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EIGENVECTORS AND CONTROLLABILITY OF NON-HERMITIAN

RANDOM MATRICES AND DIRECTED GRAPHS

KYLE LUH AND SEAN O’ROURKE

Abstract. We study the eigenvectors and eigenvalues of random matrices with iid en-
tries. Let N be a random matrix with iid entries which have symmetric distribution. For
each unit eigenvector v of N our main results provide a small ball probability bound for
linear combinations of the coordinates of v. Our results generalize the works of Meehan
and Nguyen [59] as well as Touri and the second author [67, 68, 69] for random symmetric
matrices. Along the way, we provide an optimal estimate of the probability that an iid
matrix has simple spectrum, improving a recent result of Ge [37]. Our techniques also
allow us to establish analogous results for the adjacency matrix of a random directed
graph, and as an application we establish controllability properties of network control
systems on directed graphs.

1. Introduction

Let u ∈ Cn be a random vector uniformly distributed on the unit sphere. It follows that
u has the same distribution as

1√∑n
i=1 |ξi|2

(ξ1, . . . , ξn)
T
,

where ξ1, . . . , ξn are independent and identically distributed (iid) standard complex Gaussian
random variables. From this representation one can prove that 1Tu converges in distribution
to a standard complex Gaussian random variable, where 1 ∈ Cn is the all-ones vector. We
refer the reader to the survey [70] for additional properties of u.

Let N be a random matrix of size n × n whose entries are iid random variables. When
the entries of N are iid copies of a standard complex Gaussian random variable, N is
rotationally invariant, and the individual eigenvectors of N have the same distribution as u
above. When the entries of N are non-Gaussian, much less is known about the distribution
of the eigenvectors. In view of the universality phenomenon in random matrix theory, it is
natural to conjecture that some of the properties that u possesses should also hold for the
eigenvectors of N .

In this note, we quantify some of these properties of the eigenvectors for iid random
matrices. The properties we focus on in this note are motivated by control theory, which we
discuss in more detail in Section 1.4 below.

Eigenvectors of random matrices have been heavily studied in the last few years. We refer
the reader to [5, 10, 27, 32, 11, 38, 30, 76, 79, 23, 56, 48, 3, 81, 21, 18, 14, 24, 70, 61, 50, 15, 13,
16, 83, 80, 80, 69, 67, 68, 6, 58, 36, 82, 28, 29, 88, 96, 31, 25, 9, 93, 60, 92, 17, 12, 19, 51, 59]
and references therein for results concerning Hermitian and non-Hermitian random matrices.
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The results in [59, 67, 69, 68] are the most closely related to the present work. The following
result is established by Meehan and Nguyen in [59].

Theorem 1.1 (Follows from Theorem 1.5 in [59]). Let ξ be a real-valued symmetric random
variable with mean zero and unit variance so that

P(|ξ| ≥ t) ≤ K1 exp
(
−t2/K2

)
for all t > 0

for some constants K1,K2 > 0. Let W = (wij) be an n× n real symmetric random matrix
whose entries wij , 1 ≤ i ≤ j ≤ n are iid copies of ξ. Then there exist constants C, δ, δ′ > 0
such that

P(∃ unit eigenvector v of W such that |1Tv| ≤ ε) ≤ C
(
nδε+ e−nδ′

)

for all ε > 0, where 1 is the all-ones vector.

Similar results are also established in [67, 69, 68], and the results in [59] greatly generalize
the results in [69]. In fact, the results in [59] are more general than what is stated in Theorem
1.1 and apply to a large class of vectors (not just the all-ones vector).

Intuitively, Theorem 1.1 provides a non-asymptotic bound which shows that the eigen-
vectors have a similar behavior as the uniform vector u introduced above. The goal of this
work is to establish a version of Theorem 1.1 for non-Hermitian random matrices. Indeed, all
the results in [59, 67, 69, 68] only apply to Hermitian random matrices. When the random
matrix is no longer Hermitian, the eigenvectors need not be orthogonal and new difficul-
ties arise. In this note, we develop upon the techniques introduced by Ge [37] in order to
overcome these difficulties.

1.1. Notation. Before stating our main results, we introduce some notation. For a matrix
M , we let ‖M‖ denote the operator norm. MT is the transpose and M∗ is the conjugate
transpose of M . We write M − z to denote M − zI, where I is the identity matrix. J
will denote the all-ones matrix. For any square matrix, we will use the term eigenvector to
denote a unit eigenvector unless stated otherwise.

We use bold letters to denote complex and real vectors. For a vector v, ‖v‖ is the
Euclidean norm. For two vectors v = (vi)

n
i=1 ∈ Cn and u = (ui)

n
i=1 ∈ Cn, we let v ⊙ u

denote the Hadamard product of v and u defined as the vector v⊙u = (viui)
n
i=1. 1 denotes

the all-ones vector.
We use asymptotic notation under the assumption that n → ∞. In particular, the

notations Xn = O(Yn), Yn = Ω(Xn), Xn ≪ Yn, or Yn ≫ Xn denote the bound |Xn| ≤ C|Yn|
for some constant C > 0 independent of n and all n > C. If the constant C depends on
a parameter (e.g., C = Ck), we indicate this with subscripts (e.g., Xn = Ok(Yn)). The
notation Xn = o(Yn) denotes the bound |Xn| ≤ cnYn for some sequence cn that converges
to zero as n tends to infinity.

In our proofs, we often use C,C′, c, c′, etc. to represent universal positive constants that
can change from line to line. [n] denotes the discrete interval {1, . . . , n} and B(z, s) denotes
a ball of radius s centered at z.

1.2. Eigenvector results. In our main results below we focus on non-Hermitian random
matrices with iid entries.

Definition 1.2 (iid random matrix). Let ξ be a real-valued random variable. We say the
n× n matrix N is an iid random matrix with atom variable (or atom distribution) ξ if the
entries of N are iid copies of ξ.
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We will often assume that the atom variable ξ has mean zero. In addition, we will
sometimes need to assume that ξ is a symmetric random variable, i.e., that ξ has the same
distribution as −ξ. In the most general case, we will only need the following assumption.

Assumption 1.3. Assume ξ is a real-valued random variable. In addition, assume there
exists constants q ∈ (0, 1) and T > 0 so that

sup
u∈R

P(|ξ − u| < 1) ≤ 1− q,(1.1)

P(1 ≤ |ξ − ξ′| ≤ T ) ≥ q/2,(1.2)

and

(1.3) P(|ξ| > T ) ≤ q/2,

where ξ′ is an independent copy of ξ.

Remark 1.4. Assumption (1.1) guarantees that ξ is non-degenerate. All three conditions
(1.1), (1.2), and (1.3) hold (for some T and q) when ξ has finite variance of at least 1. Many
of our results will have constants that implicitly depend on q and T . We will suppress this
dependence in the notation and statements of the theorems.

Our first main result is the analogue of Theorem 1.1 for iid random matrices.

Theorem 1.5. Let N be an n × n iid random matrix with real-valued symmetric atom
variable ξ which satisfies Assumption 1.3, and let K > 1 be a constant. Then there exist
constants C, c > 0 (depending only on the constant K and the atom variable ξ) such that

P(∃ unit eigenvector u of N such that |1Tu| ≤ t) ≤ Cnt+ P(‖N‖ > K
√
n)

for any t ≥ e−cn. Here 1 denotes the all-ones vector.

A bound on the operator norm can be controlled by additional moment assumptions on
ξ. For instance, when ξ has finite fourth moment there exists K > 1 so that

(1.4) P(‖N‖ > K
√
n) = o(1),

and when ξ satisfies a sub-Gaussian assumption

P(‖N‖ > K
√
n) ≤ Ce−cn,

where the constants and rate of convergence in these bounds depend on the fourth moment
or sub-Gaussian moment of ξ (see [94] and [97]).

More generally, we have the following theorem.

Theorem 1.6. Let N be an n × n iid random matrix with real-valued symmetric atom
variable ξ which satisfies Assumption 1.3, and let B,K > 1 be constants. Then there exist
constants C, c, ν, ν′ > 0 (depending only on the constants K,B and the atom variable ξ) such
that the following holds. Let m ≤ ν

√
n and b ∈ Cn be a vector such that B−1 ≤ |bi| ≤ B

for all but m coordinates of b. Then

P(∃ unit eigenvector u of N such that |bTu| ≤ t) ≤ Cnt+ P(‖N‖ > K
√
n)

for any t ≥ e−ν′n/m.
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1.3. Eigenvalue Gaps. Tail bounds between gaps of eigenvalues of random matrices were
originally studied in [4] in the GUE case and in [64, 89] for a large class of Hermitian random
matrices. In his thesis [37], Ge proves a similar result for iid matrices. Let λ1(N), . . . , λn(N)
be the eigenvalues of a matrix N . Let ∆ ≡ ∆(N) := mini6=j |λi(N) − λj(N)|. Ge obtained
the following theorem.

Theorem 1.7 (Theorem 3.1.1, [37]). Let N be an n × n iid random matrix whose atom
variable satisfies Assumption 1.3 and has mean zero. For every C > 0 and δ ≥ s ≥ n−C

P(∆(N) < s
√
n) = O

(
δn2+o(1) +

s2n4+o(1)

δ2

)
+ P(‖N‖ ≥ K

√
n)

where the implied constant depends only on the parameters in Assumption 1.3 and C.

One immediate consequence is that with high probability, the random matrix has simple
spectrum.

Corollary 1.8 ([37]). Let N be an n× n iid random matrix whose atom variable has mean
zero, unit variance, and finite fourth moment. Then

P(∆(N) = 0) = o(1).

Building on the techniques in [37], we greatly extend the range of the tail bound for the
eigenvalue gaps and also improve the probability bound for simple spectrum.

Theorem 1.9. Let N be an n×n iid random matrix whose atom variable satisfies Assump-
tion 1.3. Then there exist constants C, c > 0 such that for s ≥ 0,

P(∆(N) ≤ s and ‖N‖ ≤ K
√
n) ≤ Cs2/3n5 + Ce−cn + P(‖N‖ ≥ K

√
n).

While the right-hand side appears non-optimal, we can deduce an immediate corollary.

Corollary 1.10. If in addition to the assumptions of Theorem 1.9 we assume the entries
of N are subgaussian with mean zero, then there exist constants C, c > 0 such that

P(∆(N) = 0) ≤ Ce−cn.

This corollary is of independent interest and clearly optimal up to the constants for
subgaussian entries, while Ge’s result only guarantees a polynomially small probability. The
simple spectrum probability bound is also an important technical tool for the results of the
next section.

For a directed graph G = ([n], E) with vertex set [n] and edge set E, we let the adjacency
matrix A be defined by

Aij =

{
1, if (i, j) ∈ E,

0, otherwise.

We define the directed Erdős–Rényi random graph to be the random digraph on vertex set [n]
such that each edge (i, j) appears independently with probability p, for a constant p ∈ (0, 1).
The adjacency matrix A is random but does not fall under the purview of Theorem 1.9 as
‖A‖ = Ω(n) with high probability (so P(‖A‖ > K

√
n) = 1 − o(1)). In addition, our results

apply to both the model where loops are allowed (so that (i, i) is an edge with probability
p) as well as the case where loops are not allowed (so that the adjacency matrix has zeros
along the diagonal with probability one). For the adjacency matrix A for either model, we
are able to prove the following weaker conclusion.

Theorem 1.11. There exist constants C, c > 0, depending only on p, such that

P(∆(A) = 0) = o(1).
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1.4. Connection to control theory. Our main results are related to a large collection of
works on controllability of network control systems [1, 2, 40, 52, 54, 62, 63, 67, 68, 69, 72, 85].
Unlike many of these previous works, in this note we take a stochastic approach. In this
section we provide a brief overview of linear control theory and its connection to our main
results above. For additional details concerning control of linear systems, the reader is
advised to see [40, 46] and references within.

We consider a discrete-time linear state-space system formed from an n × n matrix A
(called the state transition matrix) and a vector b ∈ Rn (the given input vector). The
system’s state at time k is a vector x(k) which evolves according to the constraint:

x(k + 1) = Ax(k) + u(k)b,

where each u(k) is a scalar. The sequence (u(k))k≥0 is the control of the system.
Roughly speaking, the system is controllable if we can find the control values u(·) based

on arbitrary state values x(·). Following [40, 59] we observe that since

x(1) = Ax(0) + u(0)b

x(2) = Ax(1) + u(1)b = A2x(0) + u(0)Ab+ u(1)b

...

x(n) = Anx(0) + u(0)An−1b+ u(1)An−2b+ · · ·+ u(n− 1)b,

it follows that

(1.5) x(n)−Anx(0) =
(
An−1b An−2b · · · Ab b

)




u(0)
u(1)
...

u(n− 1)


 .

Thus, we can find the control values u(·) based on the state values x(·) if and only if the
matrix on the right-hand side of (1.5) has full rank. This leads immediately to the following
definition (known as Kalman’s rank condition) for controllability.

Definition 1.12. Let A be an n× n matrix, and let b be a vector in Rn. We say the pair
(A,b) is controllable if the n× n matrix

(1.6)
(
b Ab · · · An−1b

)

has full rank (that is, rank n). Here the matrix in (1.6) is the matrix with columns b, Ab,
. . . , An−1b. We say (A,b) is uncontrollable if it is not controllable.

Given the state transition matrix A, two important problems are:

(1) (Minimal controllability) What is the sparsest nonzero binary vector b ∈ {0, 1}n
such that (A,b) is controllable?

(2) (Uniform controllability) If 1 is the all-ones vector, is (A,1) controllable?

Our main results above allow us to study versions of these problems when A is a random
matrix. Loosely speaking, our results show that “most” systems are controllable, which
confirms a similar phenomenon that was observed previously for systems with Hermitian
transition matrices [59, 67, 69, 68]. In addition, we also consider the case when the vector
b is random.

As corollaries to our main results above, we obtain the following.
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Corollary 1.13. Let ξ be a real-valued symmetric random variable with mean zero, unit
variance, and finite fourth moment. Let N be the n×n iid random matrix with atom variable
ξ. Then (N,1) is controllable with probability 1− o(1), where 1 is the all-ones vector.

Corollary 1.14. Let ξ be a real-valued random variable with mean zero, unit variance, and
finite fourth moment. Let N be the n × n iid random matrix with atom variable ξ. Let
ψ be a real-valued random variable that satisfies Assumption 1.3, and assume b ∈ Rn is a
random vector with entries that are iid copies of ψ. Then, with probability 1 − o(1), (N,b)
is controllable.

We note that Corollary 1.14 does not require symmetric random variables.

Remark 1.15. If instead of a bounded fourth moment, we assume the entries of N are
subgaussian in Corollaries 1.13 or 1.14, we can improve the probability bound to 1−Ce−cn

for some constants C, c > 0.

Corollary 1.16. Let ξ be a real-valued random variable with mean zero, unit variance, and
finite fourth moment. Let N be the n× n iid random matrix with atom variable ξ. Then

inf
1≤i≤n

P((N, ei) is controllable) = 1− o(1).

Corollary 1.13 and 1.16 answer the uniform controllability and minimal controllability
questions from above for non-Hermitian random matrices.

We have corresponding corollaries for the adjacency matrix of directed random graphs.

Corollary 1.17. Let A be the n × n adjacency matrix of an Erdős–Rényi directed graph
with constant edge probability p = 1/2. Then (A,1) is controllable with probability 1− o(1),
where 1 is the all-ones vector.

Corollary 1.18. Let A be the n × n adjacency matrix of an Erdős–Rényi directed graph
with constant edge probability p ∈ (0, 1). Let ψ be a real-valued random variable that satisfies
Assumption 1.3, and assume b ∈ Rn is a random vector with entries that are iid copies of
ψ. Then, with probability 1− o(1), (A,b) is controllable.

Corollary 1.19. Let A be the n × n adjacency matrix of an Erdős–Rényi directed graph
with constant edge probability p ∈ (0, 1). Then

inf
1≤i≤n

P((A, ei) is controllable) = 1− o(1).

Unlike Corollary 1.17, Corollaries 1.18 and 1.19 do not demand that p = 1/2.

1.5. Overview and outline. In Section 2, we isolate the key structural result which guar-
antees that any vector near the kernel of an iid random matrix (shifted by a complex number)
is unstructured. The investigation of the structure of vectors as they relate to their anti-
concentration has a long history in random matrix theory beginning with the infamous
singularity problem for discrete random matrices [49, 45, 86, 22, 20, 65, 34, 33, 91]. Strong
bounds on the least singular value in both the symmetric and non-symmetric setting used
similar tools [26, 84, 77, 78, 95, 90, 87, 55, 73, 43, 37]. The quantitative estimates in Section
2 build on this rich history of anti-concentration in random matrix theory. In particular, our
quantitative estimates improve on those in [37]. The proof uses a delicate covering argument
to exclude structured vectors. The primary obstacle that appears in the non-Hermitian set-
ting is that the eigenvectors can now reside in the complex unit sphere which has doubled
the dimension of the space that must be covered. The key geometric insight that resolves
this issue is expounded on in Section 2.4. In Section 3, we use an approximation argument
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to extend the structural result to eigenvectors of a non-Hermitian matrix. We utilize a
multi-scale argument to extend our structural result to small-ball probability bounds on all
scales.

The arguments in Sections 2 and 3 do not immediately apply to the adjacency matrix
of a random directed graph because the operator norm of the adjacency matrix is Ω(n)
with high probability. In Section 4, we describe the method to generalize the structural
result to directed graphs. The key observation is that the matrix of expectations is low-
rank so the covering arguments from the previous sections can be extended as the size of
nets do not incur many new dimensions. We then utilize previous results on the spectrum
of rank-1 perturbations of random matrices which state that the eigenvalues of perturbed
matrix are all contained in the centered disk with radius determined by the spectral norm
of the unpertrubed matrix, except for one outlier. To understand the structure of the
eigenvector corresponding to the outlier, we use the Perron–Frobenius theorem for non-
negative matrices. In Section 5, we show that for a fixed vector b, even b ⊙ u has no
structure, where ⊙ denotes the Hadamard product and u is an eigenvector.

Finally, in Section 6, we complete the proofs of our main results and deduce the control
theory corollaries from our eigenvector structure results. To relate the structure of eigenvec-
tors to the controllability of the matrix requires the introduction of auxiliary random signs
in the matrix that preserve the distribution of the matrix and only alter the signs of the
entries in the eigenvectors. The first condition will require symmetric entries in the random
matrix for some of the control theory results.

In Appendix A we include the proof of Theorem 1.9 and in Appendix B we complete the
proof of Theorem 1.11. They are similar to previous arguments in this article and in [37].

Acknowledgements. We thank Hoi H. Nguyen for pointing out reference [37]. The second
author thanks Behrouz Touri for introducing him to the problem and answering numerous
questions.

2. Arithmetic Structure of Approximate Null Vectors

In this section, we study the arithmetic structure of approximate eigenvectors. We let EK
denote the event that ‖N‖ ≤ K

√
n. The goal of this section is to prove the following result.

Theorem 2.1. Let N denote the n× n matrix with entries that are iid copies of a random
variable ξ that satisfies Assumption 1.3. There exist constants c2.1, c

′
2.1, c

′′
2.1, c⋆, µ > 0 such

that the following holds. We let M denote the matrix N − λ
√
nI where λ is a fixed complex

number with |λ| ≤ K and δ = Im(λ) ≥ e−c⋆n. If

c′2.1
√
n/δ ≤ D̃ ≤ e

c′′2.1n

then with probability at least 1 − e
−c2.1n, on the event EK , any complex vector, z ∈ Sn−1

C
,

such that ‖Mz‖ ≤ Kµn/D̃ has d(z) ≥ c2.13δ and D(z) ≥ D̃.

d(z) and D(z) denote the real-imaginary correlation and the LCD respectively and are
defined formally in Definitions 2.12 and 2.7 below. Some aspects of the proofs below are
inspired by arguments from [80, 37], but we have introduced several modifications and
novelties to handle our current setting.

Definition 2.2. For two constants a, b ∈ (0, 1), we say a vector x ∈ Sn−1
C

is compressible
if there is a an-sparse vector x′ such that ‖x− x′‖ ≤ b. We denote the set of compressible
vectors as CompC(a, b). Let IncompC(a, b) denote the incompressible vectors, which are
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those on the unit sphere that are not compressible. The same definitions apply to real
vectors, in which case, we use CompR and IncompR.

The following is a well-known result that follows from tensorizing a crude estimate for
fixed vectors and taking a union bound.

Lemma 2.3. There exist constants a, b, c2.3 ∈ (0, 1) and K > 2 such that

P

(
inf

z∈Comp(a,b)
‖Mz‖ ≤ c2.3

√
n and EK

)
≤ e

−c2.3n.

We fix the constants a, b, c2.3 for the remainder of the argument. The next lemma from
[37] demonstrates that an approximate null-vector cannot have mass exclusively confined to
the real or imaginary parts.

Lemma 2.4. Let z ∈ Sn−1
C

be incompressible and z = x + iy with x,y ∈ Rn. There
exists a constant c2.4 such that on the event EK , if ‖Mz‖ ≤ c2.4δ

√
n then ‖x‖ ≥ c2.4δ and

‖y‖ ≥ c2.4δ.

Proof. LetM = N+ iδ
√
nI where N ∈ R

n×n. By examining the real part of ‖Mz‖ ≤ cδ
√
n,

we must also have that ‖Nx− δ
√
ny‖ ≤ cδ

√
n. This implies that

‖y‖ ≤ ‖Nx‖+ cδ
√
n

δ
√
n

≤ 2K
√
n‖x‖+ cδ

√
n

δ
√
n

.

Therefore, as z is a unit vector,

1 = ‖x‖2 + ‖y‖2

≤ ‖x‖2 +
(
2K

√
n‖x‖+ cδ

√
n

δ
√
n

)2

≤ ‖x‖2 + 8K2

δ2
‖x‖2 + 2c2

From the above, we can conclude that

‖x‖2 ≥ 1− 2c2

1 + 8K2

δ2

≥ c′δ

for a small enough c and c′, depending on K. Finally, we can set c2.4 to be the smaller of c
and c′. �

Remark 2.5. Note that ‖Mz‖ = ‖Meiθz‖ so the above lemma applies to any rotation of z.

2.1. Excluding Vectors with Real Compressible Part.

Lemma 2.6. Let α ∈ [c2.4δ, 1/2]. There exist constants a, b, c2.6 such that for

Sα :=

{
z = x+ iy ∈ IncompC(a, b) : α < ‖x‖ ≤ 2α,

x

‖x‖2
∈ CompR(a, b)

}

we have

P

(
inf

z∈Sα

‖Mz‖ ≤ bδ
√
n and EK

)
≤ e

−c2.6n.

Proof. Case I: We assume that α ≥ Cδ where C is a large constant to be determined.
Recall that we let M = N + λ

√
nI. Again, we examine the real part of the inequality

‖Mz‖ ≤ bδ
√
n which implies that ‖Nx− δ

√
ny‖ ≤ bδ

√
n. Let

Tα :=

{
x ∈ R

n : α < ‖x‖ ≤ 2α,
x

‖x‖ ∈ CompR(a, b)

}
.
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To complete the proof in this case, it suffices to show that

P

(
inf

x∈Tα

‖Nx‖ ≤ (1 + b)δ
√
n and EK

)
≤ e−cn.

The intuition is that as x is close to sparse, ‖Nx‖ should be on the order of ‖x‖√n. Thus,
choosing ‖x‖ ≥ Cδ for large enough C should violate the event ‖Nx‖ ≤ (1 + b)δ

√
n with

high probability. Let N ′ be a b-net of CompR(a, b). By the standard volumetric argument,
we can construct N ′ so that |N ′| ≤

(
n
an

)
(3/b)an. Now let N ′′ be an αb-net of the interval

[α, 2α]. Clearly, we can have |N ′′| ≤ 2
b
. Finally, let

N := {a′x′ : a′ ∈ N ′′ and x′ ∈ N ′}.
We have |N | ≤

(
n
an

)
(3/b)an 2

b
. Furthermore, for x ∈ Tα, there exists a′ and x′ such that

|a′ − ‖x‖| ≤ αb and
∥∥∥x′ − x

‖x‖

∥∥∥ ≤ b so

‖x− a′x′‖ ≤
∥∥∥x− ‖x‖x′

∥∥∥+
∥∥∥‖x‖x′ − a′x′

∥∥∥
≤ αb + αb.

Therefore, N is a 2αb-net of Tα.
By the standard tensorization argument (c.f. [78, Lemma 3.2]), we have that for x ∈ Sn−1

R
,

there exists a small constant c > 0 such that

P(‖Nx‖ ≤ c
√
n) ≤ e−cn.

Therefore, by a simple union bound,

P

(
inf
x∈N

‖Nx‖ ≤ 2cα
√
n

)
≤
(
n

an

)(
3

b

)an
2

b
e−cn ≤ e−c′n

for a small constant c′ > 0 after choosing a small enough. For any x ∈ Tα, there exists
x′ ∈ N such that ‖x− x′‖ ≤ 2αb. On the event that infx∈N ‖Nx‖ ≥ 2cα

√
n,

‖Nx‖ ≥ ‖Nx′‖ − ‖N‖‖x− x′‖
≥ 2cα

√
n−K

√
n2αb

≥ 2(c−Kb)Cδ
√
n.

Choosing b small enough so that c − Kb > 0 and then choosing C large enough, we have
that this implies that

‖Nx‖ > (1 + b)δ
√
n.

Therefore,

P( inf
x∈Tα

‖Nx‖ ≤ bδ
√
n) ≤ e−c′n.

Case II: We utilize the real and imaginary parts of the inequality ‖Mz‖ ≤ bδ
√
n with

z = x+ iy. We must have

‖Nx− δ
√
ny‖ ≤ bδ

√
n

and

‖Ny+ δ
√
nx‖ ≤ bδ

√
n.

Let us define for an index set I ⊂ [n] with |I| = an,

Tα,I :=

{
x ∈ R

n : α < ‖x‖ ≤ 2α,
x

‖x‖ ∈ CompR(a, b), supp(x) ⊂ I

}
.
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For concreteness, let us assume for now that I = {1, . . . , an}. Similar to Case I, we can find

a 2bα-net, N , of Tα,I such that |N | ≤
(
3
b

)an 2
b
. Conditioning on the first an columns of M ,

we have the deterministic inequality
∥∥∥∥
Nx

δ
√
n
− y

∥∥∥∥ ≤ b.

We construct a random net, depending on the first an columns ofM , for the imaginary part
of the vectors. We use Nx

δ
√
n
to approximate the imaginary part of the complex vectors in

Sα. Note that since x is only supported on the first an coordinates, Nx

δ
√
n
depends on only

the first an columns of M . Define

N ′ :=

{
x+

Nx

δ
√
n
i : x ∈ N

}
.

Therefore, on the event that ‖Mz‖ ≤ c2.4δ
√
n with z = x + iy, for x′ ∈ N such that

‖x− x′‖ ≤ 2bα, we define y′ = Nx
′

δ
√
n
so that

‖y′ − y‖ ≤
∥∥∥∥
Nx′

δ
√
n
− Nx

δ
√
n

∥∥∥∥+
∥∥∥∥
Nx

δ
√
n
− y

∥∥∥∥

≤ 2Kbα

δ
+ b

≤ C′
b

for some large constant C′ where in the last line we have used the assumption that α ≤ Cδ.
Since z is incompressible and x is compressible, we must have that ‖y‖ ≥ b

2 after reducing
b if necessary. We write

y′ =

(
y1

y2

)

where y1 is the vector formed by the first an coordinates and y2 are the remaining coor-
dinates. Since z is incompressible and ‖y′ − y‖ ≤ Cb, we can choose b small enough such
that ‖y2‖ ≥ b/4. By the standard tensorization argument,

P
(
‖Ny′ + δ

√
nx′‖ ≤ c

√
n
)
≤ e−cn

where the probability is taken over the randomness of the last n− an columns of M and the
lower bound on ‖y2‖. Thus, by a union bound,

P

(
inf

z′∈N ′

‖Ny′ + δ
√
nx′‖ ≥ c

√
n

)
≤
(
3

b

)an
2

b
e−cn ≤ e−c′n.

On the event that infz′∈N ′ ‖Ny′ + δ
√
nx′‖ ≥ c

√
n, for any z = x+ iy ∈ Tα,I ,

‖Ny+ δ
√
nx‖ ≥ ‖Ny′ + δ

√
nx′‖ − ‖N(y′ − y)‖ − ‖δ√n(x′ − x)‖

≥ c
√
n−KC′√nb− 2δ

√
nbα

≥ c′′
√
n

after reducing b if necessary. Finally, taking a union bound over the
(
n
an

)
possible I and

then choosing a small enough shows that

P

(
inf

z∈Sα

‖Mz‖ ≤ bδ
√
n and EK

)
≤ e

−c2.6n

for a small enough c2.6. �
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2.2. LCD and Structure Theorem. We import several definitions to quantify the struc-
ture, or absence thereof, of a vector, a matrix and a complex vector.

Definition 2.7. The following notions were developed in a series of papers by Rudelson
and Vershynin [77, 78, 95, 80].

• For a vector v ∈ Rn, we define the least common denominator (LCD) of v to be

D(v) = D(v;L, ρ) := inf

{
θ ∈ R

+ : dist(θv,Zn) < ρL

√
log+

‖θv‖
L

}

• For a matrix U ∈ Rm×n, we define the LCD of U to be

D(U) = D(U ;L, ρ) := inf

{
‖θ‖ : θ ∈ R

m, dist(UTθ,Zn) < ρL

√
log+

‖UTθ‖
L

}

• For a complex vector z = x+ iy ∈ Cn with x,y ∈ Rn, we define the LCD of z to be
the LCD of the matrix (

xT

yT

)
.

ρ is a parameter that is not normally included in the definition, but we will need this extra
flexibility in the appendix when we handle directed adjacency matrices, which does not have
iid entries. For any fixed ρ, the only effect is to slightly alter the constants in the following
theorems. For the remainder of the paper we set ρ = 1 for convenience and only utilize this
general ρ in Section 4.

Our first lemma shows that the LCD of a complex vector is invariant under rotations by
a complex phase.

Lemma 2.8. For z ∈ Sn−1
C

, D(z) = D(eiφz) for any φ ∈ R.

Proof. Let

(2.1) R(φ) =

(
cos(φ) sin(φ)
− sin(φ) cos(φ)

)
.

Note that

D(z) = inf

{
‖θ‖ : θ ∈ R

2, dist(UTθ,Zn) < L

√
log+

‖UTθ‖
L

}

= inf

{
‖R(φ)θ‖ : θ ∈ R

2, dist(UTR(φ)θ,Zn) < L

√
log+

‖UTR(φ)θ‖
L

}

= D(eiφz).

�

The next lemma shows that one can always rotate a complex vector so that the LCD of
z is exhibited by the real component of the rotated vector.

Lemma 2.9. For z = x+ iy, there exists φ ∈ [0, 2π] such that for eiφz = x′ + iy′,

D(z) = D(x′).
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Proof. Recall from Definition 2.7,

D(z) = inf

{
‖θ‖ : θ ∈ R

2, dist(UTθ,Zn) < L

√
log+

‖UTθ‖
L

}

where U =

(
xT

yT

)
. Let θ ∈ R2 such that dist(UTθ,Zn) < L

√
log+

‖UTθ‖
L . For any such

θ, there exists a φ such that R(φ)θ =

(
1
0

)
where R(φ) is defined in (2.1). This implies

that dist(‖θ‖Re(eiφz)) < L

√
log+

‖θ‖Re(eiφz)
L which corresponds to the defining relation for

the LCD of the real part of eiφz. By Lemma 2.8 and its proof, taking the infimum proves
the result. �

The crucial relationship between structure and small-ball probability is quantified in the
next theorem.

Theorem 2.10 ([80]). Consider a random vector ξ = (ξ1, . . . , ξn) where ξi are i.i.d. copies
of a real random variable ξ that satisfy Assumption 1.3. Let U ∈ Rm×n be fixed. Then for

every L ≥
√

8m
q (where q is the parameter from Assumption 1.3) and t ≥ 0, we have

sup
x∈Rm

P(‖Uξ − x‖2 ≤ t
√
m) ≤ (C2.10L/

√
m)m

det(UUT)1/2

(
t+

√
m

D(U)

)m

We fix a constant L ≥
√
16/q for the remainder of the proof since we will only apply

the above theorem for m ≤ 2. A simple argument shows that if we restrict our attention to
incompressible vectors, the smallest value the LCD can take is on the order of

√
n.

Lemma 2.11 ([77, 95]). Let x ∈ Sn−1
R

in IncompR(a, b), then there exists a constant c2.11 >
0, such that

D(x) ≥ c2.11
√
n.

2.3. Small ball Probabilities depending on real-imaginary correlations. We adapt
the notions of LCD to handle complex vectors. This section follows previous developments
in this direction [80, 55, 37].

Definition 2.12. For z = x+ iy ∈ Sn−1
C

, we let z̃ =

(
x

y

)
and

V = V (z) :=

(
xT

yT

)
∈ R

2×n.

We define the real-imaginary correlation of z to be

d(z) = det(V V T)1/2 =
√
‖x‖22‖y‖22 − (x · y)2.

Lemma 2.13. If z ∈ IncompC(a, b) with ‖Mz‖ ≤ c2.4δ
√
n then there exists a constant

c2.13 > 0 such that

d(z) ≥ c2.13δ.

Proof. We first prove the claim that

min
θ∈R

‖ℜ(eiθz)‖2 =
1

2
−
√
1− 4d(z)2

2
.
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Since

ℜ(eiθz) = cos(θ)x − sin(θ)y,

the extremal values of ℜ(eiθz) are the singular values of the matrix (xy). These can be
calculated from the eigenvalues of

(
xT

yT

)
(x y) =

(
‖x‖2 x · y
x · y ‖y‖2

)

which are the solutions of

λ2 − λ+ d(z)2 = 0.

Solving the quadratic equation and choosing the larger root yields the claim.
By Lemma 2.4, the real part of any vector that satisfies the requirements of the lemma

has norm bounded below by c2.4δ, so we must have that

1

2
−
√
1− 4d(z)2

2
≥ c22.4δ

2.

Simplifying this inequality gives

d(z)2 ≥ (c2.4δ)
2 − (c2.4δ)

4 ≥ c2δ2.

for a small enough constant c. �

In the remainder of this section, we use a covering argument to exclude vectors with
small LCD. For real matrices, this type of argument appeared in [77]. However, the main
difficulty in the current setting, is that we must consider complex spheres, which have
dimension 2(n − 1) when embedded into the real Euclidean space. On the other hand, we
are left with the same amount of randomness as in the real case. To handle this difficulty,
we divide the remaining vectors into two classes, genuinely complex and essentially real.
For genuinely complex vectors, the small-ball probabilities are greatly improved as the real
and imaginary components are uncorrelated. This is enough to compensate for the added
dimensionality. Essentially real vectors have highly correlated real and imaginary parts and
so can be thought of as residing in a lower-dimensional space. For this class of vectors, a
variant of the original covering argument from [77] suffices. This two-class approach is due
to [80] and has been expanded upon in [37].

Definition 2.14. Fix a scale α ∈ [c2.4δ, 1] for ‖x‖. Take D ∈ [c2.11
√
n/α,D0] for the LCD

where

(2.2) D0 = ec⋆n ≤ Leµ
2n/L2

where we lower the value of c⋆ > 0 if necessary and let d0 = max
(

L
D

√
log+

Dα
L ,

√
nα
D

)
.

• (Genuinely Complex z) For d0 ≤ d ≤ 1, define

SD,d,α :=
{
z = x+ iy ∈ Incomp(a, b) : α ≤ ‖x‖ ≤ 2α,D(z) = D(x),(2.3)

x

‖x‖ ∈ IncompR(a, b), D ≤ D(z) ≤ 2D, d ≤ d(z) ≤ 2d
}
.

• (Essentially real z) Define

SD,d0,α :=
{
z = x+ iy ∈ Incomp(a, b) : α ≤ ‖x‖ ≤ 2α,D(z) = D(x),(2.4)

x

‖x‖ ∈ IncompR(a, b), D ≤ D(z) ≤ 2D, d(z) ≤ d0

}
.
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The next proposition establishes a strong small-ball probability for genuinely complex
vectors.

Proposition 2.15. For z ∈ SD,d,α, L ≥
√
16/p and t ≥ 0,

P(‖Mz‖ ≤ t
√
n) ≤

(
C2.15L

2

d

(
t+

1

D

)2
)n

Proof. Let Mj denote the j-th row of M . We have that

|Mjz| = |Njx+ iNjy + λzj | =
∥∥∥∥V N

T
j −

(
Re(λzj)
Im(λzj)

)∥∥∥∥

where we recall from Definition 2.12 that V = V (z) =

(
xT

yT

)
and Nj is the j-th column

of N , where by assumption each entry is i.i.d. Specializing Theorem 2.10 to our setting we
arrive at

P(|Mjz| ≤ t
√
2) ≤ (C2.10L/

√
2)2

det(V V T)1/2

(
t+

√
2

D

)2

≤ C

d(z)

(
t+

√
2

D

)2

where in the last line we utilized the observation that det(V V T) = ‖x‖2‖y‖2 − (x · y)2 =

d(z)2. A quick change of variables from
√
2t to t puts the single coordinate bound into the

desired form. To extend this bound to the entire vector, we use a standard tensorization
argument, which completes the proof. �

The following proposition is proved analogously and is again a simple consequence of
tensorization and our definition of d0.

Proposition 2.16. For z ∈ SD,d0,α, L ≥
√

16/p and t ≥ 0,

P(‖Nx− δ
√
ny‖ ≤ t

√
n) ≤

(
C2.16
α

(
t+

1

D

))n

.

2.4. Nets. In this section, we construct discrete nets of various level sets partitioned by
real-complex correlation and LCD.

2.4.1. Genuinely Complex Case.

Proposition 2.17. Recall the definition of SD,d,α from (2.3). For any fixed constant µ > 0,

there exists a µ
√
n

D -net of SD,d,α with cardinality bounded by

C2n
2.17D

2n+1dn−1

µn+1nn+1/2

where C2.17 is an absolute constant.

Proof. By the definition of LCD, there exists a p ∈ Zn such that

‖D(z)− p‖ < L

√
log+

‖D(z)x‖
L

.
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Therefore,

‖p‖ ≤ ‖D(z)x‖ + L

√
log+

‖D(z)x‖
L

≤ Dα+

(
L

‖D(z)x‖

√
log+

‖D(z)x‖
L

)
‖D(z)x‖

≤ CDα

for some univversal constant C > 0 where in the last line we have used that the function
1
x

√
log+ x is bounded. Using the triangle inequality in the other direction gives

‖p‖ ≥ cDα

for a small universal constant c > 0. By definition,

d(z) = s1(V )s2(V ).

Since z is a unit vector, at least one of x or y has norm greater than 1/
√
2. Since,

∥∥∥∥V
T x

‖x‖

∥∥∥∥ ≥ ‖x‖ and

∥∥∥∥V
T y

‖y‖

∥∥∥∥ ≥ ‖y‖,

we must have that s1(V ) ≥ 1/
√
2 which implies that

s2(V ) ≤ 2
√
2d.

Define

W =

(
pT

D(z)yT

)
.

By definition,

‖D(z)V −W‖ =

∥∥∥∥
(
D(z)xT − p

0

)∥∥∥∥ ≤ L

√
log+

D(z)‖x‖
L

.

From Weyl’s inequality we can deduce that

s2(W ) ≤ s2(D(z)V ) + L

√
log+

D(z)‖x‖
L

≤ 4
√
2Dd+ L

√
log+

D(z)‖x‖
L

.

We write det(WWT)1/2 in two ways via the product of singular values and the volume of a
parallel piped. In particular,

‖p‖ · ‖Pp⊥D(z)y‖ = s1(W )s2(W )

where Pp⊥ is the operator that projects onto the subspace orthogonal to p. Since s1(W ) ≤
‖p‖+ ‖D(z)y)‖,

‖Pp⊥D(z)y‖ ≤
(
1 +

‖D(z)y‖
‖p‖

)
s2(W ).

Recalling that ‖p‖ ≥ cDα and ‖D(z)y‖ ≤ 2D, we find that

‖Pp⊥D(z)y‖2 ≤
(
1 +

4

cα

)(
4
√
2Dd+ L

√
log+

D(z)‖x‖
L

)
≤ C′

(
Dd

α
+
L

α

√
log+

D(z)‖x‖
L

)

for another universal constant C′ > 0. As we are in the genuinely complex case,

d ≥ L

D

√
log+

D(z)‖x‖
L

,
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so

(2.5) ‖Pp⊥D(z)y‖ ≤ C′′Dd
α
.

We now have the estimates to construct a µ
√
n

D -net of SD,d,α. For any x+ iy ∈ SD,d,α there
exists p ∈ Zn ∩B(0, CDα) such that

∥∥∥∥x− p

D(z)

∥∥∥∥ <
L

D(z)

√
log+

D(z)‖x‖
L

≤ µ
√
n

D

where the last inequality follows from D0 ≤ Leµ
2n/L2

from (2.2). We work with at most
CD/µ

√
n discrete multiples of p that approximate p/D(z) up to an accuracy of µ

√
n/D.

Therefore, to bound the number of discrete multiples we have to consider, we multiply the
number of lattice points in B(0, CDα) by the number of discrete multiples to get a bound
of

(2.6)
CD

µ
√
n

(
CDα√
n

)n

.

For each discrete scaling of a lattice point p, we have by (2.5) that

‖Pp⊥y‖2 ≤ C′′d
α

so y must lie in a cylinder of radius C′′d/α in the direction of p. This crucial observation
severely restricts the space of potential y. Using the standard volume argument gives a
µ
√
n/D-net of this cylinder with size bounded by

CD

µ
√
n

(
C′′Dd
µ
√
nα

)n−1

.

Combining these bounds yields the result since d/α ≥ √
n/D by the assumption that d0 ≥√

nα/D. �

2.4.2. Essentially Real Case.

Proposition 2.18. For any constant µ > 0, there exists a set N with cardinality bounded
by

C2n+1

2.18D
n+2αn

µ2
√
n
n+2

such that for every z = x+ iy ∈ SD,d0,α there is u+ iv ∈ N such that ‖x− u‖ ≤ µ
√
n

D and

‖y− v‖ ≤ µ
√
n

Dα .

Proof. We begin with the case where d(z) < L
D

√
log+

Dα
L . We can recycle many of the

estimates from the genuinely complex case. However, the estimate for the projection of y
onto the subspace orthogonal to p changes. Now we have

‖Pp⊥y‖2 ≤ L

Dα

√
log+

Dα

L
≤ µ

√
n

Dα

where the last inequality follows from choosing c⋆ small enough in the definition of D0 in
(2.2). Again, using the discrete multiples of lattice points to approximate x with cardinality
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bounded by (2.6). For each discrete multiple of a lattice point, we can match it with a net
of size

CDα

µ
√
n

(
C′′Dd
µ
√
nα

)n−1

≤ CDα

µ
√
n
Cn−1

where the inequality follows from our bound on d0. Therefore, the total net size is bounded
by

CD

µ
√
n

(
CDα√
n

)n
CDα

µ
√
n
Cn−1.

Finally, we address the case where d(z) ≥ L
D

√
log+

Dα
L and d(z) <

√
nα
D . In this, case we

use the bound
CD

µ
√
n
Cn−1

to control the number of y contained in the cylinder and proceed as in the genuinely complex
case to obtain a net of size less than

CD

µ
√
n

(
CDα√
n

)n
CD

µ
√
n
Cn−1.

�

2.5. Completing the Proof of the Structure Theorem.

2.5.1. Genuinely Complex Case.

Theorem 2.19.

P

(
inf

z∈SD,d,α

‖Mz‖ ≤ Kµn

D
and EK

)
≤ e

−c2.19n.

Proof. As shown in Proposition 2.17, there exists a µ
√
n/D-net, N of SD,d,α with cardinality

at most
C2n
2.17D

2n+1dn−1α

µn+1
√
n
2n+1 .

Suppose that z′ ∈ N and ‖z− z′‖ ≤ µ
√
n/D. Then the event ‖Mz‖ ≤ Kµn

D implies that

‖Mz′‖ ≤ ‖M‖‖z− z′‖+ Kµn

D
≤ 2Kµn

D
.

Taking t = 2Kµ
√
n/D, we have by Proposition 2.15,

P( inf
z∈SD,d,α

‖Mz‖ ≤ Kµn/D and EK) ≤ P( inf
z′∈N

‖Mz′‖ ≤ t
√
n)

≤
C2n
2.17D

2n+1dn−1

µn+1nn+1/2

2nCn
2.15L

2n(2Kµ
√
n)2n

dnD2n

≤ Cnµn−1

≤ e−cn

where the second to last inequality follows from the bound on D0 in (2.2) and the last line
follows from choosing µ small enough.

�
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2.5.2. Essentially Real Case.

Theorem 2.20.

P( inf
z∈SD,d0,α

‖Mz‖ ≤ Kµn/D and ‖M‖ ≤ K
√
n) ≤ e

−c2.20n.

Proof. Suppose that we are in the event that for some z = x+ iy ∈ SD,d0,α,

‖Mz‖ ≤ µn/D.

The real part of the inequality gives

‖Nx− δ
√
ny‖ ≤ µn/D.

By Proposition 2.18, there exists a net N with cardinality bounded by

C2n+1

2.18D
n+2αn

µ2
√
n
n+2

such that there is a u+ iv ∈ N with ‖x−u‖ ≤ µ
√
n

D and ‖y−v‖ ≤ µ
√
n

Dα . We therefore have

‖Nu− δ
√
nv‖ ≤ ‖Nu−Nx‖+ ‖Nx− δ

√
ny‖+ ‖δ√ny − δ

√
nv‖

≤ K
√
n
µ
√
n

D
+Kµn/D+ δ

√
n
µ
√
n

Dα
≤ Cµn/D.

In the last line, we used the fact that α ≥ cδ. We therefore have that for t = Kµ
√
n/D in

Proposition 2.16,

P( inf
z∈SD,d0,α

‖Mz‖ ≤ Kµn/D) ≤ P( inf
u+iv∈N

‖Nu− δ
√
nv‖ ≤ ν

√
n
√
n

D
)

≤
C2n+1

2.18D
n+2αn

µ2
√
n
n+2

(
C2.16
α

(
2Kµ

√
n

D

))n

≤ CnD2

n
µn−2

≤ e−cn

where in the last line we used the bound D ≤ D0 and chose µ small enough. �

2.5.3. Combining all the elements. In this section we aggregate all the previous results to
deduce that near-null vectors must have large LCD.

Proof of Theorem 2.1. By Lemma 2.3 and the observation thatKµn/D̃ ≤ c2.3
√
n, the event

inf
z∈Comp(a,b)

‖Mz‖2 ≤ Kµn/D̃ and EK

occurs with probability at most e
−c2.3n. Next, we exclude those vectors with compressible

real part. Note that Kµn/D̃ ≤ c2.4δ
√
n by our lower bound on D̃ and decreasing µ if

necessary. Thus by Lemma 2.4, on the event that ‖Mz‖ ≤ Kµn/D̃, we need only consider
complex unit vectors z = x+ iy ∈ Sn−1

C
with ‖x‖ ≥ c2.4δ. Let

T = {z = x+ iy ∈ Incomp(a, b) : c2.4δ ≤ ‖x‖ ≤ 1,x/‖x‖ ∈ CompR(a, b)}.
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Choosing dyadic points αk = 2kc2.4δ in [c2.4δ, 1] for k ∈ N, we can take a union bound to
conclude that

P

(
inf
z∈T

‖Mz‖ ≤ Kµn/D̃ and EK
)

≤
∑

k

P

(
inf

z∈Tαk

‖Mz‖ ≤ Kµn/D̃ and EK
)

≤
∑

k

e
−c2.6n

≤ e−cn

where in the second inequality we invoked Lemma 2.6 and in the last line we noted that
the number of non-zero summands is bounded by n from the lower bound on δ. We direct
our attention to vectors with incompressible real part. By Lemmas 2.8 and 2.9, it suffices
to consider vectors whose LCD’s are attained by their real component, or in other words
z = x+iy such thatD(z) = D(x). Now, we gradually exclude level sets by LCD, norm of the
real component, and real-imaginary correlation. By Lemma 2.4, Lemma 2.11 and Lemma
2.13, we need only consider vectors z = x+ iy such that ‖x‖ ≥ c2.4δ, D(z) ≥ c2.11

√
n and

d(z) ≥ c2.13δ. We define

Dh = 2hc2.11
√
n and dj = 2jd0.

Then we denote

Scomplex =
⋃

h,j,k∈N:Dh≤D̃/2

{
z ∈ Sn−1

C
: SDh,dj,αk

}

and

Sreal =
⋃

h,k∈N:Dh≤D̃/2

{
z ∈ Sn−1

C
: SDh,d0,αk

}
.

Then by Theorems 2.19 and 2.20,

P

(
inf

z∈Scomplex∪Sreal

‖Mz‖ ≤ Kµn/D̃ and EK
)

≤
∑

h,j,k∈N:Dh≤D̃/2

P

(
inf

z∈SDh,dj,αk

‖Mz‖ ≤ Kµn/Dh

)

+
∑

h,k∈N:Dh≤D̃/2

P

(
inf

z∈SDh,d0,αk

‖Mz‖ ≤ Kµn/Dh

)

≤
∑

h,j,k∈N:Dh≤D̃/2

e
−c2.19n +

∑

h,k∈N:Dh≤D̃/2

e
−c2.20n

≤ e−cn

for a small enough constant c < 0. Combining all the error terms completes the proof. �

Definition 2.21 (Lévy concentration). Let ξ be a random vector whose entries are iid
copies of a random variable that satisfies Assumption 1.3. For a complex vector z, we define
the Lévy concentration of z to be

ρ(z, t) = sup
r∈C

P(|ξ · z− r| ≤ t),

where ξ · z = ξTz is the dot product of ξ and z.

Finally, we quote a well-known reslult for our random matrix shifted by a real value.
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Theorem 2.22 ([77, 56]). Let λ ∈ R with |λ| ≤ K
√
n. With probability at least 1−e−c2.22n,

any vector z ∈ Sn−1
C

with ‖Mz‖ ≪ √
n/D is such that c2.22

√
n ≤ D(z) ≤ e

c2.22n so that
for t ≥ 0,

ρ(z, t) ≤ C2.22

(
t+

1

D

)
.

Remark 2.23. The exact form of the above theorem does not appear in the literature but
can easily be deduced from the proofs in [77, 56].

3. Structure of Eigenvectors

We now have the tools to prove the following eigenvector structure theorem.

Theorem 3.1. For an n × n random matrix N with iid entries that satisfy Assummption
1.3, there exist constants c3.1, C3.1 > 0, such that with probability at least 1 − e

−c3.1n, for
all eigenvectors v of N , we have

ρ(v, t) ≤ C3.1t+ e
−c3.1n

for t ≥ 0.

We begin with a technical preliminary result.

Theorem 3.2. For any c2.22
√
n ≤ D ≤ ec⋆n,

P

(
∃ an eigenvector v of N and t ≥ 0

such that ρ(v, t) ≥ C3.2

(
t+

D√
n
t2 +

1

D

)
and EK

)
≤ e

−c3.2n

Proof. To extend our previous results to eigenvectors, it is natural to discretize the complex
ball of radius K

√
n, since we are assuming the eigenvalues are bounded by K

√
n. Any

eigenvector will then be an approximate null vector for some complex number in the ball.
However, the difficulty is that our small-ball probability bound in Theorem 2.10 depends on
the real-imaginary correlation of our shift λ, which in turn is lower bounded by the imaginary
component of λ. Therefore, our upper bound on the Lévy probability of approximate null-
vectors degrades significantly as we near the real line. The first step of our strategy is to
control the Lévy probability of approximate null vectors with corresponding approximate
eigenvalues near the real line by comparing them to approximate eigenvectors of real shifts
and invoking Theorem 2.22, which naturally has no dependence on the imaginary component.
Taking a fine enough net of the real line thereby proves our theorem for eigenvalues inside a
neighborhood of the real line. In the next step, we work on the ball with a strip around the
real line excluded. This gives us some control on the imaginary component of the eigenvalues
and allows us to use the results from Section 2.

We proceed with the first step. Let β =
√
n/D. There exists a β/2-net, N of the real

interval [−K√
n,K

√
n] ∈ C with |N | ≤ 10K/β. At every point in N , we place a ball of

radius β. The union of these balls necessarily contains a cβ neighborhood of the real interval
[−K,K]. On the event that there exists an eigenvalue, λ, within the strip with eigenvector
v, there must exist a λ′ ∈ N such that

‖(N − λ′)v‖ = ‖(λ− λ′)v‖ ≤ β.
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Therefore, by Theorem 2.22,

(3.1) ρ(v, t) ≤ C2.22

(
t+

1

D

)

with probability at most

|N |e−c̄2.22n ≤ 10K
√
n

β
e
−c̄2.22n ≤ e−cn

after reducing c⋆ if necessary. It is worth pointing out that any reduction in c⋆ will alter
the constant in the error probability of Theorem 2.1, but there is no circular dependence of
constants.

Now, let S′ denote the centered disk of radius K
√
n after removing the strip of width β

around the real line. There exists a β-net, N ′ of S′ of size at most Cn/β2. Again, for an
eigenvalue λ ∈ S′, there exists a λ′ ∈ N ′ such that

‖(N − λ′)v‖ ≤ β.

Note that by our choice of β, D will satisfy the requirements of D̃ in Theorem 2.1. Thus, by
Theorem 2.1, with probability at least 1 − |N ′|e−c2.1n ≥ 1 − e−cn, any eigenvector, v ∈ S′

will have D(v) ≥ D0 and d(v) ≥ cβ, since the imaginary component of any element in S′ is
bounded below by cβ. By applying Theorem 2.10, we obtain that for such a vector v,

(3.2) ρ(v, t) ≤ C

β

(
t+

1

D

)2

.

Combining (3.1) and (3.2) completes the proof. �

As stated, the above theorem applies to a single choice of D. The previous proofs can be
restructured to show that in fact the statement holds for the whole range ofD simultaneously.
However, to preserve clarity, we simply deduce this as a corollary of the previous theorem.

Corollary 3.3. There exist constants C3.3, c3.3 > 0 such that

P

(
∃ an eigenvector v of N,D ∈ [c2.22

√
n, ec⋆n] and t ≥ 0

such that ρ(v, t) ≥ C3.3

(
t+

D√
n
t2 +

1

D

)
and EK

)
≤ e

−c3.3n.

Proof. Let dk := c2.22
√
n2k. By applying Theorem 3.2 with D = dk, we have that with

probability at least 1− e
−c3.2n, any eigenvector v of N is such that

ρ(v, t) ≤ C3.2

(
t+

dk√
n
t2 +

1

dk

)
.

On this event, for any dk ≤ D < dk+1,

ρ(v, t) ≤ C3.2

(
t+

D

2
√
n
t2 +

2

D

)
≤ 2C3.2

(
t+

D√
n
t2 +

1

D

)

which shows that to extend the event in Theorem 3.2 on D = dk to the entire interval
[dk, dk+1) at the cost of a universal constant. Therefore, to extend the result to the entire
range c2.22

√
n ≤ D ≤ ec⋆n, we simply take a union bound over all k ∈ N with

c2.22
√
n ≤ D ≤ ec⋆n.
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The number of such k is clearly bounded by n so by the union bound, our event of interest
holds with probability at least 1− ne

−c3.2n. �

For a fixed D, the bound

C3.2

(
t+

D√
n
t2 +

1

D

)

only yields a non-trivial bound on the scale

1

D
≪ t≪ n1/4

√
D
.

However, as we have an identical bound for all D simultaneously, we can allow D to vary
with t to combine these scales into a single bound.

Proof of Theorem 3.1. We let D =
√
n/t. By Corollary 3.3, with probability at least 1 −

e
−c3.3n, for any eigenvector v of N ,

ρ(v, t) ≤ C3.3

(
t+

D√
n
t2 +

1

D

)
≤ 3C3.3t,

where the last inequality follows from our choice of D. As we can only apply Corollary 3.3
when D ∈ [c2.22

√
n, ec⋆n], the above bound holds when t ∈ [

√
ne−c⋆n, c−1

2.22]. The upper

bound on t can be ignored after choosing C large enough. �

There are a variety of simpler results depending on our choice of t and D. For example,
setting t = 0 and D = ec⋆n in Theorem 3.2 yields the following notable consequence.

Corollary 3.4.

P

(
∃ eigenvector v of N such that ρ(v, 0) ≥ e

−c3.4n and EK
)
≤ e

−c3.2n

In fact, the proof of Theorem 3.2 yields a slightly more general theorem.

Theorem 3.5. For a c2.22
√
n ≤ D ≤ ec⋆n, we call v a D-approximate eigenvector of N if

there exists λ ∈ C such that ‖(N − λ)v‖2 ≤ c
√
n/D. Then,

P

(
∃ a D-approximate eigenvector v of N and t ≥ 0

such that ρ(v, t) ≥ C3.2

(
t+

1

D
+
t2D√
n

)
and EK

)
≤ e

−c3.2n.

4. Directed Erdős–Rényi Random Graphs

For a directed graph G = ([n], E) with vertex set [n] and edge set E, we recall that the
adjacency matrix A is defined by

Ai,j :=

{
1, if (i, j) ∈ E,

0, otherwise.

We define the directed Erdős–Rényi random graph to be the random graph on vertex set [n]
such that each edge (i, j) appears independently with probability p, for a constant p ∈ (0, 1).
For this model, the adjacency matrix is a random matrix with expectation pJ or p(J − I)
where J is the n×n matrix of ones depending on whether or not we exclude the possibility
of loops. The extra pI factor does not affect our arguments as it simply shifts the spectrum
slightly. The results from the previous section are not immediately relevant as this matrix
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model has large norm and so EK actually occurs with probability o(1). However, due to
the low rank structure of pJ , we can extend the covering arguments to handle this case (cf.
[7, 57, 53]). We let EK denote the event that

‖A− EA‖ ≤ K
√
n.

As A− EA has centered, subgaussian entries, it is well known that

P(Ec
K) ≤ e−cpn.

Since A− EA is a mean-zero random matrix, the previous arguments apply to this matrix.
The intuition is now to apply a covering argument to the range of pJ , which is a low-
dimensional subspace and therefore will not require many elements to construct an epsilon
net. We demonstrate this argument in its entirety for compressible vectors.

Lemma 4.1. There exist constants a, b, c4.1 ∈ (0, 1) and K > 2 such that for λ ∈ Cn with
|λ| ≤ K

√
n,

P

(
inf

z∈Comp(a,b)
‖(A− λ)z‖ ≤ c4.1

√
n and EK

)
≤ e

−c4.1n.

Proof. Let u ∈ C
n. Since A− EA is mean-zero, we have that

(4.1) P

(
inf

z∈Comp(a,b)
‖(A− EA− (λ+ pI))z − u‖ ≤ c

√
n and EK

)
≤ e−cn.

Note that we have added a shift by a fixed vector u. This version is well known and can be
found in [95, Proposition 4.2]. Now, let N be an (c/2)

√
n-net of {t(1, . . . , 1)T : t ∈ [−n, n]}

of size at most C
√
n. On the event that there is a z ∈ Comp(a, b) such that ‖(A − λ)z‖ ≤

(c/2)
√
n, we must have that for z′ ∈ N such that ‖z′ − Jz‖ ≤ (c/2)

√
n,

‖(A− EA− (λ+ p)z+ z′‖ ≤ ‖(A− EA− (λ+ p)z+ Jz− (Jz− z′)‖
≤ ‖(A− λ)z‖ + ‖Jz− z′‖
≤ c

√
n.

By a union bound, the above event happens with probability at most |N ′|e−cn ≤ ec
′n. �

This trick of discretizing the range of J can be applied to all the covering arguments
from the previous section. We leave the details to the reader. Note that in the analogous
covering argument for the complex disk, we still require that the complex shifts to be of
norm at most K

√
n. This allows us to conclude that eigenvectors of A with corresponding

eigenvalues in that disk have no arithmetic structure. The analogous multi-scale argument
then allows us to conclude the following.

Theorem 4.2. There exist constants C4.2, c4.2 > 0 depending only on p such that with

probability at least 1 − e
−c4.2n, for all eigenvectors v of A corresponding to eigenvalues λ

such that |λ| ≤ 2
√
n, we have for t ≥ 0,

ρ(v, t) ≤ C4.2t+ e
−c4.2n.

One small complication that we have glossed over is that since we allow the possibility
that the adjacency matrix be defined with zero diagonal, not all the entries are iid. It is
easy to show that this does not alter the argument much. We show that removing a single
coordinate of a vector cannot alter the LCD significantly.
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Lemma 4.3. Let z ∈ IncompC(a, b) and z′ be the vector z with any coordinate set to zero.
There exists a constant c > 0 such that

ρ(z′, t) ≥ cρ(z, t).

Proof. Recall Definition 2.7. By incompressibility, ‖z′‖ ≥ b and D(z;L, 1) ≥ c
√
n. Let

D = D(z′/‖z′‖; 2L, 1/4). Fix ε > 0. There exists θ such that D ≤ ‖θ‖ ≤ D + ε and

dist(U(z′/‖z′‖)Tθ,Zn−1) <
1

4
(2L)

√
log+

‖U(z′/‖z′‖)Tθ‖
2L

.

Note that we must have ‖U(z′/‖z′‖θ‖ > 2L. We have

dist

(
U(z)T

θ

‖z′‖ ,Z
n

)
≤ dist

(
U(z′)T

θ

‖z′‖ ,Z
n−1

)
+ 1

= dist(U(z′/‖z′‖)Tθ,Zn−1) + 1

<
1

4
(2L)

√
log+

‖U(z′/‖z′‖)Tθ‖
2L

+ 1

≤ 1

4
(2L)

√
log+

‖U(z′/‖z′‖)Tθ‖
L

+ 1

≤ L

√
log+

‖U(z)Tθ/‖z′‖‖
L

.

As this is true for any ε > 0, we therefore have

D(z′/‖z′‖; 2L, 1/4)
b

≥ D(z′/‖z′‖; 2L, 1/4)
‖z′‖ > D(z;L, 1)

Applying Theorem 2.10 completes the proof. �

Having established this, we leave it as an exercise to verify that all the structural results
follow with only a slight change in the constants.

Remark 4.4. Using this same technique, all the structural results in Section 3 can be ex-
tended to random matrices with zero diagonal. We omit the obvious modifications.

Although the above structural results only apply to eigenvectors with corresponding eigen-
values in the centered disk of radius K

√
n in the complex plane, it is known that with high

probability, this disk contains all the eigenvalues of A but one. In other words, our structural
results apply to all eigenvectors but one with high probability.

Theorem 4.5 (Follows from Theorem 2.8 in [66]). Let N be an iid random matrix whose

entries are centered and have unit variance and finite fourth moment. Let Ñ be the matrix
N with the diagonal entries replaced with zeros. Then for any p ∈ (0, 1) and any δ > 0,

with probability 1− o(1), all the eigenvalues of Ñ + pJ and N + pJ are contained in the disk
{z ∈ C : |z| ≤ (1 + δ)

√
n} with a single exception which takes the value pn+ o(

√
n).

To deduce some structural properties for the eigenvector of the lone eigenvalue outside
the disk, we use the Perron–Frobenius theorem. Recall the following definition.

Definition 4.6. A square matrix A is reducible if there exists exists a permutation matrix
P such that

PTAP =

(
B 0
C D

)

where B and D are square matrices. A matrix is irreducible if it is not reducble.
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Remark 4.7. If A is the adjacency matrix of a directed graph, irreducibility corresponds to
strong-connectivity of the graph.

Theorem 4.8. [98, Theorem 6.8] (Perron–Frobenius Theorem) If A is an irreducible, non-
negative matrix then the eigenvalue with the largest norm is real and simple. Furthermore,
the eigenvector corresponding to this eigenvector has entries that are all strictly positive.

Theorem 4.9. [41, Theorem 5] In the directed random graph model with constant edge
probability p ∈ (0, 1), the graph is strongly connected with probability 1− o(1).

5. Structure of Scaled Eigenvectors

5.1. Eigenvector structure. The structure of eigenvectors from the previous section do
not immediately apply to the Hadamard product of our eigenvectors with a fixed vector.
There are two issues that need to be overcome in this section. The first is to deal with the
possibly inhomogeneous values of the entries of b. In other words, although we have shown
that any eigenvector u has no arithmetic structure, to handle the most general version, we
must show that for our fixed vector b, b ⊙ u has no arithmetic structure. Here, we recall
that b⊙u denotes the Hadamard product of b and u. The second difficulty is that there is
a small set of uncontrolled coordinates in b. In this section, we demonstrate how to deduce
our main theorem from the arguments in the eigenvector structure theorem, but this requires
repeating most of the steps from the previous section so we only sketch the argument here.

By absorbing the error probabilities of both Lemma 2.3 and Lemma 2.6 into our final
error bound, we can assume that our approximate null-vectors are incompressible and have
incompressibe real part.

We recall the following condition on our fixed complex vector b.

Definition 5.1. Let B ≥ 1 be a constant. We say our vector b is (B,m)-delocalized if we
have:

(5.1) B−1 ≤ |bi| ≤ B

for all but m entries of b

This is a more general definition than that used in [69] as we do not require the entries
to be rational.

Definition 5.2. Let n0 = n−m. For u ∈ Cn, we let u ∈ Cn0 denote the vector formed by
the first n0 coordinates of u. We define the function F which takes u ∈ Cn0 to

F (u) = b⊙ u = (u1b1, . . . , un0
bn0

).

We restrict our attention to those vectors in C
n that have no zero coordinates. This poses

no difficulty as we can infinitesimally shift any of our net points to avoid this measure-zero
set. Therefore, on this slightly restricted domain, our mapping F is one-to-one so we can
meaningfully speak of the inverse map F−1.

Without loss of generality, we assume that the first n0 = n−m entries of b satisfy (5.1).
Therefore, we can assume that

(5.2) bB−1 ≤ ‖F (u)‖ =

√√√√
n0∑

i=1

|uibi|2 ≤ B
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where the first inequality follows from the incompressibility of u and by assuming that ν is
smaller than a/2, say, where we remind the reader that ν is in the statement of Theorem
1.6 and a is the constant from Lemma 2.3. This assumption also guarantees that

n0∑

i=1

|ui|2 ≥ b2.

Having established the notation, we briefly summarize the proof idea. We condition on
the event that all our potential eigenvectors lie in the unstructured subset of the sphere. We
consider the set

F (U) = {F (u) : u a potential eigenvector}.
The goal is to show that for any eigenvector u, F (u) has no arithmetic structure. This is
done with a similar covering argument as in Section 2. In fact, we have already constructed
fine nets of the structured vectors on the unit sphere. We then show that F−1 maps this
net to a fine net of our potential eigenvectors. If there exists an eigenvector u ∈ U such that
F (u) is structured, then there exists a vector v in our net such that v is structured (due to its
proximity to F (u)) and F−1(v) is an approximate eigenvector since F−1(F (v)) ≈ u. This
can be converted into a statement about being an approximate eigenvector by discretizing
the possible eigenvalues and tensorizing as we have already seen. Finally, the probability
that F−1(v) is an approximate eigenvector is small enough to survive the union bound over
all possible v in our net.

Several subtleties have been overlooked in this description of our proof. F (u) does not
necessarily have norm 1, but typically this only adds a single dimension to our epsilon
nets. Additionally, our notion of structure actually encompasses several parameters (e.g.
compressibility, LCD, real-imaginary correlation), so our argument needs to deal with these
separately as in Section 2. Fortunately, many of the calculations can be recycled. Due to
the similarities, we will only provide full details for a few representative lemmas.

For now we fix a complex number λ with |λ| ≤ K
√
n.

Lemma 5.3. There exist constants a′, b′ ∈ (0, 1) such that

P

(
∃u ∈ IncompC(a, b) such that ‖(N − λ

√
n)u‖ ≤ Kb′

√
n

and F (u)/‖F (u)‖ ∈ Comp(a′, b′)
)
≤ e

−c5.3n.

Proof. We use I to denote IncompC(a, b). We consider the event that F (u)/‖F (u)‖2 ∈
CompC(a

′, b′). By the standard volume argument, there exists a b′/8T 2-net, N̂ of Comp(a′, b′)
of size at most

(
n0

a′n0

)
(CB2/b)2a

′n0 ≤ exp
(
an0 log(e/a

′) + 2a′n0 log(CB
2/b′)

)
.

By (5.2), it suffices to consider

C = F (I) ∩ {t · Comp(a′, b′) : b′B−1 ≤ t ≤ B]}.

We use a union of discrete scalings of N̂ to create a net of C. Let

N =

{
tj · N̂ : j ∈ [−8B2/b′, 8B2/b′] ∩ Z and tj =

jb′

8B

}
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To see that this is a b′/4B-net of C, take w ∈ C and let v ∈ N̂ such that
∥∥∥ w

‖w‖ − v

∥∥∥ ≤
b′/2B2. Furthermore, let tj be such that |tj − ‖w‖| ≤ b′/8B. Then

‖w − tj · v‖ = ‖w‖
∥∥∥∥

w

‖w‖ − v

∥∥∥∥ +
∣∣‖w‖ − tj

∣∣ · ‖v‖ ≤ b′

4B
.

With a simple trick, we can modify N so that N ∈ C at the cost of changing N to a
b′/2B-net. The procedure is as follows. For every v ∈ N , if there is an element of C within
a distance of b′/8, replace v with that element, choosing one arbitrarily if there are multiple
options. If there is no element of C within b′/8, then remove v from N . It is easy to verify
that this modified N is a b′/2B net of C and is of size at most

CB2/b′×exp
(
a′n0 log(e/a

′)+2an0 log(CB
2/b′)

)
≤ exp

(
a′n0 log(e/a

′)+3a′n0 log(CB
2/b′)

)
.

We claim that F−1(N ) is a b′-net of the set of vectors in IncompC(a, b) such that
F (u)/‖F (u)‖ ∈ CompC(a

′, b′). Consider a v such that ‖F (u)− v‖ ≤ b′/2B. Then,

‖u− F−1(v)‖ =

√√√√
n0∑

i=1

(
ui −

vi
fi

)2

≤

√√√√B2

n0∑

i=1

(fiui − vi)
2

≤ B‖F (u)− v‖
≤ b′/2.

We use F−1(N ) to approximate the first n0 coordinates. We combine this with a simple
volume net. There exists a b′/2 net, N ′, of K ·Bm(0) (where Bm(0) is the unit ball in Cm)
of size at most (CK/b′)2m. We define our final net

N ′′ =
{
(v,v′) : v ∈ N ,v′ ∈ N”′

}

which is of size at most

exp
(
a′n0 log(e/a

′)+3a′n0 log(CB
2/b′)

)
× (C/b′)2νn

≤ exp
(
a′n0 log(e/a

′) + 3a′n0 log(CB
2/b′) + 2m log(CK/b′)

)
.

By the triangle inequality, N ′′ is a b-net of the eigenvectors u. Therefore, since ‖(N−λ)u‖ ≤
Kb′

√
n,

‖(N − λ)v‖ ≤ Kb′
√
n+ ‖N − λ‖‖u− v‖ ≤ 3Kb

√
n.

On the other hand, by a standard tensorization argument (c.f. [78, Lemma 3.2]), for any
v ∈ N ′′,

P(‖(N − λ)v‖ ≤ 3Kb′
√
n) ≤ e−c′n

for small enough b′. Thus, by a union bound,

P(∃v ∈ N ′′ such that ‖(N − λ)v‖ ≤ 3Kb′
√
n) ≤ e−c′n×

exp
(
a′n0 log(e/a

′) + 3a′n0 log(CB
2/b′) + 2m log(CK/b′)

)

≤ exp
(
a′n0 log(e/a

′) + 3a′n0 log(CB
2/b′) + 2m log(CK/b′)− cn

)

≤ exp(−c′n)
where the last line follows from choosing a′, b′ small enough and noting that m = o(n). �
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The same approximation procedure yields analogues of all the lemmas in Section 2. We
illustrate this with one more example.

Proposition 5.4. Let D ∈ [c2.11
√
n/α,D0] be such that m ≤ νn/ logD. Recall the defini-

tion of SD,d,α in Definition 2.14.

P

(
∃u ∈ IncompC(a, b) s.t. ‖Mu‖ ≤ Kµn

2D
, F (u)/‖F (u)‖2 ∈ SD,d,α and EK

)
≤ e

−c2.19n.

Proof. The proof follows the same strategy as the previous proof. We generate a net of the
set F (u) such that u ∈ IncompC(a, b) with F (u)/‖F (u)‖ ∈ SD,d,α. By Proposition 2.17,
there exists a µ

√
n/D-net, N ′, of SD,d,α of size at most

C2n
2.17D

2n+1dn−1

µn0+1n
n0+1/2
0

.

Therefore, we define a net that is composed of discrete scalings of N ′. Let

N =

{
tj · N ′ : tj =

jµ
√
n

2D
for j ∈ N such that tj ∈ [bB−1, B]

}
.

Observe that

|N | ≤ CDB

µ
√
n

×
C2n0

2.17D
2n0+1dn0−1

µn0+1n
n0+1/2
0

.

We use a trivial net to estimate the remaining m coordinates. There is a µ
√
n/2D-net of

size at most (CBD/µ
√
n)2m for K · Bm(0). We combine this with F−1(N ) to create a

4µ
√
n/D-net of those approximate null-vectors with F (u)/‖F (u)‖2 ∈ SD,d,α. We call this

net N̂ . For any vector u such that F (u)/‖F (u)‖ ∈ SD,d,α and ‖Mu‖ ≤ Kµn/2D, there

exists a v ∈ N̂ from our net such that

‖Mv‖ ≤ Kµn/D.

By Theorem 2.19 and the proof therein,

P(∃v ∈ N̂ s.t. ‖Mv‖ ≤ Kµn/D) ≤
∑

v∈N̂

P(‖Mv‖ ≤ Kµn/D)

≤ CDB

µ
√
n

C2n0

2.17D
2n0+1dn0−1

µn+1n
n0+1/2
0

(CBD/µ
√
n)2m ×

2nCn
2.15L

2n(2Kµ
√
n)2n

dnD2n

≤ B2Cnµnd−m
0

≤ B2Cnµn(D)m

≤ B2Cnµn exp(νn)

≤ exp(−cn).
The small-ball probability follows from Proposition 2.15 and Proposition 2.19. The third to
last inequality is the crucial line that determines the trade-off between m and D. �

Combining the analogous propositions and lemmas yield the analogous strucutre theorem
for approximate null-vectors. Finally, to conclude the same structure theorem for eigenvec-
tors, we use the approximation argument from Section 3. Ultimately, this leads to the
following structural theorem.
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Theorem 5.5. Fix a constant B ≥ 1. There exist constants c⋆, ν, C5.5, c5.5 possibly de-
pending on B such that the following holds. Let c5.5

√
n ≤ D ≤ ec⋆n and m ∈ N such that

m ≤ νn/ logD. For a (B,m)-delocalized vector b,

P

(
∃ eigenvector v of N such that ρ(b⊙ v, t) ≥ C5.5

(
t+

1

D
+
t2D√
n

)
and EK

)
≤ e

−c5.5n

We provide one specific choice of m and t to demonstrate possible consequences of this
theorem.

Corollary 5.6. Fix a constant B ≥ 1. Then for any constant c < 1 and a fixed (B, n1−c)-
delocalized vector b,

P (∃ eigenvector v of N such that ρ(b⊙ v, 0) ≤ C5.5 exp(−nc) and EK) ≤ e
−c5.5n

An identical series of theorems can be proved for the adjacency matrix case using the
approximation techniques of Section 3.

Again, we would like to extend the range of effective bounds by combining our bounds
at different scales as we did at the end of Section 3. Due to the dependence of m on D, we
will have an extra complication.

Corollary 5.7. We fix a B ≥ 1, D′ ∈ [c5.5
√
n, ec⋆n] and m ≤ νn/ logD′. For a (B,m)-

delocalized vector b,

P

(
∃ eigenvector v of N, D ∈ [c5.5

√
n,D′] and t ≥ 0

such that ρ(b⊙ v, t) ≥ C5.5

(
t+

1

D
+
t2D√
n

)
and EK

)
≤ e

−c5.5n.

Proof. Let dk = c5.5
√
n2k. By our choice of m, for any dk with k ∈ N such that dk ∈

[c5.5
√
n,D′], we can apply Theorem 5.5 to conclude that with probability at least 1−e−c5.5n,

for b a (B,m)-delocalized vector and for any eigenvector v of N will be such that for t ≥ 0,

ρ(b⊙ v, t) ≤ C5.5

(
t+

1

dk
+
t2dk√
n

)
.

On this event, for any D ∈ [dk, dk+1),

ρ(b⊙ v, t) ≤ C5.5

(
t+

1

dk
+
t2dk√
n

)

≤ 2C5.5

(
t+

1

D
+
t2D√
n

)
.

Taking a union bound over k ∈ N with dk ∈ [c5.5
√
n,D′] concludes the proof. �

Now, we allow D to vary with t to boost our result to all scales.

Theorem 5.8. We fix a B ≥ 1. There exist constants ν, ν′, C5.8, c5.8 > 0 possibly depending
on B such that for m ≤ ν

√
n and a (B,m)-delocalized vector b,

P

(
∃ eigenvector v of N and t ≥ e−ν′n/m

such that ρ(b⊙ v, t) ≥ C5.5t and EK
)

≤ e
−c5.5n.
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Proof. This results follows from applying Corollary 5.7 with D′ = eνn/m, D =
√
n/t and

restricting t so that m ≤ νn/ logD as required in Corollary 5.7. �

6. Completing the Proofs and Deducing Controllability

This section is devoted to the proofs of our main results and their corollaries. The key
tool is the following proposition.

Proposition 6.1. Let N be an iid matrix with symmetric atom variable ξ that satisfies
Assumption 1.3. Fix constants B,K ≥ 1. Then there exist positive constants c⋆, ν, C6.1, c6.1
depending on B,K, and ξ such that the following holds. Let m ≤ ν

√
n. For a (B,m)-

delocalized vector b ∈ Cn and for any t ≥ e−ν′n/m,

P(∃ a unit eigenvector v of N such that |bTv| ≤ t) ≤ C6.1nt+ P(Ec
K).

Remark 6.2. The above proposition also applies when the matrix N is an iid matrix except
with zeros along the diagonal. This is a simple consequence of Remark 4.4 and the proof of
Proposition 6.1. We omit the details.

We prove Proposition 6.1 in Section 6.4 below. Theorem 1.6 follows immediately from
Proposition 6.1. Theorem 1.5 is a consequence of Theorem 1.6 since the all-ones vector is
(B, 0)-delocalized for any B ≥ 1.

6.1. Controllability. While Definition 1.12 gives Kalman’s rank condition for the pair
(A,b) to be controllable, it is not the most useful criteria to check. Instead, in this sec-
tion, we will focus on the Popov–Belevitch–Hautus (PBH) test. This test was introduced
independently by Popov [71], Belevitch [8], Hautus [42], Rosenbrock [75], Hahn [47, p. 27],
Johnson [44], Ford and Johnson [35], and Gilbert [39]. The version presented below appears
as Theorem 2.4-8 in [46].

Theorem 6.3 (PBH eigenvector test). The pair (A,b) is uncontrollable if and only if there
exists a left eigenvector v of A such that vTb = 0.

In order to study the probability that (A,b) is controllable, the PBH test allows us to
study the probability that a left eigenvector of A is orthogonal to b. In fact, if A is an iid
matrix (or the adjacency matrix of a directed Erdős–Rényi random graph), A and AT have
the same distribution, and it suffices to study the probability that a (right) eigenvector of
A is orthogonal to b. In order to do so, we will apply Proposition 6.1.

In view of Theorem 6.3, by taking t as small as possible, Proposition 6.1 allows us to
bound the probability that (A,b) is uncontrollable. Indeed, we immediately obtain the
following corollary for an iid matrix.

Corollary 6.4. Let N be an iid matrix with symmetric atom variable ξ that satisfies As-
sumption 1.3. Fix constants B,K ≥ 1. Then there exist positive constants ν, C6.4, c6.4
depending on B,K, and ξ such that the following holds. Let m ≤ ν

√
n. For a (B,m)-

delocalized vector b ∈ Cn,

P((N,b) is uncontrollable) ≤ C6.4e
−c6.4n + P(Ec

K).

Corollary 1.13 now follows immediately from Corollary 6.4 and (1.4).
We finish this subsection with a proof of Corollary 1.17.

Proof of Corollary 1.17. Recall that 1 is the all-ones vector. Let B := A − 1
2J , where

J = 11T is the all-ones matrix. If v is an eigenvector of A that is orthogonal to 1, then v

must also be an eigenvector of B (since Jv = 0).
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We will work with the matrix N := 2(B + 1
2I), where I is the identity matrix. The

matrix N has the same eigenvectors as B (since shifting by a multiple of the identity matrix
and scalar multiplication do not change the eigenvectors), and the entries of N are iid
Rademacher random variables, except for the diagonal entries which are identically zero.

By Proposition 6.1 and Remark 6.2, N is uncontrollable with probability at most Ce−cn

for some C, c > 0 since the entries of N are subgaussian. Hence, B is uncontrollable with
the same probability. From the controllability of B we can conclude the controllability of A
due to following chain of implications:

(A,1) is uncontrollable ⇐⇒ ∃λ, v such that v 6= 0, Av = λv and 1Tv = 0

⇐⇒ ∃λ, v such that v 6= 0, (A− 1

2
11T)v = λv and 1Tv = 0

⇐⇒ (B,1) is uncontrollable,

which completes the proof. �

6.2. Random Vectors: Proofs of Corollaries 1.14 and 1.18. In order to prove Corol-
laries 1.14 and 1.18, we will need the following lemma.

Lemma 6.5. Let ξ be a real-valued random variable with mean zero, unit variance, and
finite fourth moment. Let N be the n× n iid random matrix with atom variable ξ. Let ψ be
a real-valued random variable that satisfies Assumption 1.3, and assume b ∈ Rn is a random
vector with entries that are iid copies of ψ. Then

P(∃ a unit eigenvector v of N such that bTv = 0) = o(1).

Proof. In view of (1.4), it follows that there exists a constant K > 1 so that EK holds with
probability 1− o(1). We say the eigenvalues of N are simple if N has n distinct eigenvalues
(each with multiplicity one). Let S denote the event that the eigenvalues of N are simple.
It follows from Theorem 1.9 that S holds with probability 1− o(1).

Let E denote the event that there exists a unit eigenvector v of N with ρ(v, 0) > e
−c3.4n.

It follows from Corollary 3.4 that

P(E) ≤ P(E ∩ EK) + P(Ec
K) = o(1).

Therefore, we conclude that

P(∃ a unit eigenvector v of N such that bTv = 0)

≤ P(∃ a unit eigenvector v of N such that bTv = 0|Ec ∩ S) + o(1).

On the event S, N has n distinct eigenvectors, determined uniquely up to sign. Let
v1, . . . ,vn denote the unit eigenvectors of N on the event S. Since the choice of sign
for each eigenvector does not effect whether bTvi is zero or not, we adopt the convention
that each eigenvector vi is multiplied by a random sign, independent of all other sources of
randomness. We obtain

P(∃ a unit eigenvector v of N such that bTv = 0|Ec ∩ S)
≤ P(∃i ∈ [n] such that bTvi = 0|Ec ∩ S).

On the event Ec, ρ(vi, 0) ≤ e
−c3.4n for all i ∈ [n]. So by the union bound,

P(∃i ∈ [n] such that bTvi = 0|Ec ∩ S) ≤ ne
−c3.4n = o(1).

The proof of the lemma is complete. �
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Corollary 1.14 now follows from Lemma 6.5 and Theorem 6.3. Similarly Corollary 1.18
follows from the following lemma.

Lemma 6.6. Let A be the n × n adjacency matrix of an Erdős–Rényi directed graph with
constant edge probability p ∈ (0, 1). Let ψ be a real-valued random variable that satisfies
Assumption 1.3, and assume b ∈ Rn is a random vector with entries that are iid copies of
ψ. Then

P(∃ a unit eigenvector v of A such that bTv = 0) = o(1).

Proof. The argument is identical to the proof of Lemma 6.5 except for the following changes:

• One must use Theorem 1.11 instead of Theorem 1.9.
• Instead of Corollary 3.4 one needs to apply Theorem 4.2.
• It only remains to address the eigenvector, v, associated to the largest eigenvalue. By
Theorems 4.8 and 4.9, the eigenvector is entirely positive, which in particular implies
that each entry is non-zero. We now appeal to an anti-concentration inequality which
is a generalization of the classical result of Erdős-Littlewood-Offord.

Lemma 6.7 (Lévy-Kolmogorov-Rogozin, [74]). Let ξi be independent real-valued
random variables. Then for any non-negative real numbers r1, . . . , rm and r ≥
maxi(ri),

ρ

(
m∑

i=1

ξ, r

)
≤ C6.7r√∑m

i=1(1− ρ(ξi, ri))r2i

for a universal constant C6.7 > 0.

Therefore, applying the lemma with r = ri = mini vi > 0,

P(bTv = 0) ≤ C√
n
,

where C only depends on p.

�

6.3. Minimal Controllability. Our eigenvector structure results can quickly lead to a
result on minimal controllability.

Proof of Corollary 1.16. By symmetry it suffices to bound the probability that (N, e1) is
controllable. In view of (1.4) it suffices to upper bound

P((N, e1) is uncontrollable and EK)

for some sufficiently large constant K > 1.
Let us decompose our matrix N as

N =

(
N11 XT

Y N ′

)

where N11 denotes the (1, 1)-entry of N , X,Y ∈ Rn and N ′ is an (n− 1)× (n− 1) matrix.
Moreover, N11, X, Y, and N ′ are jointly independent. Using Theorem 6.3, we need to upper
bound the probability that a unit eigenvector of N is orthogonal to e1. The key observation
is that if there exists a unit eigenvector

v =

(
v1
v′

)
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that is orthogonal to e1 then v′ is a unit eigenvector of N ′ and XTv′ = 0. Thus, it suffices
to show that

(6.1) P(∃ a unit eigenvector v of N ′ such that XTv = 0) = o(1).

Since the entries of X are iid random variables, independent of N ′, and satisfy Assumption
1.3, the bound in (6.1) follows from Lemma 6.5; the proof is complete. �

The proof of Corollary 1.19 follows from a nearly identical argument.

Proof of Corollary 1.19. The proof is identical to that of Corollary 1.16 except for the fol-
lowing points.

• We use Lemma 6.6 instead of Lemma 6.5 to handle all eigenvectors with eigenvalues
within a disk of radius 2

√
n.

• By Theorem 4.5, it only remains to address the eigenvector, v, associated to the
largest eigenvalue. By Theorems 4.8 and 4.9, the eigenvector is entirely positive
with high probability which, in particular, implies that eTi v 6= 0.

�

6.4. Proof of Proposition 6.1. This section is devoted to the proof of Proposition 6.1.
The main idea is to utilize the symmetry of the atom distribution of N to rewrite the dot
product bTv as a small ball probability (in particular, conditioned on the matrix N , we
rewrite the dot product as a sum of independent random variables). The same idea was
exploited in [69] to study the controllability of real symmetric random matrices.

Proof of Proposition 6.1. Let ξ = (ε1, . . . , εn), where ε1, . . . , εn are iid Rademacher random
variables, independent of N , i.e., each εi takes the values ±1 with probability 1/2. We say
the eigenvalues of N are simple if N has n distinct eigenvalues (each with multiplicity one).
Let S be the event that the eigenvalues of N are simple and that EK holds. We have

P(∃ a unit eigenvector v of N such that |bTv| ≤ t)

≤ P(∃ a unit eigenvector v of N such that |bTv| ≤ t and S) + P(Sc),

and by Theorem 1.9

P(Sc) ≤ Ce−cn + P(Ec
K).

We now turn our attention to bounding

P(∃ a unit eigenvector v of N such that |bTv| ≤ t and S).
On the event S, N has n distinct unit eigenvectors v1, . . . ,vn, which are determined uniquely
up to sign. As the choice of sign does not change the value of |bTvi|, we will simply assume
that each eigenvector is multiplied by a random sign, independent of all other sources of
randomness. Then

P(∃ a unit eigenvector v of N such that |bTv| ≤ t and S)
≤ P(∃i ∈ [n] such that |bTvi| ≤ t and S).(6.2)

We can now exploit the fact that the entries of N = (Nij)
n
i,j=1 are symmetric random

variables. Indeed, let N ′ = (εiεjNij)
n
i,j=1. A simple calculation shows that the eigenvalues

of N ′ are the same as the eigenvalues of N . In addition, when v1, . . . ,vn are the eigenvectors
of N , then v1⊙ ξ, . . . ,vn⊙ ξ are the eigenvectors of N ′. Here, u⊙v denotes the Hadamard
product of the vectors u = (ui) and v = (vi) defined by u ⊙ v = (uivi). Since the atom
variable of N is symmetric, it follows that N ′ is an iid matrix and that N ′ has the same
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distribution as N . This implies that the eigenvectors v1 ⊙ ξ, . . . ,vn ⊙ ξ have the same
distribution as v1, . . . ,vn. Hence, we conclude that

P(∃i ∈ [n] such that |bTvi| ≤ t and S) = P(∃i ∈ [n] such that |bT(vi ⊙ ξ)| ≤ t and S).
The probability that |bT(vi ⊙ ξ)| ≤ t can be bounded above by the small ball probability
ρ(b ⊙ vi, t), and so we can now apply Theorem 5.8. Indeed, Theorem 5.8 guarantees the

existence of an event E , which holds with probability at least 1 − O(e
−c5.8n), so that

conditioned on this event the eigenvectors v1, . . . ,vn are such that

(6.3) sup
1≤i≤n

ρ(b⊙ vi, t) ≤ C5.8t.

Returning to (6.2), it suffices to bound

P(∃i ∈ [n] such that |bT(vi ⊙ ξ)| ≤ t|S ∩ E).
Applying the union bound and (6.3) yields the desired conclusion. �
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Appendix A. Tail Bounds on Eigenvalue Gaps

In this section we prove Theorem 1.7. We follow the approach in [37] and include some
details for the reader’s convenience. Additionally, we fix several oversights in [37] along the
way.

A.1. Reduction from Eigenvalues to Singular Values. The following lemma is the
first step in converting the eigenvalue problem into one of singular values, which are more
stable and amenable to approximation arguments.

Lemma A.1. Let N ∈ Cn×n with ‖N‖ ≤ K
√
n, z ∈ C with |z| ≤ K and denote M =

N − z
√
n. Suppose there exist i, j ∈ [n] such that the eigenvalues of N , λi, λj ∈ B(z

√
n, s)

for 0 < s ≤ K
√
n. Then there exist orthogonal vectors v,w ∈ Sn−1

C
and a real number α

with |α| ≤ 2K
√
n such that

(A.1) Mv = (λi − z
√
n)v and Mw = (λj − z

√
n)w + αv.
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As a consequence,

(A.2) ‖Mv‖ ≤ s and ‖Mw− αv‖ ≤ s

Proof. We begin with the assumption that λi 6= λj and let vi and vj be two corresponding
eigenvectors. Then we can choose v = vi. We will choose w to be orthogonal to v and also
in the span of vi and vj . Let us write w = aivi + ajvj . Therefore,
(A.3)
Mw = ai(λi− z

√
n)vi+ aj(λj − z

√
n)vj = (λj − z

√
n)w+ ai(λi−λj)vi = (λj − z

√
n)w+αv

where α = ai(λi − λj). Since αv = (M − (λj − z
√
n))w,

|α| = ‖αv‖ ≤ 2K
√
n.

Furthermore,
‖Mw − αv‖ = ‖(λj − z

√
n)w‖ ≤ s.

If λi = λj , but the geometric multiplicity is greater than or equal to two, then the
above argument still applies since we can find distinct eigenvectors vi 6= vj . Thus, the only
remaining case is when λ = λi = λj and the geometric multiplicity of λ is one. By the
Jordan canonical form, there exist vi 6= vj such that

Mvi = (λ− z
√
n)vi and Mvj = (λvj + vi)− z

√
nvj = (λ− z

√
n)vj + vi.

Using the notation w = aivi + ajvj for a vector orthogonal to vi, we have

Mw = (λ− z
√
n)w + ajvi

so we can use α = aj and complete the proof as above. �

The next lemma allows us to consider bounding the tails of the least singular value and
and the second smallest singular value.

Lemma A.2. Let N ∈ C
n×n, z ∈ C with |z| ≤ K and denote M = N − z

√
n. Suppose

there exist i, j ∈ [n] such that the eigenvalues of N , λi, λj ∈ B(z
√
n, s) for s > 0.

(1) If α ∈ C with |α| ≤ s that satisfies (A.1), then

sn(M) ≤ s and sn−1(M) ≤ 2s.

(2) If α ∈ C with |α| > s that satisfies (A.1), then

sn(M) ≤ s2

|α| and sn−1(M) ≤ |α|.

Proof. We begin with the first case. We have ‖Mv‖ ≤ s and

‖Mw‖ ≤ ‖Mw− αv‖ + ‖αv‖ ≤ 2s

As v and w are orthogonal, we have sn(M) ≤ s and sn−1(M) ≤ 2s.
Now we assume that |α| > s. Since

‖M |span(v,w)‖ ≤ 2s,

we have sn−1(N) ≤ 2s. Also,

sn(M) ≤ s2(M |span(v,w)) ≤ dist(Mv, span(Mw)).

To evaluate the right-hand side of this inequality, we recall that

Mv = (λi − z
√
n)v and Mw = (λj − z

√
n)w + αv

which implies

dist(Mv, span(Mw)) ≤ |λi − z
√
n||λj − z

√
n|

|α| ≤ s2

|α| .
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�

A.2. Two Smallest Singular Values. In this section, we consider a fixed complex shift
λ with imaginary part δ ≥ e−c⋆n and we prove the next proposition.

Proposition A.3. For any t′ ≥ t ≥ 0, there exists constants C, c > 0 such that

P

(
sn(N − λ

√
n) ≤ t√

n
, sn−1(N − λ

√
n) ≤ t′√

n
and EK

)
≤ C

t2t′2

δ2
+ e−cn

Definition A.4. We say a subspace W is incompressible if all v ∈ Sn−1 ∩ W are in
IncompC(a, b).

Let v and v′ be the right singular vectors corresponding to sn(N − λ
√
n) and sn−1(N −

λ
√
n). LetW denote the subspace spanned by v and v′, then on the event sn−1(N−λ√n) ≤

t′√
n
,

‖(A− λ
√
n)|W ‖ ≤ t′√

n
.

Therefore,

P

(
sn(A−λ

√
n) ≤ t√

n
, sn−1(N − λ

√
n) ≤ t′√

n
and EK

)

≤ P

(
inf

z∈Incomp
‖(N − λ

√
n)z‖ ≤ t√

n
, inf
W∈Incomp

‖(N − λ
√
n)|W ‖ ≤ t′√

n
and EK

)

+ P

(
inf

z∈Comp
‖(N − λ

√
n)z‖ ≤ t′√

n
and EK

)

The last term is exponentially small by Lemma 2.3. The next lemma converts the remaining
probability into a distance problem.

Lemma A.5 (Lemma A.1.4, [37]). Let M = N − λ
√
n.

P( inf
z∈Incomp(a,b)

‖Mz‖ < bt√
n
, inf
W∈Incomp

‖M |W ‖ < bt′√
n

and E)

≤ 1

a2n2

n∑

k=1

∑

j 6=k

P(dist(Xk, Hk) < t, dist(Xj , Hjk) < t′ and E)

where Xk denotes the k-th row of M , Hk is the span of all the rows except the k-th and Hjk

is the span of all the rows except the j-th and k-th.

The next two propositions yield tail bounds on the distance problems depending on
whether the complex shift is real or not.

Proposition A.6. There exist constants C, c > 0 such that for λ ∈ C with |λ| ≤ K
√
n and

δ = Im(λ) ≥ ec∗n.

P(sn(N − λ
√
n) ≤ t√

n
, sn−1(N − λ

√
n) ≤ t′√

n
and EK) ≤ C

t2t′2

δ2
+ e−cn.

Proof. By Proposition A.6 and symmetry, we can focus on

P(dist(Xn, Hn) < t, dist(Xn−1, Hn,n−1) < t′ and EK).

The event that dist(Xn, Hn) implies that there exists a unit vector X orthogonal to Hn

such that |〈X,Xn〉| < t. Similarly, the event that dist(Xn−1, Hn,n−1) < t′ implies that for
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all vectors X ′ orthogonal to Hn,n−1 with |〈X ′, Xn−1〉| < t′. By Theorem 2.1 and Theorem
2.10, with probability at least 1− e−cn, for any vector, v, orthogonal to Hn,

ρ(v, t) ≤ C

δ

(
t+ e−cn

)2
.

We denote this event by E . One can easily check that the proof of Theorem 2.1 applies
equally well to vectors orthogonal to Hn,n−1 so we also have that any vector x orthogonal
to Hn,n−1, with probability at least 1− e−cn,

ρ(x, t) ≤ C

δ
(t+ e−cn)2.

We call this event E ′. Therefore,

P(dist(Xn, Hn) < t, dist(Xn−1, Hn,n−1) < t′ and EK)

≤ P(|〈X,Xn〉| < t, EK and E)P(|〈X ′, Xn−1〉| < t, EK and E ′) + P(Ec) + P(E ′c)

≤
(
C

δ
(t+ e−cn)2

)(
C

δ
(t′ + e−cn)2

)
+ 2e−cn

where the last line follows from the independence of Xn, Xn−1 and Hn,n−1. The result
follows after reducing c⋆ if necessary. �

Finally, we recall a tail bound for real shifts.

Proposition A.7 (Theorem 3.2.5 [37]). There exist constants C, c > 0 such that for any
t′ ≥ t ≥ 0, and real λ with |λ| ≤ K

√
n then

P(sn(N − λ
√
n) ≤ t√

n
, sn−1(N − λ

√
n) ≤ t′√

n
and EK) ≤ C(tt′) + e−cn.

A.3. Tail Bounds on Gaps.

Proposition A.8.

P(∃λi, λj ∈ B(z, δ) and EK) ≤ n2δ2 + e−cn

P(∃λi, λj ∈ B(z, s) and EK) ≤ C log(n/s)
s4n4

δ2
+ e−cn

Proof. We define α1 = s and recursively, αk = 2ks. For any α ∈ C with αk ≤ |α| < αk+1

and s < |α|. Then the event that sn(M) ≤ (s/
√
2)2

|αk| and sn−1(M) ≤ |αk| implies that

sn(M) ≤ s2

|α| and sn−1(M) ≤ |α|.

Thus, by Lemma A.2,

P(λi, λj ∈ B(z, s) and EK) ≤ P(sn(M) ≤ sn−1(N) ≤ 2s)

+

C log(n/s)∑

k=1

P(sn(M) ≤ (s/
√
2)2/|αk| and sn−1(M) ≤ |αk|)

where the range of the sum is determined by the condition that |α| ≤ 2K
√
n. For every

summand, Proposition A.6 provides an upper bound of C(s/
√
2)4n2/δ2 + e−cn. Taking a

union bound over the choice of i, j ∈ [n] concludes the proof of the first statement.
An analogous argument using Proposition A.7 instead of Proposition A.6 yields the second

result. �
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A.4. Proof of Theorem 1.9.

Proof. Let DK denote the disk of radius K
√
n in the complex plane. We begin with a

δ/10-net, N , of the intersection of the real line with DK . Such a net can be constructed to
be of size less than 2K

√
nδ−1. We center a ball of radius δ on each point in the net. The

union of these balls contains a strip of size δ/2 around the section of the real line in DK .
Let D′

K be DK after removing a strip of width δ/100 around the real line. We can construct
an s/10-net, N ′, of D′

K of size at most CK2s−2n. If s < δ/2, then on the event that there
exist λi, λj such that |λi − λj | ≤ s, we must have either for some zk ∈ N

λi, λj ∈ B(zk, δ)

or for some z′k ∈ N ′

λi, λj ∈ B(z′k, s).

Both these events are controlled in Proposition A.8. Thus, by a union bound,

P(∆ ≤ s and EK) ≤
∑

zk∈N
P(∃λi, λj ∈ B(zk, δ) and EK)

+
∑

z′

k
∈N ′

P(∃λi, λj ∈ B(z′k, s) and EK)

≤ CK
√
nδ−1(n2δ2) + CK2s−2n(log(n/s)

s4n4

δ2
) + 2e−cn

≤ CKn5/2δ + CK2 s
2n5

δ2
log(n/s) + 2e−cn

Observe that this bound is only effective in the range δ ≤ n−5/2. In this range, if we set
δ = cs2/3n5/6 we have s < δ/2 for a small enough constant c. Then we can conclude that

P(∆ ≤ s and EK) ≤ (CK2c−2)s2/3n10/3 log(n/s) + e−cn

Finally, to simplify the result, we generously bound log(n/s) by n using the fact that δ ≥
e−c∗n. �

Appendix B. Tail bounds for Eigenvalue Gaps of Adjacency Matrices

In this section we sketch the necessary modifications to handle the gap probability for
adjacency matrices. We recall the basic structure of the spectrum.

Theorem B.1 (Follows from Theorem 2.8 in [66]). Let Nn be an iid random matrix whose

entries are centered and have unit variance and finite fourth moment. Let Ñn be the matrix
Nn with the diagonal entries replaced with zeros. Then for any p ∈ (0, 1) and any δ > 0,

almost surely, for n sufficiently large, all the eigenvalues of Ñn + pJ are contained in the
disk {z ∈ C : |z| ≤ (1 + δ)

√
n} with a single exception which takes the value pn+ o(

√
n).

Due to the previous result, as the outlier eigenvalue is significantly separated from the
others, it suffices to consider those eigenvalues within a radius of K

√
n of the origin.

Lemma B.2. Let A ∈ Cn×n with ‖A‖ ≤ 2n, z ∈ C with |z| ≤ K
√
n and denote M = A−z.

Suppose there exist i, j ∈ [n] such that the eigenvalues of A, λi, λj ∈ B(z, s) for 0 < s ≤ 2n.

Then there exist orthogonal vectors v, w ∈ Sn−1
C

and a real number α with |α| ≤ 2n such
that

(B.1) Mv = (λi − z)v and Mw = (λj − z)w + αv.
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As a consequence,

(B.2) ‖Mv‖ ≤ s and ‖Mw− αv‖ ≤ s

Proof. We begin with the assumption that λi 6= λj and let vi and vj be two corresponding
eigenvectors. Then we can choose v = vi. We will choose w to be orthogonal to v and also
in the span of vi and vj . Let us write w = aivi + ajvj . Therefore,

(B.3) Mw = ai(λi − z)vi + aj(λj − z)vj = (λj − z)w+ ai(λi − λj)vi = (λj − z)w+ αv

where α = ai(λi − λj). Since αv = (M − (λj − z))w,

|α| = ‖αv‖ ≤ 4n.

Furthermore,
‖Mw− αv‖ = ‖(λj − z)w‖ ≤ s.

If λi = λj , but the geometric multiplicity is greater than or equal to two, then the
above argument still applies since we can find distinct eigenvectors vi 6= vj . Thus, the only
remaining case is when λ = λi = λj and the geometric multiplicity of λ is one. By the
Jordan canonical form, there exist vi 6= vj such that

Mvi = (λ − z)vi and Mvj = (λvj + vi)− zvj = (λ− z)vj + vi.

Using the notation w = aivi + ajvj for a vector orthogonal to vi, we have

Mw = (λ− z)w+ ajvi

so we can use α = aj and complete the proof as above. �

The remainder of the argument is identical to that in Appendix A. Finally, to control
the distance problem, we utilize Theorem 4.2 instead of Theorem 2.1. The reader can easily
check that the norm of A or A− z does not appear in the argument outside of Lemma B.2
and Theorem 4.2. It is in the proof of Theorem 4.2 that we have overcome the majority of
the large norm issues.
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