated by increasing empirical evidence for

the dominance of AI behavior as the driving mechanism behind branching (Iber & Menshykau, 2013;

Menshykau et al., 2019) and specifically the development of the lungs (Yao et al., 2007), although the

details of this mechanism remain unclear owing to the multiscale nature of the processes involved that

range from molecular to tissue level (Hannezo & Simons, 2019; Varner & Nelson, 2017).

Beyond its potential applicability the model studied below also introduces new mathematical

issues, arising from the fact that its spatial dynamics formulation is higher-dimensional than that of

the prototypical models such as the Swift–Hohenberg or the complex Ginzburg–Landau equation or

application-motivated models (e.g. Lugiato–Lefever, Gray–Scott and Gierer–Meinhardt models), all of

which lead to a set of four first-order ordinary differential equations (ODEs) for the spatial structure

of the possible stationary states. It is this increased dimension that permits the appearance of new

mathematical structures in this model. Despite this, we believe that the bifurcation structure we identify

can also be found, with minor modifications, in lower-dimensional models.

1.2 Localized states and side branching

Meinhardt (1976) proposed an activator–inhibitor–substrate approach for studying branching phenom-

ena, which has since been employed in the context of pulmonary vascular and lung development (Yao et

al., 2007). The model is based on four fields A, H, S and Y that represent, respectively, the concentrations

of an activator (BMP), an inhibitor (MGP) and the substrate (TGF-β/ALK1), as well as the concentration

of an irreversible marker for differentiated endothelial cells (Yao et al., 2007):

∂A

∂t
= c

SA2

H
− μA + ρAY + DA∇2A, (1a)

∂H

∂t
= cSA2 − νH + ρHY + DH∇2H, (1b)

∂S

∂t
= c0 − γ S − εYS + DS∇2S, (1c)

∂Y

∂t
= dA − eY +

Y2

1 + fY2
+ DY∇2Y . (1d)
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4 E. KNOBLOCH AND A. YOCHELIS

Fig. 1. A representative snapshot of a solution obtained from DNS of Eq. (1) for ρH = 1.6 · 10−5 with periodic boundary

conditions on x ∈ [0, 16] and Neumann boundary conditions on y ∈ [0, 5]. The top panel represents the A field while the bottom

panel shows the Y field, the dark colors indicating higher values of the field. The contour lines in the bottom panel mark the

locations of the localized A states shown in the top panel.

Although DY = 0 in the original formulation by Meinhardt (and in the studies that followed), here we

take DY as finite but much smaller than the smallest diffusion coefficient among all other fields, i.e.

DY ≪ DA. This increased spatial order is inconsequential: what matters for us is that the DY = 0

system is of sixth order in space. We also mention that although the number of parameters in system

(1) can be reduced, we follow here previous studies (Guo et al., 2014; Xu et al., 2017; Yao et al., 2011,

2007) and do not do so. Additionally, to maintain fidelity to experiments with excess inhibitor (MGP)

(Yao et al., 2007), we employ the inhibitor control level, ρH, as a control parameter while keeping all

other parameters fixed and within the range of previous studies: c = 0.002, μ = 0.16, ρA = 0.005,

ν = 0.04, c0 = 0.02, γ = 0.02, ε = 0.1, d = 0.008, e = 0.1, f = 10, DA = 0.001, DH = 0.02,

DS = 0.01 and DY = 10−7.

Direct numerical simulations (DNS) of (1) in 2D show that side branches develop via growing

localized concentrations (top panel in Fig. 1) that are locked to the edge of a propagating front generated

by the differentiation field (bottom panel in Fig. 1); the direction of propagation corresponds to the

invasion of the light color region by the dark color region. Moreover, it has been shown through analysis

of (1) in 1D that the initiation of these side branches corresponds to the existence of localized solutions

that bifurcate subcritically via a Turing instability from an expanding differentiated state uniform in the

variable x along the front (Yochelis, 2021). In the following, we focus on the origin and properties of

the localized structures shown in Fig. 1 and so formulate the problem in one space dimension, ignoring

the motion of the front in the normal, y, direction. The latter will be the subject of a future publication.

1.3 Problem outline

We suppose that Eq. (1) is posed on the real line with periodic boundary conditions on the domain

x ∈ [0, L]. The 1D domain and the choice of the boundary conditions mimic the planar interface that

connects the P∗ and P0 states prior to the formation of any peaks. Our aim is to reveal the mechanism

responsible for the appearance of localized structures along this interface, prior to their expansion in the

transverse direction. This picture is predicated on the assumption that these structures form on a faster

timescale than that of the transverse growth, an assumption that will be tested in subsequent work on

the 2D problem.
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STATIONARY PEAKS IN A MULTIVARIABLE REACTION–DIFFUSION SYSTEM 5

In the following, we describe the nature of the stationary nonuniform solutions focusing on the

properties of spatially localized states when L = 60. Our results are supplemented with additional

results for other values of L. The steady solutions of this system solve an 8D system in space. Because

of this higher dimension new behavior can arise that cannot occur in the 4D systems hitherto studied.

Thus, our study of the system (1) represents a nontrivial extension of existing work on spatially localized

states.

Specifically, we show that the steady localized states of (1) are organized in a bifurcation structure,

which we call foliated snaking (Parra-Rivas et al., 2018; Ponedel & Knobloch, 2016). These states

consist of trains of identical equispaced stationary peaks we refer to as primary states, as well as

secondary states consisting of unequal amplitude peaks with unequal separations. We use the numerical

continuation software AUTO (Doedel et al., 2012) to continue both types of states as a function of the

bifurcation parameter ρH. We show that these states are generated at small amplitude near the Turing

bifurcation at ρH = ρT creating a subcritical Turing pattern and then follow them through folds back

to their termination at finite amplitude, also near ρT. We examine the role of spatial resonances in

generating the secondary states and identify the existence of an exchange point (EP), ρH = ρEP, which

plays a role in the behavior of the system analogous to that of the Belyakov–Devaney (BD) point. We

confirm our L = 60 results by performing similar computations for L = 20, 24 and 30, obtaining

essentially identical results, and discuss the relation of finite domain numerical continuation results to a

theoretical analysis of the unfolding of a global bifurcation at BD by Verschueren & Champneys (2021).

We conjecture that the foliated snaking structure we identify here is both robust and universal and should

therefore be present in other systems of partial differential equations supporting peak-like states, ranging

from branching in physiology to the formation of plant roots and of vegetation patches. In particular, we

suggest that the structure we uncover arises generically in systems of two coupled spatially reversible

reaction–diffusion equations on a line. The paper concludes with an outlook for future work.

2. Linear analysis of uniform solutions

We begin by solving (1) for steady spatially uniform states. In Fig. 2(a), we show that together with the

‘trivial’ linearly stable solution P0 ≡ (A0, H0, S0, Y0) = (0, 0, c0/γ , 0) there are three or five additional

nontrivial solutions that coexist for different values of ρH. Among these coexisting solutions, only one

is linearly stable with respect to spatially uniform perturbations and we refer to this solution as P∗ ≡

(A∗, H∗, S∗, Y∗). Note that the front solution shown in Fig. 1 connects the P0 and P∗ states. The P∗

solution is thus the solution of interest in the present paper.

The homogeneous states P∗ are found on the bottom portion of a branch that resembles a backwards

S, as shown in Fig. 2(b). The stability of the P∗ states is described by linearized equations about P∗,

⎛

⎜

⎜

⎝

A

H

S

Y

⎞

⎟

⎟

⎠

−

⎛

⎜

⎜

⎝

A∗

H∗

S∗

Y∗

⎞

⎟

⎟

⎠

∝ eσ t+λx. (2)

Thus, σ represents the growth rate in time of the perturbation while λ represents its growth rate in space.

For our spatial analysis, we take σ = 0 obtaining a quartic equation for λ2, a consequence of the spatial

reversibility of the system.

In this case, because of the small value of DY, there is always a pair of large real eigenvalues

±λ4. On the lower branch to the right of the Turing bifurcation, ρH > ρT, there is a second pair of
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6 E. KNOBLOCH AND A. YOCHELIS

Fig. 2. (a) Bifurcation diagram showing the coexistence and linear stability (solid lines) of uniform solutions of (1) in terms of

the L2 norm (4). The red rectangle marks the region of interest; there are two distinct families of uniform solutions in this region,

a projection effect absent from panel (b). (b) Bifurcation diagram in terms of A (within the region of interest), showing the onset

of a Turing instability at ρT ≃ 1.0011 · 10−5, with the inset depicting the dispersion relation, i.e. the real part of the growth rate

σ as a function of the wavenumber k according to (2), where kT ≃ 2.18 is the critical wavenumber.

real eigenvalues, ±λ3 and a quartet of complex eigenvalues. At the Turing bifurcation ρH = ρT ≃

1.0011 · 10−5, computed here for an infinite system (for L = 60 the value is essentially identical), these

complex eigenvalues collide pairwise on the imaginary axis, forming a pair of imaginary eigenvalues

λ1,2 = ±ikT of double multiplicity (see Fig. 3), where kT ≃ 2.18 is the critical wavenumber at the

Turing onset (see inset in Fig. 2(b)). For ρH < ρT these split into four purely imaginary eigenvalues, a

situation that corresponds to temporal instability of P∗, i.e. in this region Re[σ(k)] > 0 for a band of

wavenumbers about kT. With further decrease in ρH the two imaginary eigenvalues closest to the origin

collide at the origin, i.e. at λ = 0, indicating the presence of the left fold of the S-shaped branch and

above this fold the eigenvalues are real (not shown). On the middle part of the S-shaped branch there

are three pairs of real eigenvalues and these become four pairs above the right fold.

If we instead increase ρH from ρT we find that the imaginary parts of the eigenvalues ±λ1,2 gradually

decrease, and that these eigenvalues become real at the BD point ρBD ≃ 1.053 · 10−5 implying the

disappearance of an intrinsic wavelength from the behavior of the system. Such a picture is familiar

from similar behavior found, for example, in the Lugiato–Lefever equation in nonlinear optics when the

homogeneous state is modulationally unstable (Parra-Rivas et al., 2018). However, the steady states of

this equation represent a 4D spatial system. In the following we shall see that the ‘extra’ eigenvalue λ3
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STATIONARY PEAKS IN A MULTIVARIABLE REACTION–DIFFUSION SYSTEM 7

Fig. 3. The six eigenvalues λ as a function of ρH. Imaginary parts of λ1,2 are indicated by the + symbol. The point ρBD ≃

1.053 ·10−5 corresponds to the BD point where λ1,2 become real, while ρEP ≃ 1.04 ·10−5 indicates the EP where the eigenvalue

|λ3| becomes smaller than |Re(λ1,2)| as ρH increases. The eigenvalues ±λ4 ∼ ±800 are not shown. The ρH axis here and in all

subsequent figures is scaled by 105, unless stated otherwise.

present in system (1) plays a new and significant role in the observed behavior. Figure 3 indicates the

essential new feature arising from the presence of λ3: as ρH increases |Re(λ1,2)| increases and at ρEP

|λ3| falls below |Re(λ1,2)|, i.e. the complex eigenvalues ±λ1,2 cease being leading eigenvalues and their

role is taken by the real eigenvalues ±λ3, a fact that has a profound influence on the behavior of the

system. This is because the leading eigenvalues generically determine the shape of localized structures

near the background homogeneous state. In the following, we refer to the transition at ρEP ≃ 1.04 ·10−5

as an exchange point. Figure 3 shows that this point is associated with a spatial resonance.

We mention that a Turing or modulational instability is not a prerequisite for the presence of a

BD point, although in cases in which a Turing instability is absent the localized structures and the

associated foliated snaking can be traced to other bifurcations, such as a fold (Parra-Rivas et al., 2018)

or a transcritical bifurcation (Yochelis & Garfinkel, 2008; Ruiz-Reynés et al., 2020). However, the BD

point continues to play a similar role to that here whenever it is present. In higher dimensions the EP

point is expected to do the same.

3. Nonlinear results: a new type of foliated snaking

The Turing bifurcation at ρH = ρT ≃ 1.0011 · 10−5 provides a key to much of the nonlinear behavior

observed in this system since it gives rise to a subcritical branch of periodic states with wavenumber

kT and corresponding wavelength ℓT ≡ 2π/kT ≃ 2.88. These periodic states, which extend towards

ρH > ρT, are therefore temporally unstable, see Yochelis (2021) for details.

Our interest is in the organization of the stationary localized states associated with this bifurcation.

For this purpose, we employ numerical continuation (Doedel et al., 2012) and compute solutions of the

system (1) written as a set of eight first-order ODEs in space:

A′ = −a, (3a)

a′ = D−1
A

(

c
SA2

H
− μA + ρAY

)

, (3b)

H′ = −h, (3c)
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8 E. KNOBLOCH AND A. YOCHELIS

h′ = D−1
H

(

cSA2 − νH + ρHY
)

, (3d)

S′ = −s, (3e)

s′ = D−1
S

(

c0 − γ S − εYS
)

, (3f)

Y ′ = −z, (3g)

z′ = D−1
Y

(

dA − eY +
Y2

1 + fY2

)

. (3h)

Here the prime indicates differentiation with respect to x. Our results are summarized in the next section.

These resemble the phenomenon of foliated snaking originally described by Ponedel & Knobloch (2016)

in the context of a spatially forced two-variable PDE (or four-variable spatial ODE) and subsequently

identified in the homogeneously forced Lugiato–Lefever equation by Parra-Rivas et al. (2018); see also

Glasner (2012). However, the present system is higher dimensional and this fact is reflected in the

observed behavior as discussed further below.

3.1 Localized states on large domains

In Fig. 4(a), we show the basic bifurcation diagram for a domain of length L = 60, showing the branch

of homogeneous states near ρT, as well as branches of N = 1, 2, 3 and 4 identical equispaced peaks in

the domain, as shown in the inset. The diagram shows the L2 norm of the solutions,

L2 ≡

√

L−1

∫ L

0

dx
[

A2 + (A′)2 + H2 + (H′)2 + S2 + (S′)2 + Y2 + (Y ′)2
]

, (4)

as a function of the parameter ρH. Observe that on sufficiently large domains (L ≫ ℓT) the low N

branches all bifurcate subcritically and that all subsequently undergo a fold near essentially the same

value ρH = ρSN ≃ 2.241 · 10−5 (see Fig. 5), before turning around towards smaller values of ρH. In the

following, we examine in detail the behavior of these primary branches near their point of origin (near

the Turing point ρT), their folds on the right (near ρSN), and finally those on their left since all N-peak

branches appear to terminate back at the Turing point ρT, although this time at finite amplitude.

In fact, Fig. 4(b,c) shows that the primary branches do not terminate at ρT (for ρH < ρT the leading

eigenvalues λ are imaginary thereby preventing approach to P∗) but instead turn around in a narrow

fold, and that in this region they start to develop small intervening peaks, i.e. in this region the solutions

no longer consist of equispaced identical peaks.

To understand this behavior qualitatively recall that in the absence of locking between adjacent

peaks, i.e. beyond the so-called BD transition, ρH > ρBD, where all the spatial eigenvalues λ are real,

we expect all primary solutions to consist of equispaced peaks. In contrast, when ρT < ρH < ρBD the

spatial eigenvalues are complex and such eigenvalues imply the presence of oscillations in the tail of

each peak and hence the presence of locking of adjacent peaks at distinct separations. In other words, we

expect a large variety of states for ρT < ρH < ρBD owing to the presence of spatial locking but a much

simpler situation for ρH > ρBD where locking is absent. This is in fact the picture that is consistent with

the behavior observed in 4D systems (Parra-Rivas et al., 2018; Verschueren & Champneys, 2021).
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STATIONARY PEAKS IN A MULTIVARIABLE REACTION–DIFFUSION SYSTEM 9

Fig. 4. (a) Bifurcation diagram showing the primary N = 1, 2, 3, 4 branches originating near ρT when L = 60 as well as additional

interconnecting branches. Color-coded profiles at locations indicated by dots are provided alongside and represent periodic states

on the real line. (b,c) Detail of (a) showing that the finite amplitude termination points on the upper left of the (b) N = 1 branch

and (c) N = 2 branch. In each case three branches are shown, labeled by the number of small (S) and large (L) peaks in the profile,

with insets showing the profiles along LSS and LSSLSS at locations indicated by • (solid profiles) and � (dashed profiles). The

LSLS branch in (a) is shown dashed since it has almost identical L2 norm to LLSS; branches of LLLS and LSSS are omitted (see

Fig. 8(a)).

The present system is effectively 6D, however, if we ignore the pair of large real eigenvalues.

Figure 3 shows the behavior of the six spatial eigenvalues along the branch of homogeneous states

as ρH increases through ρH = ρT for our parameter values. We see that for ρT < ρH < ρEP < ρBD

the complex eigenvalues have the smallest real part (|λ3| > |Re(λ1,2)|) but that for ρEP < ρH < ρBD

the situation is reversed (|λ3| < |Re(λ1,2)|). Since generically the solution trajectory is expected to
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10 E. KNOBLOCH AND A. YOCHELIS

Fig. 5. (a) Bifurcation diagram for L = 20 showing that the behavior of the system departs from its universal behavior (Fig. 4(a))

when the number N of peaks within the domain becomes too large. (b) Location ρSN of the right folds (solid line) as a function

of the domain size L, obtained by continuation in L of the location of the right fold of the N = 1 primary state (the colored dots

indicate the location of this fold on domains L/N, L = 20). This fold is always closest to the accumulation point of the different

N-peak folds. The figure shows that ρSN is close to its asymptotic value for L � 5.

approach the origin along the eigenvector corresponding the eigenvalue(s) closest to the origin, we see

that for ρEP < ρH < ρBD the trajectory approaches the origin along a direction associated with a real

eigenvalue, implying absence of spatial locking in this parameter regime. Thus, in the present system the

transition from the presence of locking to its absence as ρH increases occurs at ρEP ≃ 1.04 ·10−5 instead

of ρBD ≃ 1.053 · 10−5 and we expect, therefore, that states consisting of identical peaks with unequal

spacing can only exist in the interval ρT < ρH < ρEP. This result agrees with the continuation of the

primary branches of N-peak states with large interpeak separations (see Fig. 4(b,c)), such as N = 1, 2

on L = 60, for which the peak profiles develop oscillations once ρH < ρEP ≃ 1.04 · 10−5 leading, in

general, to locking and hence non-equispaced peak states (if N > 1) as soon as ρH < ρEP. This is a

significant new feature inherent in the present problem.

We focus first on the bifurcations creating the N = 1, 2, 3 and 4 branches near ρH = ρT, followed by

the behavior near the right folds that are present in the region ρH > ρEP before returning to a discussion

of the behavior near the finite amplitude left folds which are also located in ρT < ρH < ρEP.

3.2 Origin of the primary states

The dispersion relation in Fig. 2(b) indicates that on the real line the homogeneous state loses stability

as ρH decreases at a Turing bifurcation that takes place at ρH = ρT. This bifurcation creates a subcritical
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STATIONARY PEAKS IN A MULTIVARIABLE REACTION–DIFFUSION SYSTEM 11

Fig. 6. Origin of the N-peak states for L = 30 showing the L2 norm of the subcritical Turing branch together with a pair of

secondary branches bifurcating from it at small amplitude, all as functions of ρH; P∗ denotes the homogeneous state. The first

secondary states (purple curves) are the result of a modulational instability of the Turing state with period L and hence are referred

to as N = 1 states. The lower of these develop into a single peak state, labeled N = 1 in the figure, while the upper develops into

an N = 1 state consisting of a pair of adjacent peaks whose separation gradually increases with increasing ρH until it reaches L/2

at ρEP where it connects to an N = 2 branch consisting of a pair of equispaced single peaks generated as a result of a modulational

instability of the Turing state with period L/2 (lower blue curve labelled N = 2). This instability also produces an N = 2 state

consisting of two groups of two-peak states (upper blue curve) that terminates on an N = 4 branch, also at ρEP. The inset shows

the color-coded solution profiles on each branch at ρH = 1.003 · 10−5 (the solid profiles correspond to the lower branch of each

pair, indicated by the • symbol, while the dashed profiles correspond to the upper branches, indicated by the � symbol).

Turing pattern with wavelength ℓT (Yochelis, 2021). In a periodic domain of finite length L this

bifurcation is slightly shifted as is the Turing wavelength ℓT in order that the domain accommodate

an integer number n of wavelengths (n = 10 when L = 30). We refer to the resulting branch as the

Turing branch. Because it is subcritical this Turing state undergoes a modulational instability already at

very small amplitude generating a pair of modulated Turing states with modulation wavelength L. These

two states differ in whether the maximum amplitude of the modulation coincides with a maximum of

the Turing pattern or its minimum. Both of these branches generate states we refer to as N = 1 states.

Indeed, when followed from this modulation onset the former develops into an N = 1 state consisting

of a single peak while the latter develop into an N = 1 state consisting of a pair of adjacent peaks, i.e.

states consisting of a single peak and two peaks in the domain L appear simultaneously via a secondary

bifurcation from the Turing state, and so are strictly speaking secondary branches (purple curves in

Fig. 6). However, since this secondary bifurcation occurs at very small amplitude (and is invisible in

large-scale bifurcation diagrams, such as Fig. 4), we refer to these states in the following as primary

states, as already done in Fig. 4.

The single peak N = 1 state (lower purple branch) is shown in Fig. 4(a) over a much larger range

of ρH. In contrast, the two-peak N = 1 state (upper purple branch) has only a small extent: along the

two-peak branch the separation of the two peaks gradually increases and approaches L/2 at ρH →

ρEP (Fig. 7). At this point the branch terminates on an N = 2 branch consisting of a pair of identical

equispaced states created in a subsequent modulational instability of the Turing state, this time with

modulation period L/2 (lower blue curve in Fig. 6). Because this period is shorter this instability takes

place at a larger amplitude than the N = 1 instability (see Fig. 6). Like the lower N = 1 branch this

N = 2 branch has a large extent in ρH and is also shown in Fig. 4(a). Note that these modulational

instabilities correspond to spatial n : N resonances between the wavelength L/n Turing pattern (n = 10)
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12 E. KNOBLOCH AND A. YOCHELIS

Fig. 7. Color-coded profiles along the upper (a) N = 1 and (b) N = 2 branches in Fig. 6 farther from onset, showing the increasing

distance between the peaks on these branches as ρH → ρEP and their separation approaches L/2N. In the N = 2 case the profiles

are shown on the half-domain L/2 only, L = 30. The dashed line is the Turing branch.

and the modulation wavelength L/N, viz. 10 : 1, 10 : 2 etc. We shall see in the next section that spatial

resonances also play an important role at the right folds of the surviving primary N-peak branches.

We believe, but have not checked, that the other primary N-peak branches shown in Fig. 4(a) are

generated via the same mechanism (modulational instability followed by spatial localization) as the

N = 1, 2 branches discussed above; in each case the EP ρH = ρEP serves to ‘prune’ the branches

emerging from successive modulational instabilities with wavelength L/N, N < n, leaving only

equispaced states beyond ρEP.

We mention that true N = 1, 2, . . . primary states are the result of primary bifurcations from the

homogeneous state that occur as ρH decreases below ρT, at parameter values where wavenumbers

k = 2Nπ/L are themselves marginal (σ = 0). For example, for our parameter values and L = 20 the true

primary N = 1 state is created at ρH ≃ 0.9903 ·10−5, a parameter value very close to the location of the

left fold of the homogeneous state, ρT ≃ 0.99 · 10−5. These states are completely distinct from the

N-peak states created in the modulational mechanism just described and present in ρH > ρT. In

particular, true primary states are present even when the Turing bifurcation is supercritical while the

N-peak states studied here require the presence of a small amplitude modulational instability that in turn

requires this bifurcation to be subcritical. Note that as the domain size increases, all these secondary

modulational instabilities collapse on ρT. Thus, when the Turing bifurcation is subcritical and the

domain infinite, the Turing bifurcation is responsible for a large multiplicity of distinct states.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
m

a
t/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/im

a
m

a
t/h

x
a
b
0
2
9
/6

3
1
9
9
4
1
 b

y
 g

u
e
s
t o

n
 1

4
 J

u
ly

 2
0
2
1



STATIONARY PEAKS IN A MULTIVARIABLE REACTION–DIFFUSION SYSTEM 13

3.3 Behavior near the right folds

Each fold on the right (see Fig. 4(a)) represents a fold of a branch of identical equispaced peaks created

as described in the preceding section. Near such folds there is always a Floquet multiplier that is

close to +1, i.e. close to neutral stability with respect to amplitude perturbations. This fact allows,

under appropriate circumstances, nearby bifurcations to secondary branches consisting of peaks with

nonidentical heights. The number of new branches depends on the number N characterizing the primary

branch. Thus, when N = 1 there is no secondary branch of this type, while when N = 2 there is one

such branch consisting of one larger (L) peak and one smaller (S) peak, relative to the peaks in the

primary solution. Note that in view of the periodic boundary conditions used an LS state is the same as

an SL state. When N = 3 there are two secondary branches, corresponding to LSS and LLS, while for

N = 4 there are four secondary branches, LSSS, LLSS, LSLS and LLLS. It is important to note that

the resulting peaks are still present at locations very close to x = (n/N)L, 0 ≤ n < N, modulo overall

translation, even though they are no longer identical. However, when the number N of peaks within

the domain becomes too large the behavior of the system starts to depart from the universal behavior

exhibited in Fig. 4(a), see Fig. 5.

Figure 4(a) shows details of this universal behavior. Each of the new states can be considered to be

the result of spatial modulation of a periodic train of identical peaks associated with the onset of Eckhaus

instability in the vicinity of the fold (Bergeon et al., 2008). The bifurcation that takes place closest to

the fold corresponds to modulation with the longest possible wavelength, and so leads to states with one

modulation wavelength in the domain; subsequent modulational instabilities generate states exhibiting

two modulation wavelengths in the domain such as the state LSLS but these occur farther away from

the fold. This is essentially the same as the mechanism responsible for the presence of the N-peak states

in the first place, except that here the relevant spatial resonances are of lower order since N is much

smaller than n, the number of Turing wavelengths that fit in the domain. However, it is still true that the

long wave states are generated in N : 1 spatial resonances that take place nearest to the fold, while the

other states mentioned are the consequence of additional spatial resonances that are present farther from

it (Bergeon et al., 2008).

We mention that the local behavior near a N : 1 spatial resonance is described by amplitude equations

of the form (Dangelmayr, 1986)

ḂN = μBN + c1B̄N−1
N + c2|BN |2BN , (5)

where BN is a complex modulation amplitude such that |BN | measures the height difference between

L and S, μ represents the distance from the resonance and c1, c2 is a pair of real constants; B̄N is the

complex conjugate of BN . Writing BN = rN exp iφN we see that the new branches generated in the N : 1

resonance correspond to solutions of sin NφN = 0, or φN = πm/N, m = 0, 1, . . . , N − 1. Not all of

these will have distinct L2 norms, however. Note also that the strong resonances N = 2 and N = 3 differ

from the rest. In particular, when N = 2 there is only one new state, LS say, corresponding to m = 1,

while the N = 3 case leads to a transcritical bifurcation to LSS and LLS, corresponding to m = 1 and

m = 2, as seen in Fig. 4(a). This is (locally) a transcritical bifurcation only because the bifurcation does

not in fact coincide with the fold, although it is very close to it.

The case N = 4 is also special. Here all the new branches bifurcate in the same direction relative to

the bifurcation point μ = 0. The above theory predicts two distinct states with modulation wavelength

L, but there are in addition branches exhibiting modulation on smaller scales that also bifurcate very

close to the fold although slightly farther from it. Given that there are four peaks in the domain, the
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14 E. KNOBLOCH AND A. YOCHELIS

(a)

(b)

(c)

Fig. 8. (a) Details of the bifurcation diagram for L = 24 near the folds on the right confirming the universality of the behavior

shown in Fig. 4(a). (b) Solution profiles along the N = 4 branch at ρH = 1.5 · 10−5. Blue: LSLS. Purple: LLSS. Red: coexisting

LLLL and SSSS states on the N = 4 branch of identical equispaced peaks. Profiles of LLLS and LSSS are not shown. Relative

position of the peaks is a property of each solution; in the LLSS state the SS peaks are significantly closer to one another than the

LL peaks. (c) Profiles along the branch connecting L to LSS via the upper left fold, both at ρH = 1.02 · 10−5. L: solid line; LSS:

dashed line. The profiles are shown on a logarithmic scale to evince the pair of small peaks S present in the latter case.

possible modulated states are LLSS, LSLS, LLLS and LSSS. All of these have been found and are

included in Fig. 8(a), cf. Lo Jacono et al. (2017). Note that since the L2 norm of the LLSS and LSLS

states is essentially the same the diagram appears to show three distinct branches bifurcating from the

N = 4 fold (more generally, we expect N − 1 such distinct branches). The LLLS and LSSS states are

expected for any domain length but are omitted from Fig. 4(a) where L = 60.
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STATIONARY PEAKS IN A MULTIVARIABLE REACTION–DIFFUSION SYSTEM 15

We have checked (Fig. 8(b)) that at each ρH to the left of this fold the peak profiles present in

the observed unequal peak states do indeed accurately match the peak profiles on the upper and lower

branches of the N-peak states present at this value of ρH. Observe that in the LLSS state the SS peaks are

significantly closer to one another than the LL peaks. We can understand this property in terms of a force

between adjacent peaks when ρH > ρEP. In this regime, the preferred state is the N = 1 in domains of

any length. If a second identical peak is inserted the peaks space themselves as far as possible from each

other, i.e. one obtains an N = 2 primary state. Evidently, the peaks repel one another (Verschueren &

Champneys, 2017; Yochelis et al., 2008b), and so inserting further peaks leads to N = 3, 4, ... primary

states, all consisting of identical equispaced peaks. The repulsive force depends on the amplitude of

the peaks, however, and is stronger between taller peaks and weaker between shorter peaks. This fact

accounts for the different separations within the LLSS state and the LSLS state; these separations depend

on ρH which in turn determines the height of the L and S peaks and hence the force between adjacent

LL, LS and SS peaks. This is so for LLLS and LSSS as well (not shown here, but see Fig. 10(c) for

L = 60). The interpeak potential can be computed as for the Ginzburg–Landau equation (Kawasaki &

Ohta, 1982) but we do not do this here.

Based on the above results we expect N-peak states of the form SL...L and LS...S to be present

for any N. When N and the domain length L are both large, these states approximate homoclinic

connections from L...L to itself and from S...S to itself, respectively, while states such as S...SL...L

represent heteroclinic cycles connecting S...S to L...L and back again, i.e. connections between the

small and large N-peak states that coexist at each ρH to the left of the right fold of the N-peak state.

Thus, we expect periodic trains of peaks to exhibit the same localization and subsequent snaking as that

arising from the subcritical Turing bifurcation itself.

Note that from the point of view of the primary N = 2 state the bifurcation generating the state

LS is a spatial period-doubling bifurcation, while that generating the LSS and LLS states from N = 3

is a spatial period-tripling bifurcation, etc. There are in general two distinct ways to generate a spatial

period-doubling bifurcation: such a bifurcation can be due to the appearance of a difference in separation

between adjacent peaks (as occurs near ρEP for the small amplitude terminating branches) or due to a

difference in the heights of adjacent peaks (as occurs at the right folds ρSN). A similar distinction

between phase and amplitude-generated period multiplication applies for other N : 1 resonances.

3.4 Behavior near the upper left folds

As already mentioned, the apparent termination points of all multipeak branches on the left (Fig. 4(b,c)

for the case L = 60) are in fact sharp, cusp-like folds (see Fig. 9(a,b)). Similar behavior is present for

L = 24 (Fig. 8(a)) as well as other domain sizes. We believe that these folds accumulate on ρH = ρT,

with N = 1 closest, N = 2 a little farther away etc., a consequence of the fact that the leading spatial

eigenvalues of the homogeneous state are purely imaginary for ρH < ρT. Near these folds each primary

branch transitions into a state of nonidentical peaks. At the right folds this occurs when the periodic

state starts to develop differences in the peak heights, a transition that sets in via bifurcations generated

by spatial resonances. On the upper left the transition is instead continuous and occurs when new peaks

start to grow in the interpeak region between existing peaks. Figure 8(c) shows the transition from a

one-peak state L to a three-peak state LSS as one passes the left fold when L = 24: two identical new

small peaks appear in the domain below the fold and grow in height as one passes the fold and beyond.

Owing to the periodicity of the domain these small peaks may be thought of a growing sidebands of the

main peak, and hence as an SLS state (Verschueren & Champneys, 2021).
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16 E. KNOBLOCH AND A. YOCHELIS

Fig. 9. Detail of the L = 60 bifurcation diagram near the upper left for (a) N = 1 and (b) N = 2, showing that the cusp-like

features in Fig. 4 are in fact narrow folds with secondary bifurcations generating LS and LSLS branches. These folds are very

close to ρT ≃ 1.0011 · 10−5, the Turing bifurcation that creates the N-peak states at the lower left of the full bifurcation diagram.

Near the (upper) left fold the peaks in the resulting LSS (SLS) state are not equispaced, but as one

follows the LSS branch through ρEP and beyond, the amplitude of the small peaks continues to grow and

their location changes in response. By the end of the branch the three peaks are identical and equispaced,

and the branch terminates in a 3:1 resonance near the right fold on the three-peak primary branch that

emanates from the vicinity of the Turing bifurcation. The figure also shows a third branch, labeled LS.

This branch appears to bifurcate from the upper left fold on the L branch and is characterized by the

appearance of only a single new peak (Fig. 9(a)). In fact, as shown in the inset in Fig. 9(b) the LS branch

is split into two almost identical branches, one consisting of L and a small peak S a distance L/2 from it

that connects smoothly with the L branch, and a second LS branch with S at approximately L/3 from L.

This branch connects smoothly to LSS. The exponentially small splitting between these two branches is

the result of slightly different interactions between the L and S peaks in these two nominally identical

states. Like the LSS branch, the former LS branch can be continued all the way to its termination near

the right fold of the primary N = 2 branch—at the termination both peaks are of the same height and

equispaced—but this is not the case for the second LS branch, which must terminate by ρEP. Similar

behavior occurs on the upper left for the N = 2 states (Fig. 9(b)).

We mention that for larger values of the domain length L the numerical continuation of the LSS

branch (and related branches) through ρEP as ρH increases becomes exceedingly difficult and one is

tempted to conclude that the branch terminates at ρEP. While such a termination is indeed possible on

the real line where the peaks can move arbitrarily far apart as one approaches ρEP, this is not the case

on finite domains. Instead, we find that while the peaks do indeed start to move apart as ρH increases
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STATIONARY PEAKS IN A MULTIVARIABLE REACTION–DIFFUSION SYSTEM 17

Fig. 10. Evolution of the peak heights and spacing along (a) the SL branch, (b) the SSL branch and (c) the SSSL branch created

in the upper left N = 1 fold when L = 60. These branches terminate on the primary two-peak, three-peak and four-peak branches,

respectively. The peaks separate rapidly near their termination in order to reach the respective separations L/2, L/3 and L/4.

the solution branch may pass smoothly through ρEP and extend all the way to the right fold of the N =

2, 3, . . . -peak states where all N peaks are of the same height and equidistant (Fig. 10), provided only

that the different peaks are already approximately equispaced below ρEP. In fact, we expect additional

branches in ρH < ρEP with S peaks separated from L by different numbers of Turing wavelengths that

do not extend beyond ρEP and the number of such branches will increase rapidly with the domain length

L. Thus, here, too, the EP point serves to prune solution branches. We believe this is the reason why

numerical continuation with ρH decreasing through ρEP remains possible even when continuation in the

opposite direction becomes impossible, an important fact that appears to have been missed in earlier

work (Verschueren & Champneys, 2017).
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18 E. KNOBLOCH AND A. YOCHELIS

The above discussion explains why the interval ρT < ρH < ρEP is so special: it permits spatial

locking owing to the presence of oscillations in the tails of the peaks while for ρH > ρEP the peak

profiles become monotonic and spatial locking is absent. Our numerical continuation suggests that the

new peaks that appear along the N = 1, 2, . . . branches near the upper left folds arise from the growth

of select peaks in these tails, explaining why the N = 1, 2, . . . states start adding new peaks only

once they enter ρH < ρEP. Figure 8(c) shows the creation of the LSS branch near the upper left fold

when L = 24. When the branch recrosses ρEP the original peak and the new peaks unlock, but do

not become equispaced. As already explained, this is a consequence of unequal forces between small

and large peaks. Once all the peaks have acquired the same height, the peaks become equispaced and

connect to the corresponding primary N-peak branch (Fig. 10), provided, of course, the domain length

is sufficiently large (L ≫ ℓT).

3.5 Foliated snaking

The behavior described in the two preceding subsections resembles a phenomenon called foliated

snaking that was originally described by Ponedel & Knobloch (2016) in a spatially forced spatially

2D system and subsequently identified in the homogeneously forced Lugiato–Lefever equation by

Parra-Rivas et al. (2018); see also Glasner (2012). However, the present system differs in two important

ways. In our system the foliated snaking structure is created from successive modulational instabilities

of a subcritical Turing state. In contrast, the N-peak states present in the Lugiato-Lefever equation are

created at a fold of the uniform states (Parra-Rivas et al., 2018) while similar states present in both

vegetation (Ruiz-Reynés et al., 2020) and Gierer-Meinhardt (Yochelis et al., 2008b) models are the

result of a transcritical bifurcation of this state. Thus, our system is closer to the systems studied by

Lloyd & O’Farrell (2013), Verschueren & Champneys (2017) and Verschueren & Champneys (2021)

rather than to the Lugiato–Lefever equation. Moreover, it is higher-dimensional than these examples and

this fact is reflected in the behavior we observe.

Foliated snaking is found in the present problem because the localized states created in the

modulational instability of the Turing state extend into the region of no spatial locking where the leading

spatial eigenvalues λ are real—in contrast to the Swift–Hohenberg equation in which the localized states

remain confined to the locking region where the eigenvalues λ form a quartet in the complex plane. We

have seen that outside this region the localized states take the form of N-peak states, i.e. periodic trains

of equispaced stationary peaks characterized by the number N of peaks in the domain.

In general, we expect an absence of locking between adjacent peaks when ρH > ρBD, i.e. beyond

the so-called BD transition, where the four leading spatial eigenvalues λ are real. As a result we expect

only equispaced peaks when ρH > ρBD and non-equispaced peaks for ρH < ρBD. In other words, we

expect a large variety of states when ρH < ρBD owing to the presence of spatial locking but a much

simpler situation for ρH > ρBD where locking is absent. This is the picture that is consistent with the

behavior observed in 4D systems (Parra-Rivas et al., 2018; Verschueren & Champneys, 2021), where

the role played by the BD point is reliably established.

The present system is 6D, however, if we ignore the pair of large real eigenvalues. Figure 3 shows

that for ρT < ρH < ρEP < ρBD the complex eigenvalues have the smallest real part (|λ3| > |Re(λ1,2)|)

but that for ρEP < ρH < ρBD the situation is reversed (|λ3| < |Re(λ1,2)|). Since generically the solution

trajectory approaches the origin along the eigenvector corresponding to the eigenvalue(s) closest to

the origin, we see that for ρEP < ρH < ρBD the trajectory approaches the origin along a direction

associated with a real eigenvalue, implying absence of spatial locking in this parameter regime. Thus,

in the present system the transition from the presence of locking to its absence as ρH increases occurs
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STATIONARY PEAKS IN A MULTIVARIABLE REACTION–DIFFUSION SYSTEM 19

at ρEP ≃ 1.04 · 10−5 instead of ρBD ≃ 1.053 · 10−5 and we, therefore, expect states with unequal

peak spacing to exist in the interval ρT < ρH < ρEP only. Our results are fully consistent with these

conclusions.

We now address a key issue, the relation between existing theory describing the unfolding of

a global bifurcation at the BD point (Verschueren & Champneys, 2021) and computations that are

necessarily performed on finite (periodic) domains. On the real line identical peaks are expected to

separate indefinitely as one approaches ρEP from below, corresponding to the formation of an infinite

number of homoclinic orbit(s) to the homogeneous state (Champneys, 1998). Thus, all primary N-peak

(N > 1) states would be expected to terminate at ρEP. In a finite periodic domain, however, a global

bifurcation cannot take place and all states remain periodic. As a result some of the solutions created

through the appearance of S peaks near the upper left fold can be followed through ρEP and these become

equal amplitude equispaced states by ρSN. Since these states have (approximate) period L/N we see that

the passage through ρEP in the direction of increasing ρH changes the solution period from L to L/N,

i.e. the passage through this point is associated with wavenumber multiplication. Moreover, multipeak

states exist in the whole interval ρT < ρH ≤ ρSN instead of the expected interval ρEP < ρH ≤ ρSN (the

single peak state N = 1 is expected to extend to ρT) and the BD point is no longer associated with global

bifurcations. Other states, composed of dissimilar peaks with different separations necessarily terminate

by ρEP and cannot be continued past this point. These results are computationally difficult to establish

unless one follows the branches of equispaced states from their creation at the right folds down in ρH,

in other words, in the reverse direction. We conjecture that similar behavior is present in 4D systems but

may have been missed for this reason.

We mention, finally, that branches such as the LS branch appear to be absent from the existing

unfolding of the global bifurcation at the BD point (Verschueren & Champneys, 2021). We have seen

that such states in fact play a fundamental role in the overall structure of the foliated snaking bifurcation

diagram identified here.

3.6 Composite-peak isolas

Although the structure we have uncovered so far is already quite complex, it omits a large variety of

interesting additional states. From studies of the quadratic-cubic Swift–Hohenberg equation it is known

that the snaking or pinning region is populated by a variety of so-called multipulse states (Burke &

Knobloch, 2009). The simplest of these are equispaced two-pulse states, consisting of two copies of a

one, two, three, . . . -peak state, separated by L/2. States of this type lie on a connected branch that snakes

much like the one-pulse states, except that the number of back-and-forth oscillations is half that of the

one-pulse branch. However, the two pulses need not be separated by L/2: they can form bound groups,

in which the pulses are separated by an integer number p of half-wavelengths ℓ. For each p a two-pulse

state consisting of two identical pulses, each with q peaks, lies on a closed branch called an isola, one

for each pair of integers (q, p). The smallest isola corresponds to p = 1 and the isolas grow in size as

p increases, accumulating on the snakes-and-ladders structure of the one-pulse bifurcation diagram in

the pinning region, with higher q isolas corresponding to higher L2 norm. Thus, the snaking or pinning

region contains a stack of nested isolas, one for each choice of (p, q). This is not all, however, since

bound states of two different pulses are also possible. These also snake (see, e.g. Burke & Knobloch,

2009, Fig. 6, where the snaking of a bound state consisting of one 1-peak state and one 2-peak state

is investigated). Similar three-pulse states, etc., are also present, altogether generating a structure of

remarkable complexity.
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20 E. KNOBLOCH AND A. YOCHELIS

Fig. 11. Bifurcation diagram for a subset of the multipulse states present in the system when L = 24. Here the integers

N = 1, 2, . . . refer to branches of N-pulse states consisting of N two-peak groups. Examples of the N = 1, 2 states at the

respective folds (dots) are included in the inset. The foliated snaking structure discussed in earlier figures (e.g. Fig. 8(a)) has been

removed for clarity. Details of this diagram are described in the following two figures.

With this in mind, we recall that for ρT < ρH < ρEP the homogeneous state P∗ of the present

system has leading eigenvalues λ that form a quartet in the complex plane, and in this region we expect

the present system to behave much like the Swift–Hohenberg equation. In particular, we expect that in

addition to the N-pulse equispaced states discussed thus far, the system also exhibits multipulse states

consisting of groups of pulses with different intergroup separations and that these are created in the

interval ρT < ρH < ρEP in the same way as the corresponding states of the Swift–Hohenberg equation.

Of course, each of these states will exit the interval ρT < ρH < ρEP and so participate in the foliated

snaking structure of the primary one-pulse states. In the following, we present the results of detailed

computations of one such sequence of states, fully cognizant of the limitations of numerical studies of

this kind in revealing the full complexity of the system. We think of the branches of multipulse states

we find as providing decoration of the basic foliated structure already described.

Figure 11 provides a summary of the states computed on L = 24 and consisting of groups of two-

peak and three-peak states. We first mention the branches labeled by N = 1, 2, . . . . In contrast to the

primary branches of equispaced one-peak states forming the skeleton of the foliated snaking structure

(not shown in this figure), these branches consist of N equispaced groups of two pulses. Profiles of

N = 1 and N = 2 states of this type on x ∈ [0, L] are shown in the inset using solid and dashed lines,

respectively.

The basic structure of the figure recapitulates that of Fig. 8(a), albeit with more branches. We now

discuss the behavior shown in this diagram in greater detail, focusing again on the folds.

Figure 12 shows details of the N = 1 state and associated branches. We refer to the two-peak profiles

on the N = 1 branch using the labels Sd and Ld (d for double-peak), depending on whether the profile

lies below or above the N = 1 fold. Thus, Sd turn into Ld at the fold. The N = 1 branch itself originates

as Sd close to ρT and does so in a fold (Fig. 12(b)). At the fold the branch turns, apparently smoothly,

into an SdSS state with the appearance of a pair of small single peaks; a third branch, of SdS states

bifurcates from the fold, just as in the case of the one-peak states. The figure also shows a second fold,

where a branch labeled SSdS turns into SdSSS through the addition of a single small peak. The SdSS

and SSdS states are no longer the same, as can be seen from the profiles on each branch, computed at

the same value of ρH, shown in the inset.

Each of these five branches can be traced through its fold on the right (Fig. 12(a)) and towards the

associated upper left folds, a detail of which is shown in Fig. 12(c) where analogous behavior takes
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STATIONARY PEAKS IN A MULTIVARIABLE REACTION–DIFFUSION SYSTEM 21

Fig. 12. (a) Detail of the lower N = 1 region of the bifurcation diagram in Fig. 11. (b) Further detail of the region near the

lower left folds. There are two folds and two distinct branches SdSS and SSdS corresponding to the profiles shown in the inset.

(c) Further detail of the region near the upper left folds. There are four folds and three distinct branches LdSS. The boxed labels

indicate branches that extend to large values of ρH.

place: Ld turns, again apparently smoothly, into SLdS, while an LdS branch bifurcates directly from

the fold. Two additional folds are also present, involving the transformation from LdS to LdSS and the

transformation from a different LdSS into LdSSS. The boxed labels indicate branches that extend to

large values of ρH and so are created in the folds on the right. One of these is the LdSd branch that

terminates near the N = 2 fold: as one follows this branch in the direction of increasing ρH the height

of Sd increases and the separation of the two pulses adjusts in such a way that the state becomes an

equispaced LdLd state by the time the branch terminates.

Near the upper left folds of Fig. 12(c) one also finds another set of folds, as shown in Fig. 13(a).

These branches correspond to bound states of a two-peak state Ld and a three-peak state St (t for
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22 E. KNOBLOCH AND A. YOCHELIS

triple-peak) below the right fold and Lt above it. As shown in Fig. 13(b) these states are born in a

manner that recapitulates the origin of the N = 1 two-peak states in Fig. 12(b). The resulting states

behave just like the N = 2 two-peak states: they extend to large ρH, pass through folds (Fig. 13(a)) and

then return to ρH ≃ ρT with St having grown into Lt (Fig. 13(c)). The main observation that merits

a comment is that the right folds of these new two-pulse states do not align with those of the original

two-pulse state associated with N = 1. We believe this to be a finite size effect: if one removes the

Ld portion of the state, the three-peak component St behaves as an isolated three-peak state on a much

smaller domain, something like half the domain length L = 24 (Fig. 13(c)). Since the wavelength of the

oscillations and hence the inter-peak separation is something like 2.8, the width of St is of order 8.5 and

hence quite comparable with the half-length of the domain. On such small effective domains the snaking

of St will depart from its asymptotic behavior on large domains, pushing the right folds inwards.

Note that the two-pulse states based on Ld and St/Lt form a completely distinct set of isolas from

those based on Ld and Sd/Ld. The latter do connect to the equispaced two-pulse two-peak states near

the fold of the N = 2 branch. The resulting N = 2 states are in turn responsible for a similar sequence

of four-pulse states, shown in blue in Fig. 11. These include the branch LdSSS (Fig. 12(a,c)).

It is clear that many more multipulse states of this type are present in the parameter range ρT <

ρH < ρSN but the above results suffice to illustrate the type of behavior expected. We mention that both

multipulse and composite-peak states were computed in a four-dimensional non-Hamiltonian system by

Champneys (1994), lending support to the conjecture at the end of the previous section.

4. Discussion and conclusions

Isolated, spatially localized peaks or spikes (spots in 2D) play an increasingly important role in many

systems of physical, chemical and biological interest. We have studied here in some detail one such

system that exhibits a large multiplicity of different multipeak states and showed that these states are

organized in a structure we call foliated snaking. We believe this structure to be universal and thus

expect similar structures to be present in a variety of different systems. We have seen that in the present

activator–inhibitor–substrate system, this structure is associated with the presence of a subcritical Turing

instability and arises whenever the localized states familiar from other models exhibiting a subcritical

pattern-forming instability, such as the Swift–Hohenberg equation, extend into a parameter region with

real leading eigenvalues. In this case, the localized structures cannot lock via oscillatory tails and instead

repel one another, forming a sea of isolated structures within the domain whose dynamical properties in

time remain to be studied.

A subcritical Turing instability is not the only one resulting in isolated localized structures. Earlier

work (Parra-Rivas et al., 2018; Ruiz-Reynés et al., 2020; Yochelis et al., 2008b; Zelnik et al., 2017)

has shown that similar structures can be generated as a result of the presence of a fold or transcritical

bifurcation of a homogeneous state, provided only that a BD point is present. The important feature of

all these mechanisms is that they generate such states over a much larger range of parameter values than

the better known HS mechanism. The latter generates related states but only within a typically narrow

parameter range—the snaking or pinning interval.

In the present work, we studied in detail the origin of the primary N-peak states—these form near

ρT as a consequence of a modulational instability of subcritical Turing states—and their subsequent

evolution with increasing ρH via folds on the right at ρSN through to their transformation into trains of

unequal peaks near ρT again. These states form the cross-links connecting the primary N-peak states

between the left and right folds. Spatial resonances were found to play an essential role both in the

origin of the primary N-peak states at small amplitude and in the generation of trains of unequal peaks
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Fig. 13. (a) Detail of the upper N = 1 region of the bifurcation diagram in Fig. 11. (b) Further detail of the region near the lower

left folds. There are two folds and two distinct branches SdSS and SSdS corresponding to the profiles shown in the inset. (c)

Further detail of the region near the upper left folds with two distinct branches LdLtS (see inset).

near ρSN and hence in the bifurcation structure associated with foliated snaking. Finally, the EP point

was found to play the role usually associated with the BD point, and this role was found to be crucial for

the transformation from the primary N-peak states to secondary states consisting of unequal peaks that

form the cross-links in the bifurcation structure. We also made an extensive exploration of the so-called

multipulse or subsidiary states that decorate the primary foliated snaking structures. These results only

scratch the surface of the complexity exhibited by the present system.

We have employed several different domain sizes L to obtain these results. Normally the domain size

L is largely immaterial when one studies well-localized states. Here, however, the peaks in a multipeak

state for ρH > ρEP want to be apart as far as possible and hence the domain size sets the length scale
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24 E. KNOBLOCH AND A. YOCHELIS

Fig. 14. Representative snapshot of a solution obtained from DNS of (1) as in Fig. 1 but at a later time.

for structures of this type, in contrast to the intrinsic wavelength ℓ = 2π/|Im(λ1,2)| that sets the length

scale in the locking regime ρT < ρH < ρEP. Despite this inevitable dependence of our results on L

most aspects are essentially independent of it. This includes the locations ρT, ρEP and ρBD, which are

determined to high accuracy by the infinite domain calculation. In the nonlinear regime, the right folds

accumulate on ρSN as N varies, a quantity that is also almost independent of L when L is sufficiently

large, 2π/kT ≪ L (Fig. 5(b). Since the transitions in the foliated snaking structure take place near ρT,

ρEP and ρSN we conclude that this structure is almost independent of the domain size L after all.

Temporal stability (determined via a standard eigenvalue formulation of the linearization of the

system (1)) shows that all stationary peaks and groups of peaks are linearly unstable in 1D while in 2D

isolated spots in a background of P∗ and away from any front such as that in Fig. 1 may gain linear

stability, facts that explain the oscillatory or decaying peak dynamics in 1D and persistence of peaks

in 2D (Yochelis, 2021). We are aware that in order to establish further significance of our results it is

also necessary to investigate the temporal stability properties of the various states we have found, and

this, in addition to the results of elaborate time integration, will form the topic of a future contribution.

Nevertheless, nucleation of side branches can already be regarded as a nontrivial wavenumber selection

problem because of the multiplicity of solutions that may give rise to distinct separation distances at

which the peaks form, as shown in Fig. 1. In practice, side branches in pulmonary vascular patterns

typically appear in the middle of the domain (far from gradients imposed by the leading peak) (Yao

et al., 2007), in between the initial branched point and the leading peak of the growing branch, and

so the minimal length scale of the nucleation process depends also on the location of the right folds,

i.e. for larger values of ρ H side-branches appear later and at large distances from the growing tip

(Yochelis, 2021). Moreover, the observed self-repulsion of the peaks explains the so-called avoidance

phenomenon, i.e. the absence of peak–peak collisions and the merging of counterpropagating peaks in

2D, as well as the potential inhibition of new peaks on nearby branches (Hannezo & Simons, 2019).

Figure 14 shows that once a peak feels a neighboring peak or a counterpropagating peak (perhaps

reflected from the boundary due to Neumann boundary conditions in the x direction) its trajectory is

deflected in the y direction, something that cannot happen in 1D.

Evidently, the conjectured universal organization of peaks in the foliated snaking structure generated

by a subcritical Turing instability provides a distinct mathematical description of HS in multivariable

reaction–diffusion media. The results suggest that the nonlinear mechanisms behind both peak

generation and wavenumber selection that appear to be involved in the side-branching model studied

here lead to a robust phenomenon that is essential, among other examples, to studies of ecological
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systems, ranging from the initiation of root hairs (Breña-Medina et al., 2014) to the generation of

vegetation patches (Meron, 2019) and the design of agroforestry systems (Tzuk et al., 2020).
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