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Abstract

Growing protoplanets experience a number of impacts during the accretion stage. A large impactor hits the surface of
a protoplanet and produces impact-induced melt, where the impactor’s iron emulsifies and experiences metal-silicate
equilibration with the mantle of the protoplanet while it descends towards the base of the melt. This process re-
peatedly occurs and determines the chemical compositions of both mantle and core. The partitioning is controlled
by parameters such as the equilibration pressure and temperature, which are often assumed to be proportional to the
pressure and temperature at the base of the melt. The pressure and temperature depend on both the depth and shape of
the impact-induced melt region. A spatially confined melt region, namely a melt pool, can have a larger equilibrium
pressure than a radially uniform (global) magma ocean even if their melt volumes are the same. Here, we develop
scaling laws for (1) the distribution of impact-induced heat within the mantle and (2) shape of the impact-induced
melt based on more than 100 smoothed particle hydrodynamic (SPH) simulations. We use Legendre polynomials
to describe these scaling laws and determine their coefficients by linear regression, minimizing the error between
our model and SPH simulations. The input parameters are the impact angle θ (0◦, 30◦, 60◦, and 90◦), total mass
MT (1MMars − 53MMars, where MMars is the mass of Mars), impact velocity vimp (vesc − 2vesc, where vesc is the mu-
tual escape velocity), and impactor-to-total mass ratio γ (0.03 − 0.5). We find that the equilibrium pressure at the
base of a melt pool can be higher (up to ≈ 80%) than those of radially-uniform global magma ocean models. This
could have a significant impact on element partitioning. These melt scaling laws are publicly available on GitHub
(https://github.com/mikinakajima/MeltScalingLaw).
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1. Introduction

Protoplanets experience numerous impacts as they
accrete. These impacts have shaped the configura-
tion of the solar system, given that the origins of the
Earth-Moon system (e.g., Hartmann and Davis, 1975;
Cameron and Ward, 1976), the Pluto-Charon system
(e.g., McKinnon, 1988, 1989; Canup, 2005) and per-
haps the Martian moons (e.g., Rosenblatt, 2011; Crad-
dock, 2011; Citron et al., 2015; Rosenblatt et al., 2016;
Nakajima and Canup, 2017; Canup and Salmon, 2018;
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Hyodo et al., 2018) can be explained by giant impacts.
Additionally, the large core of Mercury (e.g., Benz et al.,
2007) and Uranus’s axis tilt may have also been the
result of giant impacts (e.g., Safronov, 1969; Slattery
et al., 1992; Kegerreis et al., 2018).

Giant impacts are not only responsible for shaping
the architecture of the planetary system, but also for de-
termining the evolving chemistry of a protoplanet. The
chemical compositions of both the mantle and core of a
protoplanet evolve over time as new impactor materials
are added. When an impactor hits the protoplanet (tar-
get), the outer part of the mantle becomes molten and
forms a magma ocean. Some portion of the impactor’s
iron core equilibrates with the ambient mantle, while
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the extent depends on the impactor size, velocity and
impact angle (e.g., Dahl and Stevenson, 2010; Deguen
et al., 2014; Landeau et al., 2016, 2021; Kendall and
Melosh, 2016; Lherm and Deguen, 2018). This equi-
libration enriches iron melt with siderophile elements
whereas lithophile elements will be preferentially par-
titioned into the silicate melt. The iron continues to
sink to the bottom of the magma ocean and eventu-
ally merges with the target core (e.g., Stevenson, 1990;
Wade and Wood, 2005; Rubie et al., 2003, 2011, 2015).
However, if the impactor’s iron core is large, it may
not have time to equilibrate with the target’s mantle be-
fore merging with the target’s core (Dahl and Stevenson,
2010). Thus, the extent of equilibration depends on the
details of the impact process.

The metal-silicate partition coefficient of element i is
defined as,

Dmetal−sil
i = Cmetal

i /Csil
i , (1)

where Cmetal
i and Csil

i are the concentrations of element
i in metal and silicate at equilibrium, respectively (e.g.,
Rubie et al. 2015). This coefficient is a function of equi-
librium temperature Teq and pressure Peq and of other
factors such as the oxygen fugacity. Conventionally, the
values of Teq and Peq are often associated with or as-
sumed to be proportional to the values at the bottom of
a magma ocean. Based on siderophile (iron-loving) ele-
mental abundances (e.g., Ni, Co) in the Earth mantle,
early partitioning studies with piston-cylinder experi-
ments suggest that the metal-silicate equilibration oc-
curs at ≈ 25 GPa, while more recent studies, including
higher pressure experiments with diamond anvil cells,
propose up to 55 GPa (e.g., Siebert et al., 2013; Fischer
et al., 2015).

Conventionally, it is assumed that such an equilibra-
tion occurs in a global (radially uniform) magma ocean
of equivalent volume to the melt that is generated by the
impact (Figure 1a). However, more realistically, an im-
pact first produces a spatially confined melt pool (Figure
1b) (Tonks and Melosh, 1992; Rubie et al., 2015) that
centers around the impact point. Due to isostatic adjust-
ment this melt pool would radially spread out and be-
come a global magma ocean over time (Reese and Solo-
matov, 2006), however, this timescale (102 − 105 years,
Reese and Solomatov 2006) is likely to be much longer
than the equilibration timescale, ranging from hours (set
by the turbulent mixing timescale) to months (set by the
≈ 1 cm-sized iron droplets’ sinking timescale suggested
by Dahl and Stevenson 2010). Therefore, a melt pool
is likely to be more relevant for the metal-silicate equi-
libration process and can provide higher pressures than

a global magma ocean (Figure 1). It should be noted
that the geometry and pressure differences between melt
pool and magma ocean diminish when the entire mantle
melts.

Insightful and extensive studies have been conducted
to estimate the volume of an impact-induced magma
ocean (e.g., Bjorkman and Holsapple, 1987; Tonks
and Melosh, 1993; Pierazzo et al., 1997; Pierazzo and
Melosh, 2000; Reese and Solomatov, 2006; Barr and
Citron, 2011; Abramov et al., 2012; Monteux and
Arkani-Hamed, 2019). However, some of these studies
focus on head-on collisions (for which the impact angle
θ is 0◦; see Figure 2a for the definition of θ) because
the simulations of these impacts are numerically less
expensive than those of oblique impacts, which require
3D simulations, even though oblique impacts are more
likely (e.g., Shoemaker 1962; Agnor et al. 1999). More-
over, no detailed analytical models that describe how the
heat is distributed within the mantle of the post-impact
body for various impact angles are available. This ren-
ders challenging the prediction of the depth and geome-
try of an impact-induced melt pool.

Here, we have derived scaling laws for (1) the dis-
tribution of impact-induced heat within the mantle and
(2) the geometry (shape) of the impact-induced melt.
These scaling laws are expressed using Legendre poly-
nomials and their coefficients are determined by lin-
ear regression to minimize the error between our model
and impact simulations. By using these laws combined
with the initial thermal profile of a planetary body, we
can predict the thermal profile of the post-impact body.
Moreover, once the criterion for melting is specified, the
melt volume and shape of a magma ocean and melt pool
can be calculated.

2. Methods

2.1. Smoothed particle hydrodynamics

We use the smoothed particle hydrodynamics (SPH)
method to simulate giant impacts. SPH is a Lagrangian
method and has been used for representing planetary
impact phenomena (e.g., Canup 2004). All the SPH par-
ticles have the same masses in a given simulation. Each
SPH particle has a characteristic length scale called
smoothing length. The smoothing length becomes small
when an SPH particle is surrounded by neighboring
particles, while the mass of the particle remains the
same. This makes the density of the particle increase
at a densely populated region, whereas it decreases at
a sparsely populated region. The smoothing length
evolves over time, but the typical scale is ∼ 200 km.
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Figure 1: Schematic view of (a) a global magma ocean and (b) a regionally confined melt pool. Teq and Peq are the equilibrium temperatures and
pressures, respectively. Even if the volumes of melt are the same between the two models, a melt pool can be deeper and reach higher Teq and Peq
than those of a global magma ocean.

In SPH, the conservation equations for mass, momen-
tum, and energy are solved simultaneously. This SPH
code follows the standard implementation that uses ar-
tificial viscosity to describe the shock front (see Sec-
tion 4 in Monaghan, 1992). The SPH algorithm pro-
vides the density and internal energy at each time step,
which are used to determine the pressure and sound ve-
locity based on an equation of state (EOS). We use M-
ANEOS as an equation of state (Thompson and Lauson,
1972; Melosh, 2007), which is a semi-analytic equation
of state and includes phase changes. This equation of
state has been frequently used in previous impact simu-
lations (e.g., Canup, 2004). The input parameters for M-
ANEOS are listed in Supplementary Information (our
input file is listed as “SPH-N” in Stewart et al. 2020).
This version of M-ANEOS does not include the effect
of melting, and therefore it overestimates the tempera-
ture of a material that is heated above the melting point.
The mantle and core are assumed to be dunite and iron,
respectively. The initial mantle mass fractions fmantle
for both impactor and target are 0.7 (i.e. the core mass
fractions are 0.3). Initially, the mantle and core of a
body have adiabatic temperature profiles. The entropies
for the mantle and core are assumed to be 3160 J/K/kg
and 1500 J/K/kg, respectively, which results in approxi-
mately ≈ 2000 K near the planetary surface and ≈ 4000
K in the iron core at the core mantle boundary (CMB)
for an Earth-sized planet. Effects of varying the initial
temperatures are considered in Section 3.4. The num-
ber of SPH particles in our simulations is on the order
of 104 − 105, as discussed in more detail in Section 4.5.
The initial locations and velocities of the impactor and
target are calculated as follows; (1) determining the lo-
cations and velocities of the target and impactor upon
impact with the desired impact angle and velocity, and
(2) calculating the trajectories of the two bodies back-

wards in time until the two bodies are apart by 2 Earth
radii (we define this state as t = 0 where t is time). In
this backward trajectory calculation, tidal deformation
is ignored. For this reason, the impact angle and veloc-
ity in an SPH simulation can be slightly different from
the desired values due to tidal deformation prior to the
impact, but we assume that this effect is minor and it is
meritorious to capture pre-impact tidal deformation be-
cause this contributes to heating. Our SPH code does
not include material strength and the implication of this
omission is discussed in Section 4.4. The details of the
code and settings are described in detail in our previous
studies (e.g., Nakajima and Stevenson, 2014, 2015).

2.2. Parameters for the SPH simulations
The input parameters for the SPH simulations are the

impact angle θ (0 − 90o, Figure 2a), total mass MT

(1MMars − 53MMars, where MMars is the mass of Mars),
which is the sum of target and impactor masses, the
impactor-to-total-mass ratio γ (0.03 − 0.5), impact ve-
locity vimp (vesc − 2vesc), where vesc is the mutual escape
velocity (vesc =

√
2G(Mt + Mi)/(Rt + Ri), where G, Mt,

Mi, Rt, Ri are the gravitational constant, target mass,
impactor mass, target radius and impactor radius). The
values of the employed parameters are listed in Table 1
and input parameters are listed in Tables S.1 - S.3. Im-
pacts with parameters in these ranges are expected to be
common near the end of the planetary accretion stage
(e.g., Ward, 1993; Agnor et al., 1999; Agnor and As-
phaug, 2004), when the impacts are largest and have the
greatest influence on planetary composition. Figure S.1
shows the distributions of these parameters in previous
orbital evolution calculations (Rubie et al., 2015), where
the typical ranges are 30◦ ≤ θ ≤ 60◦, MT ≤ 1 − 2MMars,
vimp ≤ 1.5vesc, and γ ≤ 0.05.
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Symbol Description values references
θ Impact angle 0-90◦

MT Total mass 1 - 53 MMars
γ Impactor-to-total-mass ratio 0.03 − 0.5

MMars Martian mass 6.4171 × 1023 kg
Mt Target mass (1 − γ)MT
Mi Impactor mass γMT
Rt Target radius 1 − 3RMars
Ri Impactor radius 0.5 − 1.5RMars
R
′

Radius of a planet whose mass is Mt + Mi 1 − 3RMars
vimp Impact velocity vesc - 2 vesc
vesc Mutual escape velocity 4.2 − 17.5 km/s

Mmantle Post-impact mantle mass 0.5 − 1.0MT
h Mantle heating/total heating 0.7 − 1.0

EM Specific energy for melting 5.2 × 106 J/kg 1
∆IE Internal energy gain 1029 − 1032 J 2
KE0 Kinetic energy 1029 − 1032 J
∆PE Change in potential energy 1029 − 1032 J
cv Specific heat 1000 J/K/kg 3

fmantle Initial mantle mass fraction 0.7
dEmantle/dE Fractional heating of mantle 0.6-1

Table 1: List of key parameters used in this paper. 1: Pierazzo et al. (1997), 2: Equation 4, 3: Estimated from M-ANEOS.

3. Scaling law of mantle melt and heat distribution

The SPH results are listed in Tables S.1-S.2 for the
vimp = vesc cases and in Table S.3 for the vimp ≥ 1.1vesc
cases. The model name “M” represents the same set of
initial conditions with four different impact angles (in
the range of θ = 0◦ − 90◦). ID represents a specific
SPH simulation. dE is the total internal energy gain
of the post-impact body, dEmantle/dE represent the frac-
tion of the internal energy partitioned into the mantle
(i.e. 1 − dEmantle/dE is the fractional energy partitioned
into the core). Mmantle/( fmantleMT ) represents the extent
of perfect or imperfect accretion of the mantle materials
(if this value is close to 1, the impactor’s mantle accretes
into the target almost perfectly, whereas if this value
is smaller than 1, some mass does not accrete into the
post-impact body). The underlying assumption here is
that the mantle mass fraction of the post-impact body is
close to the original value, 0.7. This is an reasonable as-
sumption in the parameter ranges we explore, but it may
not be accurate if the impact velocity is much larger and
the impact is catastrophic enough to change the fraction
(e.g., Benz et al., 2007). MFA is the melt mass fractions
of the post-impact body based on the melt criterion dis-
cussed in Section 3.3 (Equation 13). σ′ refers to the
error between an SPH simulation and our model (see
Section 3.3). N is the number of SPH particles. Addi-
tional outputs are discussed in Section S.2.

We describe the results of our model in terms of (1)
the internal energy gain by impact in Section 3.1 and (2)
heat distribution within the mantle in Section 3.2. By
combining these two sets of results, the internal energy
gain and geometry of melt can be modeled as discussed
in Section 3.3.

3.1. Impact-induced heating

3.1.1. SPH simulations
Examples of our SPH simulations are presented in

Figure 3 (model M0). The orange-red color map dis-
plays the gain of specific internal energy of the man-
tle normalized by 105 J/kg and the grey color applies
to iron. These snapshots clearly show that the internal
energy gain depends on the impact angle θ. For a head-
on collision (θ = 0◦), antipodal heating is prominent
due to focusing of shock waves at the opposite side of
the impact point and due to deformation of the man-
tle. Part of the mantle at the antipode deforms signifi-
cantly and expands radially upon impact. When it falls
back and hits the core mantle boundary, the potential
energy is converted into internal energy of the mantle.
This effect is stronger at θ = 0◦ and is not clearly ob-
served at other angles. At θ = 30◦, an impactor ac-
cretes onto the target and heats the mantle near the im-
pact site. At θ = 60◦, the impactor hits the target twice;
during the first impact, only a small portion of the im-
pactor accretes onto the target, whereas the rest of the
impactor accretes onto the target during the second im-
pact (the so-called “graze-and-merge collisions”). The
target mantle is more uniformly heated at this impact an-
gle (at θ = 60◦ in Figure 3). The target’s iron becomes
more fragmented during the impact process. This ef-
fect is not considered in our melt model as discussed in
the following sections, but it is an important effect given
that this would lead to a higher extent of metal-silicate
mixing compared to cases where the core is nearly in-
tact. At θ = 90◦, the impactor grazes the target mantle
and does not accrete onto the target. Consequently, only
a small portion of the target is heated.

3.1.2. Analytical models for KE0 and ∆PE
As a first step for describing the total internal energy

gain ∆IE, we describe the initial kinetic energy of the
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Figure 2: Definition of our model parameters. (a) θ is the impact angle, where the arrows indicate the directions of motions of the impactor and the
target. (b) The polar angle ψ is defined to be zero where the shock-heating is most significant, which is typically close to the impact point. The heat
distribution is assumed to be symmetric along the ψ = 0 axis and therefore its dependence on the azimuth angle φ is ignored. r′ is the normalized
radius of the post-impact body (0 is the center of the body and 1 is its surface).

system KE0 as

KE0 =
1
2

Mt Mi

Mt + Mi
v2

imp. (2)

Assuming perfect accretion and ignoring any shape
change of the post-impact body due to rotation and heat-
ing, the gain of the potential energy due to an impact,
∆PE, is expressed as

∆PE = −
3
5

GM2
t

Rt
−

3
5

GM2
i

Ri
−

GMt Mi

Rt + Ri
+

3
5

G(Mt + Mi)2

R′
,

(3)

where R′ represents the radius of a body whose mass is
Mt + Mi(= MT ) (the mass-radius relationship between
MT and R′ is described in Section S.1). The first and
second terms are the gravitational binding energies of
the target and impactor bodies. The third term repre-
sents the gravitational energy of the impactor body in
the gravity potential of the target body, and the fourth
term is the gravitational binding energy of the post-
impact body under the assumption that the target and
impactor perfectly merge. Equation 3 is an idealized po-
tential energy gain assuming a perfect accretion event.
The actual potential energy release can differ from this

because some mass can be lost and the mass-radius re-
lationship can change due to the temperature profile and
spin of the body (see Section S.2). Moreover, this ex-
pression does not include the effect of differentiation,
which could account for up to ∼ 10% of internal en-
ergy increase (Stevenson, D. J., online textbook). Nev-
ertheless, ∆PE still gives a first order estimate for the
potential energy change after a merging impact.

3.1.3. Fitting models for ∆IE, the mantle mass, and the
fractional heating

We assume that the total internal energy gain ∆IE is
a function of ∆PE and KE0, and is expressed by the
Legendre polynomials Pl as

∆IE(θ) = (KE0 + ∆PE)
ne∑

l=0

elPl(cos θ), (4)

where el are the corresponding coefficients (see Tables
S.5-S.6) and ne is the order of the polynomial. The
scaled internal energy gain ∆IE/(KE0 + ∆PE) can ex-
ceed 1 because ∆PE is an simplified energy estimate
as discussed in Section 3.1.2. In Figure 4a, b, our best
fit model is shown as a thick black line, which is mod-
eled by sixth order Legendre polynomials (ne = 6). The
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Internal energy (10 J/kg)

0 20 40

Iron
Mantle

5

Figure 3: Examples of SPH simulations (Model series M0 - see Table 2. MT = 1MMars, γ = 0.1, vimp = vesc). The four panels show the results for
different impact angles approximately 20 hours after the impacts. The grey and red-orange colors represent the internal energy of the iron core and
silicate mantle, respectively (the values are shown in 105 J/kg). ψ = 0◦ is placed in the direction of 12 o’clock. The internal energy gain strongly
depends on the impact angle.
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lines with colors represent ∆IESPH/(KE0+∆PE), where
∆IESPH is the internal energy gains calculated from SPH
simulations. The left and right panels represent the
vimp = vesc and the vimp ≥ 1.1vesc cases, respectively.
The coefficients el are determined by minimizing the er-
ror σ (linear regression),

σ =

√√
1
n

n∑
i=1

(
∆IESPH,i − ∆IEi

KE0 + ∆PE

)2

, (5)

where ∆IESPH,i is the internal energy gain from an SPH
simulation whose ID is i and ∆IEi is the internal en-
ergy gain estimated with Equation (4) for ID= i. n is
the total number of simulations we consider (n = 64 is
for vimp = vesc and n = 44 for vimp ≥ 1.1vesc). The
colors of the lines represent different γ values (for de-
tails, see the figure caption). The scaled internal energy
gain ∆IE/(KE0 + ∆PE) at vimp = vesc is typically larger
than that at vimp ≥ 1.1vesc. This is because impacts
at vimp = vesc result in nearly perfect mergers, which
can efficiently convert the impact kinetic energy and po-
tential energy into internal energy; however, this does
not always hold for cases with higher impact velocities
(vimp ≥ 1.1vesc), which often result in hit-and-run col-
lisions especially at large impact angles (θ = 60◦, 90◦)
(e.g., Asphaug 2009; Genda et al. 2012). This scaled
internal energy gain decreases as the impact angle in-
creases for the same reason; at large impact angles, the
kinetic and potential energies are not efficiently con-
verted into internal energy.

In Figure 4c, d, the fractional heating of the man-
tle with respect to the total internal energy gain,
∆IEmantle/∆IE is shown as a function of the impact
angle. The fitting model h(θ) for this parameter at
vimp = vesc is expressed as

h(θ) =

ng∑
l=0

glPl(cos θ), (6)

where the coefficients gl are listed in Tables S.5 and S.6
(ng = 2). h(θ) generally increases at larger impact an-
gles for the following reasons: an impact at a small im-
pact angle is energetic enough to heat the core in addi-
tion to the mantle, whereas an impact at a larger impact
angle tends to heat only the mantle and it is not energetic
enough to heat the core. This effect can also be seen
in Figure 3, where the core is shock heated at θ = 0◦,
whereas almost no strong heating occurs at θ = 90◦.

The mass of a post-impact body resulting at vimp =

vesc is modeled as (Figure 4e)

Mmantle(θ) = fmantle(Mt + Mi)
nk∑

l=0

klPl(cos θ), (7)

where nk = 1 and the coefficients kl are listed in Ta-
ble S.5. The best fit is shown with the thick black line
in Figure 4c and the corresponding coefficients kl are
listed in Table S.5 (nk = 1). At θ = 0◦, a target and an
impactor perfectly accrete, but up to ≈ 10% of the total
mass, MT , does not accrete at θ = 90◦ (Figure 4). At
vimp ≥ 1.1vesc, the mantle mass of a post-impact body is
not well captured by Equation 7, which assumes almost
perfect accretion, because high velocity impacts tend to
result in hit-and-run collisions. At vimp ≥ 1.1vesc, we use
the following simple imperfect accretion model (shown
with the dashed lines in Figure 4f),

Mmantle(θ) =


fmantle(Mt + Mi), at 0◦ ≤ θ ≤ 30◦

fmantle[Mt − Mi( θ
30 − 2)], at 30◦ < θ ≤ 60◦

fmantleMt, at 60◦ < θ ≤ 90◦.
(8)

It should be noted that at vimp = vesc and θ = 90◦, our
scaled internal energy model (Equation 4) is underesti-
mated in some cases. An impactor hits the surface of
the target and continues to orbit around the target and
eventually hits the target again. However, some of the
SPH simulations are stopped before an impactor comes
back because we only run simulations up until ≈ 20−25
hours, when the effect of numerical viscosity becomes
non-negligible (Canup, 2004). This can be seen in Fig-
ure 4e, where some impactors accrete into targets while
others do not (e.g., Models M10 and M11). We expect
that this could lead to up to ≈ 10% error in the internal
energy given that the standard deviation at θ = 90◦ is
0.115 (see the grey error envelope in Figure 4a).

3.2. Distribution of heat
The heat distribution within a planetary mantle is also

modeled with Legendre polynomials. We define the
spatial heat distribution function F(r′, ψ, φ) as

F(r′, ψ, φ) = F(r′, ψ) ≡
∆U(r′, ψ)

∆Ū
, (9)

where r′ is the normalized radius (0 at the center and
1 at the planetary surface), ψ is the colatitude, and φ is
the azimuth (see Figure 2b). We assume that the heat
distribution is symmetric along the pole and therefore
the model does not depend on φ. This assumption is not
accurate when θ > 0◦. Nevertheless, this angle depen-
dence is relatively weak, so we ignore it in this model
(see Section S.1 and Figure S.2 for further discussion).
ψ is defined as zero where the impact-induced heating is
maximum, which often coincides with the impact point.
∆U(r′, ψ) is the specific internal energy gain at r′ and

7



Figure 4: The left panels correspond to the vimp = vesc cases and the right panels correspond to the vimp ≥ 1.1vesc cases. The empirical fits are
shown with the thick black lines in panels a-e and dashed lines in panel f. SPH calculations are shown with the solid lines for the vimp = vesc cases
and dotted lines for the vimp ≥ 1.1vesc cases. (a, b) The total internal energy gain normalized by the sum of the initial kinetic energy KE0 and
∆PE. The colors of the solid lines represent γ values; green-yellow lines (M0-M3, M6-M7, M10-M15, M17-M22) for γ = 0.09 − 0.1, light brown
(M4, M16) for γ = 0.5, blue (M5) for 0.03, brown (M8) for 0.2, skyblue (M9, M23-M26) for γ = 0.3. (c, d) The fractional heating of the mantle
with respect to the total heating. (e) Mmantle/ fmantle MT represent the extent of perfect or imperfect accretion at vimp = vesc. (f) Same as (e) but at
vimp ≥ 1.1vesc. The dashed lines represent Equation 8. The legend names correspond to the models listed in Tables S.1-S.3. The standard deviation
σ is listed in each panel (Equation 5) and the grey shadow represents the error envelope in panels (a-e).
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ψ. ∆Ū is the average specific internal energy gain of the
mantle. Here, F(r′, ψ) is assumed to be

F(r′, ψ) =

2∑
m=−2

2∑
l=0

cl+3(m+2)r′mPl(cosψ). (10)

This expression requires 5 × 3 = 15 coefficients c,
which are determined as follows. We divide an SPH
simulation output into 8 × 12 segments as a function
of radius and angle, r′i −

1
2 ∆r ≤ r′ < r′i + 1

2 ∆r′ and
ψ j −

1
2 ∆ψ ≤ ψ < ψ j + 1

2 ∆ψ (∆r′ ≈ 0.5/8 = 0.0625 and
∆ψ = 180◦/6 = 30◦). For this, we calculate the aver-
age of ∆U(r′, ψ)/∆Ū of the hemisphere at each segment
(one hemisphere covers −90◦ ≤ φ < 90◦ and the other
covers 90◦ ≤ φ < 270◦, where φ = 0◦ and φ = 180◦

are parallel to the impact velocity vector). To define the
location of ψ = 0, we calculate the averaged internal en-
ergy gain at each ψ segment (ψ j −

1
2 ∆ψ ≤ ψ < ψ j + 1

2 ∆ψ
and 0.55 ≤ r′ < 1), and we identify ψ at which the in-
ternal energy gain is maximum and set it as ψ = 0. The
15 coefficients in Equation 10 are determined by min-
imizing the error between the model and the averaged
internal energies in all the segments (the 15 coefficients
are listed in Table S.7). It should be noted that the co-
efficients are determined using all the SPH simulations,
including both the vimp = vesc and vimp ≥ 1.1vesc cases.
We also explored different orders (r′−3, r′3, P3(cosψ)),
but their effects were limited and therefore we did not
include these terms in the model.

F(r′, ψ) is shown in Figure 5. The antipodal heating
is well captured at θ = 0◦, which is not clearly seen in
the case of the other impact angles. Interestingly, the
mantle is heated more uniformly at small impact angles
(θ = 0◦, 30◦) than at larger impact angles (θ = 60◦, 90◦).
This finding may seem counter-intuitive, but this can be
explained given that an impact with a small impact an-
gle often results in accretion, which is an efficient way to
heat the whole mantle, whereas an impact with a large
angle heats only the near surface regions of the target
body.

3.3. Comparison between our heat distribution model
and SPH

∆Ū (Equation 9) is calculated by averaging the in-
ternal energy gains of SPH particles. We assume that
∆Ū ≈ ∆IE(θ) where ∆IE(θ) is a model fit (Equation 4).
This leads to

∆U(r′, ψ, θ) = F(r′, ψ)∆IE(θ). (11)

Figures 6 and 7 show the internal energy gains calcu-
lated from the SPH simulations (left) and model ∆U

(right) for the models M0 and M17, respectively. Here,
the internal energy gain is normalized by 105 J/kg. The
standard deviation σ′ is described as

σ′ =

√√√ nr′∑
i=1

nψ∑
j=1

1
nr′nψ

[
∆IESPH(r′i , ψ j) − ∆IE(r′i , ψ j)

]2
,

(12)

where nr′ = 8 and nψ = 12. In general, the overall
trend is captured in our model; at θ = 0◦, the mantle
is extensively heated near the impact and antipodal site,
whereas the mantle remains colder at ψ = 90◦ and −90◦.
At θ = 30◦, the mantle on the hemisphere close to the
impact (|ψ| < 90◦) is significantly heated, whereas the
other side of the hemisphere (90◦ < |ψ| < 180◦) is much
less shock-heated. At θ = 60◦ for M0, a portion of the
mantle near the core mantle boundary is highly shock
heated in the SPH simulation. This is because part of
the mantle is locally heated while the impactor’s core
sinks to the bottom. This is not captured in the model.
At θ = 90◦, our model underestimates impact-induced
heating in models M0 and M17 primarily because our
∆IE model also underestimates heating (Figure 4 a,b).
Our model works well at small γ, but it does not work
as well at γ = 0.5 where an impactor is as large as the
target (Figure S.7). This is because this impact is more
energetic than cases with smaller γ and our model un-
derestimates the extent of heating.

3.4. Effect of the initial temperature

In this section, we explore the geometry of a magma
ocean by considering two different initial temperature
profiles of the mantle. In Figure 8, the panels (a) and
(c) represent the total internal energy and the panels (b)
and (d) represent the melt fraction for M0 at θ = 0◦.
The pre-impact mantle entropy S 0 is 1100 J/K/kg for
(a) and (b) (the surface temperature of ≈ 300 K) and
3160 J/K/kg for (c) and (d) (the surface temperature of
≈ 2000 K). These isentropic temperature profiles are
calculated using M-ANEOS (see Section S.1). The to-
tal internal energy is calculated as the sum of the initial
internal energy and internal energy gain using Equation
11. We define a portion of the mantle is molten if the lo-
cal temperature exceeds the melting temperature, Tmelt
(Rubie et al., 2015),

P ≤ 24 GPa : Tmelt[K] = 1874 + 55.43P − 1.74P2

+0.0193P3

P > 24 GPa : Tmelt[K] = 1249 + 58.28P − 0.395P2

+0.0011P3, (13)
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Figure 5: Normalized heat distribution model F(r′, ψ) (Equation 10) for four different impact angles. The internal energy is normalized by the
averaged energy of the system. The error is calculated at each impact angle.

where P is the pressure in GPa. The local tempera-
ture is calculated assuming u = cvT , where cv is the
specific heat and T is the temperature. In panels (b)
and (d), the yellow regions represent melt and black re-
gions represent solid mantle. Pressure is calculated with
M-ANEOS assuming that the planet is in a hydrostatic
equilibrium and isentropic. No partial melting is con-
sidered. As shown in Figure 8, different initial tempera-
tures affect not only the melt volume, but also the shape
of the melt. In panel (b), the melt pool is confined to
one hemisphere (|ψ| < 90◦), whereas the melt volume is
larger in panel (d) and the melt is globally distributed. It
should be noted that the M-ANEOS used here does not
consider solid-liquid transition and therefore this crite-
rion overestimates the melt volume.

3.5. Magma ocean depth and the corresponding pres-
sure

Figure 9a-f shows the pressures at the base of (1) a
melt pool (panels a-b), (2) a global magma ocean (pan-
els c-d), and (3) a global magma ocean whose melt vol-
ume is estimated by a bulk heating model (panels e-f) as
discussed below for all vimp = vesc cases. The left panels
correspond to the S 0 = 1100 J/K/kg cases and the right
panels correspond to the S 0 = 3160 J/K/kg cases. The
shaded regions represent the error envelopes. In the melt
pool model, we calculate its shape as discussed in Sec-
tion 3.4. The pressure at the deepest portion of the melt
pool is defined as PMelt pool. In the global magma ocean

model, the melt volume is the same as that of the melt
pool, whereas the magma ocean depth is uniform (Fig-
ure 1a) and the pressure at the base of the magma ocean
is defined as PGlobal MO. In the bulk heating model, the
melt mass fraction of the mantle, fmelt, is described as

fmelt =
h(θ)∆IE(θ)

Mmantle(θ)EM
, (14)

where EM is the specific energy required for the mate-
rial to melt after it experiences isentropic decompres-
sion down to 1 atm (Bjorkman and Holsapple, 1987).
Criteria of this type have been widely used in previ-
ous studies (e.g., Abramov et al. 2012; Pierazzo and
Melosh 2000). PBulk heating is defined as the pressure
at the bottom of a magma ocean whose melt volume
is fmantle

4π
3 (R3

p − R3
c), where Rp is the radius and Rc is

the core radius of the post-impact body. Figure 9g and
h represent the fractional difference in pressure between
the melt pool model and global magma ocean model,
∆P/PMelt pool, where ∆P = |PMelt pool − PGlobal MO|. The
error envelopes are excluded in f-g panels.

As shown in the figure, PMelt pool is usually greater
than PGlobal MO, unless the entire mantle is molten.
Higher S 0 causes forming deeper magma oceans as also
seen in Figure 8. Comparison between the bulk heating
model and the other models is not straightforward be-
cause the depth of a magma ocean critically depends on
the value of EM , which is not well constrained. The
fractional difference between PMelt pool and PGlobal MO
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Figure 6: Comparison between SPH results (left) for M0 model series (Table S.1) and the scaling law (right) for (top row) θ = 0◦, (second row)
30◦, (third row) 60◦, (bottom row) 90◦, respectively. The input parameters are MT = 1MMars, γ = 0.1, vimp = vesc. The color contour represents the
internal energy normalized by 105 J/kg after the system reaches its equilibrium (typically within 10 hours). The heat distribution of the mantle based
on the SPH simulation is not smooth at several places partly because SPH data are segmented and partly because the internal energy, especially
near the core-mantle boundary, is smaller than the contour intervals. The standard deviation σ′ is also normalized by 105 J/kg.
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Figure 7: SPH results for model M17 (Table S.3). The color scheme is the same as the one in Figure 6. The input parameters are MT =

3.25MMars, γ = 0.091, vimp = 1.2vesc. The standard deviation σ′ is normalized by 105 J/kg.
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Figure 8: Effect of initial temperature is considered for model M0 at θ = 60◦. (a) Total internal energy assuming initial entropy S 0 = 1100 J/K/kg
(this corresponds to a surface temperature of ≈ 300 K). The total internal energy is calculated as a summation of the pre-impact internal energy
and the internal energy gain calculated in Equation 11. (b) Melt mass fraction. When the mantle temperature is above the melt temperature, this
value is 1, otherwise the value is 0 (no partial melting is considered). (c) is the same as (a) except S 0 = 3160 J/K/kg (this corresponds to a surface
temperature of ≈ 2000 K). (d) is the same as (b) except S 0 = 3160 J/K/kg.
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can range from 0 to ≈ 0.8 (panels g and h). The dif-
ference tends to be large at θ = 90◦, where the melt
volume is smaller than those at the other angles and the
geometry of a melt affects the pressure at the base of the
melt region.

4. Discussion

4.1. Python script for the melt scaling laws on GitHub

We provide a Python script for this model on GitHub.
In this script, ∆IE(θ) is computed based on the fitting
model we develop (Equation 4) as a function of the im-
pact angle θ, total mass MT , impactor-to-total mass ratio
γ, and impact velocity vimp. The options for the impact
angle θ are 0◦, 30◦, 60◦, and 90◦, but we intend to in-
clude 45◦ in the near future. Users can choose one of
the options which is closest to the desired impact angle.
Alternatively, users can interpolate the impact angles,
but such interpolation has not been tested in this work.
Impact-induced heating is modeled using Equation 11.
The initial thermal state of the mantle can be selected
from the following options; (a) S 0 = 1100 J/K/kg, and
(b) S 0 = 3160 J/K/kg, but in the future we are planning
to add more options. So far we calculate the shape of a
magma ocean as well as the pressure at the base of the
melt using the melt criterion from Rubie et al. (2015),
but users can easily modify this criterion if necessary.

Our simulations do not include cases at vesc < vimp <
1.1vesc, which is a common impact velocity range at the
end of the planetary accretion phase (see Figure S.1).
To take this into account, in the Python script, we use
vcr, which is the critical velocity above which the target
and impactor do not merge, as derived in Genda et al.
(2012),

vcr

vesc
= d1Γ2Θd5 + d2Γ + d3Θd5 + d4, (15)

where Γ = (Mt − Mi)/MT and Θ = 1 − sin θ, d1 =

2.43, d2 = −0.0408, d3 = 1.86, d4 = 1.08, d5 = 5/2.
When vimp ≤ vcr, the low velocity parameters (vimp =

vesc) are used, whereas when vimp > vcr, the high veloc-
ity parameters (vimp ≥ 1.1vesc) are used.

4.2. Model simplifications

Our SPH simulations take into account the latent heat
of silicate vaporization, but the effect is not explicitly
considered in our analytical melt model. In most of our
simulations, the vapor mass fractions (VMFs) are small
(< 0.1), but in some energetic cases, VMFs are large
(0.1-1.0). In these cases, it is likely that the majority of

the post-impact mantle experiences melting, and there-
fore a detailed melt scaling law may not be necessary
when vaporization matters (see Section S.2 for detailed
discussion).

In our scaling law, we assume that the initial tempera-
ture profile of a planet does not affect the internal energy
gain. For this reason, the total internal energy after an
impact is calculated by simply adding an initial inter-
nal energy and internal energy gain obtained from our
model. This is probably a fine assumption given that
small changes in the internal energy do not affect the
overall structure of a planet (such as the mass-radius re-
lationship). We also ignore the heating dependence on
the azimuth (φ) for simplicity. This should be fine for
θ = 0◦ cases, but this is not the case for other impact
angles. We find that the dependence on φ is relatively
weak (see Figure S.2), but this should be addressed in
future studies.

4.3. Implications for elemental partitioning

Our new melt scaling laws describe the geometry of
impact-induced melt for the first time. We hope that
this will be valuable for the community and will be used
to reevaluate whether planetary accretion models (e.g.,
Rubie et al., 2015) are consistent with elemental abun-
dances in Earth and other planetary objects (see discus-
sion in Section 1). Moreover, the melt pool model pre-
dicts a higher pressure than a global magma ocean does,
which would lead to higher P−T conditions, thus more
light elements, such as Mg, Si, and O, may be present
in the Earth’s core, which are considered to be parti-
tioned into the core under high pressure and tempera-
ture conditions (e.g., Siebert et al. 2013; Fischer et al.
2015; O’Rourke and Stevenson 2016). This could affect
heat flux, magnetic field, and seismic observations even
today (e.g., Labrosse 2015).

This paper only considers the initial condition right
after the melt forming impact, but it is important to con-
sider its time evolution to calculate element equilibra-
tion processes. de Vries et al. (2016) consider the evolu-
tion of magma oceans that become shallower over time
due to crystallization. They find that a small impactor,
which does not generate a magma ocean by itself, can
still contribute to the metal-silicate equilibration process
if it falls into a pre-existing magma ocean. Its depth is
controlled not only by the initial melt volume but also
by the time between the impacts.

4.4. Material strength and choice of EOS

We do not consider the effect of material strength in
this work, which can affect the extent of melting and
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Figure 9: The pressures at the bottom of melt for the vimp = vesc cases. The left panels represent the initial mantle entropy of S 0 = 1100 J/K/kg,
and the right panels represent S 0 = 3160 J/K/kg. (a, b) The pressure at the base of a melt pool, PMelt pool, (c, d) pressure at the base of a global
magma ocean PGlobal MO, and (e, f) pressure of a melt whose volume is calculated from the bulk heating model, PBulk heating (see the main text),
which does not depend on the initial temperature profile, and (g, h) the fractional difference in pressure between the melt pool and global magma
ocean model (∆P/PMelt pool = |PMelt pool − PGlobal MO |/PMelt pool). The shaded regions in (a-f) show the error envelopes.

15



heat distribution (e.g., Quintana et al., 2015; Golabek
et al., 2018; Emsenhuber et al., 2018; Kurosawa and
Genda, 2018). Material strength is known to matter
for relatively small impacts and low impact velocities
(Benz and Asphaug, 1999; Jutzi, 2015), where friction
and plastic deformation cause additional melting (Kuro-
sawa and Genda, 2018). This effect becomes less impor-
tant for large impacts where shock heating overwhelms
heating due to friction and plastic deformation (Melosh
and Ivanov, 2018).

Another factor is the extent of deformation. If the
peak pressure due to an impact exceeds the elastic limit
(0.1 − 10 GPa, Jeanloz e.g., 1980), treating the material
as a fluid is appropriate. This is especially true near the
impact site. However, this may not be appropriate for
places far from the impact site. For example, the an-
tipodal heating at θ = 0◦ is due to focusing of shock
waves as well as potential energy release after an exten-
sive deformation (see 3.1.1). This extent of deformation
and resulting heating is an overestimate considering the
rigidity of a planet (he/hf ∼ 0.01(R/1000 [km])2, where
he is the elastic tidal response height and hf is the fluid
tidal response height of a homogeneous spherical body,
and R is the radius of the body, Stevenson, D. J., online
textbook).

The choice of EOS also affects the outcome. The
Tillotson EOS is not an appropriate choice because it
does not adequately describe the thermodynamics of the
system. The choice of input parameters for M-ANEOS
can be important because it affects the extent of shock
heating and vaporization (Stewart et al., 2020). We will
further investigate its effect in a future study.

4.5. Resolution

Figure S.4 shows internal energy gains calculated in
SPH for models M0, M1, and M2, whose resolutions are
N = 104, 5 × 104, and N = 105, where N is the number
of SPH particles. This shows that the N = 5 × 104 case
is very similar to the N = 105 case, but the N = 104 case
does not capture the details of the heat distribution very
well. Based on these results, we mostly use the models
with higher resolution than N = 104.

5. Conclusions

We develop mantle melt scaling laws as a function
of the impact angle, impact velocity, total mass, and
impactor-to-total mass ratio based on more than 100
SPH simulations. Our scaling laws include an analytical
expression for the spatial heat distribution as a function
of Legendre polynomials. Our scaling laws reproduce

the heat distribution within a mantle computed by SPH
simulations relatively well. We also find that the pres-
sure difference at the base of a global (radially homoge-
neous) magma ocean, often used in literature, and melt
pool, a spatially confined melt, can reach up to ≈80 %.
This can have a significant impact on interpreting metal-
silicate equilibration processes and therefore it would be
important to revisit chemical evolution models of plan-
etary mantle and core during the planet accretion phase.
The scaling laws are publicly available via GitHub.
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Supplementary Materials

S.1. Model descriptions

In this section, we discuss model descriptions fur-
ther. Figure S.1 shows the distribution of impact pa-
rameters taken from an N−body simulation (run “8:1-
0.8-8”, Rubie et al. 2015). The other simulations in
Rubie et al. (2015) also have similar parameter distri-
butions. Our model reasonably covers these ranges (the
typical ranges are 30◦ < θ < 60◦, MT < 1 − 2MMars,
vimp < 1.5vesc, and γ < 0.05), but high impact velocities
(> 2vesc) have not been tested in our simulations.

Figure S.2 shows the internal energy gain distribu-
tion for model M0 based on the SPH simulation. φ = 0◦

is the plane that is parallel to the impact velocity vec-
tor (physics should be axi-symmetric around the plane).
φ = 90◦ is perpendicular to the plane φ = 0◦. The in-
ternal energy here is the averaged value within 0.2Rp

from the plane, where Rp is the planetary radius. In our
model, we assume that the heat distribution does not de-
pend on φ as discussed in Section 3.2. This should be
an accurate model for the θ = 0◦ cases, whereas this is
an assumption for the θ > 0◦ cases. At θ = 30◦ and 90◦,
the dependence of the heat distribution on φ is relatively
minor, but at θ = 60◦, the outer portion of the mantle at
φ = 0◦ is more heated than that at φ = 90◦. This is be-
cause the impactor forms small fragments at this impact
angle and the fragments nearly uniformly accrete onto
the equator of the planet (see Figure 3). This is not the
case at φ = 90◦ and this is a limitation of our model.

The mass-radius relationship is shown in Figure S.3.
As discussed in Section 3.1, the planetary radius, R′, of
a planet whose mass is Mt + Mi is described as R′ =

R0[(Mt + Mi)/M0]Λ(M), where R0 = 1.5717× 106 m and
M0 = 6.39 × 1022 kg and Λ(M) =

∑3
i=0 bi[ln(M/M0)]i.

The values of bi are listed in Table S.4. We compute
the mass-radius relationship of a planet by integrating
the mass of a thin shell (4πρr2dr) outwards with an
initial guess of the central pressure until the pressure
reaches zero. The value of the central pressure is modi-
fied until the calculated planetary mass reaches the tar-
get mass. The corresponding radius is also calculated
during the process. The pressure-density relationship
is determined along the isentrope based on M-ANEOS.
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Figure S.1: Statistics of an impact simulation (run “8:1-0.8-8” from Rubie et al. 2015). The panels represent (a) impact angle distribution, (b) total
mass distribution, (c) impact velocity distribution and (d) impactor-to-total mass ratio, γ.
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Model ID MT γ θ(◦ )
vimp
vesc vesc (m/s) dE (J)

dEmantle
dE

Mmantle
fmantle MT

MFA σ′ N

M0 1 1.0 0.1 0 1.0 4246 7.054e+29 0.754 0.998 0.639 0.8881 100000
M0 2 1.0 0.1 30 1.0 4246 6.478e+29 0.825 0.994 0.538 0.8982 100000
M0 3 1.0 0.1 60 1.0 4246 4.59e+29 0.855 0.975 0.273 0.8374 100000
M0 4 1.0 0.1 90 1.0 4246 1.149e+29 0.861 0.914 0.087 0.559 100000
M1 5 1.0 0.1 0 1.0 4246 6.983e+29 0.729 0.998 0.639 0.963 10000
M1 6 1.0 0.1 30 1.0 4246 7.162e+29 0.799 0.997 0.538 0.9404 10000
M1 7 1.0 0.1 60 1.0 4246 4.844e+29 0.822 0.978 0.273 0.9006 10000
M1 8 1.0 0.1 90 1.0 4246 3.345e+29 0.834 0.952 0.087 0.864 10000
M2 9 1.0 0.1 0 1.0 4246 7.229e+29 0.752 0.998 0.639 0.9269 50000
M2 10 1.0 0.1 30 1.0 4246 6.71e+29 0.809 0.996 0.538 0.9296 50000
M2 11 1.0 0.1 60 1.0 4246 5.129e+29 0.83 0.985 0.273 0.7754 50000
M2 12 1.0 0.1 90 1.0 4246 1.7e+29 0.777 0.914 0.087 0.5488 50000
M3 13 1.03 0.091 0 1.0 4401 6.7e+29 0.731 0.999 0.588 0.96 16500
M3 14 1.03 0.091 30 1.0 4401 6.35e+29 0.805 0.997 0.509 0.9492 16500
M3 15 1.03 0.091 60 1.0 4401 4.342e+29 0.84 0.977 0.251 0.9458 16500
M3 16 1.03 0.091 90 1.0 4401 1.283e+29 0.866 0.923 0.079 0.6542 16500
M4 17 1.88 0.5 0 1.0 5061 4.778e+30 0.725 0.992 1.000 1.665 30000
M4 18 1.88 0.5 30 1.0 5061 3.739e+30 0.775 0.979 1.000 2.082 30000
M4 19 1.88 0.5 60 1.0 5061 2.114e+30 0.813 0.937 0.901 1.69 30000
M4 20 1.88 0.5 90 1.0 5061 1.469e+30 0.777 0.92 0.289 1.455 30000
M5 21 3.06 0.032 0 1.0 6622 1.671e+30 0.804 1.0 0.356 1.065 31000
M5 22 3.06 0.032 30 1.0 6622 1.458e+30 0.852 0.998 0.351 1.021 31000
M5 23 3.06 0.032 60 1.0 6622 7.423e+29 0.859 0.982 0.178 0.6705 31000
M5 24 3.06 0.032 90 1.0 6622 1.635e+29 0.859 0.97 0.055 0.5632 31000
M6 25 3.25 0.091 0 1.0 6473 4.697e+30 0.726 0.999 0.922 1.333 33000
M6 26 3.25 0.091 30 1.0 6473 4.115e+30 0.814 0.996 0.856 1.201 33000
M6 27 3.25 0.091 60 1.0 6473 2.874e+30 0.834 0.975 0.453 0.9588 33000
M6 28 3.25 0.091 90 1.0 6473 6.881e+29 0.855 0.921 0.146 0.6311 33000
M7 29 3.25 0.091 0 1.0 6527 4.558e+30 0.755 0.999 0.922 1.294 33000
M7 30 3.25 0.091 30 1.0 6527 3.782e+30 0.822 0.993 0.856 1.352 33000
M7 31 3.25 0.091 60 1.0 6527 2.917e+30 0.858 0.976 0.453 0.8844 33000
M7 32 3.25 0.091 90 1.0 6527 4.55e+29 1.019 0.92 0.146 0.7225 33000
M8 33 3.7 0.2 0 1.0 6546 1.114e+31 0.753 0.998 0.998 1.846 37500
M8 34 3.7 0.2 30 1.0 6546 8.654e+30 0.817 0.992 0.962 1.619 37500
M8 35 3.7 0.2 60 1.0 6546 8.354e+30 0.736 0.96 0.799 1.507 37500
M8 36 3.7 0.2 90 1.0 6546 4.688e+30 0.807 0.915 0.270 1.536 37500
M9 37 4.23 0.301 0 1.0 6757 1.681e+31 0.772 0.993 1.000 2.186 42900
M9 38 4.23 0.301 30 1.0 6757 1.392e+31 0.793 0.981 0.985 2.207 42900
M9 39 4.23 0.301 60 1.0 6757 8.701e+30 0.785 0.942 0.861 1.844 42900
M9 40 4.23 0.301 90 1.0 6757 6.898e+30 0.775 0.921 0.372 1.836 42900

Table S.1: List of parameters at vimp = vesc. Model represents a set of impact simulations that have the same parameters except impact angles
(0◦, 30◦, 60◦, and 90◦). ID represents each SPH simulation. MT is the total mass normalized by the Martian mass, γ is the impactor-to-total mass
ratio, θ is the impact angle in degrees (0◦ is a head-on collision). vimp is the impact velocity, and vesc is the mutual escape velocity in m/s. dE is
the impact-induced energy in J, and dEmantle/dE is the fraction of the energy that goes into the mantle, and Mmantle is the post-impact mantle mass,
fmantle is the mantle mass fraction (0.7), MFA is the calculated melt mass fraction of the mantle with the initial mantle entropy of 3160 J/K/kg. σ′

is the error between the model and SPH. N is the number of SPH particles.

The entropy values for the mantle and core are 3160
J/K/kg and 1500 J/K/kg, respectively. We set the mini-
mum mantle density to 3239 kg/m3.

Figure S.4 shows internal energies in 105 J/kg for
models M0, M1, and M2, whose resolutions are N =

104,N = 5 × 104, 105, respectively. The details are dis-
cussed in Section 4.5.

Figure S.5 shows pressures at the base of three melt
models for the vimp ≥ 1.1vesc cases (see Figure 9 for the
the vimp = vesc cases). Figure S.6 shows the comparison
between our and the model by Genda et al. (2012) re-
garding the merger condition (see Equation 15). Figure
S.7 shows the internal energy gain distribution for Run
M4.

Some of the previous work (e.g., Leinhardt and Stew-
art, 2012; Lock and Stewart, 2017) develop and use a
specific impact energy (this is referred as QR in the stud-
ies mentioned above) to describe the total kinetic energy
involved in an impact and thus to take into account the
influence of the impact angle on the heating. This is a
useful alternative parameter, and we also attempted to

include this, but it did not work well for the vimp = vesc
cases because a significant portion of the heat is coming
from energy due to merger, which is not captured in QR.
The QR model is expected to work better at vimp > vcr,
which are more likely to end up with hit-and-run events
(Equation 15).

S.2. Additional output parameters

Additional parameters are listed in Tables S.8-S.10.
VMF is the vapor mass fraction, Tspin is the spin orbital
time in hours, Ix and Iz are the moments of inertia along
x axis and z axis, respectively, where the z axis is per-
pendicular to the impact plane (the impact occurs in the
x−y plane, which is the same as the φ = 0◦ plane). There
is practically no difference between the x and y axes if
a post-impact body rotates. At θ = 0◦, the impact point
is at x = 0 and the post-impact body is practically not
rotating.

VMF is calculated as

V MF =
1
N′

N′∑
i


0, at S i < S liquid,

S i−S liquid

S vapor−S liquid
, at S liquid ≤ S i ≤ S vapor,

1, at S vapor < S i and Pi < Pcrit.
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Figure S.2: The left panel shows the heat distribution at φ = 0◦ (the impact plane) and the right panel represents that at φ = 90◦ (the plane which is
perpendicular to the impact plane) for model M0. Their heat distributions look reasonably similar, which suggests that our approximation that the
heat distribution along the φ axis is symmetric is reasonable.
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Model ID MT γ θ(◦ )
vimp
vesc vesc dE (J)

dEmantle
dE

Mmantle
fmantle MT

MFA σ′ N

M10 41 5.34 0.091 0 1.0 7698 9.691e+30 0.739 0.999 0.848 1.85 33000
M10 42 5.34 0.091 30 1.0 7698 9.23e+30 0.812 0.995 0.799 1.469 33000
M10 43 5.34 0.091 60 1.0 7698 2.545e+30 0.869 0.929 0.528 1.354 33000
M10 44 5.34 0.091 90 1.0 7698 1.395e+30 0.903 0.921 0.185 0.8959 33000
M11 45 6.54 0.091 0 1.0 8271 1.506e+31 0.724 0.999 0.803 1.816 33000
M11 46 6.54 0.091 30 1.0 8271 1.287e+31 0.814 0.995 0.759 1.446 33000
M11 47 6.54 0.091 60 1.0 8271 3.599e+30 0.865 0.929 0.520 1.483 33000
M11 48 6.54 0.091 90 1.0 8271 1.897e+30 0.913 0.921 0.199 0.8389 33000
M12 49 8.94 0.091 0 1.0 9241 3.068e+31 0.731 0.999 0.721 1.87 33000
M12 50 8.94 0.091 30 1.0 9241 2.993e+31 0.811 0.987 0.684 1.639 33000
M12 51 8.94 0.091 60 1.0 9241 7.589e+30 0.893 0.925 0.504 1.54 33000
M12 52 8.94 0.091 90 1.0 9241 4.332e+30 0.929 0.921 0.221 0.9747 33000
M13 53 9.43 0.104 0 1.0 9217 3.599e+31 0.692 1.0 0.734 2.167 33482
M13 54 9.43 0.104 30 1.0 9217 3.392e+31 0.769 0.997 0.703 1.788 33482
M13 55 9.43 0.104 60 1.0 9217 2.402e+31 0.755 0.972 0.524 1.534 33482
M13 56 9.43 0.104 90 1.0 9217 4.758e+30 0.865 0.913 0.241 1.191 33482
M14 57 26.84 0.091 0 1.0 13600 1.73e+32 0.766 1.0 0.467 2.877 11000
M14 58 26.84 0.091 30 1.0 13600 1.56e+32 0.82 0.996 0.454 2.487 11000
M14 59 26.84 0.091 60 1.0 13600 5.664e+31 0.907 0.946 0.391 2.086 11000
M14 60 26.84 0.091 90 1.0 13600 2.472e+31 0.919 0.923 0.222 1.363 11000
M15 61 53.66 0.091 0 1.0 17520 5.865e+32 0.766 1.0 0.347 3.562 11000
M15 62 53.66 0.091 30 1.0 17520 5.206e+32 0.816 0.996 0.339 2.807 11000
M15 63 53.66 0.091 60 1.0 17520 1.709e+32 0.907 0.942 0.305 2.938 11000
M15 64 53.66 0.091 90 1.0 17520 7.895e+31 0.917 0.922 0.178 1.843 11000

Table S.2: Continuation of Table S.1.
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Figure S.3: Mass-radius relationship for planets with an adiabatic mantle and core. The core mass fraction is 0.3. The dark blue solid line represents
our calculation using M-ANEOS and the dark yellow dashed line represents our fit to the calculation. The light blue dotted line represents M ∝ R0.3.

(S.1)

where i represents an SPH mantle particle, S i is the en-
tropy of the SPH particle i, N′ is the total number of
SPH mantle particles. S vapor and S liquid are the entropies
of the vapor and liquid at the phase boundary (these val-
ues depend on temperature). P is the pressure and Pcrit is
the critical pressure (2.547 GPa). The vapor mass frac-
tion of a post-impact body is generally small for most
of the simulations, but is large when the total mass is
large (MT = 26.84MMars and 54MMars in M14 and M15)
or the impact velocity is large (MT = 4.23MMars, vimp =

1.6vesc at θ = 0◦ in M26). In these scenarios, the mantles
experience almost complete melting. Thus, our assump-
tion that vaporization does not affect the estimation of
the mass of impact-induced melt seems acceptable. It
should be noted, however, that VMF also depends on
the choice of melt criterion (see Section 3.4).

Tspin is calculated based on the angular velocity,

which is estimated by dividing the angular momentum
along the z axis by Iz. At θ = 0◦, a post-impact body
is not rotating, which makes Tspin large, but not infin-
ity. This is because the boundary between a post-impact
body and ejecta is not clearly defined and calculating the
exact moment of inertia or Lz is challenging. Neverthe-
less, Tspin is generally much larger at θ = 0◦ compared
to the other cases.

The parameter Ix/Iz is related to the oblateness of
a post-impact body. When this value is close to 1, a
post-impact body is close to a sphere, whereas a large
deviation from 1 means that a body is more oblate.
Most of the bodies have values in the range of 0.8 − 1,
but there are a few exceptions. For example, model
M9 at θ = 90◦ (ID 40) shows Ix/Iz = 0.452. These
oblate bodies have lower pressures than calculated pres-
sures assuming the bodies are hydrostatic, which can be
seen as differences between PCMB,SPH (46.105 GPa) and
PCMB,Model (67.127 GPa). PCMB,SPH is the pressure at
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Figure S.4: Internal energy gain for Model M0 (N = 105, Figure 6), models M1 (N = 104), and M2 (N = 5× 104). All the input parameters are the
same. The overall heat distributions are similar between models M0 and M2, but they are different from that of model M1, which has the lowest
resolution.
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Figure S.5: Pressures at the base of (a, b) a melt pool, (c, d) a global magma ocean, (e,f) melt whose volume is calculated using the bulk heating
model, and (g, h) the fractional difference in pressure between the melt pool and global magma ocean model (∆P/PMelt pool = |PMelt pool −

PGlobal MO |/PMelt pool) for the vimp ≥ 1.1vesc cases. All the parameters are the same as those in Figure 9. In panel g, some lines are missing because
PMelt pool = 0 (no melt). The errors are shown in shade in panels a-f.

Figure S.6: Comparison with previous studies (Genda et al., 2012).

7



Figure S.7: The heat distribution of M4. The left panels correspond to the SPH simulation and the right panels correspond to our model. In this
model γ = 0.5 and heat distribution is not well captured at θ = 60◦ and θ = 90◦ compared to smaller γ cases (e.g., Figures 6 and 7).

8



Model ID MT γ θ(◦ )
vimp
vesc vesc dE (J)

dEmantle
dE

Mmantle
fmantle MT

MFA σ′ N

M16 65 1.88 0.5 0 1.3 5061 5.624e+30 0.75 0.937 1.000 1.659 30000
M16 66 1.88 0.5 30 1.3 5061 4.744e+30 0.818 0.982 1.000 2.736 30000
M16 67 1.88 0.5 60 1.3 5061 4.551e+29 0.798 0.498 0.608 1.438 30000
M16 68 1.88 0.5 90 1.3 5061 1.855e+29 0.65 0.5 0.127 0.8505 30000
M17 69 3.25 0.091 0 1.1 6473 5.012e+30 0.76 0.999 0.950 1.118 33000
M17 70 3.25 0.091 30 1.1 6473 4.47e+30 0.823 0.993 0.886 1.072 33000
M17 71 3.25 0.091 60 1.1 6473 1.113e+30 0.863 0.926 0.095 0.6728 33000
M17 72 3.25 0.091 90 1.1 6473 3.067e+29 0.758 0.912 0.011 0.4547 33000
M18 73 3.25 0.091 0 1.2 6473 5.724e+30 0.77 0.997 0.974 1.065 33000
M18 74 3.25 0.091 30 1.2 6473 4.802e+30 0.826 0.987 0.908 0.9694 33000
M18 75 3.25 0.091 60 1.2 6473 1.023e+30 0.87 0.922 0.125 0.7102 33000
M18 76 3.25 0.091 90 1.2 6473 2.657e+29 0.753 0.911 0.016 0.4027 33000
M19 77 3.25 0.091 0 1.3 6473 6.224e+30 0.796 0.996 0.994 1.266 33000
M19 78 3.25 0.091 30 1.3 6473 5.108e+30 0.828 0.982 0.933 0.9734 33000
M19 79 3.25 0.091 60 1.3 6473 1.298e+30 0.81 0.919 0.161 0.5949 33000
M19 80 3.25 0.091 90 1.3 6473 4.493e+29 0.646 0.911 0.023 0.4536 33000
M20 81 3.25 0.091 0 1.4 6473 6.987e+30 0.811 0.996 0.999 1.219 33000
M20 82 3.25 0.091 30 1.4 6473 5.274e+30 0.831 0.974 0.960 1.005 33000
M20 83 3.25 0.091 60 1.4 6473 9.941e+29 0.876 0.917 0.187 0.6842 33000
M20 84 3.25 0.091 90 1.4 6473 1.672e+29 0.777 0.91 0.027 0.4518 33000
M21 85 3.25 0.091 0 1.5 6473 8.071e+30 0.809 0.993 1.000 1.094 33000
M21 86 3.25 0.091 30 1.5 6473 5.972e+30 0.836 0.972 0.980 1.081 33000
M21 87 3.25 0.091 60 1.5 6473 1.006e+30 0.873 0.916 0.213 0.5735 33000
M21 88 3.25 0.091 90 1.5 6473 1.548e+29 0.784 0.91 0.036 0.5047 33000
M22 89 3.25 0.091 0 2.0 6473 1.232e+31 0.838 0.977 1.000 1.757 33000
M22 90 3.25 0.091 30 2.0 6473 6.664e+30 0.848 0.927 0.999 1.742 33000
M22 91 3.25 0.091 60 2.0 6473 9.251e+29 0.909 0.912 0.342 1.004 33000
M22 92 3.25 0.091 90 2.0 6473 1.138e+29 0.817 0.909 0.070 0.7277 33000
M23 93 4.23 0.301 0 1.1 6757 1.623e+31 0.783 0.981 1.000 2.381 42900
M23 94 4.23 0.301 30 1.1 6757 1.353e+31 0.801 0.968 0.997 1.466 42900
M23 95 4.23 0.301 60 1.1 6757 1.958e+30 0.888 0.712 0.464 1.043 42900
M23 96 4.23 0.301 90 1.1 6757 8.952e+29 0.834 0.703 0.093 0.6603 42900
M24 97 4.23 0.301 0 1.2 6757 1.62e+31 0.775 0.962 1.000 2.502 42900
M24 98 4.23 0.301 30 1.2 6757 1.341e+31 0.804 0.94 0.998 1.732 42900
M24 99 4.23 0.301 60 1.2 6757 1.556e+30 0.942 0.708 0.514 1.29 42900
M24 100 4.23 0.301 90 1.2 6757 5.99e+29 0.888 0.701 0.107 0.8105 42900
M25 101 4.23 0.301 0 1.3 6757 1.949e+31 0.776 0.957 1.000 1.895 42900
M25 102 4.23 0.301 30 1.3 6757 1.543e+31 0.811 0.937 0.999 1.945 42900
M25 103 4.23 0.301 60 1.3 6757 1.48e+30 0.958 0.706 0.577 1.457 42900
M25 104 4.23 0.301 90 1.3 6757 6.645e+29 0.826 0.701 0.118 0.9254 42900
M26 105 4.23 0.301 0 1.6 6757 1.886e+31 0.772 0.86 1.000 2.536 42900
M26 106 4.23 0.301 30 1.6 6757 7.866e+30 0.818 0.691 1.000 2.829 42900
M26 107 4.23 0.301 60 1.6 6757 1.843e+30 0.925 0.702 0.785 1.778 42900
M26 108 4.23 0.301 90 1.6 6757 3.892e+29 0.996 0.7 0.153 1.185 42900

Table S.3: The list of parameters is the same as those in Table S.1, but for vimp ≥ 1.1vesc.

b0 b1 b2 b3

0.3412 −8.90 × 10−3 9.1442 × 10−4 −7.4332 × 10−5

Table S.4: List of parameters to describe the planetary mass-radius relationship.

the core-mantle boundary from an SPH simulation and
PCMB,Model is the model estimate, where no spin is con-
sidered. In general, at small γ (≤ 0.1), the difference
between PCMB,SPH and PCMB,Model is small, but at larger
γ (≥ 0.3), the difference can be large due to high spin of
the post-impact body.
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e0 e1 e2 e3 e4 e5 e6
0.18432 0.06338 0.00353 0.06389 0.10604 -0.18243 0.0279

g0 g1 g2 k0 k1
0.81590257 0.04083351 -0.09894310 0.92329251 0.07644334

Table S.5: List of parameters for the internal energy gain (el, Equation 4), for the heat partitioning into the mantle (gl, Equation 6), and for the
mantle mass for a post-impact body (kl, Equation 7) at vimp = vesc.

e0 e1 e2 e3 e4 e5 e6
0.01934962 0.045056792 0.11079199 0.17159203 0.14955157 -0.11510527 -0.015958111

g0 g1 g2
0.6712941 0.3572683 -0.2455803

Table S.6: Parameters are the same as Table S.5, but at vimp ≥ 1.1vesc except that k0 and k1 are not used (see Equation 8).

θ = 0◦

c0 c1 c2 c3 c4 c5 c6 c7
24.353 4.649 -2.640 -154.766 -32.733 11.115 364.404 82.057

c8 c9 c10 c11 c12 c13 c14
-15.839 -374.516 -88.026 8.886 142.789 34.572 -1.090

θ = 30◦

c0 c1 c2 c3 c4 c5 c6 c7
39.391 -14.014 -24.081 -244.080 72.397 131.101 560.089 -137.102

c8 c9 c10 c11 c12 c13 c14
-265.118 -562.469 113.394 237.499 209.616 -34.056 -79.446

θ = 60◦

c0 c1 c2 c3 c4 c5 c6 c7
51.282 14.563 25.789 -319.053 -95.684 -159.415 733.335 230.884

c8 c9 c10 c11 c12 c13 c14
363.663 -737.805 -242.888 -362.911 275.155 94.525 134.218

θ = 90◦

c0 c1 c2 c3 c4 c5 c6 c7
64.110 129.937 125.322 -394.726 -783.800 -756.950 897.274 1753.903

c8 c9 c10 c11 c12 c13 c14
1695.495 -892.887 -1726.224 -1669.516 329.292 631.170 610.445

Table S.7: Model coefficients for θ = 0, 30, 60, and 90o (Equation 10).
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Model ID MT γ θ(◦ )
vimp
vesc VMF Tspin (hrs) Ix/Iz Iz × 10−37 PCMB,SPH (GPa) PCMB,Model (GPa)

M0 1 1.0 0.1 0 1.0 0.003 1074.830 1.074 0.240 21.245 20.778
M0 2 1.0 0.1 30 1.0 0.002 8.213 1.006 0.248 20.186 20.377
M0 3 1.0 0.1 60 1.0 0.005 11.487 0.581 0.396 19.843 19.883
M0 4 1.0 0.1 90 1.0 0.000 37.781 0.992 0.210 18.807 19.225
M1 5 1.0 0.1 0 1.0 0.000 316.479 0.997 0.250 18.626 20.778
M1 6 1.0 0.1 30 1.0 0.001 7.731 0.957 0.255 19.404 20.377
M1 7 1.0 0.1 60 1.0 0.001 7.007 0.958 0.259 22.585 19.883
M1 8 1.0 0.1 90 1.0 0.001 11.082 0.980 0.229 20.938 19.225
M2 9 1.0 0.1 0 1.0 0.002 1717.294 1.034 0.245 18.039 20.539
M2 10 1.0 0.1 30 1.0 0.002 8.130 0.957 0.252 19.858 20.377
M2 11 1.0 0.1 60 1.0 0.003 17.015 0.958 0.737 20.732 20.114
M2 12 1.0 0.1 90 1.0 0.001 34.145 0.996 0.210 18.924 19.226
M3 13 1.03 0.091 0 1.0 0.000 34470.193 0.968 0.265 20.267 21.360
M3 14 1.03 0.091 30 1.0 0.001 8.834 0.965 0.265 20.323 20.946
M3 15 1.03 0.091 60 1.0 0.002 7.635 0.935 0.259 23.532 20.437
M3 16 1.03 0.091 90 1.0 0.001 41.022 0.792 0.283 20.595 19.989
M4 17 1.88 0.5 0 1.0 0.046 7530.717 0.784 0.808 29.276 35.071
M4 18 1.88 0.5 30 1.0 0.013 3.889 0.791 0.919 24.334 34.781
M4 19 1.88 0.5 60 1.0 0.006 3.641 0.524 1.153 20.856 34.320
M4 20 1.88 0.5 90 1.0 0.002 6.878 0.827 2.253 19.649 33.216
M5 21 3.06 0.032 0 1.0 0.006 7991.603 0.938 1.497 55.365 53.568
M5 22 3.06 0.032 30 1.0 0.005 23.626 0.984 1.502 53.332 53.109
M5 23 3.06 0.032 60 1.0 0.003 27.831 0.994 1.413 51.277 51.717
M5 24 3.06 0.032 90 1.0 0.001 149.991 0.998 1.389 50.399 50.653
M6 25 3.25 0.091 0 1.0 0.006 3396.710 1.003 1.650 56.505 57.345
M6 26 3.25 0.091 30 1.0 0.022 8.479 0.969 1.682 53.074 55.962
M6 27 3.25 0.091 60 1.0 0.025 7.700 0.950 1.625 57.411 54.633
M6 28 3.25 0.091 90 1.0 0.005 42.678 1.006 1.415 50.246 53.504
M7 29 3.25 0.091 0 1.0 0.004 3616.659 0.992 1.627 52.904 57.345
M7 30 3.25 0.091 30 1.0 0.014 8.465 1.005 1.598 59.670 55.962
M7 31 3.25 0.091 60 1.0 0.020 7.206 0.956 1.574 57.167 54.633
M7 32 3.25 0.091 90 1.0 0.003 43.884 0.991 1.380 55.430 53.504
M8 33 3.7 0.2 0 1.0 0.060 2253.268 1.017 2.111 53.751 63.211
M8 34 3.7 0.2 30 1.0 0.116 4.867 0.867 2.410 47.725 63.500
M8 35 3.7 0.2 60 1.0 0.044 3.583 0.794 2.435 40.232 61.809
M8 36 3.7 0.2 90 1.0 0.031 6.958 0.668 2.573 55.936 59.726
M9 37 4.23 0.301 0 1.0 0.223 3693.041 0.941 2.816 52.438 71.859
M9 38 4.23 0.301 30 1.0 0.157 3.996 0.826 3.040 47.533 71.226
M9 39 4.23 0.301 60 1.0 0.041 3.755 0.636 3.785 40.229 68.569
M9 40 4.23 0.301 90 1.0 0.033 6.002 0.452 5.012 46.105 67.127

Table S.8: Additional list of parameters for models M0-M9 (see Table S.1). VMF is the vapor mass fraction, Tspin is the spin period in hours, Iz
and Ix are the moments of inertia along z and x, respectively. Here, the impact plane is the x − y plane and x is perpendicular to the plane. The last
column, Iz, is normalized by 1037 kg m2. PCMB,SPH is the pressure in GPa at the core-mantle boundary from an SPH simulation and PCMB,Model is
the model estimate, where no spin is considered.

Model ID MT γ θ(◦ )
vimp
vesc VMF Tspin (hrs) Ix/Iz Iz × 10−37 PCMB,SPH PCMB,Model

M10 41 5.34 0.091 0 1.0 0.021 2349.659 1.200 3.494 73.680 86.737
M10 42 5.34 0.091 30 1.0 0.081 8.559 0.955 3.759 84.112 87.148
M10 43 5.34 0.091 60 1.0 0.009 20.835 0.707 4.379 78.690 84.984
M10 44 5.34 0.091 90 1.0 0.010 41.717 0.989 3.075 78.307 80.913
M11 45 6.54 0.091 0 1.0 0.040 2340.101 0.851 5.231 105.315 102.928
M11 46 6.54 0.091 30 1.0 0.124 8.498 0.968 5.219 100.562 102.283
M11 47 6.54 0.091 60 1.0 0.013 20.168 0.780 5.490 95.361 101.116
M11 48 6.54 0.091 90 1.0 0.013 38.829 0.995 4.222 92.995 96.235
M12 49 8.94 0.091 0 1.0 0.187 394.894 1.251 8.647 99.340 134.408
M12 50 8.94 0.091 30 1.0 0.268 5.980 1.140 9.114 124.761 135.009
M12 51 8.94 0.091 60 1.0 0.036 14.045 1.016 7.045 126.205 131.694
M12 52 8.94 0.091 90 1.0 0.032 42.282 0.996 6.885 126.110 125.447
M13 53 9.43 0.104 0 1.0 0.247 1080.059 0.997 9.087 128.410 140.735
M13 54 9.43 0.104 30 1.0 0.279 6.502 0.947 9.311 130.358 139.485
M13 55 9.43 0.104 60 1.0 0.173 6.154 0.945 8.870 126.430 137.891
M13 56 9.43 0.104 90 1.0 0.033 31.994 0.954 7.626 130.372 133.129
M14 57 26.84 0.091 0 1.0 0.770 5883.023 1.000 43.983 361.563 364.414
M14 58 26.84 0.091 30 1.0 0.502 6.912 0.962 44.757 366.250 356.113
M14 59 26.84 0.091 60 1.0 0.192 10.440 0.984 42.126 371.723 350.714
M14 60 26.84 0.091 90 1.0 0.064 31.166 0.999 37.065 367.305 333.456
M15 61 53.66 0.091 0 1.0 0.964 9109.850 0.995 127.215 705.281 718.623
M15 62 53.66 0.091 30 1.0 0.757 6.418 0.959 129.038 714.908 721.897
M15 63 53.66 0.091 60 1.0 0.309 9.732 0.956 113.856 709.716 700.116
M15 64 53.66 0.091 90 1.0 0.101 30.287 0.997 106.793 712.542 671.301

Table S.9: Additional list of parameters for models M10-M15 (see Table S.2).
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Model ID MT γ θ(◦ )
vimp
vesc VMF Tspin (hrs) Ix/Iz Iz × 10−37 PCMB,SPH PCMB,Model

M16 65 1.88 0.5 0 1.3 0.180 4627.804 1.090 0.659 27.245 35.071
M16 66 1.88 0.5 30 1.3 0.060 4.045 0.637 1.378 12.350 34.781
M16 67 1.88 0.5 60 1.3 0.002 8.878 0.981 0.222 20.273 19.752
M16 68 1.88 0.5 90 1.3 0.000 13.381 1.007 0.221 20.177 19.752
M17 69 3.25 0.091 0 1.1 0.015 4302.774 0.944 1.711 49.682 57.345
M17 70 3.25 0.091 30 1.1 0.029 8.170 0.964 1.683 52.251 55.962
M17 71 3.25 0.091 60 1.1 0.005 20.271 1.003 1.427 49.860 52.677
M17 72 3.25 0.091 90 1.1 0.001 77.743 0.997 1.387 49.546 52.677
M18 73 3.25 0.091 0 1.2 0.021 7074.261 1.060 1.640 49.978 57.345
M18 74 3.25 0.091 30 1.2 0.034 7.969 0.972 1.657 52.111 55.962
M18 75 3.25 0.091 60 1.2 0.005 21.785 0.993 1.419 50.367 52.677
M18 76 3.25 0.091 90 1.2 0.001 76.341 0.998 1.383 50.896 52.677
M19 77 3.25 0.091 0 1.3 0.034 8587.565 1.119 1.643 45.351 57.345
M19 78 3.25 0.091 30 1.3 0.041 7.952 0.955 1.657 52.953 55.962
M19 79 3.25 0.091 60 1.3 0.007 26.404 0.998 1.394 55.345 52.677
M19 80 3.25 0.091 90 1.3 0.001 201.755 0.998 1.373 51.628 52.677
M20 81 3.25 0.091 0 1.4 0.044 2848.585 1.128 1.671 42.670 57.345
M20 82 3.25 0.091 30 1.4 0.052 8.227 1.138 1.655 52.643 55.962
M20 83 3.25 0.091 60 1.4 0.006 25.944 0.997 1.398 51.700 52.677
M20 84 3.25 0.091 90 1.4 0.001 284.157 1.000 1.376 49.485 52.677
M21 85 3.25 0.091 0 1.5 0.056 6608.636 1.057 1.665 47.618 57.345
M21 86 3.25 0.091 30 1.5 0.062 7.714 0.994 1.639 51.533 55.962
M21 87 3.25 0.091 60 1.5 0.008 32.555 0.997 1.396 50.688 52.677
M21 88 3.25 0.091 90 1.5 0.001 400.109 0.997 1.376 49.665 52.677
M22 89 3.25 0.091 0 2.0 0.340 3269.097 1.081 1.719 42.686 57.345
M22 90 3.25 0.091 30 2.0 0.106 10.451 0.965 1.524 48.799 52.677
M22 91 3.25 0.091 60 2.0 0.008 64.683 1.005 1.395 47.175 52.677
M22 92 3.25 0.091 90 2.0 0.000 44.092 1.000 1.383 49.390 52.677
M23 93 4.23 0.301 0 1.1 0.214 1939.650 0.715 3.083 48.094 71.859
M23 94 4.23 0.301 30 1.1 0.203 4.142 0.811 3.134 46.267 71.226
M23 95 4.23 0.301 60 1.1 0.010 11.238 0.987 1.454 49.669 52.677
M23 96 4.23 0.301 90 1.1 0.003 18.179 0.979 1.401 50.451 52.677
M24 97 4.23 0.301 0 1.2 0.290 2915.583 1.374 2.471 41.815 71.859
M24 98 4.23 0.301 30 1.2 0.231 4.195 0.859 2.989 42.585 71.226
M24 99 4.23 0.301 60 1.2 0.008 19.433 1.073 1.406 48.171 52.677
M24 100 4.23 0.301 90 1.2 0.002 136.449 1.007 1.383 53.551 52.677
M25 101 4.23 0.301 0 1.3 0.436 1589.596 0.870 2.845 48.258 71.859
M25 102 4.23 0.301 30 1.3 0.313 4.875 0.753 3.678 37.979 71.226
M25 103 4.23 0.301 60 1.3 0.010 19.620 1.103 1.407 49.426 52.677
M25 104 4.23 0.301 90 1.3 0.002 879.278 1.012 1.392 51.957 52.677
M26 105 4.23 0.301 0 1.6 0.571 1295.750 0.720 2.661 31.144 71.859
M26 106 4.23 0.301 30 1.6 0.179 20.967 0.985 2.230 43.662 52.677
M26 107 4.23 0.301 60 1.6 0.012 15.578 0.963 1.421 52.737 52.677
M26 108 4.23 0.301 90 1.6 0.002 419.454 1.008 1.389 49.664 52.677

Table S.10: Additional list of parameters for models M16-M26 (see Table S.3).
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