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Abstract:   32 

Low stratiform clouds have profound impacts on the hydrological cycle and the Earth’s radiation 33 

budget. However, realistic simulation of low clouds in climate models presents a major challenge. 34 

Here we employ the newly retrieved cloud and drizzle microphysical properties to improve the 35 

autoconversion and accretion parameterizations in a microphysical scheme. We find that the new 36 

autoconversion (accretion) rate contributes 14% lower (greater) to total drizzle water content than 37 

the original scheme near the cloud top. Compared to satellite results, the simulated cloud liquid 38 

water path (LWP) and shortwave cloud radiative effect using the original scheme in a climate 39 

model agree well on global average but with large regional differences. Simulations using the 40 

updated scheme show a 7.3% decrease in the light rain frequency, and a 10% increase in LWP.  41 

The updated microphysics scheme alleviates the long-lasting problem in most climate models, i.e. 42 

‘too frequent and too light precipitation’.   43 

  44 

 45 

Plain-language summaries 46 

There has been a growing concern that most climate models predict too frequent and too light 47 

precipitation, which is primarily due to lack of reliable sub-grid variability and vertical variations 48 

of microphysical processes in low clouds. With the newly retrieved cloud and drizzle 49 

microphysical properties from a recent field campaign, we updated the classic warm rain 50 

microphysical scheme which was developed by Khairoutdinov & Kogan (2000) and widely used 51 

in weather and climate models. We examined relative contributions of different microphysical 52 

processes to the rain drop formation and growth processes. The altered scheme reflects the advance 53 

in process-level understanding of warm rain processes and reveals their relative contributions to 54 

the rain drop formation and growth processes at different cloud heights. The altered scheme has 55 

the potential of mitigating the long-lasting problem in most climate models and achieving more 56 

accurate climate assessments. Our findings unambiguously attest the paramount importance of 57 

cloud microphysical parameterizations in climate simulation.        58 

  59 

 60 

 61 

 62 
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1. Introduction 63 

     Low-level stratiform clouds (hereafter called low clouds) have been a topic of considerable 64 

interest because they strongly reflect incoming shortwave radiation (Stephens et al., 2015) and 65 

exert complex feedbacks on the climate system (Stephens, 2005; Wood, 2012; IPCC, 2013; 66 

L’Ecuyer et al., 2019; Hang et al. 2019). The radiative effect of low clouds contributes to one of 67 

the largest uncertainties in climate modeling (Stephens et al., 2015; IPCC, 2013) and has been well 68 

known to be influenced by aerosols (Penner et al., 2004; Ghan et al., 2016; Seinfeld et al., 2016; 69 

Fan et al., 2016; Li et al., 2020). Drizzle is common in maritime low clouds (Dong et al., 2014 70 

a&b; Wu et al., 2015 & 2017). The formation of drizzle significantly modulates stratocumulus-to-71 

cumulus transition (Yamaguch et al., 2017) and plays an important role in determining cloud 72 

lifetime (Albrecht, 1989). Furthermore, they have profound impacts on the hydrological cycle and 73 

the Earth’s radiation budget (Stephens et al., 2015; Wood et al., 2009; Stephens et al., 2010; Suzuki 74 

et al., 2010; Kay et al., 2018), and consequently on the Earth’s climate (Bony et al., 2005; Schmidt 75 

et al. 2006). Despite their importance, it is challenging to simulate low clouds realistically in 76 

climate models where they disagree substantially in the magnitude of cloud feedback for the 77 

regimes of low clouds. As a result, most general circulation models (GCMs) predict too frequent 78 

and too light precipitation (Stephens et al., 2010; Donner et al. 2011; Soden et al., 2011; Lebsock 79 

et al., 2013; Jing et al., 2017 & 2018; Wu et al., 2018; Zhang et al., 2019).  80 

     Another great challenge in GCMs is how to evaluate the cloud microphysical processes, such 81 

as autoconversion (Rauto) and accretion (Raccr) rates in low clouds (Wu et al., 2018; Zhang et al., 82 

2019) since these processes cannot be directly measured. In fact, these processes are often 83 

parameterized as power law relationships with cloud and drizzle properties in model simulations. 84 

Satellite results have been widely used to evaluate these processes and concluded that GCM 85 

simulations are very sensitive to the choices of threshold cloud droplet radius in simulating the 86 

cloud-to-rain particle conversion and growth processes (Suzuki et al., 2010, 2013 & 2015; 87 

Nakajima et al., 2010). However, satellite retrievals suffer relatively large uncertainties, 88 

originating from their measurement and retrieval errors, as well as their limitations in observing 89 

clouds, especially for drizzling clouds (Suzuki et al., 2010; Ma et al., 2018). Most GCMs predict 90 

too frequent and too light precipitation due to lack of reliable sub-grid variability and vertical 91 

variations of Rauto and Raccr (Jing et al., 2017; Wu et al., 2018; Zhang et al., 2019; Suzuki et al., 92 

2010; Golaz et al., 2002; Liu et al., 2007; Cheng and Xu, 2009; Wood and Hartmann, 2006).  93 
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     The retrieved cloud and drizzle microphysical properties during the Aerosol and Cloud 94 

Experiments in the Eastern North Atlantic (ACE-ENA) field campaign (Wu et al., 2020) have 1-95 

min temporal and 30-m vertical resolution, which are important for studying warm rain processes. 96 

In this study, we used the retrievals to recalibrate the Rauto and Raccr parameterizations in 97 

Khairoutdinov & Kogan (2000) scheme (hereafter called KK) into the new KK scheme (hereafter 98 

called NKK). The profiles of Rauto and Raccr (Rauto(Z) and Raccr(Z), where Z is the in-cloud height) 99 

can be used to advance the process-level understanding of warm rain process. To further test the 100 

NKK scheme, we implemented the Rauto(Z) and Raccr(Z) into the National Center for Atmospheric 101 

Research (NCAR) Community Earth System Model (CESM, Morrison and Gettelman, 2008; 102 

Hurrell et al., 2013) to simulate the warm rain frequency and intensity globally.    103 

 104 

2. Methods 105 

2.1 Recalibrate the KK warm rain scheme 106 

A brief summary about the ground-based retrieval (Wu et al., 2020) is presented in the 107 

supplementary. The retrieved microphysics include cloud-droplet (drizzle) number concentration 108 

Nc (Nd(Z)) liquid water content LWCc(Z) (LWCd(Z)) and mass weighted mean radius rc(Z) (=109 

(
3𝐿𝑊𝐶𝑐

4𝑁𝑐𝜋𝜌𝑤
)

1/3

) and rd(Z). The units of LWC, r, and N in this study are gm-3, µm, and cm-3, 110 

respectively. Figures S1a-S1d show the retrieved cloud and drizzle microphysical properties. The 111 

retrieved LWCc(Z) and rc(Z) increased from the cloud base, peaked just below the cloud top, and 112 

then decreased toward the cloud top. The retrieved rd(Z) and LWCd(Z) (Figs. S1c & S1d), opposite 113 

to their cloud counterparts, increased from the cloud top downward, peaked in the middle or 114 

bottom of the cloud, and decreased further down.  115 

The Rauto and Raccr are usually parameterized as power law relationships with cloud and rain 116 

water mixing ratios (𝑞𝑐 and 𝑞𝑟) and Nc (KK; Kessler, 1969; Tripoli et al., 1980; Beheng, 1994; Liu 117 

and Daum, 2004), and in the forms of 118 

𝑅𝑎𝑢𝑡𝑜(𝑍) = (
𝜕𝑞𝑟

𝜕𝑡
)

𝑎𝑢𝑡𝑜
= A 𝑞𝑐

𝑎1(𝑍)𝑁𝑐
𝑎2,                                                       (1) 119 

𝑅𝑎𝑐𝑐𝑟(𝑍) = (
𝜕𝑞𝑟

𝜕𝑡
)

𝑎𝑐𝑐𝑟
= 𝐵 (𝑞𝑐(𝑍)𝑞𝑟(𝑍))𝑏,                                                   (2) 120 

where A, a1, a2, B, and b are coefficients in different schemes and are usually constants. In this 121 

study, 𝑞𝑐(Z) and 𝑞𝑟(Z) can be calculated from retrieved LWCc(Z) and LWCd(Z) and dry air density 122 

(𝜌𝑎𝑖𝑟), therefore, Rauto(Z) and Raccr(Z) are a function of height Z in Eqs. (1) and (2). In addition to 123 
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LWCc(Z) and LWCd(Z), the retrieved layer-mean Nc is also used in Eq. (1). As a proof of concept, 124 

the KK scheme is used as an example in this study, in which 𝐴 = 1350, 𝑎1 = 2.47, 𝑎2 = −1.79, 125 

𝐵 = 67, and 𝑏 = 1.15.  126 

     The summation of Rauto(Z) and Raccr(Z) is the total drizzle water production rate (𝑃𝑟(Z)), which 127 

can be converted to LWCd(KK) (= ∫ 𝜌𝑎𝑖𝑟𝑃𝑟(𝑍) ∗ 𝑑𝑡, 𝑑𝑡 is 1 min here) to directly compare with 128 

retrieved LWCd(Z) with 1-min temporal resolution.The retrieved LWCd(Z) is then used to scale the 129 

time interval of 𝐿𝑊𝐶𝑑(KK) within 1 minute as 130 

𝑅′
𝑎𝑢𝑡𝑜(𝑍) =

𝐿𝑊𝐶𝑑(𝑍)

∫ 𝜌𝑎𝑖𝑟𝑃𝑟 (𝑍)𝑑𝑡
𝑅𝑎𝑢𝑡𝑜(Z) = A′(Z)𝑞𝑐

2.47(𝑍)𝑁𝑐
−1.79,                                       (3) 131 

𝑅′
𝑎𝑐𝑐𝑟(𝑍) =

𝐿𝑊𝐶𝑑(𝑍)

∫ 𝜌𝑎𝑖𝑟𝑃𝑟 (𝑍)𝑑𝑡
𝑅𝑎𝑐𝑐𝑟(𝑍) = 𝐵′(𝑍)(𝑞𝑐(𝑍)𝑞𝑟(𝑍))1.15.                                     (4) 132 

𝐴′(Z) and 𝐵′(𝑍), which are functions of height Z with unitless, can be calculated from Eq. (3) and 133 

Eq. (4). To clarify the terms used in this study, Rauto(Z) and Raccr(Z), and constants A and B are 134 

used in KK scheme, while R’auto(Z) and R’accr(Z), and A’(Z) and B’(Z) are used in NKK scheme. 135 

      A sensitivity study has shown that the coefficients A and B in Eqs. (1) and (2) are more or less 136 

dependent on the retrieved rc and rd than other coefficients a1, a2, and b. Also, because of the 137 

linear constraining in Eq. (3) and Eq. (4), the linear coefficients A and B are modified in this study 138 

and the exponential terms are retained. The relationship between qc and Nc in KK does constrain 139 

rc, but this constraint seems too weak in the lower part of cloud and too strong in the upper (Fig. 140 

S1f).        141 

      The LWCd(KK) profiles peaked in the center and upper part of the cloud (Fig. S1e), which are 142 

different from the retrieved LWCd(ret). The ratios of LWCd (KK) to LWCd (ret) (Fig. S1f) show that 143 

LWCd (KK) were overestimated in the upper part and underestimated in the lower part of the cloud. 144 

The higher LWCd ratios in the upper part and reduced ratios in the lower part of the cloud suggest 145 

that it is imperative to recalibrate and constrain the KK scheme using observations. The profiles 146 

of the LWCd ratios in Fig. S1f motivate us to modify the coefficients A and B as a function of 147 

height Z, such as A’(Z) and B’(Z), not constants with height. Physcially, A’(Z) and B’(Z) should 148 

strongly correlate with the profiles of cloud and drizzle microphysical properties, more precisely, 149 

to rc(Z) and rd(Z).  150 

      Note that KK scheme is used as an example in this study in which we first calculate Pr(Z) by 151 

summing Rauto(Z) and Raccr(Z), and then constrain the original Rauto(Z) and Raccr(Z) with retrieved 152 

LWCd(Z) in Eq. (3) and Eq. (4). The approaches can only be applied to schemes having both Rauto 153 
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and Raccr parameterizations, while those having one of them, such as having Aauto in Liu and Daum 154 

(2004), cannot be modified in this study.   155 

       156 

2.2 CESM Simulations 157 

     The NSF/DOE Community Earth System Model (CESM) version 1.2.2 (Hurrell et al., 2013) is 158 

used in this study to access the impacts of altered warm rain microphysics on cloud and 159 

precipitation on the regional and global scale. The atmospheric component, Community 160 

Atmosphere Model version 5.3 (CAM5), possesses notable improvements in simulating cloud and 161 

precipitation. In particular, a prognostic two-moment stratiform cloud microphysics scheme 162 

(Morrison and Gettelman, 2008) was implemented in the CAM5 for the first time. The KK scheme 163 

is used for the warm rain process.   164 

      Six-year equilibrium present-day forcing simulations (2000-2005) are performed for each 165 

microphysical configuration. The first year (2000) is considered as spin-up, and the last five-year 166 

results (2001-2005) are analyzed. To assess the Probability Density Function (PDF) of 167 

precipitation rates, typically high frequency (e.g., hourly) precipitation output is required. 168 

However, it is computationally expensive to store such high-frequency output in a global climate 169 

model. In this study, we adopted an in-situ diagnostic method (Wang et al., 2016) to generate 170 

precipitation probability density functions (PDFs) based on rain rates at each model time step (the 171 

hourly time scale) because this method can also facilitate the comparison between GCM simulated 172 

and satellite retrieved transient precipitation rates (Aumann et al., 2018).   173 

 174 

3. Constrain cloud microphysics scheme using ground-based retrievals 175 

     The Rauto(Z)and Raccr(Z) profiles, calculated from ground-based retrievals using Eqs. (1) and 176 

(2), for the case of July 18, 2017 are presented in Fig. S2. As expected, Rauto(Z) increases with 177 

height, basically follows the LWCc(Z) profiles. During drizzle drops falling process, Raccr(Z) 178 

becomes increasingly important as demonstrated in Fig. S2b where Raccr(Z) is the largest in the 179 

cloud center. To recalibrate Rauto(Z) and Raccr(Z) in the KK scheme, we used the retrievals to derive 180 

𝐴′(𝑍)  and 𝐵′(𝑍)  profiles as demonstrated in Figs. S2c & S2d. Figures 1a and 1b show the 181 

probability density functions (PDFs) and cumulative density functions (CDFs) of 𝐴′(𝑍) and 𝐵′(𝑍). 182 

The prescribed A and B values (constants) in the KK scheme fall in the same bins as their mode 183 

values, suggesting that the prescribed values are representative for the most scenarios. 184 
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     To be applicable of 𝐴′(𝑍) and 𝐵′(𝑍) in model simulations, we parameterized 𝐴′(𝑍) and 𝐵′(Z) 185 

as exponential functions of rc(Z) and rc(Z)/rd(Z) in Figs. 1c and 1d as:   186 

         𝐴′(𝑍) = 121683 exp(−0.528 𝑟𝑐(𝑍)) + 364,                                                           (5)  187 

                                  𝐵′(𝑍) = 632 exp (−24.5
𝑟𝑐(𝑍)

𝑟𝑑(𝑍)
) + 51.                                                        (6) 188 

The profiles of 𝐴′(𝑍) and 𝐵′(𝑍) in Fig. S2 are smaller than their prescribed values in the upper 189 

part and greater in the lower part of the cloud. The joint PDFs of 𝐴′(𝑍)  and rc(Z) with an 190 

exponential relationship between them (Eq. 5) are illustrated in Fig. 1c. We find that 𝐴′(𝑍) 191 

decreases with increasing rc(Z) and becomes smaller than the prescribed A when rc(Z) is greater 192 

than ~9 µm. Physically, Rauto should increase with increasing rc(Z), the result here suggests that 193 

the power law functions for qc(Z) and Nc in Eq. (1) are too strong and the fitted exponential formula 194 

𝐴′(𝑍) acts to reduce the power law relationship and bring R’auto(Z) to more reasonable values to 195 

correct the overestimated LWCd(KK) in the upper part and underestimated LWCd(KK) in the lower 196 

part of the cloud as shown in Fig. S1f. Introducing rc(Z) in Eq. (3) adds a more direct constraint 197 

on the autoconversion process than the relationship originally used in KK because the 198 

autoconversion process is primarily a conversion process from cloud droplets to drizzle drops near 199 

the cloud top. 200 

     Similarly, we fitted an exponential function between 𝐵′(𝑍) and rc(Z)/rd(Z) (Eq. 6) in Fig. 1d. 201 

𝐵′(𝑍) decreases with increasing rc(Z)/rd(Z) until the ratios reach ~0.2. The fitted formula and the 202 

pattern of the joint PDF, as well as Fig. S1f, reveal that 𝐵′(Z) values should change with height. 203 

Near the cloud top, rc(Z) is the largest while rd(Z) is the smallest, resulting in the greatest rc(Z)/rd(Z), 204 

where 𝐵′(𝑍)  from the NKK scheme are the smallest and remain nearly constant (~50) for 205 

rc(Z)/rd(Z) > 0.2, even smaller than the prescribed B (B=67). From the cloud top to the cloud base, 206 

rc(Z) decreases but rd(Z) increases, resulting in the smallest rc(Z)/rd(Z) at the bottom of the cloud. 207 

𝐵′(𝑍) increases with decreasing rc(Z)/rd(Z) from the top to the base and reaches the largest value 208 

at the bottom of the cloud. This change in 𝐵′(𝑍) will counterbalance the overestimated LWCd(KK) 209 

in the upper part and underestimated LWCd(KK) in the lower part of the cloud as demonstrated in 210 

Fig. S1f.  211 

     Theoretically, the collision efficiency is the highest and reaches nearly unity for rc(Z)/rd(Z) > 212 

0.2, while the collision efficiency decreases significantly with decreasing rc(Z)/rd(Z) (Rogers and 213 

Yau, 1989). With fixed drizzle drop size, larger cloud droplets have higher collision efficiency and 214 
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correspondingly larger Rauto values, which typically happens near the cloud top. For smaller cloud 215 

droplets, their collision efficiencies are much lower because they tend to follow the streamlines 216 

around a falling drizzle drop. However, the coalescence efficiency is opposite to the collision 217 

efficiency, that is, smaller cloud droplets more easily stay with drizzle drops and remain joined. 218 

This argument is further proved from the retrieved rc(Z), rd(Z), LWCc(Z) and LWCd(Z) in Fig. S1 219 

and Rauto and Raccr in Figs. 1e and 1f. Rauto contribution to drizzle water content increases with 220 

height, peaking near the cloud top which basically follows the rc(Z) and LWCc(Z) variations, while 221 

Raccr contributes most near the cloud base which is attributed by rd(Z) and LWCd(Z).  222 

     The fitted exponential formula between 𝐵′(𝑍) and rc(Z)/rd(Z) in Fig. 1d is opposite to the 223 

theoretical collision efficiency. This is because the KK scheme tends to overestimate 224 

LWCd(KK)near the cloud top and 𝐵′(𝑍) should be decreased in order to lessen Raccr. Near the 225 

cloud base, 𝐵′(𝑍) is usually the largest from the NKK scheme, which acts to enhance Raccr to 226 

compensate the underestimation of LWCd (KK).    227 

     For warm rain processes, cloud droplets normally form at the cloud base, grow with height 228 

through condensation in updrafts into the largest cloud droplets (rc~20 µm, Rogers and Yau, 1996; 229 

Wood, 2005a&b; Wallace and Hobbs, 2006; Takahashi et al., 2017), and become drizzle-sized 230 

drops through the collision-coalescence near the cloud top in which Rauto becomes important (Wu 231 

et al., 2015; Cheng and Xu, 2009; Liu and Daum, 2004, Wu et al., 2015). These drizzle drops fall 232 

from near the cloud top grow by collecting cloud droplets and small drizzle drops. As drizzle drops 233 

fall, Raccr becomes increasingly important.   234 

     To quantify the cloud-to-rain particle conversion and growth processes, we normalized the 235 

individual profiles in cloud height coordinate. Rauto(Z) and Aaccr(Z) are calculated from prescribed 236 

A and B (constants, white dashed lines in Figs. 1c and 1d) in the KK scheme, while the NKK 237 

scheme 𝐴′(𝑍) and 𝐵′(𝑍) are function of rc(Z) and rc(Z)/rd(Z) as shown in Figs. 1c and 1d (solid 238 

while lines). Figure 1e shows the composite profiles of Rauto and Raccr for all the drizzle cases 239 

during ACE-ENA. The normalized Rauto increased significantly with height, with a peak at zi ~ 240 

0.75, and then decreased toward the cloud top. The smaller Rauto values at the cloud top are mainly 241 

caused by cloud droplet evaporation associated with cloud-top entrainment as observed by aircraft 242 

in situ measurements (Wu et al., 2020). The normalized Raccr values are, in general, one order of 243 

magnitude greater than the Rauto except at the cloud top where they are closer. The R’auto(Z) values 244 



9 
 

are slightly less than the Rauto(Z) values in the upper part of the cloud and greater in the lower part. 245 

The R’accr(Z) values, on the other hand, are greater than the Rauto(Z) values at all levels.        246 

     The relative contributions of Rauto and Raccr to total drizzle water production rate (Pr = Aauto + 247 

Aaccr) are presented in Fig. 1f. Rauto(Z) and Raccr(Z) contribute ~45% and 55% of Pr(Z) near the 248 

cloud top, respectively. As drizzle drops fall, Raccr becomes increasingly important. For the NKK 249 

scheme, the R’auto(Z) and R’accr(Z) contribute ~31% and ~69% of Pr(Z) near the cloud top, which 250 

are 14% less and more, respectively, than the contributions from the KK scheme. The relative 251 

contributions of autoconversion (accretion) gradually decrease (increase) toward the cloud base 252 

and have nearly the same in both schemes below 𝑧𝑖 =  0.3. Near the cloud top, the 14% lower 253 

contribution from R’auto(Z) corroborates that the NKK scheme has lower precipitation frequency 254 

than the KK scheme. On the other hand, the 14% greater contribution from R’accr(Z) confirms that 255 

the NKK scheme has higher precipitation intensity than the KK scheme. At the upper part of the 256 

clouds, the less (more) autoconversion (accretion) contributions from the NKK scheme 257 

corroborate the notion that the KK scheme overestimated autoconversion rates and underestimated 258 

accretion rates, which could be a reason that most GCMs predict ‘too frequent and too light 259 

precipitation’. Meanwhile, the NKK scheme has the potential to mitigate the outstanding problem 260 

in GCM precipitation simulations and shed light on future model development.  261 

     Notice that the focus of this study is on the vertical distributions of Rauto and Raccr, and their 262 

impacts on precipitation simulation. The spatial variations of Rauto and Raccr, especially their 263 

subgrid variabilities, should share the equal importance in precipitation simulation. For example, 264 

Wu et al. (2018) calculated the so-called enhancement factors, Eauto and Eaccr, using ARM ENA 265 

ground-based observations and retrievals. They found both enhancement factors increase with the 266 

increase of model grid size. These results are similar to those from Xie & Zhang (2015) and results 267 

from satellite observations in Lebsock et al. (2013) and Zhang et al. (2019). Comparing the 268 

prescribed enhancement factors in Morriosn and Gettelman (2008) to the observed ones, a higher 269 

Eauto(3.2) and a lower Eaccr(1.07) at small grids were used in Morriosn and Gettelman (2008). In 270 

this study, however, we only investigate the vertical distribution of Aauto and Aaccr and their impact 271 

on precipitation with prescribed enhancement factors in CESM simulations.   272 

     273 

4. Impacts of the updated microphysics scheme in climate simulations   274 
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     The KK scheme has been widely used in cloud-resolving (Seinfeld et al., 2016) and global 275 

climate models, including the NCAR/DOE CESM (Morriosn and Gettleman, 2008; Hurrell et al., 276 

2013; Gettleman et al., 2019). In this study, we implemented the updated schemes R’auto(Z) and 277 

R’accr(Z) in CESM version 1.2 (CESM1) to assess the climatic influence of recalibrated cloud 278 

microphysical processes. We first compare the standard CESM1 simulations with the satellite 279 

products to justify the rationale of updating microphysics scheme. The CERES Edition 4 cloud 280 

liquid water path (LWP) retrievals from the Moderate Resolution Imaging Spectroradiometer 281 

(MODIS) and shortwave cloud radiative forcing (SWCF) from the Clouds and the Earth's Radiant 282 

Energy System (CERES) on board of the Terra and Aqua satellites (Minnis et al., 2020) will serve 283 

as the benchmark. Figure 2 shows the CESM1 simulated spatial distributions of maritime LWPs 284 

between 60º S and 60º N with a mean of 43.0 g/m2, which is close to the satellite retrieval (44.1 285 

g/m2). However, large differences exist over some regions. For example, there are positive biases 286 

of LWP in CESM1 over the Inter Tropical Convergence Zone (ITCZ), whereas over the 287 

stratocumulus-prevailing regions like the Southeast Pacific and Southeast Atlantic, the negative 288 

biases can be up to -20 g/m2 as shown in Fig. 2e., which is consistent with the common problem 289 

of GCM, i.e., too frequent drizzle precipitation for stratus and stratocumulus clouds.   290 

     The spatial distributions of observed and modeled SWCF values have strong negative 291 

correlations with their corresponding LWPs, that is, larger LWP corresponds to stronger negative 292 

SWCF as illustrated in Figs. 2b and 2d. The spatial distribution of the biases in SWCF (Fig. 2f) 293 

mirrors those in LWP (Fig. 2e), indicating that the SWCF biases are largely contributed by those 294 

in LWP. Over 60º S to 60º N, the oceanic SWCF bias is -2.3 W/m2. In addition to CESM1 295 

simulations, we also simulate cloud LWP using CESM2 (version 2.1.1) whose microphysical 296 

scheme includes an enhancement factor in the KK scheme. However, the LWP in CESM2 is found 297 

to be overestimated by 66% in comparison with satellite observations (Fig. S3). Therefore, we 298 

choose not to test our observational constraints in CESM2. 299 

     To reveal the relative importance of the changes in Rauto and Raccr parameterizations, we 300 

conducted two model sensitivity studies by using R’auto(Z) first, and then using both R’auto(Z) and 301 

R’accr(Z) in CESM1. Figure 3a shows the differences in maritime stratiform cloud LWP between 302 

the simulations using R’auto(Z) and Rauto(Z) in which R’auto(Z) significantly increased cloud LWP. 303 

Such an increase is more evident in the mid-latitude regions than the tropics, which can be 304 

attributed to the fact that the stratiform clouds are more prevalent in the mid-latitudes. The 305 
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increased LWPs in the mid-latitudes using NKK greatly counterbalance the negative biases in LWP 306 

using KK scheme (Fig. 3e), bring the modeled LWPs closer to satellite retrievals. In particular, the 307 

simulated LWPs using R’auto(Z) increased 11.8 g m-2 over 60º S-60º N oceanic regions (Fig. 3a) 308 

which is more than 20% fractional changes, and 9.8 g m-2 globally (Fig. S4b). The increases in 309 

mean stratiform cloud fractions (CFs) were only 0.5% and 0.8% for the mid-latitudes and globally 310 

(Fig. S5), but much more for fractional changes, up to 10% over the regions like subtropics and 311 

the Arctic as seen in Fig. S5d.  312 

     The reduced R’auto(Z) near the cloud top shown in Fig. 1f corroborates the notion that the 313 

overestimation of Rauto is more important in determining the overall Rauto effect than the 314 

underestimation of Rauto in the bottom of the cloud. Hence, R’auto(Z) exerts a larger influence on 315 

the height dependency of precipitation processes in the cloud. In contrast, Raccr is generally 316 

underestimated throughout the whole cloud profile (Figs. 1e and 1f). Therefore, a stronger R’accr(Z) 317 

can be expected when implementing it in the model simulations, which can result in more cloud 318 

LWP as evident in Fig. 3a. Taking changes by both R’auto(Z) and R’accr(Z) into account together, 319 

the net cloud LWP changes (Fig. 3b) are much less than those simulated with R’auto(Z) only in Fig. 320 

3a, but are still dominated by the impact of the autoconversion change, with a mean increase of 321 

4.5 g m-2 over 60º S-60º N oceanic regions, corresponding to a 10% increase. No significant 322 

changes in stratiform CFs using R’auto(Z) only or both R’auto(Z) and R’accr(Z) are found in this study 323 

(Fig. S5). 324 

      Cloud-to-rain particle conversion is also crucial for drizzle formation process in clouds. With 325 

suppressed autoconversion rates near the cloud top, the R’auto(Z) results in significant reductions 326 

in precipitation frequency, particularly in the subtropical regions (Figs. S4c and S4d). Figure S4d 327 

illustrates the decreased precipitation frequency corresponded with increased cloud LWP (Fig. S4b) 328 

and stratiform CF (Fig. S5), although they were imperfectly matched in their spatial distributions. 329 

Similar to the cloud responses, the rain formation process is dominated by the autoconversion 330 

change. This conclusion is further confirmed in Figs. S4c and S4d where the mean absolute 331 

changes in global precipitation frequency are -3.1% with R’auto(Z) only and -2.6% with both 332 

R’auto(Z) and R’accr(Z), with a significant decrease over the tropical regions.  333 

     To further probe the surface precipitation changes as a function of rain intensity, we employed 334 

an in situ diagnostic method (Wang et al., 2016) to generate precipitation PDFs based on rain rates 335 

on the hourly time scale. During the model integration, at each model time step, the new diagnostic 336 
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accumulates instantaneous precipitation rates into 30 predefined bins. At the end of each month, 337 

the corresponding percentage for each bin can be calculated to obtain a PDF and output it in the 338 

monthly data. The model sensitivity run shows that for the stratiform clouds, the mean frequency 339 

of drizzle or light precipitation (intensities less than 5 mm/day) was reduced from 25.2% to 22.7% 340 

when R’accr(Z) was applied (Fig. 3e), corresponding to a 10% fractional decrease. With an elevated 341 

accretion rate in the NKK scheme updating both processes, a 7.3% (fractional) drizzle reduction 342 

still exists. The reduced precipitation frequency with the NKK scheme alleviates a long-lasting 343 

problem related with the precipitation in GCMs (Stephens et al., 2010). It is difficult to obtain 344 

stratiform precipitation from observations, so we do not compare the stratiform precipitation PDF 345 

with observations in this study. Wang et al. (2016) examined the total precipitation PDF in the 346 

CESM1 simulations using the KK scheme, and found that the simulated precipitation frequency 347 

for light precipitation frequency is 5% higher than the Tropical Rainfall Measuring Mission 348 

(TRMM, Lau and Wu, 2011) observations (54%) over the tropical region of 25o S-25o N. Although 349 

it is not the same region as this study (60o S-60o N), this result corroborates that the simulated 350 

precipitation frequency using the NKK scheme is changing towards to observed one.  351 

 352 

5. Conclusions 353 

     It is a great challenge to realistically simulate low clouds and associated warm rain in climate 354 

models without reliable vertical variations of microphysical processes. In this work, we use the 355 

newly retrieved cloud and drizzle microphysical properties to constrain the autoconversion and 356 

accretion parameterizations in a widely used microphysical scheme, and then implement the  357 

updated scheme into the NCAR CESM to examine the responses of warm rain frequency and cloud 358 

properties. Climate simulations with the updated cloud microphysical scheme exhibit the reduced 359 

precipitation frequency and increased precipitation intensity, indicating that the new scheme has 360 

the potential of mitigating the outstanding problem in GCM precipitation simulations and 361 

achieving more accurate climate assessments.       362 

      The findings from this study attest the paramount importance of cloud microphysics 363 

parameterizations in GCM simulations. In particular, we show that it is critical to take the in-cloud 364 

vertical variations of warm rain processes into account when developing cloud microphysical 365 

schemes. We note that the robustness of our findings is subject to the representative of new 366 

parameterizations derived from a field campaign. Therefore, it is imperative to use more ground-367 
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based observations from different field campaigns and ARM permanent sites as well as a single 368 

column modeling framework to test if these new parameterizations are valid over other oceans and 369 

land surfaces. Future study will also focus on how altered warm rain processes can influence the 370 

aerosol indirect effect, cloud feedback, and climate sensitivity.  371 

 372 
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  561 
Fig. 1. (a,b) Probability density functions (PDFs, solid lines) and cumulative density functions 562 

(CDFs, dashed curves) of coefficients 𝐴′(𝑍) and 𝐵′(𝑍) calculated from ground-based retrievals. 563 

Vertical dashed lines mark the constants in the KK scheme. Joint histograms of (c) 𝐴′(Z) with rc(Z) 564 

and (d) 𝐵′(Z) and the ratio of rc(Z) to rd(Z). White solid lines are the exponential fittings. White 565 

dashed lines mark the prescribed A and B in the KK scheme. (e)  Normalized profiles of Rauto (red 566 

lines) and Raccr (blue lines) for all the drizzle cases during ACE-ENA (a total 9,213 1-min profiles) 567 

by cloud thickness (𝑧𝑖 =
𝑧−𝑧𝑏

𝑧𝑡−𝑧𝑏
, where subscripts b and t denote cloud base and top, respectively). 568 

The solid and dashed lines represent the profiles from KK and NKK schemes, respectively. (f) The 569 

percentages of total drizzle water production rate (Rauto+Raccr) contributed by Rauto and Raccr.570 
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 571 

Fig. 2. Comparisons of cloud liquid water path (LWP, left column) and shortwave cloud forcing 572 

(SWCF, right column) between CESM1 present-day scenario simulations (a,b) and CERES-573 

MODIS satellite cloud and radiation climatologies (c,d), as well as their differences (e,f). Model 574 

simulations consist of five ensemble members. Satellite data are averaged over 2001-2019 from 575 

both Terra and Aqua satellites. 576 
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   579 

 580 

Fig. 3. Changes in LWP (a,b), SWCF (c,d), and Probability distribution functions (PDFs) of large-581 

scale stratiform precipitation (e,f) in CESM simulations by different warm rain schemes (NKK – 582 

KK). Left column: autoconversion only. Right column: both autoconversion and accretion. The 583 

stippling indicates the statistically significant changes that are larger than the model internal 584 

variability (calculated as the standard deviation among the ensemble members). The precipitation 585 

PDF are averaged over 60ºS to 60ºN oceanic regions. The spreads of precipitation frequency in 586 

each bin are all less than 0.1% among different ensemble members, so they are too small to be 587 

shown in the panels e and f. 588 
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